]> git.lizzy.rs Git - rust.git/blobdiff - src/loops.rs
Merge pull request #523 from sanxiyn/escape-arg
[rust.git] / src / loops.rs
index 286b51ab04ecf67d4b0072b2309d175739bfea16..614b561749f761f15c8f58eeb3fb1951bbfaa456 100644 (file)
 use rustc::lint::*;
 use rustc_front::hir::*;
 use reexport::*;
-use rustc_front::visit::{Visitor, walk_expr};
+use rustc_front::intravisit::{Visitor, walk_expr, walk_block, walk_decl};
 use rustc::middle::ty;
+use rustc::middle::def::DefLocal;
 use consts::{constant_simple, Constant};
-use std::collections::HashSet;
+use rustc::front::map::Node::NodeBlock;
+use std::borrow::Cow;
+use std::collections::{HashSet, HashMap};
 
-use utils::{snippet, span_lint, get_parent_expr, match_trait_method, match_type,
-            in_external_macro, expr_block, span_help_and_lint};
-use utils::{VEC_PATH, LL_PATH};
+use utils::{snippet, span_lint, get_parent_expr, match_trait_method, match_type, in_external_macro, expr_block,
+            span_help_and_lint, is_integer_literal, get_enclosing_block};
+use utils::{HASHMAP_PATH, VEC_PATH, LL_PATH};
 
+/// **What it does:** This lint checks for looping over the range of `0..len` of some collection just to get the values by index. It is `Warn` by default.
+///
+/// **Why is this bad?** Just iterating the collection itself makes the intent more clear and is probably faster.
+///
+/// **Known problems:** None
+///
+/// **Example:**
+/// ```
+/// for i in 0..vec.len() {
+///     println!("{}", vec[i]);
+/// }
+/// ```
 declare_lint!{ pub NEEDLESS_RANGE_LOOP, Warn,
                "for-looping over a range of indices where an iterator over items would do" }
 
+/// **What it does:** This lint checks for loops on `x.iter()` where `&x` will do, and suggest the latter. It is `Warn` by default.
+///
+/// **Why is this bad?** Readability.
+///
+/// **Known problems:** False negatives. We currently only warn on some known types.
+///
+/// **Example:** `for x in y.iter() { .. }` (where y is a `Vec` or slice)
 declare_lint!{ pub EXPLICIT_ITER_LOOP, Warn,
                "for-looping over `_.iter()` or `_.iter_mut()` when `&_` or `&mut _` would do" }
 
+/// **What it does:** This lint checks for loops on `x.next()`. It is `Warn` by default.
+///
+/// **Why is this bad?** `next()` returns either `Some(value)` if there was a value, or `None` otherwise. The insidious thing is that `Option<_>` implements `IntoIterator`, so that possibly one value will be iterated, leading to some hard to find bugs. No one will want to write such code [except to win an Underhanded Rust Contest](https://www.reddit.com/r/rust/comments/3hb0wm/underhanded_rust_contest/cu5yuhr).
+///
+/// **Known problems:** None
+///
+/// **Example:** `for x in y.next() { .. }`
 declare_lint!{ pub ITER_NEXT_LOOP, Warn,
                "for-looping over `_.next()` which is probably not intended" }
 
+/// **What it does:** This lint detects `loop + match` combinations that are easier written as a `while let` loop. It is `Warn` by default.
+///
+/// **Why is this bad?** The `while let` loop is usually shorter and more readable
+///
+/// **Known problems:** Sometimes the wrong binding is displayed (#383)
+///
+/// **Example:**
+///
+/// ```
+/// loop {
+///     let x = match y {
+///         Some(x) => x,
+///         None => break,
+///     }
+///     // .. do something with x
+/// }
+/// // is easier written as
+/// while let Some(x) = y {
+///     // .. do something with x
+/// }
+/// ```
 declare_lint!{ pub WHILE_LET_LOOP, Warn,
                "`loop { if let { ... } else break }` can be written as a `while let` loop" }
 
+/// **What it does:** This lint checks for using `collect()` on an iterator without using the result. It is `Warn` by default.
+///
+/// **Why is this bad?** It is more idiomatic to use a `for` loop over the iterator instead.
+///
+/// **Known problems:** None
+///
+/// **Example:** `vec.iter().map(|x| /* some operation returning () */).collect::<Vec<_>>();`
 declare_lint!{ pub UNUSED_COLLECT, Warn,
                "`collect()`ing an iterator without using the result; this is usually better \
                 written as a for loop" }
 
