]> git.lizzy.rs Git - rust.git/blobdiff - src/librustc_mir/hair/pattern/_match.rs
Introduce Constructor::NonExhaustive
[rust.git] / src / librustc_mir / hair / pattern / _match.rs
index 0009524ef6f935ef80a96f5a7874d7b6a8af8d59..fbf073d9423d931262e6f1f4b28b72ad581482af 100644 (file)
 /// (without being so rigorous).
 ///
 /// The core of the algorithm revolves about a "usefulness" check. In particular, we
-/// are trying to compute a predicate `U(P, p_{m + 1})` where `P` is a list of patterns
-/// of length `m` for a compound (product) type with `n` components (we refer to this as
-/// a matrix). `U(P, p_{m + 1})` represents whether, given an existing list of patterns
-/// `p_1 ..= p_m`, adding a new pattern will be "useful" (that is, cover previously-
+/// are trying to compute a predicate `U(P, p)` where `P` is a list of patterns (we refer to this as
+/// a matrix). `U(P, p)` represents whether, given an existing list of patterns
+/// `P_1 ..= P_m`, adding a new pattern `p` will be "useful" (that is, cover previously-
 /// uncovered values of the type).
 ///
 /// If we have this predicate, then we can easily compute both exhaustiveness of an
 /// entire set of patterns and the individual usefulness of each one.
 /// (a) the set of patterns is exhaustive iff `U(P, _)` is false (i.e., adding a wildcard
 /// match doesn't increase the number of values we're matching)
-/// (b) a pattern `p_i` is not useful if `U(P[0..=(i-1), p_i)` is false (i.e., adding a
+/// (b) a pattern `P_i` is not useful if `U(P[0..=(i-1), P_i)` is false (i.e., adding a
 /// pattern to those that have come before it doesn't increase the number of values
 /// we're matching).
 ///
+/// During the course of the algorithm, the rows of the matrix won't just be individual patterns,
+/// but rather partially-deconstructed patterns in the form of a list of patterns. The paper
+/// calls those pattern-vectors, and we will call them pattern-stacks. The same holds for the
+/// new pattern `p`.
+///
 /// For example, say we have the following:
 /// ```
 ///     // x: (Option<bool>, Result<()>)
 ///         (None, Err(_)) => {}
 ///     }
 /// ```
-/// Here, the matrix `P` is 3 x 2 (rows x columns).
+/// Here, the matrix `P` starts as:
 /// [
-///     [Some(true), _],
-///     [None, Err(())],
-///     [None, Err(_)],
+///     [(Some(true), _)],
+///     [(None, Err(()))],
+///     [(None, Err(_))],
 /// ]
 /// We can tell it's not exhaustive, because `U(P, _)` is true (we're not covering
-/// `[Some(false), _]`, for instance). In addition, row 3 is not useful, because
+/// `[(Some(false), _)]`, for instance). In addition, row 3 is not useful, because
 /// all the values it covers are already covered by row 2.
 ///
-/// To compute `U`, we must have two other concepts.
-///     1. `S(c, P)` is a "specialized matrix", where `c` is a constructor (like `Some` or
-///        `None`). You can think of it as filtering `P` to just the rows whose *first* pattern
-///        can cover `c` (and expanding OR-patterns into distinct patterns), and then expanding
-///        the constructor into all of its components.
-///        The specialization of a row vector is computed by `specialize`.
+/// A list of patterns can be thought of as a stack, because we are mainly interested in the top of
+/// the stack at any given point, and we can pop or apply constructors to get new pattern-stacks.
+/// To match the paper, the top of the stack is at the beginning / on the left.
+///
+/// There are two important operations on pattern-stacks necessary to understand the algorithm:
+///     1. We can pop a given constructor off the top of a stack. This operation is called
+///        `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
+///        `None`) and `p` a pattern-stack.
+///        If the pattern on top of the stack can cover `c`, this removes the constructor and
+///        pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
+///        Otherwise the pattern-stack is discarded.
