]> git.lizzy.rs Git - rust.git/blobdiff - src/operator.rs
fix newer getrandom on Windows
[rust.git] / src / operator.rs
index d3af1f0db0e02b5909b12b666cb384256e55f8e8..cf92aed9ccb2c5edcf98e451e042f56b142198e3 100644 (file)
-use rustc::ty::{Ty, layout::{Size, LayoutOf}};
-use rustc::mir;
+use log::trace;
+
+use rustc_middle::{mir, ty::Ty};
 
 use crate::*;
 
 pub trait EvalContextExt<'tcx> {
-    fn pointer_inbounds(
-        &self,
-        ptr: Pointer<Tag>
-    ) -> InterpResult<'tcx>;
-
-    fn ptr_op(
+    fn binary_ptr_op(
         &self,
         bin_op: mir::BinOp,
-        left: ImmTy<'tcx, Tag>,
-        right: ImmTy<'tcx, Tag>,
-    ) -> InterpResult<'tcx, (Scalar<Tag>, bool)>;
-
-    fn ptr_int_arithmetic(
-        &self,
-        bin_op: mir::BinOp,
-        left: Pointer<Tag>,
-        right: u128,
-        signed: bool,
-    ) -> InterpResult<'tcx, (Scalar<Tag>, bool)>;
-
-    fn ptr_eq(
-        &self,
-        left: Scalar<Tag>,
-        right: Scalar<Tag>,
-    ) -> InterpResult<'tcx, bool>;
+        left: &ImmTy<'tcx, Tag>,
+        right: &ImmTy<'tcx, Tag>,
+    ) -> InterpResult<'tcx, (Scalar<Tag>, bool, Ty<'tcx>)>;
 
-    fn pointer_offset_inbounds(
-        &self,
-        ptr: Scalar<Tag>,
-        pointee_ty: Ty<'tcx>,
-        offset: i64,
-    ) -> InterpResult<'tcx, Scalar<Tag>>;
+    fn ptr_eq(&self, left: Scalar<Tag>, right: Scalar<Tag>) -> InterpResult<'tcx, bool>;
 }
 
 impl<'mir, 'tcx> EvalContextExt<'tcx> for super::MiriEvalContext<'mir, 'tcx> {
-    /// Test if the pointer is in-bounds of a live allocation.
-    #[inline]
-    fn pointer_inbounds(&self, ptr: Pointer<Tag>) -> InterpResult<'tcx> {
-        let (size, _align) = self.memory().get_size_and_align(ptr.alloc_id, AllocCheck::Live)?;
-        ptr.check_in_alloc(size, CheckInAllocMsg::InboundsTest)
-    }
-
-    fn ptr_op(
+    fn binary_ptr_op(
         &self,
         bin_op: mir::BinOp,
-        left: ImmTy<'tcx, Tag>,
-        right: ImmTy<'tcx, Tag>,
-    ) -> InterpResult<'tcx, (Scalar<Tag>, bool)> {
-        use rustc::mir::BinOp::*;
+        left: &ImmTy<'tcx, Tag>,
+        right: &ImmTy<'tcx, Tag>,
+    ) -> InterpResult<'tcx, (Scalar<Tag>, bool, Ty<'tcx>)> {
+        use rustc_middle::mir::BinOp::*;
 
         trace!("ptr_op: {:?} {:?} {:?}", *left, bin_op, *right);
 