+/// **What it does:** This lint checks for loops over ranges `x..y` where both `x` and `y` are constant and `x` is greater or equal to `y`, unless the range is reversed or has a negative `.step_by(_)`. It is `Warn` by default.
+///
+/// **Why is it bad?** Such loops will either be skipped or loop until wrap-around (in debug code, this may `panic!()`). Both options are probably not intended.
+///
+/// **Known problems:** The lint cannot catch loops over dynamically defined ranges. Doing this would require simulating all possible inputs and code paths through the program, which would be complex and error-prone.
+///
+/// **Examples**: `for x in 5..10-5 { .. }` (oops, stray `-`)
 declare_lint!{ pub REVERSE_RANGE_LOOP, Warn,
                "Iterating over an empty range, such as `10..0` or `5..5`" }
 
+/// **What it does:** This lint checks `for` loops over slices with an explicit counter and suggests the use of `.enumerate()`. It is `Warn` by default.
+///
+/// **Why is it bad?** Not only is the version using `.enumerate()` more readable, the compiler is able to remove bounds checks which can lead to faster code in some instances.
+///
+/// **Known problems:** None.
+///
+/// **Example:** `for i in 0..v.len() { foo(v[i]); }` or `for i in 0..v.len() { bar(i, v[i]); }`
+declare_lint!{ pub EXPLICIT_COUNTER_LOOP, Warn,
+               "for-looping with an explicit counter when `_.enumerate()` would do" }
+
+/// **What it does:** This lint checks for empty `loop` expressions. It is `Warn` by default.
+///
+/// **Why is this bad?** Those busy loops burn CPU cycles without doing anything. Think of the environment and either block on something or at least make the thread sleep for some microseconds.
+///
+/// **Known problems:** None
+///
+/// **Example:** `loop {}`
+declare_lint!{ pub EMPTY_LOOP, Warn, "empty `loop {}` detected" }
+
+/// **What it does:** This lint checks for `while let` expressions on iterators. It is `Warn` by default.
+///
+/// **Why is this bad?** Readability. A simple `for` loop is shorter and conveys the intent better.
+///
+/// **Known problems:** None
+///
+/// **Example:** `while let Some(val) = iter() { .. }`
+declare_lint!{ pub WHILE_LET_ON_ITERATOR, Warn, "using a while-let loop instead of a for loop on an iterator" }
+
 #[derive(Copy, Clone)]
 pub struct LoopsPass;
 
 impl LintPass for LoopsPass {
     fn get_lints(&self) -> LintArray {
-        lint_array!(NEEDLESS_RANGE_LOOP, EXPLICIT_ITER_LOOP, ITER_NEXT_LOOP,
-                    WHILE_LET_LOOP, UNUSED_COLLECT, REVERSE_RANGE_LOOP)
+        lint_array!(NEEDLESS_RANGE_LOOP,
+                    EXPLICIT_ITER_LOOP,
+                    ITER_NEXT_LOOP,
+                    WHILE_LET_LOOP,
+                    UNUSED_COLLECT,
+                    REVERSE_RANGE_LOOP,
+                    EXPLICIT_COUNTER_LOOP,
+                    EMPTY_LOOP,
+                    WHILE_LET_ON_ITERATOR)
     }
+}
 
