X-Git-Url: https://git.lizzy.rs/?a=blobdiff_plain;f=src%2Fnoise.cpp;h=d98d4dafb01186efc558c8e517f42be8e8b35da2;hb=8e5bd82c4d19c405fbb4f2592bf91ad8b110294b;hp=ba7c30574a8cbd5357d3dbf1860a8e40c6a63b4e;hpb=165498cecfc11f3471d84855f4d019be9b353621;p=dragonfireclient.git diff --git a/src/noise.cpp b/src/noise.cpp index ba7c30574..d98d4dafb 100644 --- a/src/noise.cpp +++ b/src/noise.cpp @@ -1,154 +1,248 @@ /* -Minetest -Copyright (C) 2010-2013 celeron55, Perttu Ahola - -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU Lesser General Public License as published by -the Free Software Foundation; either version 2.1 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public License along -with this program; if not, write to the Free Software Foundation, Inc., -51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. -*/ + * Minetest + * Copyright (C) 2010-2014 celeron55, Perttu Ahola + * Copyright (C) 2010-2014 kwolekr, Ryan Kwolek + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, are + * permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, this list of + * conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, this list + * of conditions and the following disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ -#include +#include #include "noise.h" #include +#include // memset #include "debug.h" #include "util/numeric.h" +#include "util/string.h" +#include "exceptions.h" #define NOISE_MAGIC_X 1619 #define NOISE_MAGIC_Y 31337 #define NOISE_MAGIC_Z 52591 -#define NOISE_MAGIC_SEED 1013 +// Unsigned magic seed prevents undefined behavior. +#define NOISE_MAGIC_SEED 1013U -float cos_lookup[16] = { - 1.0, 0.9238, 0.7071, 0.3826, 0, -0.3826, -0.7071, -0.9238, - 1.0, -0.9238, -0.7071, -0.3826, 0, 0.3826, 0.7071, 0.9238 -}; +typedef float (*Interp2dFxn)( + float v00, float v10, float v01, float v11, + float x, float y); +typedef float (*Interp3dFxn)( + float v000, float v100, float v010, float v110, + float v001, float v101, float v011, float v111, + float x, float y, float z); + +FlagDesc flagdesc_noiseparams[] = { + {"defaults", NOISE_FLAG_DEFAULTS}, + {"eased", NOISE_FLAG_EASED}, + {"absvalue", NOISE_FLAG_ABSVALUE}, + {"pointbuffer", NOISE_FLAG_POINTBUFFER}, + {"simplex", NOISE_FLAG_SIMPLEX}, + {NULL, 0} +}; /////////////////////////////////////////////////////////////////////////////// +PcgRandom::PcgRandom(u64 state, u64 seq) +{ + seed(state, seq); +} + +void PcgRandom::seed(u64 state, u64 seq) +{ + m_state = 0U; + m_inc = (seq << 1u) | 1u; + next(); + m_state += state; + next(); +} + + +u32 PcgRandom::next() +{ + u64 oldstate = m_state; + m_state = oldstate * 6364136223846793005ULL + m_inc; + + u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u; + u32 rot = oldstate >> 59u; + return (xorshifted >> rot) | (xorshifted << ((-rot) & 31)); +} + + +u32 PcgRandom::range(u32 bound) +{ + // If the bound is 0, we cover the whole RNG's range + if (bound == 0) + return next(); + + /* + This is an optimization of the expression: + 0x100000000ull % bound + since 64-bit modulo operations typically much slower than 32. + */ + u32 threshold = -bound % bound; + u32 r; + + /* + If the bound is not a multiple of the RNG's range, it may cause bias, + e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2. + Using rand() % 3, the number 0 would be twice as likely to appear. + With a very large RNG range, the effect becomes less prevalent but + still present. + + This can be solved by modifying the range of the RNG to become a + multiple of bound by dropping values above the a threshold. + + In our example, threshold == 4 % 3 == 1, so reject values < 1 + (that is, 0), thus making the range == 3 with no bias. + + This loop may look dangerous, but will always terminate due to the + RNG's property of uniformity. + */ + while ((r = next()) < threshold) + ; + + return r % bound; +} + + +s32 PcgRandom::range(s32 min, s32 max) +{ + if (max < min) + throw