]> git.lizzy.rs Git - rust.git/commitdiff
sanity_check_layout: less rightwards drift
authorRalf Jung <post@ralfj.de>
Mon, 28 Nov 2022 09:45:12 +0000 (10:45 +0100)
committerRalf Jung <post@ralfj.de>
Mon, 28 Nov 2022 09:45:12 +0000 (10:45 +0100)
compiler/rustc_ty_utils/src/layout_sanity_check.rs

index 9eb8f684bdb59fc2b81bcaca1e3a09f2d8b166d6..3339e910d7c7766ef880e7f1ef77efdf96da8b85 100644 (file)
@@ -20,283 +20,286 @@ pub(super) fn sanity_check_layout<'tcx>(
         bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
     }
 
-    if cfg!(debug_assertions) {
-        /// Yields non-ZST fields of the type
-        fn non_zst_fields<'tcx, 'a>(
-            cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
-            layout: &'a TyAndLayout<'tcx>,
-        ) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
-            (0..layout.layout.fields().count()).filter_map(|i| {
-                let field = layout.field(cx, i);
-                // Also checking `align == 1` here leads to test failures in
-                // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
-                // alignment 4 that still gets ignored during layout computation (which is okay
-                // since other fields already force alignment 4).
-                let zst = field.is_zst();
-                (!zst).then(|| (layout.fields.offset(i), field))
-            })
-        }
+    if !cfg!(debug_assertions) {
+        // Stop here, the rest is kind of expensive.
+        return;
+    }
 
-        fn skip_newtypes<'tcx>(
-            cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
-            layout: &TyAndLayout<'tcx>,
-        ) -> TyAndLayout<'tcx> {
-            if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
-                // Definitely not a newtype of anything.
-                return *layout;
-            }
-            let mut fields = non_zst_fields(cx, layout);
-            let Some(first) = fields.next() else {
-                // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
-                return *layout
-            };
-            if fields.next().is_none() {
-                let (offset, first) = first;
-                if offset == Size::ZERO && first.layout.size() == layout.size {
-                    // This is a newtype, so keep recursing.
-                    // FIXME(RalfJung): I don't think it would be correct to do any checks for
-                    // alignment here, so we don't. Is that correct?
-                    return skip_newtypes(cx, &first);
-                }
+    /// Yields non-ZST fields of the type
+    fn non_zst_fields<'tcx, 'a>(
+        cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
+        layout: &'a TyAndLayout<'tcx>,
+    ) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
+        (0..layout.layout.fields().count()).filter_map(|i| {
+            let field = layout.field(cx, i);
+            // Also checking `align == 1` here leads to test failures in
+            // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
+            // alignment 4 that still gets ignored during layout computation (which is okay
+            // since other fields already force alignment 4).
+            let zst = field.is_zst();
+            (!zst).then(|| (layout.fields.offset(i), field))
+        })
+    }
+
+    fn skip_newtypes<'tcx>(
+        cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
+        layout: &TyAndLayout<'tcx>,
+    ) -> TyAndLayout<'tcx> {
+        if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
+            // Definitely not a newtype of anything.
+            return *layout;
+        }
+        let mut fields = non_zst_fields(cx, layout);
+        let Some(first) = fields.next() else {
+            // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
+            return *layout
+        };
+        if fields.next().is_none() {
+            let (offset, first) = first;
+            if offset == Size::ZERO && first.layout.size() == layout.size {
+                // This is a newtype, so keep recursing.
+                // FIXME(RalfJung): I don't think it would be correct to do any checks for
+                // alignment here, so we don't. Is that correct?
+                return skip_newtypes(cx, &first);
             }
-            // No more newtypes here.
-            *layout
         }
+        // No more newtypes here.
+        *layout
+    }
 
-        fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
-            match layout.layout.abi() {
-                Abi::Scalar(scalar) => {
-                    // No padding in scalars.
