X-Git-Url: https://git.lizzy.rs/?a=blobdiff_plain;f=src%2Futil%2Fserialize.h;h=b3ec28eab58ccf10e826db8cd37e38b44a4b55ab;hb=9bb381ebd387cd783da8d582949bf284a29d9b3a;hp=4c88360212645f55af8cb06d5bceb59eb37b78bc;hpb=3570f3e396acad4a6b5381d06c2dae5cf4e95fbd;p=dragonfireclient.git diff --git a/src/util/serialize.h b/src/util/serialize.h index 4c8836021..b3ec28eab 100644 --- a/src/util/serialize.h +++ b/src/util/serialize.h @@ -17,142 +17,203 @@ with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ -#ifndef UTIL_SERIALIZE_HEADER -#define UTIL_SERIALIZE_HEADER - -#include "../irrlichttypes_bloated.h" +#pragma once + +#include "irrlichttypes_bloated.h" +#include "exceptions.h" // for SerializationError +#include "debug.h" // for assert +#include "ieee_float.h" + +#include "config.h" +#if HAVE_ENDIAN_H + #ifdef _WIN32 + #define __BYTE_ORDER 0 + #define __LITTLE_ENDIAN 0 + #define __BIG_ENDIAN 1 + #elif defined(__MACH__) && defined(__APPLE__) + #include + #elif defined(__FreeBSD__) || defined(__DragonFly__) + #include + #else + #include + #endif +#endif +#include // for memcpy #include #include +#include -inline void writeU64(u8 *data, u64 i) +#define FIXEDPOINT_FACTOR 1000.0f + +// 0x7FFFFFFF / 1000.0f is not serializable. +// The limited float precision at this magnitude may cause the result to round +// to a greater value than can be represented by a 32 bit integer when increased +// by a factor of FIXEDPOINT_FACTOR. As a result, [F1000_MIN..F1000_MAX] does +// not represent the full range, but rather the largest safe range, of values on +// all supported architectures. Note: This definition makes assumptions on +// platform float-to-int conversion behavior. +#define F1000_MIN ((float)(s32)((float)(-0x7FFFFFFF - 1) / FIXEDPOINT_FACTOR)) +#define F1000_MAX ((float)(s32)((float)(0x7FFFFFFF) / FIXEDPOINT_FACTOR)) + +#define STRING_MAX_LEN 0xFFFF +#define WIDE_STRING_MAX_LEN 0xFFFF +// 64 MB ought to be enough for anybody - Billy G. +#define LONG_STRING_MAX_LEN (64 * 1024 * 1024) + + +extern FloatType g_serialize_f32_type; + +#if HAVE_ENDIAN_H +// use machine native byte swapping routines +// Note: memcpy below is optimized out by modern compilers + +inline u16 readU16(const u8 *data) { - data[0] = ((i>>56)&0xff); - data[1] = ((i>>48)&0xff); - data[2] = ((i>>40)&0xff); - data[3] = ((i>>32)&0xff); - data[4] = ((i>>24)&0xff); - data[5] = ((i>>16)&0xff); - data[6] = ((i>> 8)&0xff); - data[7] = ((i>> 0)&0xff); + u16 val; + memcpy(&val, data, 2); + return be16toh(val); } -inline void writeU32(u8 *data, u32 i) +inline u32 readU32(const u8 *data) { - data[0] = ((i>>24)&0xff); - data[1] = ((i>>16)&0xff); - data[2] = ((i>> 8)&0xff); - data[3] = ((i>> 0)&0xff); + u32 val; + memcpy(&val, data, 4); + return be32toh(val); } -inline void writeU16(u8 *data, u16 i) +inline u64 readU64(const u8 *data) { - data[0] = ((i>> 8)&0xff); - data[1] = ((i>> 0)&0xff); + u64 val; + memcpy(&val, data, 