PrngException("Invalid range (max < min)"); + + // We have to cast to s64 because otherwise this could overflow, + // and signed overflow is undefined behavior. + u32 bound = (s64)max - (s64)min + 1; + return range(bound) + min; +} + + +void PcgRandom::bytes(void *out, size_t len) +{ + u8 *outb = (u8 *)out; + int bytes_left = 0; + u32 r; + + while (len--) { + if (bytes_left == 0) { + bytes_left = sizeof(u32); + r = next(); + } + + *outb = r & 0xFF; + outb++; + bytes_left--; + r >>= CHAR_BIT; + } +} + + +s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials) +{ + s32 accum = 0; + for (int i = 0; i != num_trials; i++) + accum += range(min, max); + return myround((float)accum / num_trials); +} -//noise poly: p(n) = 60493n^3 + 19990303n + 137612589 -float noise2d(int x, int y, int seed) { - int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y +/////////////////////////////////////////////////////////////////////////////// + +float noise2d(int x, int y, s32 seed) +{ + unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n >> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; - return 1.f - (float)n / 0x40000000; + return 1.f - (float)(int)n / 0x40000000; } -float noise3d(int x, int y, int z, int seed) { - int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z +float noise3d(int x, int y, int z, s32 seed) +{ + unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n >> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; - return 1.f - (float)n / 0x40000000; + return 1.f - (float)(int)n / 0x40000000; } -float dotProduct(float vx, float vy, float wx, float wy) { +inline float dotProduct(float vx, float vy, float wx, float wy) +{ return vx * wx + vy * wy; } -inline float linearInterpolation(float v0, float v1, float t) { - return v0 + (v1 - v0) * t; -} - - -float biLinearInterpolation(float v00, float v10, - float v01, float v11, - float x, float y) { - float tx = easeCurve(x); - float ty = easeCurve(y); - float u = linearInterpolation(v00, v10, tx); - float v = linearInterpolation(v01, v11, tx); - return linearInterpolation(u, v, ty); +inline float linearInterpolation(float v0, float v1, float t) +{ + return v0 + (v1 - v0) * t; } -float biLinearInterpolationNoEase(float x0y0, float x1y0, - float x0y1, float x1y1, - float x, float y) { - float u = linearInterpolation(x0y0, x1y0, x); - float v = linearInterpolation(x0y1, x1y1, x); - return linearInterpolation(u, v, y); +inline float biLinearInterpolation( + float v00, float v10, + float v01, float v11, + float x, float y) +{ + float tx = easeCurve(x); + float ty = easeCurve(y); + float u = linearInterpolation(v00, v10, tx); + float v = linearInterpolation(v01, v11, tx); + return linearInterpolation(u, v, ty); } -float triLinearInterpolation( - float v000, float v100, float v010, float v110, - float v001, float v101, float v011, float v111, - float x, float y, float z) { - float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y); - float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y); - return linearInterpolation(u, v, z); +inline float biLinearInterpolationNoEase( + float v00, float v10, + float v01, float v11, + float x, float y) +{ + float u = linearInterpolation(v00, v10, x); + float v = linearInterpolation(v01, v11, x); + return linearInterpolation(u, v, y); } -#if 0 float triLinearInterpolation( - float v000, float v100, float v010, float v110, - float v001, float v101, float v011, float v111, - float x, float y, float z) + float v000, float v100, float v010, float v110, + float v001, float v101, float v011, float v111, + float x, float y, float z) { - /*float tx = easeCurve(x); + float tx = easeCurve(x); float ty = easeCurve(y); - float tz = easeCurve(z);*/ - float tx = x; - float ty = y; - float tz = z; - return( - v000 * (1 - tx) * (1 - ty) * (1 - tz) + - v100 * tx * (1 - ty) * (1 - tz) + - v010 * (1 - tx) * ty * (1 - tz) + - v110 * tx * ty * (1 - tz) + - v001 * (1 - tx) * (1 - ty) * tz + - v101 * tx * (1 - ty) * tz + - v011 * (1 - tx) * ty * tz + - v111 * tx * ty * tz - ); -} -#endif - - -#if 0 -float noise2d_gradient(float x, float y, int seed) -{ - // Calculate the integer coordinates - int x0 = (x > 0.0 ? (int)x : (int)x - 1); - int y0 = (y > 0.0 ? (int)y : (int)y - 1); - // Calculate the remaining part of the coordinates - float xl = x - (float)x0; - float yl = y - (float)y0; - // Calculate random cosine lookup table indices for the integer corners. - // They are looked up as unit vector gradients from the lookup table. - int n00 = (int)((noise2d(x0, y0, seed)+1)*8); - int n10 = (int)((noise2d(x0+1, y0, seed)+1)*8); - int n01 = (int)((noise2d(x0, y0+1, seed)+1)*8); - int n11 = (int)((noise2d(x0+1, y0+1, seed)+1)*8); - // Make a dot product for the gradients and the positions, to get the values - float s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl); - float u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl); - float v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl); - float w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl); - // Interpolate between the values - return biLinearInterpolation(s,u,v,w,xl,yl); + float tz = easeCurve(z); + float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty); + float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty); + return linearInterpolation(u, v, tz); } -#endif +float triLinearInterpolationNoEase( + float v000, float v100, float v010, float v110, + float v001, float v101, float v011, float v111, + float x, float y, float z) +{ + float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y); + float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y); + return linearInterpolation(u, v, z); +} -float noise2d_gradient(float x, float y, int seed) +float noise2d_gradient(float x, float y, s32 seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); @@ -162,11 +256,14 @@ float noise2d_gradient(float x, float y, int seed) float v01 = noise2d(x0, y0+1, seed); float v11 = noise2d(x0+1, y0+1, seed); // Interpolate - return biLinearInterpolation(v00,v10,v01,v11,xl,yl); + if (eased) + return biLinearInterpolation(v00, v10, v01, v11, xl, yl); + + return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl); } -float noise3d_gradient(float x, float y, float z, int seed) +float noise3d_gradient(float x, float y, float z, s32 seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); @@ -186,21 +283,29 @@ float noise3d_gradient(float x, float y, float z, int seed) float v011 = noise3d(x0, y0 + 1, z0 + 1, seed); float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed); // Interpolate - return triLinearInterpolation(v000, v100, v010, v110, - v001, v101, v011, v111, - xl, yl, zl); + if (eased) { + return triLinearInterpolation( + v000, v100, v010, v110, + v001, v101, v011, v111, + xl, yl, zl); + } + + return triLinearInterpolationNoEase( + v000, v100, v010, v110, + v001, v101, v011, v111, + xl, yl, zl); } -float noise2d_perlin(float x, float y, int seed, - int octaves, float persistence) +float noise2d_perlin(float x, float y, s32 seed, + int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { - a += g * noise2d_gradient(x * f, y * f, seed + i); + a += g * noise2d_gradient(x * f, y * f, seed + i, eased); f *= 2.0; g *= persistence; } @@ -208,151 +313,185 @@ float noise2d_perlin(float x, float y, int seed, } -float noise2d_perlin_abs(float x, float y, int seed, - int octaves, float persistence) +float contour(float v) { - float a = 0; - float f = 1.0; - float g = 1.0; - for (int i = 0; i < octaves; i++) - { - a += g * fabs(noise2d_gradient(x * f, y * f, seed + i)); - f *= 2.0; - g *= persistence; - } - return a; + v = std::fabs(v); + if (v >= 1.0) + return 0.0; + return (1.0 - v); } -float noise3d_perlin(float x, float y, float z, int seed, - int octaves, float persistence) +///////////////////////// [ New noise ] //////////////////////////// + + +float NoisePerlin2D(const NoiseParams *np, float x, float y, s32 seed) { float a = 0; float f = 1.0; float g = 1.0; - for (int i = 0; i < octaves; i++) - { - a += g * noise3d_gradient(x * f, y * f, z * f, seed + i); - f *= 2.0; - g *= persistence; + + x /= np->spread.X; + y /= np->spread.Y; + seed += np->seed; + + for (size_t i = 0; i < np->octaves; i++) { + float noiseval = noise2d_gradient(x * f, y * f, seed + i, + np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED)); + + if (np->flags & NOISE_FLAG_ABSVALUE) + noiseval = std::fabs(noiseval); + + a += g * noiseval; + f *= np->lacunarity; + g *= np->persist; } - return a; + + return np->offset + a * np->scale; } -float noise3d_perlin_abs(float x, float y, float z, int seed, - int octaves, float persistence) +float NoisePerlin3D(const NoiseParams *np, float x, float y, float z, s32 seed) { float a = 0; float f = 1.0; float g = 1.0; - for (int i = 0; i < octaves; i++) - { - a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i)); - f *= 2.0; - g *= persistence; - } - return a; -} - - -// -1->0, 0->1, 1->0 -float contour(float v) -{ - v = fabs(v); - if(v >= 1.0) - return 0.0; - return (1.0-v); -} - -///////////////////////// [ New perlin stuff ] //////////////////////////// + x /= np->spread.X; + y /= np->spread.Y; + z /= np->spread.Z; + seed += np->seed; + for (size_t i = 0; i < np->octaves; i++) { + float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i, + np->flags & NOISE_FLAG_EASED); -Noise::Noise(NoiseParams *np, int seed, int sx, int sy) { - init(np, seed, sx, sy, 1); -} + if (np->flags & NOISE_FLAG_ABSVALUE) + noiseval = std::fabs(noiseval); + a += g * noiseval; + f *= np->lacunarity; + g *= np->persist; + } -Noise::Noise(NoiseParams *np, int seed, int sx, int sy, int sz) { - init(np, seed, sx, sy, sz); + return np->offset + a * np->scale; } -void Noise::init(NoiseParams *np, int seed, int sx, int sy, int sz) { - this->np = np; +Noise::Noise(const NoiseParams *np_, s32 seed, u32 sx, u32 sy, u32 sz) +{ + np = *np_; this->seed = seed; this->sx = sx; this->sy = sy; this->sz = sz; - this->noisebuf = NULL; - resizeNoiseBuf(sz > 1); - - this->buf = new float[sx * sy * sz]; - this->result = new float[sx * sy * sz]; + allocBuffers(); } -Noise::~Noise() { - delete[] buf; +Noise::~Noise() +{ + delete[] gradient_buf; + delete[] persist_buf; + delete[] noise_buf; delete[] result; - delete[] noisebuf; } -void Noise::setSize(int sx, int sy) { - setSize(sx, sy, 1); +void Noise::allocBuffers() +{ + if (sx < 1) + sx = 1; + if (sy < 1) + sy = 1; + if (sz < 1) + sz = 1; + + this->noise_buf = NULL; + resizeNoiseBuf(sz > 1); + + delete[] gradient_buf; + delete[] persist_buf; + delete[] result; + + try { + size_t bufsize = sx * sy * sz; + this->persist_buf = NULL; + this->gradient_buf = new float[bufsize]; + this->result = new float[bufsize]; + } catch (std::bad_alloc &e) { + throw InvalidNoiseParamsException(); + } } -void Noise::setSize(int sx, int sy, int sz) { +void Noise::setSize(u32 sx, u32 sy, u32 sz) +{ this->sx = sx; this->sy = sy; this->sz = sz; - this->noisebuf = NULL; - resizeNoiseBuf(sz > 1); - - delete[] buf; - delete[] result; - this->buf = new float[sx * sy * sz]; - this->result = new float[sx * sy * sz]; + allocBuffers(); } -void Noise::setSpreadFactor(v3f spread) { - this->np->spread = spread; +void Noise::setSpreadFactor(v3f spread) +{ + this->np.spread = spread; resizeNoiseBuf(sz > 1); } -void Noise::setOctaves(int octaves) { - this->np->octaves = octaves; +void Noise::setOctaves(int octaves) +{ + this->np.octaves = octaves; resizeNoiseBuf(sz > 1); } -void Noise::resizeNoiseBuf(bool is3d) { - int nlx, nly, nlz; - float ofactor; - - //maximum possible spread value factor - ofactor = (float)(1 << (np->octaves - 1)); +void Noise::resizeNoiseBuf(bool is3d) +{ + // Maximum possible spread value factor + float ofactor = (np.lacunarity > 