-                    let size = scalar.size(cx);
-                    let align = scalar.align(cx).abi;
-                    assert_eq!(
-                        layout.layout.size(),
-                        size,
-                        "size mismatch between ABI and layout in {layout:#?}"
-                    );
-                    assert_eq!(
-                        layout.layout.align().abi,
-                        align,
-                        "alignment mismatch between ABI and layout in {layout:#?}"
-                    );
-                    // Check that this matches the underlying field.
-                    let inner = skip_newtypes(cx, layout);
-                    assert!(
-                        matches!(inner.layout.abi(), Abi::Scalar(_)),
-                        "`Scalar` type {} is newtype around non-`Scalar` type {}",
-                        layout.ty,
-                        inner.ty
-                    );
-                    match inner.layout.fields() {
-                        FieldsShape::Primitive => {
-                            // Fine.
-                        }
-                        FieldsShape::Union(..) => {
-                            // FIXME: I guess we could also check something here? Like, look at all fields?
-                            return;
-                        }
-                        FieldsShape::Arbitrary { .. } => {
-                            // Should be an enum, the only field is the discriminant.
-                            assert!(
-                                inner.ty.is_enum(),
-                                "`Scalar` layout for non-primitive non-enum type {}",
-                                inner.ty
-                            );
-                            assert_eq!(
-                                inner.layout.fields().count(),
-                                1,
-                                "`Scalar` layout for multiple-field type in {inner:#?}",
-                            );
-                            let offset = inner.layout.fields().offset(0);
-                            let field = inner.field(cx, 0);
-                            // The field should be at the right offset, and match the `scalar` layout.
-                            assert_eq!(
-                                offset,
-                                Size::ZERO,
-                                "`Scalar` field at non-0 offset in {inner:#?}",
-                            );
-                            assert_eq!(
-                                field.size, size,
-                                "`Scalar` field with bad size in {inner:#?}",
-                            );
-                            assert_eq!(
-                                field.align.abi, align,
-                                "`Scalar` field with bad align in {inner:#?}",
-                            );
-                            assert!(
-                                matches!(field.abi, Abi::Scalar(_)),
-                                "`Scalar` field with bad ABI in {inner:#?}",
-                            );
-                        }
-                        _ => {
-                            panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
-                        }
+    fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
+        match layout.layout.abi() {
+            Abi::Scalar(scalar) => {
+                // No padding in scalars.
+                let size = scalar.size(cx);
+                let align = scalar.align(cx).abi;
+                assert_eq!(
+                    layout.layout.size(),
+                    size,
+                    "size mismatch between ABI and layout in {layout:#?}"
+                );
+                assert_eq!(
+                    layout.layout.align().abi,
+                    align,
+                    "alignment mismatch between ABI and layout in {layout:#?}"
+                );
+                // Check that this matches the underlying field.
+                let inner = skip_newtypes(cx, layout);
+                assert!(
+                    matches!(inner.layout.abi(), Abi::Scalar(_)),
+                    "`Scalar` type {} is newtype around non-`Scalar` type {}",
+                    layout.ty,
+                    inner.ty
+                );
+                match inner.layout.fields() {
+                    FieldsShape::Primitive => {
+                        // Fine.
                     }
-                }
-                Abi::ScalarPair(scalar1, scalar2) => {
-                    // Sanity-check scalar pairs. These are a bit more flexible and support
-                    // padding, but we can at least ensure both fields actually fit into the layout
-                    // and the alignment requirement has not been weakened.
-                    let size1 = scalar1.size(cx);
-                    let align1 = scalar1.align(cx).abi;
-                    let size2 = scalar2.size(cx);
-                    let align2 = scalar2.align(cx).abi;
-                    assert!(
-                        layout.layout.align().abi >= cmp::max(align1, align2),
-                        "alignment mismatch between ABI and layout in {layout:#?}",
-                    );
-                    let field2_offset = size1.align_to(align2);
-                    assert!(
-                        layout.layout.size() >= field2_offset + size2,
-                        "size mismatch between ABI and layout in {layout:#?}"
-                    );
-                    // Check that the underlying pair of fields matches.