8); + return be64toh(val); } -inline void writeU8(u8 *data, u8 i) +inline void writeU16(u8 *data, u16 i) { - data[0] = ((i>> 0)&0xff); + u16 val = htobe16(i); + memcpy(data, &val, 2); } -inline u64 readU64(const u8 *data) +inline void writeU32(u8 *data, u32 i) { - return ((u64)data[0]<<56) | ((u64)data[1]<<48) - | ((u64)data[2]<<40) | ((u64)data[3]<<32) - | ((u64)data[4]<<24) | ((u64)data[5]<<16) - | ((u64)data[6]<<8) | ((u64)data[7]<<0); + u32 val = htobe32(i); + memcpy(data, &val, 4); } -inline u32 readU32(const u8 *data) +inline void writeU64(u8 *data, u64 i) { - return (data[0]<<24) | (data[1]<<16) | (data[2]<<8) | (data[3]<<0); + u64 val = htobe64(i); + memcpy(data, &val, 8); } +#else +// generic byte-swapping implementation + inline u16 readU16(const u8 *data) { - return (data[0]<<8) | (data[1]<<0); + return + ((u16)data[0] << 8) | ((u16)data[1] << 0); } -inline u8 readU8(const u8 *data) +inline u32 readU32(const u8 *data) { - return (data[0]<<0); + return + ((u32)data[0] << 24) | ((u32)data[1] << 16) | + ((u32)data[2] << 8) | ((u32)data[3] << 0); } -inline void writeS32(u8 *data, s32 i){ - writeU32(data, (u32)i); -} -inline s32 readS32(const u8 *data){ - return (s32)readU32(data); +inline u64 readU64(const u8 *data) +{ + return + ((u64)data[0] << 56) | ((u64)data[1] << 48) | + ((u64)data[2] << 40) | ((u64)data[3] << 32) | + ((u64)data[4] << 24) | ((u64)data[5] << 16) | + ((u64)data[6] << 8) | ((u64)data[7] << 0); } -inline void writeS16(u8 *data, s16 i){ - writeU16(data, (u16)i); -} -inline s16 readS16(const u8 *data){ - return (s16)readU16(data); +inline void writeU16(u8 *data, u16 i) +{ + data[0] = (i >> 8) & 0xFF; + data[1] = (i >> 0) & 0xFF; } -inline void writeS8(u8 *data, s8 i){ - writeU8(data, (u8)i); -} -inline s8 readS8(const u8 *data){ - return (s8)readU8(data); +inline void writeU32(u8 *data, u32 i) +{ + data[0] = (i >> 24) & 0xFF; + data[1] = (i >> 16) & 0xFF; + data[2] = (i >> 8) & 0xFF; + data[3] = (i >> 0) & 0xFF; } -inline void writeF1000(u8 *data, f32 i){ - writeS32(data, i*1000); +inline void writeU64(u8 *data, u64 i) +{ + data[0] = (i >> 56) & 0xFF; + data[1] = (i >> 48) & 0xFF; + data[2] = (i >> 40) & 0xFF; + data[3] = (i >> 32) & 0xFF; + data[4] = (i >> 24) & 0xFF; + data[5] = (i >> 16) & 0xFF; + data[6] = (i >> 8) & 0xFF; + data[7] = (i >> 0) & 0xFF; } -inline f32 readF1000(const u8 *data){ - return (f32)readS32(data)/1000.; + +#endif // HAVE_ENDIAN_H + +//////////////// read routines //////////////// + +inline u8 readU8(const u8 *data) +{ + return ((u8)data[0] << 0); } -inline void writeV3S32(u8 *data, v3s32 p) +inline s8 readS8(const u8 *data) { - writeS32(&data[0], p.X); - writeS32(&data[4], p.Y); - writeS32(&data[8], p.Z); + return (s8)readU8(data); } -inline v3s32 readV3S32(const u8 *data) + +inline s16 readS16(const u8 *data) { - v3s32 p; - p.X = readS32(&data[0]); - p.Y = readS32(&data[4]); - p.Z = readS32(&data[8]); - return