+///        This essentially filters those pattern-stacks whose top covers the constructor `c` and
+///        discards the others.
+///
+///        For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
+///        pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
+///        `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
+///        nothing back.
 ///
-///        It is computed as follows. For each row `p_i` of P, we have four cases:
-///             1.1. `p_(i,1) = c(r_1, .., r_a)`. Then `S(c, P)` has a corresponding row:
-///                     r_1, .., r_a, p_(i,2), .., p_(i,n)
-///             1.2. `p_(i,1) = c'(r_1, .., r_a')` where `c ≠ c'`. Then `S(c, P)` has no
-///                  corresponding row.
-///             1.3. `p_(i,1) = _`. Then `S(c, P)` has a corresponding row:
-///                     _, .., _, p_(i,2), .., p_(i,n)
-///             1.4. `p_(i,1) = r_1 | r_2`. Then `S(c, P)` has corresponding rows inlined from:
-///                     S(c, (r_1, p_(i,2), .., p_(i,n)))
-///                     S(c, (r_2, p_(i,2), .., p_(i,n)))
+///        This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
+///        on top of the stack, and we have four cases:
+///             1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We
+///                  push onto the stack the arguments of this constructor, and return the result:
+///                     r_1, .., r_a, p_2, .., p_n
+///             1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and
+///                  return nothing.
+///             1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
+///                  arguments (its arity), and return the resulting stack:
+///                     _, .., _, p_2, .., p_n
+///             1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
+///                  stack:
+///                     S(c, (r_1, p_2, .., p_n))
+///                     S(c, (r_2, p_2, .., p_n))
 ///
-///     2. `D(P)` is a "default matrix". This is used when we know there are missing
-///        constructor cases, but there might be existing wildcard patterns, so to check the
-///        usefulness of the matrix, we have to check all its *other* components.
-///        The default matrix is computed inline in `is_useful`.
+///     2. We can pop a wildcard off the top of the stack. This is called `D(p)`, where `p` is
+///        a pattern-stack.
+///        This is used when we know there are missing constructor cases, but there might be
+///        existing wildcard patterns, so to check the usefulness of the matrix, we have to check
+///        all its *other* components.
 ///
-///         It is computed as follows. For each row `p_i` of P, we have three cases:
-///             1.1. `p_(i,1) = c(r_1, .., r_a)`. Then `D(P)` has no corresponding row.
-///             1.2. `p_(i,1) = _`. Then `D(P)` has a corresponding row:
-///                     p_(i,2), .., p_(i,n)
-///             1.3. `p_(i,1) = r_1 | r_2`. Then `D(P)` has corresponding rows inlined from:
-///                     D((r_1, p_(i,2), .., p_(i,n)))
-///                     D((r_2, p_(i,2), .., p_(i,n)))
+///        It is computed as follows. We look at the pattern `p_1` on top of the stack,
+///        and we have three cases:
+///             1.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
+///             1.2. `p_1 = _`. We return the rest of the stack:
+///                     p_2, .., p_n
+///             1.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
+///               stack.
+///                     D((r_1, p_2, .., p_n))
+///                     D((r_2, p_2, .., p_n))
+///
+///     Note that the OR-patterns are not always used directly in Rust, but are used to derive the
+///     exhaustive integer matching rules, so they're written here for posterity.
+///
+/// Both those operations extend straightforwardly to a list or pattern-stacks, i.e. a matrix, by
+/// working row-by-row. Popping a constructor ends up keeping only the matrix rows that start with
+/// the given constructor, and popping a wildcard keeps those rows that start with a wildcard.
 ///
-///     Note that the OR-patterns are not always used directly in Rust, but are used to derive
-///     the exhaustive integer matching rules, so they're written here for posterity.
 ///
 /// The algorithm for computing `U`
 /// -------------------------------
 /// The algorithm is inductive (on the number of columns: i.e., components of tuple patterns).
 /// That means we're going to check the components from left-to-right, so the algorithm
-/// operates principally on the first component of the matrix and new pattern `p_{m + 1}`.