-                    let inner = skip_newtypes(cx, layout);
-                    assert!(
-                        matches!(inner.layout.abi(), Abi::ScalarPair(..)),
-                        "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
-                        layout.ty,
-                        inner.ty
-                    );
-                    if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
-                        // FIXME: ScalarPair for enums is enormously complicated and it is very hard
-                        // to check anything about them.
+                    FieldsShape::Union(..) => {
+                        // FIXME: I guess we could also check something here? Like, look at all fields?
                         return;
                     }
-                    match inner.layout.fields() {
-                        FieldsShape::Arbitrary { .. } => {
-                            // Checked below.
-                        }
-                        FieldsShape::Union(..) => {
-                            // FIXME: I guess we could also check something here? Like, look at all fields?
-                            return;
-                        }
-                        _ => {
-                            panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
-                        }
+                    FieldsShape::Arbitrary { .. } => {
+                        // Should be an enum, the only field is the discriminant.
+                        assert!(
+                            inner.ty.is_enum(),
+                            "`Scalar` layout for non-primitive non-enum type {}",
+                            inner.ty
+                        );
+                        assert_eq!(
+                            inner.layout.fields().count(),
+                            1,
+                            "`Scalar` layout for multiple-field type in {inner:#?}",
+                        );
+                        let offset = inner.layout.fields().offset(0);
+                        let field = inner.field(cx, 0);
+                        // The field should be at the right offset, and match the `scalar` layout.
+                        assert_eq!(
+                            offset,
+                            Size::ZERO,
+                            "`Scalar` field at non-0 offset in {inner:#?}",
+                        );
+                        assert_eq!(field.size, size, "`Scalar` field with bad size in {inner:#?}",);
+                        assert_eq!(
+                            field.align.abi, align,
+                            "`Scalar` field with bad align in {inner:#?}",
+                        );
+                        assert!(
+                            matches!(field.abi, Abi::Scalar(_)),
+                            "`Scalar` field with bad ABI in {inner:#?}",
+                        );
+                    }
+                    _ => {
+                        panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
                     }
-                    let mut fields = non_zst_fields(cx, &inner);
-                    let (offset1, field1) = fields.next().unwrap_or_else(|| {
-                        panic!("`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}")
-                    });
-                    let (offset2, field2) = fields.next().unwrap_or_else(|| {
-                        panic!("`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}")
-                    });
-                    assert!(
-                        fields.next().is_none(),
-                        "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
-                    );
-                    // The fields might be in opposite order.
-                    let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
-                        (offset1, field1, offset2, field2)
-                    } else {
-                        (offset2, field2, offset1, field1)
-                    };
-                    // The fields should be at the right offset, and match the `scalar` layout.
-                    assert_eq!(
-                        offset1,
-                        Size::ZERO,
-                        "`ScalarPair` first field at non-0 offset in {inner:#?}",
-                    );
-                    assert_eq!(
-                        field1.size, size1,
-                        "`ScalarPair` first field with bad size in {inner:#?}",
-                    );
-                    assert_eq!(
-                        field1.align.abi, align1,
-                        "`ScalarPair` first field with bad align in {inner:#?}",
-                    );
-                    assert!(
-                        matches!(field1.abi, Abi::Scalar(_)),
-                        "`ScalarPair` first field with bad ABI in {inner:#?}",
-                    );
-                    assert_eq!(
-                        offset2, field2_offset,
-                        "`ScalarPair` second field at bad offset in {inner:#?}",
-                    );
-                    assert_eq!(
-                        field2.size, size2,
-                        "`ScalarPair` second field with bad size in {inner:#?}",
-                    );
-                    assert_eq!(
-                        field2.align.abi, align2,
-                        "`ScalarPair` second field with bad align in {inner:#?}",
-                    );
-                    assert!(
-                        matches!(field2.abi, Abi::Scalar(_)),
-                        "`ScalarPair` second field with bad ABI in {inner:#?}",
-                    );
                 }
-                Abi::Vector { count, element } => {
-                    // No padding in vectors. Alignment can be strengthened, though.