-    fn check_expr(&mut self, cx: &Context, expr: &Expr) {
+impl LateLintPass for LoopsPass {
+    fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
         if let Some((pat, arg, body)) = recover_for_loop(expr) {
-            // check for looping over a range and then indexing a sequence with it
-            // -> the iteratee must be a range literal
-            if let ExprRange(Some(ref l), _) = arg.node {
-                // Range should start with `0`
-                if let ExprLit(ref lit) = l.node {
-                    if let LitInt(0, _) = lit.node {
-
-                        // the var must be a single name
-                        if let PatIdent(_, ref ident, _) = pat.node {
-                            let mut visitor = VarVisitor { cx: cx, var: ident.node.name,
-                                                           indexed: HashSet::new(), nonindex: false };
-                            walk_expr(&mut visitor, body);
-                            // linting condition: we only indexed one variable
-                            if visitor.indexed.len() == 1 {
-                                let indexed = visitor.indexed.into_iter().next().expect(
-                                    "Len was nonzero, but no contents found");
-                                if visitor.nonindex {
-                                    span_lint(cx, NEEDLESS_RANGE_LOOP, expr.span, &format!(
-                                        "the loop variable `{}` is used to index `{}`. Consider using \
-                                         `for ({}, item) in {}.iter().enumerate()` or similar iterators",
-                                        ident.node.name, indexed, ident.node.name, indexed));
-                                } else {
-                                    span_lint(cx, NEEDLESS_RANGE_LOOP, expr.span, &format!(
-                                        "the loop variable `{}` is only used to index `{}`. \
-                                         Consider using `for item in &{}` or similar iterators",
-                                        ident.node.name, indexed, indexed));
+            check_for_loop(cx, pat, arg, body, expr);
+        }
+        // check for `loop { if let {} else break }` that could be `while let`
+        // (also matches an explicit "match" instead of "if let")
+        // (even if the "match" or "if let" is used for declaration)
+        if let ExprLoop(ref block, _) = expr.node {
+            // also check for empty `loop {}` statements
+            if block.stmts.is_empty() && block.expr.is_none() {
+                span_lint(cx,
+                          EMPTY_LOOP,
+                          expr.span,
+                          "empty `loop {}` detected. You may want to either use `panic!()` or add \
+                           `std::thread::sleep(..);` to the loop body.");
+            }
+
+            // extract the expression from the first statement (if any) in a block
+            let inner_stmt_expr = extract_expr_from_first_stmt(block);
+            // or extract the first expression (if any) from the block
+            if let Some(inner) = inner_stmt_expr.or_else(|| extract_first_expr(block)) {
+                if let ExprMatch(ref matchexpr, ref arms, ref source) = inner.node {
+                    // collect the remaining statements below the match
+                    let mut other_stuff = block.stmts
+                                               .iter()
+                                               .skip(1)
+                                               .map(|stmt| format!("{}", snippet(cx, stmt.span, "..")))
+                                               .collect::<Vec<String>>();
+                    if inner_stmt_expr.is_some() {
+                        // if we have a statement which has a match,
+                        if let Some(ref expr) = block.expr {
+                            // then collect the expression (without semicolon) below it
+                            other_stuff.push(format!("{}", snippet(cx, expr.span, "..")));
+                        }
+                    }
+
+                    // ensure "if let" compatible match structure
+                    match *source {
+                        MatchSource::Normal | MatchSource::IfLetDesugar{..} => {
+                            if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none() &&
+                               arms[1].pats.len() == 1 && arms[1].guard.is_none() &&
+                               is_break_expr(&arms[1].body) {
+                                if in_external_macro(cx, expr.span) {
+                                    return;
                                 }
+                                let loop_body = if inner_stmt_expr.is_some() {
+                                    // FIXME: should probably be an ellipsis
+                                    // tabbing and newline is probably a bad idea, especially for large blocks
+                                    Cow::Owned(format!("{{\n    {}\n}}", other_stuff.join("\n    ")))
+                                } else {
+                                    expr_block(cx, &arms[0].body, Some(other_stuff.join("\n    ")), "..")
+                                };
+                                span_help_and_lint(cx,
+                                                   WHILE_LET_LOOP,
+                                                   expr.span,
+                                                   "this loop could be written as a `while let` loop",
+                                                   &format!("try\nwhile let {} = {} {}",
+                                                            snippet(cx, arms[0].pats[0].span, ".."),
+                                                            snippet(cx, matchexpr.span, ".."),
+                                                            loop_body));
                             }
                         }
+                        _ => (),
                     }
                 }
             }
-
-            // if this for loop is iterating over a two-sided range...
-            if let ExprRange(Some(ref start_expr), Some(ref stop_expr)) = arg.node {
-                // ...and both sides are compile-time constant integers...
-                if let Some(Constant::ConstantInt(start_idx, _)) = constant_simple(start_expr) {
-                    if let Some(Constant::ConstantInt(stop_idx, _)) = constant_simple(stop_expr) {
-                        // ...and the start index is greater than the stop index,
-                        // this loop will never run. This is often confusing for developers
-                        // who think that this will iterate from the larger value to the
-                        // smaller value.
-                        if start_idx > stop_idx {
-                            span_help_and_lint(cx, REVERSE_RANGE_LOOP, expr.span,
-                                "this range is empty so this for loop will never run",
-                                &format!("Consider using `({}..{}).rev()` if you are attempting to \
-                                iterate over this range in reverse", stop_idx, start_idx));
-                        } else if start_idx == stop_idx {
-                            // if they are equal, it's also problematic - this loop
-                            // will never run.
-                            span_lint(cx, REVERSE_RANGE_LOOP, expr.span,
-                                "this range is empty so this for loop will never run");
-                        }
+        }
+        if let ExprMatch(ref match_expr, ref arms, MatchSource::WhileLetDesugar) = expr.node {
+            let pat = &arms[0].pats[0].node;
+            if let (&PatEnum(ref path, Some(ref pat_args)),
+                    &ExprMethodCall(method_name, _, ref method_args)) = (pat, &match_expr.node) {
+                let iter_expr = &method_args[0];
+                if let Some(lhs_constructor) = path.segments.last() {
+                    if method_name.node.as_str() == "next" &&
+                       match_trait_method(cx, match_expr, &["core", "iter", "Iterator"]) &&
+                       lhs_constructor.identifier.name.as_str() == "Some" &&
+                       !is_iterator_used_after_while_let(cx, iter_expr) {
+                        let iterator = snippet(cx, method_args[0].span, "_");
+                        let loop_var = snippet(cx, pat_args[0].span, "_");
+                        span_help_and_lint(cx,
+                                           WHILE_LET_ON_ITERATOR,
+                                           expr.span,
+                                           "this loop could be written as a `for` loop",
+                                           &format!("try\nfor {} in {} {{...}}", loop_var, iterator));
                     }
                 }
             }
+        }
+    }
 