+/// operates principally on the first component of the matrix and new pattern-stack `p`.
 /// This algorithm is realised in the `is_useful` function.
 ///
 /// Base case. (`n = 0`, i.e., an empty tuple pattern)
 ///     - If `P` already contains an empty pattern (i.e., if the number of patterns `m > 0`),
-///       then `U(P, p_{m + 1})` is false.
-///     - Otherwise, `P` must be empty, so `U(P, p_{m + 1})` is true.
+///       then `U(P, p)` is false.
+///     - Otherwise, `P` must be empty, so `U(P, p)` is true.
 ///
 /// Inductive step. (`n > 0`, i.e., whether there's at least one column
 ///                  [which may then be expanded into further columns later])
-///     We're going to match on the new pattern, `p_{m + 1}`.
-///         - If `p_{m + 1} == c(r_1, .., r_a)`, then we have a constructor pattern.
-///           Thus, the usefulness of `p_{m + 1}` can be reduced to whether it is useful when
-///           we ignore all the patterns in `P` that involve other constructors. This is where
-///           `S(c, P)` comes in:
-///           `U(P, p_{m + 1}) := U(S(c, P), S(c, p_{m + 1}))`
+///     We're going to match on the top of the new pattern-stack, `p_1`.
+///         - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
+///           Then, the usefulness of `p_1` can be reduced to whether it is useful when
+///           we ignore all the patterns in the first column of `P` that involve other constructors.
+///           This is where `S(c, P)` comes in:
+///           `U(P, p) := U(S(c, P), S(c, p))`
 ///           This special case is handled in `is_useful_specialized`.
-///         - If `p_{m + 1} == _`, then we have two more cases:
-///             + All the constructors of the first component of the type exist within
-///               all the rows (after having expanded OR-patterns). In this case:
-///               `U(P, p_{m + 1}) := ∨(k ϵ constructors) U(S(k, P), S(k, p_{m + 1}))`
-///               I.e., the pattern `p_{m + 1}` is only useful when all the constructors are
-///               present *if* its later components are useful for the respective constructors
-///               covered by `p_{m + 1}` (usually a single constructor, but all in the case of `_`).
-///             + Some constructors are not present in the existing rows (after having expanded
-///               OR-patterns). However, there might be wildcard patterns (`_`) present. Thus, we
-///               are only really concerned with the other patterns leading with wildcards. This is
-///               where `D` comes in:
-///               `U(P, p_{m + 1}) := U(D(P), p_({m + 1},2), ..,  p_({m + 1},n))`
-///         - If `p_{m + 1} == r_1 | r_2`, then the usefulness depends on each separately:
-///           `U(P, p_{m + 1}) := U(P, (r_1, p_({m + 1},2), .., p_({m + 1},n)))
-///                            || U(P, (r_2, p_({m + 1},2), .., p_({m + 1},n)))`
+///
+///           For example, if `P` is:
+///           [
+///               [Some(true), _],
+///               [None, 0],
+///           ]
+///           and `p` is [Some(false), 0], then we don't care about row 2 since we know `p` only
+///           matches values that row 2 doesn't. For row 1 however, we need to dig into the
+///           arguments of `Some` to know whether some new value is covered. So we compute
+///           `U([[true, _]], [false, 0])`.
+///
+///         - If `p_1 == _`, then we look at the list of constructors that appear in the first
+///               component of the rows of `P`:
+///             + If there are some constructors that aren't present, then we might think that the
+///               wildcard `_` is useful, since it covers those constructors that weren't covered
+///               before.