-                    assert!(
-                        layout.layout.align().abi >= element.align(cx).abi,
-                        "alignment mismatch between ABI and layout in {layout:#?}"
-                    );
-                    let size = element.size(cx) * count;
-                    assert_eq!(
-                        layout.layout.size(),
-                        size.align_to(cx.data_layout().vector_align(size).abi),
-                        "size mismatch between ABI and layout in {layout:#?}"
-                    );
+            }
+            Abi::ScalarPair(scalar1, scalar2) => {
+                // Sanity-check scalar pairs. These are a bit more flexible and support
+                // padding, but we can at least ensure both fields actually fit into the layout
+                // and the alignment requirement has not been weakened.
+                let size1 = scalar1.size(cx);
+                let align1 = scalar1.align(cx).abi;
+                let size2 = scalar2.size(cx);
+                let align2 = scalar2.align(cx).abi;
+                assert!(
+                    layout.layout.align().abi >= cmp::max(align1, align2),
+                    "alignment mismatch between ABI and layout in {layout:#?}",
+                );
+                let field2_offset = size1.align_to(align2);
+                assert!(
+                    layout.layout.size() >= field2_offset + size2,
+                    "size mismatch between ABI and layout in {layout:#?}"
+                );
+                // Check that the underlying pair of fields matches.
+                let inner = skip_newtypes(cx, layout);
+                assert!(
+                    matches!(inner.layout.abi(), Abi::ScalarPair(..)),
+                    "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
+                    layout.ty,
+                    inner.ty
+                );
+                if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
+                    // FIXME: ScalarPair for enums is enormously complicated and it is very hard
+                    // to check anything about them.
+                    return;
+                }
+                match inner.layout.fields() {
+                    FieldsShape::Arbitrary { .. } => {
+                        // Checked below.
+                    }
+                    FieldsShape::Union(..) => {
+                        // FIXME: I guess we could also check something here? Like, look at all fields?
+                        return;
+                    }
+                    _ => {
+                        panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
+                    }
                 }
-                Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
+                let mut fields = non_zst_fields(cx, &inner);
+                let (offset1, field1) = fields.next().unwrap_or_else(|| {
+                    panic!(
+                        "`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}"
+                    )
+                });
+                let (offset2, field2) = fields.next().unwrap_or_else(|| {
+                    panic!(
+                        "`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}"
+                    )
+                });
+                assert!(
+                    fields.next().is_none(),
+                    "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
+                );
+                // The fields might be in opposite order.
+                let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
+                    (offset1, field1, offset2, field2)
+                } else {
+                    (offset2, field2, offset1, field1)
+                };
+                // The fields should be at the right offset, and match the `scalar` layout.
+                assert_eq!(
+                    offset1,
+                    Size::ZERO,
+                    "`ScalarPair` first field at non-0 offset in {inner:#?}",
+                );
+                assert_eq!(
+                    field1.size, size1,
+                    "`ScalarPair` first field with bad size in {inner:#?}",
+                );
+                assert_eq!(
+                    field1.align.abi, align1,
+                    "`ScalarPair` first field with bad align in {inner:#?}",
+                );
+                assert!(
+                    matches!(field1.abi, Abi::Scalar(_)),
+                    "`ScalarPair` first field with bad ABI in {inner:#?}",
+                );
+                assert_eq!(
+                    offset2, field2_offset,
+                    "`ScalarPair` second field at bad offset in {inner:#?}",
+                );
+                assert_eq!(
+                    field2.size, size2,
+                    "`ScalarPair` second field with bad size in {inner:#?}",
+                );
+                assert_eq!(
+                    field2.align.abi, align2,
+                    "`ScalarPair` second field with bad align in {inner:#?}",
+                );
+                assert!(
+                    matches!(field2.abi, Abi::Scalar(_)),
+                    "`ScalarPair` second field with bad ABI in {inner:#?}",
+                );
             }
+            Abi::Vector { count, element } => {
+                // No padding in vectors. Alignment can be strengthened, though.