-        // If intptrcast is enabled and the operation is not an offset
-        // we can force the cast from pointers to integer addresses and
-        // then dispatch to rustc binary operation method
-        if self.memory().extra.rng.is_some() && bin_op != Offset {
-            let l_bits = self.force_bits(left.imm.to_scalar()?, left.layout.size)?;
-            let r_bits = self.force_bits(right.imm.to_scalar()?, right.layout.size)?;
-            
-            let left = ImmTy::from_scalar(Scalar::from_uint(l_bits, left.layout.size), left.layout);
-            let right = ImmTy::from_scalar(Scalar::from_uint(r_bits, left.layout.size), right.layout);
-
-            return self.binary_op(bin_op, left, right);
-        } 
-
-        // Operations that support fat pointers
-        match bin_op {
+        Ok(match bin_op {
             Eq | Ne => {
-                let eq = match (*left, *right) {
-                    (Immediate::Scalar(left), Immediate::Scalar(right)) =>
-                        self.ptr_eq(left.not_undef()?, right.not_undef()?)?,
-                    (Immediate::ScalarPair(left1, left2), Immediate::ScalarPair(right1, right2)) =>
-                        self.ptr_eq(left1.not_undef()?, right1.not_undef()?)? &&
-                        self.ptr_eq(left2.not_undef()?, right2.not_undef()?)?,
+                // This supports fat pointers.
+                #[rustfmt::skip]
+                let eq = match (**left, **right) {
+                    (Immediate::Scalar(left), Immediate::Scalar(right)) => {
+                        self.ptr_eq(left.check_init()?, right.check_init()?)?
+                    }
+                    (Immediate::ScalarPair(left1, left2), Immediate::ScalarPair(right1, right2)) => {
+                        self.ptr_eq(left1.check_init()?, right1.check_init()?)?
+                            && self.ptr_eq(left2.check_init()?, right2.check_init()?)?
+                    }
                     _ => bug!("Type system should not allow comparing Scalar with ScalarPair"),
                 };
-                return Ok((Scalar::from_bool(if bin_op == Eq { eq } else { !eq }), false));
+                (Scalar::from_bool(if bin_op == Eq { eq } else { !eq }), false, self.tcx.types.bool)
             }
-            _ => {},
-        }
 
-        // Now we expect no more fat pointers.
-        let left_layout = left.layout;
-        let left = left.to_scalar()?;
-        let right_layout = right.layout;
-        let right = right.to_scalar()?;
-        debug_assert!(left.is_ptr() || right.is_ptr() || bin_op == Offset);
+            Lt | Le | Gt | Ge => {
+                // Just compare the integers.
+                // TODO: Do we really want to *always* do that, even when comparing two live in-bounds pointers?
+                let left = self.force_bits(left.to_scalar()?, left.layout.size)?;
+                let right = self.force_bits(right.to_scalar()?, right.layout.size)?;
+                let res = match bin_op {
+                    Lt => left < right,
+                    Le => left <= right,
+                    Gt => left > right,
+                    Ge => left >= right,
+                    _ => bug!("We already established it has to be one of these operators."),
+                };
+                (Scalar::from_bool(res), false, self.tcx.types.bool)
+            }
 