p; + return (s16)readU16(data); } -inline void writeV3F1000(u8 *data, v3f p) +inline s32 readS32(const u8 *data) { - writeF1000(&data[0], p.X); - writeF1000(&data[4], p.Y); - writeF1000(&data[8], p.Z); + return (s32)readU32(data); } -inline v3f readV3F1000(const u8 *data) + +inline s64 readS64(const u8 *data) { - v3f p; - p.X = (float)readF1000(&data[0]); - p.Y = (float)readF1000(&data[4]); - p.Z = (float)readF1000(&data[8]); - return p; + return (s64)readU64(data); } -inline void writeV2F1000(u8 *data, v2f p) +inline f32 readF1000(const u8 *data) { - writeF1000(&data[0], p.X); - writeF1000(&data[4], p.Y); + return (f32)readS32(data) / FIXEDPOINT_FACTOR; } -inline v2f readV2F1000(const u8 *data) + +inline f32 readF32(const u8 *data) { - v2f p; - p.X = (float)readF1000(&data[0]); - p.Y = (float)readF1000(&data[4]); - return p; + u32 u = readU32(data); + + switch (g_serialize_f32_type) { + case FLOATTYPE_SYSTEM: { + f32 f; + memcpy(&f, &u, 4); + return f; + } + case FLOATTYPE_SLOW: + return u32Tof32Slow(u); + case FLOATTYPE_UNKNOWN: // First initialization + g_serialize_f32_type = getFloatSerializationType(); + return readF32(data); + } + throw SerializationError("readF32: Unreachable code"); } -inline void writeV2S16(u8 *data, v2s16 p) +inline video::SColor readARGB8(const u8 *data) { - writeS16(&data[0], p.X); - writeS16(&data[2], p.Y); + video::SColor p(readU32(data)); + return p; } inline v2s16 readV2S16(const u8 *data) @@ -163,237 +224,232 @@ inline v2s16 readV2S16(const u8 *data) return p; } -inline void writeV2S32(u8 *data, v2s32 p) +inline v3s16 readV3S16(const u8 *data) { - writeS32(&data[0], p.X); - writeS32(&data[2], p.Y); + v3s16 p; + p.X = readS16(&data[0]); + p.Y = readS16(&data[2]); + p.Z = readS16(&data[4]); + return p; } inline v2s32 readV2S32(const u8 *data) { v2s32 p; p.X = readS32(&data[0]); - p.Y = readS32(&data[2]); + p.Y = readS32(&data[4]); return p; } -inline void writeV3S16(u8 *data, v3s16 p) +inline v3s32 readV3S32(const u8 *data) { - writeS16(&data[0], p.X); - writeS16(&data[2], p.Y); - writeS16(&data[4], p.Z); + v3s32 p; + p.X = readS32(&data[0]); + p.Y = readS32(&data[4]); + p.Z = readS32(&data[8]); + return p; } -inline v3s16 readV3S16(const u8 *data) +inline v3f readV3F1000(const u8 *data) { - v3s16 p; - p.X = readS16(&data[0]); - p.Y = readS16(&data[2]); - p.Z = readS16(&data[4]); + v3f p; + p.X = readF1000(&data[0]); + p.Y = readF1000(&data[4]); + p.Z = readF1000(&data[8]); return p; } -inline void writeARGB8(u8 *data, video::SColor p) +inline v2f readV2F32(const u8 *data) { - writeU8(&data[0], p.getAlpha()); - writeU8(&data[1], p.getRed()); - writeU8(&data[2], p.getGreen()); - writeU8(&data[3], p.getBlue()); + v2f p; + p.X = readF32(&data[0]); + p.Y = readF32(&data[4]); + return p; } -inline video::SColor readARGB8(const u8 *data) +inline v3f readV3F32(const u8 *data) { - video::SColor