1.0) ? + pow(np.lacunarity, np.octaves - 1) : + np.lacunarity; + + // Noise lattice point count + // (int)(sz * spread * ofactor) is # of lattice points crossed due to length + float num_noise_points_x = sx * ofactor / np.spread.X; + float num_noise_points_y = sy * ofactor / np.spread.Y; + float num_noise_points_z = sz * ofactor / np.spread.Z; + + // Protect against obviously invalid parameters + if (num_noise_points_x > 1000000000.f || + num_noise_points_y > 1000000000.f || + num_noise_points_z > 1000000000.f) + throw InvalidNoiseParamsException(); + + // Protect against an octave having a spread < 1, causing broken noise values + if (np.spread.X / ofactor < 1.0f || + np.spread.Y / ofactor < 1.0f || + np.spread.Z / ofactor < 1.0f) { + errorstream << "A noise parameter has too many octaves: " + << np.octaves << " octaves" << std::endl; + throw InvalidNoiseParamsException("A noise parameter has too many octaves"); + } - //noise lattice point count - //(int)(sz * spread * ofactor) is # of lattice points crossed due to length // + 2 for the two initial endpoints // + 1 for potentially crossing a boundary due to offset - nlx = (int)(sx * ofactor / np->spread.X) + 3; - nly = (int)(sy * ofactor / np->spread.Y) + 3; - nlz = is3d ? (int)(sz * ofactor / np->spread.Z) + 3 : 1; - - if (noisebuf) - delete[] noisebuf; - noisebuf = new float[nlx * nly * nlz]; + size_t nlx = (size_t)std::ceil(num_noise_points_x) + 3; + size_t nly = (size_t)std::ceil(num_noise_points_y) + 3; + size_t nlz = is3d ? (size_t)std::ceil(num_noise_points_z) + 3 : 1; + + delete[] noise_buf; + try { + noise_buf = new float[nlx * nly * nlz]; + } catch (std::bad_alloc &e) { + throw InvalidNoiseParamsException(); + } } @@ -368,46 +507,56 @@ void Noise::resizeNoiseBuf(bool is3d) { * next octave. */ #define idx(x, y) ((y) * nlx + (x)) -void Noise::gradientMap2D(float x, float y, float step_x, float step_y, int seed) { +void Noise::gradientMap2D( + float x, float y, + float step_x, float step_y, + s32 seed) +{ float v00, v01, v10, v11, u, v, orig_u; - int index, i, j, x0, y0, noisex, noisey; - int nlx, nly; + u32 index, i, j, noisex, noisey; + u32 nlx, nly; + s32 x0, y0; + + bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED); + Interp2dFxn interpolate = eased ? + biLinearInterpolation : biLinearInterpolationNoEase; - x0 = floor(x); - y0 = floor(y); + x0 = std::floor(x); + y0 = std::floor(y); u = x - (float)x0; v = y - (float)y0; orig_u = u; //calculate noise point lattice - nlx = (int)(u + sx * step_x) + 2; - nly = (int)(v + sy * step_y) + 2; + nlx = (u32)(u + sx * step_x) + 2; + nly = (u32)(v + sy * step_y) + 2; index = 0; for (j = 0; j != nly; j++) for (i = 0; i != nlx; i++) - noisebuf[index++] = noise2d(x0 + i, y0 + j, seed); + noise_buf[index++] = noise2d(x0 + i, y0 + j, seed); //calculate interpolations index = 0; noisey = 0; for (j = 0; j != sy; j++) { - v00 = noisebuf[idx(0, noisey)]; - v10 = noisebuf[idx(1, noisey)]; - v01 = noisebuf[idx(0, noisey + 1)]; - v11 = noisebuf[idx(1, noisey + 1)]; + v00 = noise_buf[idx(0, noisey)]; + v10 = noise_buf[idx(1, noisey)]; + v01 = noise_buf[idx(0, noisey + 1)]; + v11 = noise_buf[idx(1, noisey + 1)]; u = orig_u; noisex = 0; for (i = 0; i != sx; i++) { - buf[index++] = biLinearInterpolation(v00, v10, v01, v11, u, v); + gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v); + u += step_x; if (u >= 1.0) { u -= 1.0; noisex++; v00 = v10; v01 = v11; - v10 = noisebuf[idx(noisex + 1, noisey)]; - v11 = noisebuf[idx(noisex + 1, noisey + 1)]; + v10 = noise_buf[idx(noisex + 1, noisey)]; + v11 = noise_buf[idx(noisex + 1, noisey + 1)]; } } @@ -422,18 +571,24 @@ void Noise::gradientMap2D(float x, float y, float step_x, float step_y, int seed #define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x)) -void Noise::gradientMap3D(float x, float y, float z, - float step_x, float step_y, float step_z, - int seed) { +void Noise::gradientMap3D( + float