-        match bin_op {
             Offset => {
-                let pointee_ty = left_layout.ty
-                    .builtin_deref(true)
-                    .expect("Offset called on non-ptr type")
-                    .ty;
-                let ptr = self.pointer_offset_inbounds(
-                    left,
+                let pointee_ty =
+                    left.layout.ty.builtin_deref(true).expect("Offset called on non-ptr type").ty;
+                let ptr = self.ptr_offset_inbounds(
+                    left.to_scalar()?,
                     pointee_ty,
-                    right.to_isize(self)?,
+                    right.to_scalar()?.to_machine_isize(self)?,
                 )?;
-                Ok((ptr, false))
-            }
-            // These need both to be pointer, and fail if they are not in the same location
-            Lt | Le | Gt | Ge | Sub if left.is_ptr() && right.is_ptr() => {
-                let left = left.to_ptr().expect("we checked is_ptr");
-                let right = right.to_ptr().expect("we checked is_ptr");
-                if left.alloc_id == right.alloc_id {
-                    let res = match bin_op {
-                        Lt => left.offset < right.offset,
-                        Le => left.offset <= right.offset,
-                        Gt => left.offset > right.offset,
-                        Ge => left.offset >= right.offset,
-                        Sub => {
-                            // subtract the offsets
-                            let left_offset = Scalar::from_uint(left.offset.bytes(), self.memory().pointer_size());
-                            let right_offset = Scalar::from_uint(right.offset.bytes(), self.memory().pointer_size());
-                            let layout = self.layout_of(self.tcx.types.usize)?;
-                            return self.binary_op(
-                                Sub,
-                                ImmTy::from_scalar(left_offset, layout),
-                                ImmTy::from_scalar(right_offset, layout),
-                            )
-                        }
-                        _ => bug!("We already established it has to be one of these operators."),
-                    };
-                    Ok((Scalar::from_bool(res), false))
-                } else {
-                    // Both are pointers, but from different allocations.
-                    err!(InvalidPointerMath)
-                }
-            }
-            Gt | Ge if left.is_ptr() && right.is_bits() => {
-                // "ptr >[=] integer" can be tested if the integer is small enough.
-                let left = left.to_ptr().expect("we checked is_ptr");
-                let right = right.to_bits(self.memory().pointer_size()).expect("we checked is_bits");
-                let (_alloc_size, alloc_align) = self.memory()
-                    .get_size_and_align(left.alloc_id, AllocCheck::MaybeDead)
-                    .expect("alloc info with MaybeDead cannot fail");
-                let min_ptr_val = u128::from(alloc_align.bytes()) + u128::from(left.offset.bytes());
-                let result = match bin_op {
-                    Gt => min_ptr_val > right,
-                    Ge => min_ptr_val >= right,
-                    _ => bug!(),
-                };
-                if result {
-                    // Definitely true!
-                    Ok((Scalar::from_bool(true), false))
-                } else {
-                    // Sorry, can't tell.
-                    err!(InvalidPointerMath)
-                }
-            }
-            // These work if the left operand is a pointer, and the right an integer
-            Add | BitAnd | Sub | Rem if left.is_ptr() && right.is_bits() => {
-                // Cast to i128 is fine as we checked the kind to be ptr-sized
-                self.ptr_int_arithmetic(
-                    bin_op,
-                    left.to_ptr().expect("we checked is_ptr"),
-                    right.to_bits(self.memory().pointer_size()).expect("we checked is_bits"),
-                    right_layout.abi.is_signed(),
-                )
-            }
-            // Commutative operators also work if the integer is on the left
-            Add | BitAnd if left.is_bits() && right.is_ptr() => {
-                // This is a commutative operation, just swap the operands
-                self.ptr_int_arithmetic(
-                    bin_op,
-                    right.to_ptr().expect("we checked is_ptr"),
-                    left.to_bits(self.memory().pointer_size()).expect("we checked is_bits"),
-                    left_layout.abi.is_signed(),
-                )
-            }
-            // Nothing else works
-            _ => err!(InvalidPointerMath),
-        }
-    }
-
-    fn ptr_eq(
-        &self,
-        left: Scalar<Tag>,
-        right: Scalar<Tag>,
-    ) -> InterpResult<'tcx, bool> {
-        let size = self.pointer_size();
-        Ok(match (left, right) {
-            (Scalar::Raw { .. }, Scalar::Raw { .. }) =>
-                left.to_bits(size)? == right.to_bits(size)?,