p( - readU8(&data[0]), - readU8(&data[1]), - readU8(&data[2]), - readU8(&data[3]) - ); + v3f p; + p.X = readF32(&data[0]); + p.Y = readF32(&data[4]); + p.Z = readF32(&data[8]); return p; } -/* - The above stuff directly interfaced to iostream -*/ +/////////////// write routines //////////////// -inline void writeU8(std::ostream &os, u8 p) -{ - char buf[1] = {0}; - writeU8((u8*)buf, p); - os.write(buf, 1); -} -inline u8 readU8(std::istream &is) +inline void writeU8(u8 *data, u8 i) { - char buf[1] = {0}; - is.read(buf, 1); - return readU8((u8*)buf); + data[0] = (i >> 0) & 0xFF; } -inline void writeU16(std::ostream &os, u16 p) +inline void writeS8(u8 *data, s8 i) { - char buf[2] = {0}; - writeU16((u8*)buf, p); - os.write(buf, 2); -} -inline u16 readU16(std::istream &is) -{ - char buf[2] = {0}; - is.read(buf, 2); - return readU16((u8*)buf); + writeU8(data, (u8)i); } -inline void writeU32(std::ostream &os, u32 p) +inline void writeS16(u8 *data, s16 i) { - char buf[4] = {0}; - writeU32((u8*)buf, p); - os.write(buf, 4); -} -inline u32 readU32(std::istream &is) -{ - char buf[4] = {0}; - is.read(buf, 4); - return readU32((u8*)buf); + writeU16(data, (u16)i); } -inline void writeS32(std::ostream &os, s32 p) +inline void writeS32(u8 *data, s32 i) { - char buf[4] = {0}; - writeS32((u8*)buf, p); - os.write(buf, 4); -} -inline s32 readS32(std::istream &is) -{ - char buf[4] = {0}; - is.read(buf, 4); - return readS32((u8*)buf); + writeU32(data, (u32)i); } -inline void writeS16(std::ostream &os, s16 p) +inline void writeS64(u8 *data, s64 i) { - char buf[2] = {0}; - writeS16((u8*)buf, p); - os.write(buf, 2); -} -inline s16 readS16(std::istream &is) -{ - char buf[2] = {0}; - is.read(buf, 2); - return readS16((u8*)buf); + writeU64(data, (u64)i); } -inline void writeS8(std::ostream &os, s8 p) +inline void writeF1000(u8 *data, f32 i) { - char buf[1] = {0}; - writeS8((u8*)buf, p); - os.write(buf, 1); -} -inline s8 readS8(std::istream &is) -{ - char buf[1] = {0}; - is.read(buf, 1); - return readS8((u8*)buf); + assert(i >= F1000_MIN && i <= F1000_MAX); + writeS32(data, i * FIXEDPOINT_FACTOR); } -inline void writeF1000(std::ostream &os, f32 p) -{ - char buf[4] = {0}; - writeF1000((u8*)buf, p); - os.write(buf, 4); -} -inline f32 readF1000(std::istream &is) +inline void writeF32(u8 *data, f32 i) { - char buf[4] = {0}; - is.read(buf, 4); - return readF1000((u8*)buf); + switch (g_serialize_f32_type) { + case FLOATTYPE_SYSTEM: { + u32 u; + memcpy(&u, &i, 4); + return writeU32(data, u); + } + case FLOATTYPE_SLOW: + return writeU32(data, f32Tou32Slow(i)); + case FLOATTYPE_UNKNOWN: // First initialization + g_serialize_f32_type = getFloatSerializationType(); + return writeF32(data, i); + } + throw SerializationError("writeF32: Unreachable code"); } -inline void writeV3F1000(std::ostream &os, v3f p) -{ - char buf[12]; - writeV3F1000((u8*)buf, p); - os.write(buf, 12); -} -inline v3f readV3F1000(std::istream &is) +inline