+///               That's almost correct, but only works if there were no wildcards in those first
+///               components. So we need to check that `p` is useful with respect to the rows that
+///               start with a wildcard, if there are any. This is where `D` comes in:
+///               `U(P, p) := U(D(P), D(p))`
+///
+///               For example, if `P` is:
+///               [
+///                   [_, true, _],
+///                   [None, false, 1],
+///               ]
+///               and `p` is [_, false, _], the `Some` constructor doesn't appear in `P`. So if we
+///               only had row 2, we'd know that `p` is useful. However row 1 starts with a
+///               wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
+///
+///             + Otherwise, all possible constructors (for the relevant type) are present. In this
+///               case we must check whether the wildcard pattern covers any unmatched value. For
+///               that, we can think of the `_` pattern as a big OR-pattern that covers all
+///               possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
+///               example. The wildcard pattern is useful in this case if it is useful when
+///               specialized to one of the possible constructors. So we compute:
+///               `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
+///
+///               For example, if `P` is:
+///               [
+///                   [Some(true), _],
+///                   [None, false],
+///               ]
+///               and `p` is [_, false], both `None` and `Some` constructors appear in the first
+///               components of `P`. We will therefore try popping both constructors in turn: we
+///               compute U([[true, _]], [_, false]) for the `Some` constructor, and U([[false]],
+///               [false]) for the `None` constructor. The first case returns true, so we know that
+///               `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
+///               before.
+///
+///         - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
+///           `U(P, p) := U(P, (r_1, p_2, .., p_n))
+///                    || U(P, (r_2, p_2, .., p_n))`
 ///
 /// Modifications to the algorithm
 /// ------------------------------
 /// The algorithm in the paper doesn't cover some of the special cases that arise in Rust, for
 /// example uninhabited types and variable-length slice patterns. These are drawn attention to
-/// throughout the code below. I'll make a quick note here about how exhaustive integer matching
-/// is accounted for, though.
+/// throughout the code below. I'll make a quick note here about how exhaustive integer matching is
+/// accounted for, though.
 ///
 /// Exhaustive integer matching
 /// ---------------------------
 ///       invalid, because we want a disjunction over every *integer* in each range, not just a
 ///       disjunction over every range. This is a bit more tricky to deal with: essentially we need
 ///       to form equivalence classes of subranges of the constructor range for which the behaviour
-///       of the matrix `P` and new pattern `p_{m + 1}` are the same. This is described in more
+///       of the matrix `P` and new pattern `p` are the same. This is described in more
 ///       detail in `split_grouped_constructors`.
 ///     + If some constructors are missing from the matrix, it turns out we don't need to do
 ///       anything special (because we know none of the integers are actually wildcards: i.e., we
 ///       can't span wildcards using ranges).
-
 use self::Constructor::*;
 use self::Usefulness::*;
 use self::WitnessPreference::*;
 use rustc_data_structures::fx::FxHashMap;
 use rustc_index::vec::Idx;
 
+use super::{compare_const_vals, PatternFoldable, PatternFolder};
 use super::{FieldPat, Pat, PatKind, PatRange};
-use super::{PatternFoldable, PatternFolder, compare_const_vals};
 
 use rustc::hir::def_id::DefId;
-use rustc::hir::{RangeEnd, HirId};
-use rustc::ty::{self, Ty, TyCtxt, TypeFoldable, Const};
-use rustc::ty::layout::{Integer, IntegerExt, VariantIdx, Size};
+use rustc::hir::{HirId, RangeEnd};
+use rustc::ty::layout::{Integer, IntegerExt, Size, VariantIdx};
+use rustc::ty::{self, Const, Ty, TyCtxt, TypeFoldable};
 
+use rustc::lint;
+use rustc::mir::interpret::{truncate, AllocId, ConstValue, Pointer, Scalar};
 use rustc::mir::Field;
-use rustc::mir::interpret::{ConstValue, Scalar, truncate, AllocId, Pointer};
+use rustc::util::captures::Captures;