-            (Scalar::Ptr(left), Scalar::Ptr(right)) => {
-                // Comparison illegal if one of them is out-of-bounds, *unless* they
-                // are in the same allocation.
-                if left.alloc_id == right.alloc_id {
-                    left.offset == right.offset
-                } else {
-                    // Make sure both pointers are in-bounds.
-                    // This accepts one-past-the end. Thus, there is still technically
-                    // some non-determinism that we do not fully rule out when two
-                    // allocations sit right next to each other. The C/C++ standards are
-                    // somewhat fuzzy about this case, so pragmatically speaking I think
-                    // for now this check is "good enough".
-                    // FIXME: Once we support intptrcast, we could try to fix these holes.
-                    // Dead allocations in miri cannot overlap with live allocations, but
-                    // on read hardware this can easily happen. Thus for comparisons we require
-                    // both pointers to be live.
-                    if self.pointer_inbounds(left).is_ok() && self.pointer_inbounds(right).is_ok() {
-                        // Two in-bounds (and hence live) pointers in different allocations are different.
-                        false
-                    } else {
-                        return err!(InvalidPointerMath);
-                    }
-                }
+                (ptr, false, left.layout.ty)
             }
-            // Comparing ptr and integer.
-            (Scalar::Ptr(ptr), Scalar::Raw { data, size }) |
-            (Scalar::Raw { data, size }, Scalar::Ptr(ptr)) => {
-                assert_eq!(size as u64, self.pointer_size().bytes());
-                let bits = data as u64;
-
-                // Case I: Comparing real pointers with "small" integers.
-                // Really we should only do this for NULL, but pragmatically speaking on non-bare-metal systems,
-                // an allocation will never be at the very bottom of the address space.
-                // Such comparisons can arise when comparing empty slices, which sometimes are "fake"
-                // integer pointers (okay because the slice is empty) and sometimes point into a
-                // real allocation.
-                // The most common source of such integer pointers is `NonNull::dangling()`, which
-                // equals the type's alignment. i128 might have an alignment of 16 bytes, but few types have
-                // alignment 32 or higher, hence the limit of 32.
-                // FIXME: Once we support intptrcast, we could try to fix these holes.
-                if bits < 32 {
-                    // Test if the pointer can be different from NULL or not.
-                    // We assume that pointers that are not NULL are also not "small".
-                    if !self.memory().ptr_may_be_null(ptr) {
-                        return Ok(false);
-                    }
-                }
-
-                let (alloc_size, alloc_align) = self.memory()
-                    .get_size_and_align(ptr.alloc_id, AllocCheck::MaybeDead)
-                    .expect("alloc info with MaybeDead cannot fail");
-
-                // Case II: Alignment gives it away
-                if ptr.offset.bytes() % alloc_align.bytes() == 0 {
-                    // The offset maintains the allocation alignment, so we know `base+offset`
-                    // is aligned by `alloc_align`.
-                    // FIXME: We could be even more general, e.g., offset 2 into a 4-aligned
-                    // allocation cannot equal 3.
-                    if bits % alloc_align.bytes() != 0 {
-                        // The integer is *not* aligned. So they cannot be equal.
-                        return Ok(false);
-                    }
-                }
-                // Case III: The integer is too big, and the allocation goes on a bit
-                // without wrapping around the address space.
-                {
-                    // Compute the highest address at which this allocation could live.
-                    // Substract one more, because it must be possible to add the size
-                    // to the base address without overflowing; that is, the very last address
-                    // of the address space is never dereferencable (but it can be in-bounds, i.e.,
-                    // one-past-the-end).
-                    let max_base_addr =
-                        ((1u128 << self.pointer_size().bits())
-                         - u128::from(alloc_size.bytes())
-                         - 1
-                        ) as u64;
-                    if let Some(max_addr) = max_base_addr.checked_add(ptr.offset.bytes()) {
-                        if bits > max_addr {
-                            // The integer is too big, this cannot possibly be equal.
-                            return Ok(false)
-                        }
-                    }
-                }
 
