]> git.lizzy.rs Git - dragonfireclient.git/blobdiff - src/util/numeric.cpp
Change typedef to normal definitions in GUI code
[dragonfireclient.git] / src / util / numeric.cpp
index a1f1fd0ab1d308cec13a6d6c94a18d6be3f13f30..1af3f66be8df9f096737e8a4809cf497688e905c 100644 (file)
@@ -18,103 +18,16 @@ with this program; if not, write to the Free Software Foundation, Inc.,
 */
 
 #include "numeric.h"
-#include "mathconstants.h"
 
 #include "log.h"
-#include "../constants.h" // BS, MAP_BLOCKSIZE
-#include "../noise.h" // PseudoRandom, PcgRandom
-#include <string.h>
-#include <iostream>
-
-std::map<u16, std::vector<v3s16> > FacePositionCache::m_cache;
-// Calculate the borders of a "d-radius" cube
-std::vector<v3s16> FacePositionCache::getFacePositions(u16 d)
-{
-       if (m_cache.find(d) != m_cache.end())
-               return m_cache[d];
-
-       generateFacePosition(d);
-       return m_cache[d];
-
-}
-
-void FacePositionCache::generateFacePosition(u16 d)
-{
-       m_cache[d] = std::vector<v3s16>();
-       if(d == 0) {
-               m_cache[d].push_back(v3s16(0,0,0));
-               return;
-       }
-       if(d == 1) {
-               /*
-                       This is an optimized sequence of coordinates.
-               */
-               m_cache[d].push_back(v3s16( 0, 1, 0)); // top
-               m_cache[d].push_back(v3s16( 0, 0, 1)); // back
-               m_cache[d].push_back(v3s16(-1, 0, 0)); // left
-               m_cache[d].push_back(v3s16( 1, 0, 0)); // right
-               m_cache[d].push_back(v3s16( 0, 0,-1)); // front
-               m_cache[d].push_back(v3s16( 0,-1, 0)); // bottom
-               // 6
-               m_cache[d].push_back(v3s16(-1, 0, 1)); // back left
-               m_cache[d].push_back(v3s16( 1, 0, 1)); // back right
-               m_cache[d].push_back(v3s16(-1, 0,-1)); // front left
-               m_cache[d].push_back(v3s16( 1, 0,-1)); // front right
-               m_cache[d].push_back(v3s16(-1,-1, 0)); // bottom left
-               m_cache[d].push_back(v3s16( 1,-1, 0)); // bottom right
-               m_cache[d].push_back(v3s16( 0,-1, 1)); // bottom back
-               m_cache[d].push_back(v3s16( 0,-1,-1)); // bottom front
-               m_cache[d].push_back(v3s16(-1, 1, 0)); // top left
-               m_cache[d].push_back(v3s16( 1, 1, 0)); // top right
-               m_cache[d].push_back(v3s16( 0, 1, 1)); // top back
-               m_cache[d].push_back(v3s16( 0, 1,-1)); // top front
-               // 18
-               m_cache[d].push_back(v3s16(-1, 1, 1)); // top back-left
-               m_cache[d].push_back(v3s16( 1, 1, 1)); // top back-right
-               m_cache[d].push_back(v3s16(-1, 1,-1)); // top front-left
-               m_cache[d].push_back(v3s16( 1, 1,-1)); // top front-right
-               m_cache[d].push_back(v3s16(-1,-1, 1)); // bottom back-left
-               m_cache[d].push_back(v3s16( 1,-1, 1)); // bottom back-right
-               m_cache[d].push_back(v3s16(-1,-1,-1)); // bottom front-left
-               m_cache[d].push_back(v3s16( 1,-1,-1)); // bottom front-right
-               // 26
-               return;
-       }
+#include "constants.h" // BS, MAP_BLOCKSIZE
+#include "noise.h" // PseudoRandom, PcgRandom
+#include "threading/mutex_auto_lock.h"
+#include <cstring>
+#include <cmath>
 
-       // Take blocks in all sides, starting from y=0 and going +-y
-       for(s16 y=0; y<=d-1; y++) {
-               // Left and right side, including borders
-               for(s16 z=-d; z<=d; z++) {
-                       m_cache[d].push_back(v3s16(d,y,z));
-                       m_cache[d].push_back(v3s16(-d,y,z));
-                       if(y != 0) {
-                               m_cache[d].push_back(v3s16(d,-y,z));
-                               m_cache[d].push_back(v3s16(-d,-y,z));
-                       }
-               }
-               // Back and front side, excluding borders
-               for(s16 x=-d+1; x<=d-1; x++) {
-                       m_cache[d].push_back(v3s16(x,y,d));
-                       m_cache[d].push_back(v3s16(x,y,-d));
-                       if(y != 0) {
-                               m_cache[d].push_back(v3s16(x,-y,d));
-                               m_cache[d].push_back(v3s16(x,-y,-d));
-                       }
-               }
-       }
-
-       // Take the bottom and top face with borders
-       // -d<x<d, y=+-d, -d<z<d
-       for(s16 x=-d; x<=d; x++)
-       for(s16 z=-d; z<=d; z++) {
-               m_cache[d].push_back(v3s16(x,-d,z));
-               m_cache[d].push_back(v3s16(x,d,z));
-       }
-}
 