x, float y, float z, + float step_x, float step_y, float step_z, + s32 seed) +{ float v000, v010, v100, v110; float v001, v011, v101, v111; float u, v, w, orig_u, orig_v; - int index, i, j, k, x0, y0, z0, noisex, noisey, noisez; - int nlx, nly, nlz; + u32 index, i, j, k, noisex, noisey, noisez; + u32 nlx, nly, nlz; + s32 x0, y0, z0; - x0 = floor(x); - y0 = floor(y); - z0 = floor(z); + Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ? + triLinearInterpolation : triLinearInterpolationNoEase; + + x0 = std::floor(x); + y0 = std::floor(y); + z0 = std::floor(z); u = x - (float)x0; v = y - (float)y0; w = z - (float)z0; @@ -441,14 +596,14 @@ void Noise::gradientMap3D(float x, float y, float z, orig_v = v; //calculate noise point lattice - nlx = (int)(u + sx * step_x) + 2; - nly = (int)(v + sy * step_y) + 2; - nlz = (int)(w + sz * step_z) + 2; + nlx = (u32)(u + sx * step_x) + 2; + nly = (u32)(v + sy * step_y) + 2; + nlz = (u32)(w + sz * step_z) + 2; index = 0; for (k = 0; k != nlz; k++) for (j = 0; j != nly; j++) for (i = 0; i != nlx; i++) - noisebuf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed); + noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed); //calculate interpolations index = 0; @@ -458,34 +613,35 @@ void Noise::gradientMap3D(float x, float y, float z, v = orig_v; noisey = 0; for (j = 0; j != sy; j++) { - v000 = noisebuf[idx(0, noisey, noisez)]; - v100 = noisebuf[idx(1, noisey, noisez)]; - v010 = noisebuf[idx(0, noisey + 1, noisez)]; - v110 = noisebuf[idx(1, noisey + 1, noisez)]; - v001 = noisebuf[idx(0, noisey, noisez + 1)]; - v101 = noisebuf[idx(1, noisey, noisez + 1)]; - v011 = noisebuf[idx(0, noisey + 1, noisez + 1)]; - v111 = noisebuf[idx(1, noisey + 1, noisez + 1)]; + v000 = noise_buf[idx(0, noisey, noisez)]; + v100 = noise_buf[idx(1, noisey, noisez)]; + v010 = noise_buf[idx(0, noisey + 1, noisez)]; + v110 = noise_buf[idx(1, noisey + 1, noisez)]; + v001 = noise_buf[idx(0, noisey, noisez + 1)]; + v101 = noise_buf[idx(1, noisey, noisez + 1)]; + v011 = noise_buf[idx(0, noisey + 1, noisez + 1)]; + v111 = noise_buf[idx(1, noisey + 1, noisez + 1)]; u = orig_u; noisex = 0; for (i = 0; i != sx; i++) { - buf[index++] = triLinearInterpolation( - v000, v100, v010, v110, - v001, v101, v011, v111, - u, v, w); + gradient_buf[index++] = interpolate( + v000, v100, v010, v110, + v001, v101, v011, v111, + u, v, w); + u += step_x; if (u >= 1.0) { u -= 1.0; noisex++; v000 = v100; v010 = v110; - v100 = noisebuf[idx(noisex + 1, noisey, noisez)]; - v110 = noisebuf[idx(noisex + 1, noisey + 1, noisez)]; + v100 = noise_buf[idx(noisex + 1, noisey, noisez)]; + v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)]; v001 = v101; v011 = v111; - v101 = noisebuf[idx(noisex + 1, noisey, noisez + 1)]; - v111 = noisebuf[idx(noisex + 1, noisey + 1, noisez + 1)]; + v101 = noise_buf[idx(noisex + 1, noisey, noisez + 1)]; + v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)]; } } @@ -506,78 +662,105 @@ void Noise::gradientMap3D(float x, float y, float z, #undef idx -float *Noise::perlinMap2D(float x, float y) { +float *Noise::perlinMap2D(float x, float y, float *persistence_map) +{ float f = 1.0, g = 1.0; - int i, j, index, oct; + size_t bufsize = sx * sy; - x /= np->spread.X; - y /= np->spread.Y; + x /= np.spread.X; + y /= np.spread.Y; - memset(result, 0, sizeof(float) * sx * sy); + memset(result, 0, sizeof(float) * bufsize); - for (oct = 0; oct < np->octaves; oct++) { + if (persistence_map) { + if (!persist_buf) + persist_buf = new float[bufsize]; + for (size_t i = 0; i != bufsize; i++) + persist_buf[i] = 1.0; + } + + for (size_t oct = 0; oct < np.octaves; oct++) { gradientMap2D(x * f, y * f, - f / np->spread.X, f / np->spread.Y, - seed + np->seed + oct); + f / np.spread.X, f / np.spread.Y, + seed + np.seed + oct); - index = 0; - for (j = 0; j != sy; j++) { - for (i = 0; i != sx; i++) { - result[index] += g * buf[index]; -//dstream << "pm2d i="<