-            if let ExprMethodCall(ref method, _, ref args) = arg.node {
-                // just the receiver, no arguments
-                if args.len() == 1 {
-                    let method_name = method.node.name;
-                    // check for looping over x.iter() or x.iter_mut(), could use &x or &mut x
-                    if method_name == "iter" || method_name == "iter_mut" {
-                        if is_ref_iterable_type(cx, &args[0]) {
-                            let object = snippet(cx, args[0].span, "_");
-                            span_lint(cx, EXPLICIT_ITER_LOOP, expr.span, &format!(
-                                "it is more idiomatic to loop over `&{}{}` instead of `{}.{}()`",
-                                if method_name == "iter_mut" { "mut " } else { "" },
-                                object, object, method_name));
-                        }
+    fn check_stmt(&mut self, cx: &LateContext, stmt: &Stmt) {
+        if let StmtSemi(ref expr, _) = stmt.node {
+            if let ExprMethodCall(ref method, _, ref args) = expr.node {
+                if args.len() == 1 && method.node.as_str() == "collect" &&
+                   match_trait_method(cx, expr, &["core", "iter", "Iterator"]) {
+                    span_lint(cx,
+                              UNUSED_COLLECT,
+                              expr.span,
+                              &format!("you are collect()ing an iterator and throwing away the result. Consider \
+                                        using an explicit for loop to exhaust the iterator"));
+                }
+            }
+        }
+    }
+}
+
+fn check_for_loop(cx: &LateContext, pat: &Pat, arg: &Expr, body: &Expr, expr: &Expr) {
+    check_for_loop_range(cx, pat, arg, body, expr);
+    check_for_loop_reverse_range(cx, arg, expr);
+    check_for_loop_explicit_iter(cx, arg, expr);
+    check_for_loop_explicit_counter(cx, arg, body, expr);
+}
+
+/// Check for looping over a range and then indexing a sequence with it.
+/// The iteratee must be a range literal.
+fn check_for_loop_range(cx: &LateContext, pat: &Pat, arg: &Expr, body: &Expr, expr: &Expr) {
+    if let ExprRange(Some(ref l), ref r) = arg.node {
+        // the var must be a single name
+        if let PatIdent(_, ref ident, _) = pat.node {
+            let mut visitor = VarVisitor {
+                cx: cx,
+                var: ident.node.name,
+                indexed: HashSet::new(),
+                nonindex: false,
+            };
+            walk_expr(&mut visitor, body);
+            // linting condition: we only indexed one variable
+            if visitor.indexed.len() == 1 {
+                let indexed = visitor.indexed
+                                     .into_iter()
+                                     .next()
+                                     .expect("Len was nonzero, but no contents found");
+
+                let starts_at_zero = is_integer_literal(l, 0);
+
+                let skip: Cow<_> = if starts_at_zero {
+                    "".into()
+                }
+                else {
+                    format!(".skip({})", snippet(cx, l.span, "..")).into()
+                };
+
+                let take: Cow<_> = if let Some(ref r) = *r {
+                    if !is_len_call(&r, &indexed) {
+                        format!(".take({})", snippet(cx, r.span, "..")).into()
                     }
-                    // check for looping over Iterator::next() which is not what you want
-                    else if method_name == "next" &&
-                            match_trait_method(cx, arg, &["core", "iter", "Iterator"]) {
-                        span_lint(cx, ITER_NEXT_LOOP, expr.span,
-                                  "you are iterating over `Iterator::next()` which is an Option; \
-                                   this will compile but is probably not what you want");
+                    else {
+                        "".into()
                     }
+                } else {
+                    "".into()
+                };
+
+                if visitor.nonindex {
+                    span_lint(cx,
+                              NEEDLESS_RANGE_LOOP,
+                              expr.span,
+                              &format!("the loop variable `{}` is used to index `{}`. \
+                                        Consider using `for ({}, item) in {}.iter().enumerate(){}{}` or similar iterators",
+                                        ident.node.name,
+                                        indexed,
+                                        ident.node.name,
+                                        indexed,
+                                        take,
+                                        skip));
+                } else {
+                    let repl = if starts_at_zero && take.is_empty() {
+                        format!("&{}", indexed)
+                    }
+                    else {
+                        format!("{}.iter(){}{}", indexed, take, skip)
+                    };
+
+                    span_lint(cx,
+                              NEEDLESS_RANGE_LOOP,
+                              expr.span,
+                              &format!("the loop variable `{}` is only used to index `{}`. \
+                                        Consider using `for item in {}` or similar iterators",
+                                        ident.node.name,
+                                        indexed,
+                                        repl));
                 }
             }
         }
-        // check for `loop { if let {} else break }` that could be `while let`
-        // (also matches explicit "match" instead of "if let")
-        if let ExprLoop(ref block, _) = expr.node {
-            // extract a single expression
-            if let Some(inner) = extract_single_expr(block) {
-                if let ExprMatch(ref matchexpr, ref arms, ref source) = inner.node {
-                    // ensure "if let" compatible match structure
-                    match *source {
-                        MatchSource::Normal | MatchSource::IfLetDesugar{..} => if
-                            arms.len() == 2 &&
-                            arms[0].pats.len() == 1 && arms[0].guard.is_none() &&
-                            arms[1].pats.len() == 1 && arms[1].guard.is_none() &&
-                            // finally, check for "break" in the second clause
-                            is_break_expr(&arms[1].body)
-                        {
-                            if in_external_macro(cx, expr.span) { return; }
-                            span_help_and_lint(cx, WHILE_LET_LOOP, expr.span,
-                                               "this loop could be written as a `while let` loop",
-                                               &format!("try\nwhile let {} = {} {}",
-                                                        snippet(cx, arms[0].pats[0].span, ".."),
-                                                        snippet(cx, matchexpr.span, ".."),
-                                                        expr_block(cx, &arms[0].body, "..")));
-                        },
-                        _ => ()
-                    }
+    }
+}
+
+fn is_len_call(expr: &Expr, var: &Name) -> bool {
+    if_let_chain! {[
+        let ExprMethodCall(method, _, ref len_args) = expr.node,
+        len_args.len() == 1,
+        method.node.as_str() == "len",
+        let ExprPath(_, ref path) = len_args[0].node,
+        path.segments.len() == 1,
+        &path.segments[0].identifier.name == var
+    ], {
+        return true;
+    }}
+
+    false
+}
+
+fn check_for_loop_reverse_range(cx: &LateContext, arg: &Expr, expr: &Expr) {
+    // if this for loop is iterating over a two-sided range...
+    if let ExprRange(Some(ref start_expr), Some(ref stop_expr)) = arg.node {
+        // ...and both sides are compile-time constant integers...
+        if let Some(start_idx @ Constant::ConstantInt(..)) = constant_simple(start_expr) {
+            if let Some(stop_idx @ Constant::ConstantInt(..)) = constant_simple(stop_expr) {
+                // ...and the start index is greater than the stop index,
+                // this loop will never run. This is often confusing for developers
+                // who think that this will iterate from the larger value to the
+                // smaller value.
+                if start_idx > stop_idx {
+                    span_help_and_lint(cx,
+                                       REVERSE_RANGE_LOOP,
+                                       expr.span,
+                                       "this range is empty so this for loop will never run",
+                                       &format!("Consider using `({}..{}).rev()` if you are attempting to iterate \
+                                                 over this range in reverse",
+                                                stop_idx,
+                                                start_idx));
+                } else if start_idx == stop_idx {
+                    // if they are equal, it's also problematic - this loop
+                    // will never run.
+                    span_lint(cx,
+                              REVERSE_RANGE_LOOP,
+                              expr.span,
+                              "this range is empty so this for loop will never run");
                 }
             }
         }
     }
+}
 