 use rustc::util::common::ErrorReported;
-use rustc::lint;
 
 use syntax::attr::{SignedInt, UnsignedInt};
 use syntax_pos::{Span, DUMMY_SP};
 
 use arena::TypedArena;
 
-use smallvec::{SmallVec, smallvec};
-use std::cmp::{self, Ordering, min, max};
+use smallvec::{smallvec, SmallVec};
+use std::cmp::{self, max, min, Ordering};
+use std::convert::TryInto;
 use std::fmt;
 use std::iter::{FromIterator, IntoIterator};
 use std::ops::RangeInclusive;
 use std::u128;
-use std::convert::TryInto;
 
 pub fn expand_pattern<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>, pat: Pat<'tcx>) -> Pat<'tcx> {
     LiteralExpander { tcx: cx.tcx }.fold_pattern(&pat)
@@ -219,11 +285,8 @@ fn fold_const_value_deref(
             // the easy case, deref a reference
             (ConstValue::Scalar(Scalar::Ptr(p)), x, y) if x == y => {
                 let alloc = self.tcx.alloc_map.lock().unwrap_memory(p.alloc_id);
-                ConstValue::ByRef {
-                    alloc,
-                    offset: p.offset,
-                }
-            },
+                ConstValue::ByRef { alloc, offset: p.offset }
+            }
             // unsize array to slice if pattern is array but match value or other patterns are slice
             (ConstValue::Scalar(Scalar::Ptr(p)), ty::Array(t, n), ty::Slice(u)) => {
                 assert_eq!(t, u);
@@ -232,12 +295,11 @@ fn fold_const_value_deref(
                     start: p.offset.bytes().try_into().unwrap(),
                     end: n.eval_usize(self.tcx, ty::ParamEnv::empty()).try_into().unwrap(),
                 }
-            },
+            }
             // fat pointers stay the same
-            (ConstValue::Slice { .. }, _, _)
+            (ConstValue::Slice { .. }, _, _)
             | (_, ty::Slice(_), ty::Slice(_))
-            | (_, ty::Str, ty::Str)
-            => val,
+            | (_, ty::Str, ty::Str) => val,
             // FIXME(oli-obk): this is reachable for `const FOO: &&&u32 = &&&42;` being used
             _ => bug!("cannot deref {:#?}, {} -> {}", val, crty, rty),
         }
@@ -250,30 +312,27 @@ fn fold_pattern(&mut self, pat: &Pat<'tcx>) -> Pat<'tcx> {
         match (&pat.ty.kind, &*pat.kind) {
             (
                 &ty::Ref(_, rty, _),
-                &PatKind::Constant { value: Const {
-                    val,
-                    ty: ty::TyS { kind: ty::Ref(_, crty, _), .. },
-                } },
-            ) => {
-                Pat {
-                    ty: pat.ty,
-                    span: pat.span,
-                    kind: box PatKind::Deref {
-                        subpattern: Pat {
-                            ty: rty,
-                            span: pat.span,
-                            kind: box PatKind::Constant { value: self.tcx.mk_const(Const {
+                &PatKind::Constant {
+                    value: Const { val, ty: ty::TyS { kind: ty::Ref(_, crty, _), .. } },
+                },
+            ) => Pat {
+                ty: pat.ty,
+                span: pat.span,
+                kind: box PatKind::Deref {
+                    subpattern: Pat {
+                        ty: rty,
+                        span: pat.span,
+                        kind: box PatKind::Constant {
+                            value: self.tcx.mk_const(Const {
                                 val: self.fold_const_value_deref(*val, rty, crty),
                                 ty: rty,
-                            }) },
-                        }
-                    }
-                }
-            }
-            (_, &PatKind::Binding { subpattern: Some(ref s), .. }) => {
-                s.fold_with(self)
-            }
-            _ => pat.super_fold_with(self)
+                            }),
+                        },
+                    },
+                },
+            },
+            (_, &PatKind::Binding { subpattern: Some(ref s), .. }) => s.fold_with(self),
+            _ => pat.super_fold_with(self),
         }
     }
 }
@@ -281,53 +340,156 @@ fn fold_pattern(&mut self, pat: &Pat<'tcx>) -> Pat<'tcx> {
 impl<'tcx> Pat<'tcx> {
     fn is_wildcard(&self) -> bool {
         match *self.kind {
-            PatKind::Binding { subpattern: None, .. } | PatKind::Wild =>
-                true,
-            _ => false
+            PatKind::Binding { subpattern: None, .. } | PatKind::Wild => true,
+            _ => false,
         }
     }
 }
 
-/// A 2D matrix. Nx1 matrices are very common, which is why `SmallVec[_; 2]`
-/// works well for each row.