-                // None of the supported cases.
-                return err!(InvalidPointerMath);
-            }
+            _ => bug!("Invalid operator on pointers: {:?}", bin_op),
         })
     }
 
-    fn ptr_int_arithmetic(
-        &self,
-        bin_op: mir::BinOp,
-        left: Pointer<Tag>,
-        right: u128,
-        signed: bool,
-    ) -> InterpResult<'tcx, (Scalar<Tag>, bool)> {
-        use rustc::mir::BinOp::*;
-
-        fn map_to_primval((res, over): (Pointer<Tag>, bool)) -> (Scalar<Tag>, bool) {
-            (Scalar::Ptr(res), over)
-        }
-
-        Ok(match bin_op {
-            Sub =>
-                // The only way this can overflow is by underflowing, so signdeness of the right
-                // operands does not matter.
-                map_to_primval(left.overflowing_signed_offset(-(right as i128), self)),
-            Add if signed =>
-                map_to_primval(left.overflowing_signed_offset(right as i128, self)),
-            Add if !signed =>
-                map_to_primval(left.overflowing_offset(Size::from_bytes(right as u64), self)),
-
-            BitAnd if !signed => {
-                let ptr_base_align = self.memory().get_size_and_align(left.alloc_id, AllocCheck::MaybeDead)
-                    .expect("alloc info with MaybeDead cannot fail")
-                    .1.bytes();
-                let base_mask = {
-                    // FIXME: use `interpret::truncate`, once that takes a `Size` instead of a `Layout`.
-                    let shift = 128 - self.memory().pointer_size().bits();
-                    let value = !(ptr_base_align as u128 - 1);
-                    // Truncate (shift left to drop out leftover values, shift right to fill with zeroes).
-                    (value << shift) >> shift
-                };
-                let ptr_size = self.memory().pointer_size();
-                trace!("ptr BitAnd, align {}, operand {:#010x}, base_mask {:#010x}",
-                    ptr_base_align, right, base_mask);
-                if right & base_mask == base_mask {
-                    // Case 1: the base address bits are all preserved, i.e., right is all-1 there.
-                    let offset = (left.offset.bytes() as u128 & right) as u64;
-                    (
-                        Scalar::Ptr(Pointer::new_with_tag(
-                            left.alloc_id,
-                            Size::from_bytes(offset),
-                            left.tag,
-                        )),
-                        false,
-                    )
-                } else if right & base_mask == 0 {
-                    // Case 2: the base address bits are all taken away, i.e., right is all-0 there.
-                    let v = Scalar::from_uint((left.offset.bytes() as u128) & right, ptr_size);
-                    (v, false)
-                } else {
-                    return err!(ReadPointerAsBytes);
-                }
-            }
-
-            Rem if !signed => {
-                // Doing modulo a divisor of the alignment is allowed.
-                // (Intuition: modulo a divisor leaks less information.)
-                let ptr_base_align = self.memory().get_size_and_align(left.alloc_id, AllocCheck::MaybeDead)
-                    .expect("alloc info with MaybeDead cannot fail")
-                    .1.bytes();
-                let right = right as u64;
-                let ptr_size = self.memory().pointer_size();
-                if right == 1 {
-                    // Modulo 1 is always 0.
-                    (Scalar::from_uint(0u32, ptr_size), false)
-                } else if ptr_base_align % right == 0 {
-                    // The base address would be cancelled out by the modulo operation, so we can
-                    // just take the modulo of the offset.
-                    (
-                        Scalar::from_uint((left.offset.bytes() % right) as u128, ptr_size),
-                        false,
-                    )
-                } else {
-                    return err!(ReadPointerAsBytes);
-                }
-            }
-
-            _ => {
-                let msg = format!(
-                    "unimplemented binary op on pointer {:?}: {:?}, {:?} ({})",
-                    bin_op,
-                    left,
-                    right,
-                    if signed { "signed" } else { "unsigned" }
-                );
-                return err!(Unimplemented(msg));
-            }
-        })
-    }
-
-    /// Raises an error if the offset moves the pointer outside of its allocation.
-    /// We consider ZSTs their own huge allocation that doesn't overlap with anything (and nothing
-    /// moves in there because the size is 0). We also consider the NULL pointer its own separate
-    /// allocation, and all the remaining integers pointers their own allocation.
-    fn pointer_offset_inbounds(
-        &self,
-        ptr: Scalar<Tag>,
-        pointee_ty: Ty<'tcx>,
-        offset: i64,
-    ) -> InterpResult<'tcx, Scalar<Tag>> {
-        // FIXME: assuming here that type size is less than `i64::max_value()`.
-        let pointee_size = self.layout_of(pointee_ty)?.size.bytes() as i64;
-        let offset = offset
-            .checked_mul(pointee_size)
-            .ok_or_else(|| InterpError::Overflow(mir::BinOp::Mul))?;
-        // Now let's see what kind of pointer this is.
-        if let Scalar::Ptr(ptr) = ptr {
-            // Both old and new pointer must be in-bounds of a *live* allocation.
-            // (Of the same allocation, but that part is trivial with our representation.)
-            self.pointer_inbounds(ptr)?;
-            let ptr = ptr.signed_offset(offset, self)?;
-            self.pointer_inbounds(ptr)?;
-            Ok(Scalar::Ptr(ptr))
-        } else {
-            // An integer pointer. They can only be offset by 0, and we pretend there
-            // is a little zero-sized allocation here.
-            if offset == 0 {
-                Ok(ptr)
-            } else {
-                err!(InvalidPointerMath)
-            }
-        }
+    fn ptr_eq(&self, left: Scalar<Tag>, right: Scalar<Tag>) -> InterpResult<'tcx, bool> {
+        let size = self.pointer_size();
+        // Just compare the integers.
+        // TODO: Do we really want to *always* do that, even when comparing two live in-bounds pointers?
+        let left = self.force_bits(left, size)?;
+        let right = self.force_bits(right, size)?;
+        Ok(left == right)
     }
 }