-    fn check_stmt(&mut self, cx: &Context, stmt: &Stmt) {
-        if let StmtSemi(ref expr, _) = stmt.node {
-            if let ExprMethodCall(ref method, _, ref args) = expr.node {
-                if args.len() == 1 && method.node.name == "collect" &&
-                        match_trait_method(cx, expr, &["core", "iter", "Iterator"]) {
-                    span_lint(cx, UNUSED_COLLECT, expr.span, &format!(
-                        "you are collect()ing an iterator and throwing away the result. \
-                         Consider using an explicit for loop to exhaust the iterator"));
+fn check_for_loop_explicit_iter(cx: &LateContext, arg: &Expr, expr: &Expr) {
+    if let ExprMethodCall(ref method, _, ref args) = arg.node {
+        // just the receiver, no arguments
+        if args.len() == 1 {
+            let method_name = method.node;
+            // check for looping over x.iter() or x.iter_mut(), could use &x or &mut x
+            if method_name.as_str() == "iter" || method_name.as_str() == "iter_mut" {
+                if is_ref_iterable_type(cx, &args[0]) {
+                    let object = snippet(cx, args[0].span, "_");
+                    span_lint(cx,
+                              EXPLICIT_ITER_LOOP,
+                              expr.span,
+                              &format!("it is more idiomatic to loop over `&{}{}` instead of `{}.{}()`",
+                                       if method_name.as_str() == "iter_mut" {
+                                           "mut "
+                                       } else {
+                                           ""
+                                       },
+                                       object,
+                                       object,
+                                       method_name));
+                }
+            } else if method_name.as_str() == "next" && match_trait_method(cx, arg, &["core", "iter", "Iterator"]) {
+                span_lint(cx,
+                          ITER_NEXT_LOOP,
+                          expr.span,
+                          "you are iterating over `Iterator::next()` which is an Option; this will compile but is \
+                           probably not what you want");
+            }
+        }
+    }
+
+}
+
+fn check_for_loop_explicit_counter(cx: &LateContext, arg: &Expr, body: &Expr, expr: &Expr) {
+    // Look for variables that are incremented once per loop iteration.
+    let mut visitor = IncrementVisitor {
+        cx: cx,
+        states: HashMap::new(),
+        depth: 0,
+        done: false,
+    };
+    walk_expr(&mut visitor, body);
+
+    // For each candidate, check the parent block to see if
+    // it's initialized to zero at the start of the loop.
+    let map = &cx.tcx.map;
+    let parent_scope = map.get_enclosing_scope(expr.id).and_then(|id| map.get_enclosing_scope(id));
+    if let Some(parent_id) = parent_scope {
+        if let NodeBlock(block) = map.get(parent_id) {
+            for (id, _) in visitor.states.iter().filter(|&(_, v)| *v == VarState::IncrOnce) {
+                let mut visitor2 = InitializeVisitor {
+                    cx: cx,
+                    end_expr: expr,
+                    var_id: id.clone(),
+                    state: VarState::IncrOnce,
+                    name: None,
+                    depth: 0,
+                    past_loop: false,
+                };
+                walk_block(&mut visitor2, block);
+
+                if visitor2.state == VarState::Warn {
+                    if let Some(name) = visitor2.name {
+                        span_lint(cx,
+                                  EXPLICIT_COUNTER_LOOP,
+                                  expr.span,
+                                  &format!("the variable `{0}` is used as a loop counter. Consider using `for ({0}, \
+                                            item) in {1}.enumerate()` or similar iterators",
+                                           name,
+                                           snippet(cx, arg.span, "_")));
+                    }
                 }
             }
         }
@@ -190,10 +476,10 @@ fn recover_for_loop(expr: &Expr) -> Option<(&Pat, &Expr, &Expr)> {
 }
 