-/*
-    myrand
-*/
+// myrand
 
 PcgRandom g_pcgrand;
 
@@ -148,13 +61,13 @@ u64 murmur_hash_64_ua(const void *key, int len, unsigned int seed)
        const int r = 47;
        u64 h = seed ^ (len * m);
 
-       const u64 *data = (const u64 *)key;
-       const u64 *end = data + (len / 8);
+       const u8 *data = (const u8 *)key;
+       const u8 *end = data + (len / 8) * 8;
 
        while (data != end) {
                u64 k;
                memcpy(&k, data, sizeof(u64));
-               data++;
+               data += sizeof(u64);
 
                k *= m;
                k ^= k >> r;
@@ -183,16 +96,20 @@ u64 murmur_hash_64_ua(const void *key, int len, unsigned int seed)
        return h;
 }
 
-
 /*
-       blockpos: position of block in block coordinates
+       blockpos_b: position of block in block coordinates
        camera_pos: position of camera in nodes
        camera_dir: an unit vector pointing to camera direction
        range: viewing range
+       distance_ptr: return location for distance from the camera
 */
 bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
                f32 camera_fov, f32 range, f32 *distance_ptr)
 {
+       // Maximum radius of a block.  The magic number is
+       // sqrt(3.0) / 2.0 in literal form.
+       static constexpr const f32 block_max_radius = 0.866025403784f * MAP_BLOCKSIZE * BS;
+
        v3s16 blockpos_nodes = blockpos_b * MAP_BLOCKSIZE;
 
        // Block center position
@@ -206,22 +123,18 @@ bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
        v3f blockpos_relative = blockpos - camera_pos;
 
        // Total distance
-       f32 d = blockpos_relative.getLength();
+       f32 d = MYMAX(0, blockpos_relative.getLength() - block_max_radius);
 
-       if(distance_ptr)
+       if (distance_ptr)
                *distance_ptr = d;
 
        // If block is far away, it's not in sight
-       if(d > range)
+       if (d > range)
                return false;
 
-       // Maximum radius of a block.  The magic number is
-       // sqrt(3.0) / 2.0 in literal form.
-       f32 block_max_radius = 0.866025403784 * MAP_BLOCKSIZE * BS;
-
        // If block is (nearly) touching the camera, don't
        // bother validating further (that is, render it anyway)
-       if(d < block_max_radius)
+       if (d == 0)
                return true;
 
        // Adjust camera position, for purposes of computing the angle,
@@ -241,9 +154,58 @@ bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
        f32 cosangle = dforward / blockpos_adj.getLength();
 
        // If block is not in the field of view, skip it
-       if(cosangle < cos(camera_fov / 2))
+       // HOTFIX: use sligthly increased angle (+10%) to fix too agressive
+       // culling. Somebody have to find out whats wrong with the math here.
+       // Previous value: camera_fov / 2
+       if (cosangle < std::cos(camera_fov * 0.55f))
                return false;
 
        return true;
 }
 
+s16 adjustDist(s16 dist, float zoom_fov)
+{
+       // 1.775 ~= 72 * PI / 180 * 1.4, the default FOV on the client.
+       // The heuristic threshold for zooming is half of that.
+       static constexpr const float threshold_fov = 1.775f / 2.0f;
+       if (zoom_fov < 0.001f || zoom_fov > threshold_fov)
+               return dist;
+
+       return std::round(dist * std::cbrt((1.0f - std::cos(threshold_fov)) /
+               (1.0f - std::cos(zoom_fov / 2.0f))));
+}
+
+void setPitchYawRollRad(core::matrix4 &m, const v3f &rot)
+{
+       f64 a1 = rot.Z, a2 = rot.X, a3 = rot.Y;
+       f64 c1 = cos(a1), s1 = sin(a1);
+       f64 c2 = cos(a2), s2 = sin(a2);
+       f64 c3 = cos(a3), s3 = sin(a3);
+       f32 *M = m.pointer();
+
+       M[0] = s1 * s2 * s3 + c1 * c3;
+       M[1] = s1 * c2;
+       M[2] = s1 * s2 * c3 - c1 * s3;
+
+       M[4] = c1 * s2 * s3 - s1 * c3;
+       M[5] = c1 * c2;
+       M[6] = c1 * s2 * c3 + s1 * s3;
+
+       M[8] = c2 * s3;
+       M[9] = -s2;
+       M[10] = c2 * c3;
+}
+
+v3f getPitchYawRollRad(const core::matrix4 &m)
+{
+       const f32 *M = m.pointer();
+
+       f64 a1 = atan2(M[1], M[5]);
+       f32 c2 = std::sqrt((f64)M[10]*M[10] + (f64)M[8]*M[8]);
+       f32 a2 = atan2f(-M[9], c2);
+       f64 c1 = cos(a1);
+       f64 s1 = sin(a1);
+       f32 a3 = atan2f(s1*M[6] - c1*M[2], c1*M[0] - s1*M[4]);
+
+       return v3f(a2, a3, a1);
+}