void writeARGB8(u8 *data, video::SColor p) { - char buf[12]; - is.read(buf, 12); - return readV3F1000((u8*)buf); + writeU32(data, p.color); } -inline void writeV2F1000(std::ostream &os, v2f p) -{ - char buf[8] = {0}; - writeV2F1000((u8*)buf, p); - os.write(buf, 8); -} -inline v2f readV2F1000(std::istream &is) +inline void writeV2S16(u8 *data, v2s16 p) { - char buf[8] = {0}; - is.read(buf, 8); - return readV2F1000((u8*)buf); + writeS16(&data[0], p.X); + writeS16(&data[2], p.Y); } -inline void writeV2S16(std::ostream &os, v2s16 p) -{ - char buf[4] = {0}; - writeV2S16((u8*)buf, p); - os.write(buf, 4); -} -inline v2s16 readV2S16(std::istream &is) +inline void writeV3S16(u8 *data, v3s16 p) { - char buf[4] = {0}; - is.read(buf, 4); - return readV2S16((u8*)buf); + writeS16(&data[0], p.X); + writeS16(&data[2], p.Y); + writeS16(&data[4], p.Z); } -inline void writeV3S16(std::ostream &os, v3s16 p) -{ - char buf[6] = {0}; - writeV3S16((u8*)buf, p); - os.write(buf, 6); -} -inline v3s16 readV3S16(std::istream &is) +inline void writeV2S32(u8 *data, v2s32 p) { - char buf[6] = {0}; - is.read(buf, 6); - return readV3S16((u8*)buf); + writeS32(&data[0], p.X); + writeS32(&data[4], p.Y); } -inline void writeARGB8(std::ostream &os, video::SColor p) +inline void writeV3S32(u8 *data, v3s32 p) { - char buf[4] = {0}; - writeARGB8((u8*)buf, p); - os.write(buf, 4); + writeS32(&data[0], p.X); + writeS32(&data[4], p.Y); + writeS32(&data[8], p.Z); } -inline video::SColor readARGB8(std::istream &is) +inline void writeV3F1000(u8 *data, v3f p) { - char buf[4] = {0}; - is.read(buf, 4); - return readARGB8((u8*)buf); + writeF1000(&data[0], p.X); + writeF1000(&data[4], p.Y); + writeF1000(&data[8], p.Z); } -/* - More serialization stuff -*/ +inline void writeV2F32(u8 *data, v2f p) +{ + writeF32(&data[0], p.X); + writeF32(&data[4], p.Y); +} + +inline void writeV3F32(u8 *data, v3f p) +{ + writeF32(&data[0], p.X); + writeF32(&data[4], p.Y); + writeF32(&data[8], p.Z); +} + +//// +//// Iostream wrapper for data read/write +//// + +#define MAKE_STREAM_READ_FXN(T, N, S) \ + inline T read ## N(std::istream &is) \ + { \ + char buf[S] = {0}; \ + is.read(buf, sizeof(buf)); \ + return read ## N((u8 *)buf); \ + } + +#define MAKE_STREAM_WRITE_FXN(T, N, S) \ + inline void write ## N(std::ostream &os, T val) \ + { \ + char buf[S]; \ + write ## N((u8 *)buf, val); \ + os.write(buf, sizeof(buf)); \ + } + +MAKE_STREAM_READ_FXN(u8, U8, 1); +MAKE_STREAM_READ_FXN(u16, U16, 2); +MAKE_STREAM_READ_FXN(u32, U32, 4); +MAKE_STREAM_READ_FXN(u64, U64, 8); +MAKE_STREAM_READ_FXN(s8, S8, 1); +MAKE_STREAM_READ_FXN(s16, S16, 2); +MAKE_STREAM_READ_FXN(s32, S32, 4); +MAKE_STREAM_READ_FXN(s64, S64, 8); +MAKE_STREAM_READ_FXN(f32, F1000, 4); +MAKE_STREAM_READ_FXN(f32, F32, 4); +MAKE_STREAM_READ_FXN(v2s16, V2S16, 4); +MAKE_STREAM_READ_FXN(v3s16, V3S16, 6); +MAKE_STREAM_READ_FXN(v2s32, V2S32, 8); +MAKE_STREAM_READ_FXN(v3s32, V3S32, 