 struct VarVisitor<'v, 't: 'v> {
-    cx: &'v Context<'v, 't>, // context reference
-    var: Name,               // var name to look for as index
-    indexed: HashSet<Name>,  // indexed variables
-    nonindex: bool,          // has the var been used otherwise?
+    cx: &'v LateContext<'v, 't>, // context reference
+    var: Name, // var name to look for as index
+    indexed: HashSet<Name>, // indexed variables
+    nonindex: bool, // has the var been used otherwise?
 }
 
 impl<'v, 't> Visitor<'v> for VarVisitor<'v, 't> {
@@ -221,41 +507,99 @@ fn visit_expr(&mut self, expr: &'v Expr) {
     }
 }
 
+fn is_iterator_used_after_while_let(cx: &LateContext, iter_expr: &Expr) -> bool {
+    let def_id = match var_def_id(cx, iter_expr) {
+        Some(id) => id,
+        None => return false,
+    };
+    let mut visitor = VarUsedAfterLoopVisitor {
+        cx: cx,
+        def_id: def_id,
+        iter_expr_id: iter_expr.id,
+        past_while_let: false,
+        var_used_after_while_let: false,
+    };
+    if let Some(enclosing_block) = get_enclosing_block(cx, def_id) {
+        walk_block(&mut visitor, enclosing_block);
+    }
+    visitor.var_used_after_while_let
+}
+
+struct VarUsedAfterLoopVisitor<'v, 't: 'v> {
+    cx: &'v LateContext<'v, 't>,
+    def_id: NodeId,
+    iter_expr_id: NodeId,
+    past_while_let: bool,
+    var_used_after_while_let: bool,
+}
+
+impl<'v, 't> Visitor<'v> for VarUsedAfterLoopVisitor<'v, 't> {
+    fn visit_expr(&mut self, expr: &'v Expr) {
+        if self.past_while_let {
+            if Some(self.def_id) == var_def_id(self.cx, expr) {
+                self.var_used_after_while_let = true;
+            }
+        } else if self.iter_expr_id == expr.id {
+            self.past_while_let = true;
+        }
+        walk_expr(self, expr);
+    }
+}
+
+
 /// Return true if the type of expr is one that provides IntoIterator impls
 /// for &T and &mut T, such as Vec.
-fn is_ref_iterable_type(cx: &Context, e: &Expr) -> bool {
+fn is_ref_iterable_type(cx: &LateContext, e: &Expr) -> bool {
     // no walk_ptrs_ty: calling iter() on a reference can make sense because it
     // will allow further borrows afterwards
     let ty = cx.tcx.expr_ty(e);
-    is_iterable_array(ty) ||
-        match_type(cx, ty, &VEC_PATH) ||
-        match_type(cx, ty, &LL_PATH) ||
-        match_type(cx, ty, &["std", "collections", "hash", "map", "HashMap"]) ||
-        match_type(cx, ty, &["std", "collections", "hash", "set", "HashSet"]) ||
-        match_type(cx, ty, &["collections", "vec_deque", "VecDeque"]) ||
-        match_type(cx, ty, &["collections", "binary_heap", "BinaryHeap"]) ||
-        match_type(cx, ty, &["collections", "btree", "map", "BTreeMap"]) ||
-        match_type(cx, ty, &["collections", "btree", "set", "BTreeSet"])
+    is_iterable_array(ty) || match_type(cx, ty, &VEC_PATH) || match_type(cx, ty, &LL_PATH) ||
+    match_type(cx, ty, &HASHMAP_PATH) || match_type(cx, ty, &["std", "collections", "hash", "set", "HashSet"]) ||
+    match_type(cx, ty, &["collections", "vec_deque", "VecDeque"]) ||
+    match_type(cx, ty, &["collections", "binary_heap", "BinaryHeap"]) ||
+    match_type(cx, ty, &["collections", "btree", "map", "BTreeMap"]) ||
+    match_type(cx, ty, &["collections", "btree", "set", "BTreeSet"])
 }
 