+                assert!(
+                    layout.layout.align().abi >= element.align(cx).abi,
+                    "alignment mismatch between ABI and layout in {layout:#?}"
+                );
+                let size = element.size(cx) * count;
+                assert_eq!(
+                    layout.layout.size(),
+                    size.align_to(cx.data_layout().vector_align(size).abi),
+                    "size mismatch between ABI and layout in {layout:#?}"
+                );
+            }
+            Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
         }
+    }
 
-        check_layout_abi(cx, layout);
+    check_layout_abi(cx, layout);
 
-        if let Variants::Multiple { variants, .. } = &layout.variants {
-            for variant in variants.iter() {
-                // No nested "multiple".
-                assert!(matches!(variant.variants, Variants::Single { .. }));
-                // Variants should have the same or a smaller size as the full thing,
-                // and same for alignment.
-                if variant.size > layout.size {
-                    bug!(
-                        "Type with size {} bytes has variant with size {} bytes: {layout:#?}",
-                        layout.size.bytes(),
-                        variant.size.bytes(),
-                    )
-                }
-                if variant.align.abi > layout.align.abi {
-                    bug!(
-                        "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
-                        layout.align.abi.bytes(),
-                        variant.align.abi.bytes(),
-                    )
-                }
-                // Skip empty variants.
-                if variant.size == Size::ZERO
-                    || variant.fields.count() == 0
-                    || variant.abi.is_uninhabited()
-                {
-                    // These are never actually accessed anyway, so we can skip the coherence check
-                    // for them. They also fail that check, since they have
-                    // `Aggregate`/`Uninhbaited` ABI even when the main type is
-                    // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
-                    // 0, and sometimes, variants without fields have non-0 size.)
-                    continue;
-                }
-                // The top-level ABI and the ABI of the variants should be coherent.
-                let scalar_coherent = |s1: Scalar, s2: Scalar| {
-                    s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx)
-                };
-                let abi_coherent = match (layout.abi, variant.abi) {
-                    (Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
-                    (Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
-                        scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
-                    }
-                    (Abi::Uninhabited, _) => true,
-                    (Abi::Aggregate { .. }, _) => true,
-                    _ => false,
-                };
-                if !abi_coherent {
-                    bug!(
-                        "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
-                        variant
-                    );
+    if let Variants::Multiple { variants, .. } = &layout.variants {
+        for variant in variants.iter() {
+            // No nested "multiple".
+            assert!(matches!(variant.variants, Variants::Single { .. }));
+            // Variants should have the same or a smaller size as the full thing,
+            // and same for alignment.
+            if variant.size > layout.size {
+                bug!(
+                    "Type with size {} bytes has variant with size {} bytes: {layout:#?}",
+                    layout.size.bytes(),
+                    variant.size.bytes(),
+                )
+            }
+            if variant.align.abi > layout.align.abi {
+                bug!(
+                    "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
+                    layout.align.abi.bytes(),
+                    variant.align.abi.bytes(),
+                )
+            }
+            // Skip empty variants.
+            if variant.size == Size::ZERO
+                || variant.fields.count() == 0
+                || variant.abi.is_uninhabited()
+            {
+                // These are never actually accessed anyway, so we can skip the coherence check
+                // for them. They also fail that check, since they have
+                // `Aggregate`/`Uninhbaited` ABI even when the main type is
+                // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
+                // 0, and sometimes, variants without fields have non-0 size.)
+                continue;
+            }
+            // The top-level ABI and the ABI of the variants should be coherent.
+            let scalar_coherent =
+                |s1: Scalar, s2: Scalar| s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx);
+            let abi_coherent = match (layout.abi, variant.abi) {
+                (Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
+                (Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
+                    scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
                 }
+                (Abi::Uninhabited, _) => true,
+                (Abi::Aggregate { .. }, _) => true,
+                _ => false,
+            };
+            if !abi_coherent {
+                bug!(
+                    "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
+                    variant
+                );
             }
         }
     }