12); +MAKE_STREAM_READ_FXN(v3f, V3F1000, 12); +MAKE_STREAM_READ_FXN(v2f, V2F32, 8); +MAKE_STREAM_READ_FXN(v3f, V3F32, 12); +MAKE_STREAM_READ_FXN(video::SColor, ARGB8, 4); + +MAKE_STREAM_WRITE_FXN(u8, U8, 1); +MAKE_STREAM_WRITE_FXN(u16, U16, 2); +MAKE_STREAM_WRITE_FXN(u32, U32, 4); +MAKE_STREAM_WRITE_FXN(u64, U64, 8); +MAKE_STREAM_WRITE_FXN(s8, S8, 1); +MAKE_STREAM_WRITE_FXN(s16, S16, 2); +MAKE_STREAM_WRITE_FXN(s32, S32, 4); +MAKE_STREAM_WRITE_FXN(s64, S64, 8); +MAKE_STREAM_WRITE_FXN(f32, F1000, 4); +MAKE_STREAM_WRITE_FXN(f32, F32, 4); +MAKE_STREAM_WRITE_FXN(v2s16, V2S16, 4); +MAKE_STREAM_WRITE_FXN(v3s16, V3S16, 6); +MAKE_STREAM_WRITE_FXN(v2s32, V2S32, 8); +MAKE_STREAM_WRITE_FXN(v3s32, V3S32, 12); +MAKE_STREAM_WRITE_FXN(v3f, V3F1000, 12); +MAKE_STREAM_WRITE_FXN(v2f, V2F32, 8); +MAKE_STREAM_WRITE_FXN(v3f, V3F32, 12); +MAKE_STREAM_WRITE_FXN(video::SColor, ARGB8, 4); + +//// +//// More serialization stuff +//// // Creates a string with the length as the first two bytes -std::string serializeString(const std::string &plain); - -// Creates a string with the length as the first two bytes from wide string -std::string serializeWideString(const std::wstring &plain); +std::string serializeString16(const std::string &plain); // Reads a string with the length as the first two bytes -std::string deSerializeString(std::istream &is); - -// Reads a wide string with the length as the first two bytes -std::wstring deSerializeWideString(std::istream &is); +std::string deSerializeString16(std::istream &is); // Creates a string with the length as the first four bytes -std::string serializeLongString(const std::string &plain); +std::string serializeString32(const std::string &plain); // Reads a string with the length as the first four bytes -std::string deSerializeLongString(std::istream &is); +std::string deSerializeString32(std::istream &is); // Creates a string encoded in JSON format (almost equivalent to a C string literal) std::string serializeJsonString(const std::string &plain); @@ -401,15 +457,9 @@ std::string serializeJsonString(const std::string &plain); // Reads a string encoded in JSON format std::string deSerializeJsonString(std::istream &is); -// Creates a string containing comma delimited values of a struct whose layout is -// described by the parameter format -bool serializeStructToString(std::string *outstr, - std::string format, void *value); - -// Reads a comma delimited string of values into a struct whose layout is -// decribed by the parameter format -bool deSerializeStringToStruct(std::string valstr, - std::string format, void *out, size_t olen); - -#endif +// If the string contains spaces, quotes or control characters, encodes as JSON. +// Else returns the string unmodified. +std::string serializeJsonStringIfNeeded(const std::string &s); +// Parses a string serialized by serializeJsonStringIfNeeded. +std::string deSerializeJsonStringIfNeeded(std::istream &is);