 fn is_iterable_array(ty: ty::Ty) -> bool {
-    //IntoIterator is currently only implemented for array sizes <= 32 in rustc
+    // IntoIterator is currently only implemented for array sizes <= 32 in rustc
     match ty.sty {
         ty::TyArray(_, 0...32) => true,
-        _ => false
+        _ => false,
     }
 }
 
-/// If block consists of a single expression (with or without semicolon), return it.
-fn extract_single_expr(block: &Block) -> Option<&Expr> {
-    match (&block.stmts.len(), &block.expr) {
-        (&1, &None) => match block.stmts[0].node {
-            StmtExpr(ref expr, _) |
-            StmtSemi(ref expr, _) => Some(expr),
-            _ => None,
-        },
-        (&0, &Some(ref expr)) => Some(expr),
-        _ => None
+/// If a block begins with a statement (possibly a `let` binding) and has an expression, return it.
+fn extract_expr_from_first_stmt(block: &Block) -> Option<&Expr> {
+    if block.stmts.is_empty() {
+        return None;
+    }
+    if let StmtDecl(ref decl, _) = block.stmts[0].node {
+        if let DeclLocal(ref local) = decl.node {
+            if let Some(ref expr) = local.init {
+                Some(expr)
+            } else {
+                None
+            }
+        } else {
+            None
+        }
+    } else {
+        None
+    }
+}
+
+/// If a block begins with an expression (with or without semicolon), return it.
+fn extract_first_expr(block: &Block) -> Option<&Expr> {
+    match block.expr {
+        Some(ref expr) => Some(expr),
+        None if !block.stmts.is_empty() => {
+            match block.stmts[0].node {
+                StmtExpr(ref expr, _) | StmtSemi(ref expr, _) => Some(expr),
+                _ => None,
+            }
+        }
+        _ => None,
     }
 }
 
@@ -263,10 +607,184 @@ fn extract_single_expr(block: &Block) -> Option<&Expr> {
 fn is_break_expr(expr: &Expr) -> bool {
     match expr.node {
         ExprBreak(None) => true,
-        ExprBlock(ref b) => match extract_single_expr(b) {
-            Some(ref subexpr) => is_break_expr(subexpr),
-            None => false,
-        },
+        // there won't be a `let <pat> = break` and so we can safely ignore the StmtDecl case
+        ExprBlock(ref b) => {
+            match extract_first_expr(b) {
+                Some(ref subexpr) => is_break_expr(subexpr),
+                None => false,
+            }
+        }
+        _ => false,
+    }
+}
+
+// To trigger the EXPLICIT_COUNTER_LOOP lint, a variable must be
+// incremented exactly once in the loop body, and initialized to zero
+// at the start of the loop.
+#[derive(PartialEq)]
+enum VarState {
+    Initial, // Not examined yet
+    IncrOnce, // Incremented exactly once, may be a loop counter
+    Declared, // Declared but not (yet) initialized to zero
+    Warn,
+    DontWarn,
+}
+
+// Scan a for loop for variables that are incremented exactly once.
+struct IncrementVisitor<'v, 't: 'v> {
+    cx: &'v LateContext<'v, 't>, // context reference
+    states: HashMap<NodeId, VarState>, // incremented variables
+    depth: u32, // depth of conditional expressions
+    done: bool,
+}
+
+impl<'v, 't> Visitor<'v> for IncrementVisitor<'v, 't> {
+    fn visit_expr(&mut self, expr: &'v Expr) {
+        if self.done {
+            return;
+        }
+
+        // If node is a variable
+        if let Some(def_id) = var_def_id(self.cx, expr) {
+            if let Some(parent) = get_parent_expr(self.cx, expr) {
+                let state = self.states.entry(def_id).or_insert(VarState::Initial);
+
+                match parent.node {
+                    ExprAssignOp(op, ref lhs, ref rhs) => {
+                        if lhs.id == expr.id {
+                            if op.node == BiAdd && is_integer_literal(rhs, 1) {
+                                *state = match *state {
+                                    VarState::Initial if self.depth == 0 => VarState::IncrOnce,
+                                    _ => VarState::DontWarn,
+                                };
+                            } else {
+                                // Assigned some other value
+                                *state = VarState::DontWarn;
+                            }
+                        }
+                    }
+                    ExprAssign(ref lhs, _) if lhs.id == expr.id => *state = VarState::DontWarn,
+                    ExprAddrOf(mutability, _) if mutability == MutMutable => *state = VarState::DontWarn,
+                    _ => (),
+                }
+            }
+        } else if is_loop(expr) {
+            self.states.clear();
+            self.done = true;
+            return;
+        } else if is_conditional(expr) {
+            self.depth += 1;
+            walk_expr(self, expr);
+            self.depth -= 1;
+            return;
+        }
+        walk_expr(self, expr);
+    }
+}
+
+// Check whether a variable is initialized to zero at the start of a loop.
+struct InitializeVisitor<'v, 't: 'v> {
+    cx: &'v LateContext<'v, 't>, // context reference
+    end_expr: &'v Expr, // the for loop. Stop scanning here.
+    var_id: NodeId,
+    state: VarState,
+    name: Option<Name>,
+    depth: u32, // depth of conditional expressions
+    past_loop: bool,
+}
+
+impl<'v, 't> Visitor<'v> for InitializeVisitor<'v, 't> {
+    fn visit_decl(&mut self, decl: &'v Decl) {
+        // Look for declarations of the variable
+        if let DeclLocal(ref local) = decl.node {
+            if local.pat.id == self.var_id {
+                if let PatIdent(_, ref ident, _) = local.pat.node {
+                    self.name = Some(ident.node.name);
+
+                    self.state = if let Some(ref init) = local.init {
+                        if is_integer_literal(init, 0) {
+                            VarState::Warn
+                        } else {
+                            VarState::Declared
+                        }
+                    } else {
+                        VarState::Declared
+                    }
+                }
+            }
+        }
+        walk_decl(self, decl);
+    }
+
+    fn visit_expr(&mut self, expr: &'v Expr) {
+        if self.state == VarState::DontWarn {
+            return;
+        }
+        if expr == self.end_expr {
+            self.past_loop = true;
+            return;
+        }
+        // No need to visit expressions before the variable is
+        // declared
+        if self.state == VarState::IncrOnce {
+            return;
+        }
+
+        // If node is the desired variable, see how it's used
+        if var_def_id(self.cx, expr) == Some(self.var_id) {
+            if let Some(parent) = get_parent_expr(self.cx, expr) {
+                match parent.node {
+                    ExprAssignOp(_, ref lhs, _) if lhs.id == expr.id => {
+                        self.state = VarState::DontWarn;
+                    }
+                    ExprAssign(ref lhs, ref rhs) if lhs.id == expr.id => {
+                        self.state = if is_integer_literal(rhs, 0) && self.depth == 0 {
+                            VarState::Warn
+                        } else {
+                            VarState::DontWarn
+                        }
+                    }
+                    ExprAddrOf(mutability, _) if mutability == MutMutable => self.state = VarState::DontWarn,
+                    _ => (),
+                }
+            }
+
+            if self.past_loop {
+                self.state = VarState::DontWarn;
+                return;
+            }
+        } else if !self.past_loop && is_loop(expr) {
+            self.state = VarState::DontWarn;
+            return;
+        } else if is_conditional(expr) {
+            self.depth += 1;
+            walk_expr(self, expr);
+            self.depth -= 1;
+            return;
+        }
+        walk_expr(self, expr);
+    }
+}
+
+fn var_def_id(cx: &LateContext, expr: &Expr) -> Option<NodeId> {
+    if let Some(path_res) = cx.tcx.def_map.borrow().get(&expr.id) {
+        if let DefLocal(_, node_id) = path_res.base_def {
+            return Some(node_id);
+        }
+    }
+    None
+}
+
+fn is_loop(expr: &Expr) -> bool {
+    match expr.node {
+        ExprLoop(..) | ExprWhile(..) => true,
+        _ => false,
+    }
+}
+
+fn is_conditional(expr: &Expr) -> bool {
+    match expr.node {
+        ExprIf(..) | ExprMatch(..) => true,
         _ => false,
     }
 }