-pub struct Matrix<'p, 'tcx>(Vec<SmallVec<[&'p Pat<'tcx>; 2]>>);
+/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
+/// works well.
+#[derive(Debug, Clone)]
+pub struct PatStack<'p, 'tcx>(SmallVec<[&'p Pat<'tcx>; 2]>);
+
+impl<'p, 'tcx> PatStack<'p, 'tcx> {
+    pub fn from_pattern(pat: &'p Pat<'tcx>) -> Self {
+        PatStack(smallvec![pat])
+    }
+
+    fn from_vec(vec: SmallVec<[&'p Pat<'tcx>; 2]>) -> Self {
+        PatStack(vec)
+    }
+
+    fn from_slice(s: &[&'p Pat<'tcx>]) -> Self {
+        PatStack(SmallVec::from_slice(s))
+    }
+
+    fn is_empty(&self) -> bool {
+        self.0.is_empty()
+    }
+
+    fn len(&self) -> usize {
+        self.0.len()
+    }
+
+    fn head(&self) -> &'p Pat<'tcx> {
+        self.0[0]
+    }
+
+    fn to_tail(&self) -> Self {
+        PatStack::from_slice(&self.0[1..])
+    }
+
+    fn iter(&self) -> impl Iterator<Item = &Pat<'tcx>> {
+        self.0.iter().map(|p| *p)
+    }
+
+    /// This computes `D(self)`. See top of the file for explanations.
+    fn specialize_wildcard(&self) -> Option<Self> {
+        if self.head().is_wildcard() { Some(self.to_tail()) } else { None }
+    }
+
+    /// This computes `S(constructor, self)`. See top of the file for explanations.
+    fn specialize_constructor<'a, 'q>(
+        &self,
+        cx: &mut MatchCheckCtxt<'a, 'tcx>,
+        constructor: &Constructor<'tcx>,
+        ctor_wild_subpatterns: &[&'q Pat<'tcx>],
+    ) -> Option<PatStack<'q, 'tcx>>
+    where
+        'a: 'q,
+        'p: 'q,
+    {
+        let new_heads = specialize_one_pattern(cx, self.head(), constructor, ctor_wild_subpatterns);
+        new_heads.map(|mut new_head| {
+            new_head.0.extend_from_slice(&self.0[1..]);
+            new_head
+        })
+    }
+}
+
+impl<'p, 'tcx> Default for PatStack<'p, 'tcx> {
+    fn default() -> Self {
+        PatStack(smallvec![])
+    }
+}
+
+impl<'p, 'tcx> FromIterator<&'p Pat<'tcx>> for PatStack<'p, 'tcx> {
+    fn from_iter<T>(iter: T) -> Self
+    where
+        T: IntoIterator<Item = &'p Pat<'tcx>>,
+    {
+        PatStack(iter.into_iter().collect())
+    }
+}
+
+/// A 2D matrix.
+pub struct Matrix<'p, 'tcx>(Vec<PatStack<'p, 'tcx>>);
 
 impl<'p, 'tcx> Matrix<'p, 'tcx> {
     pub fn empty() -> Self {
         Matrix(vec![])
     }
 
-    pub fn push(&mut self, row: SmallVec<[&'p Pat<'tcx>; 2]>) {
+    pub fn push(&mut self, row: PatStack<'p, 'tcx>) {
         self.0.push(row)
     }
+
+    /// Iterate over the first component of each row
+    fn heads<'a>(&'a self) -> impl Iterator<Item = &'a Pat<'tcx>> + Captures<'p> {
+        self.0.iter().map(|r| r.head())
+    }
+
+    /// This computes `D(self)`. See top of the file for explanations.
+    fn specialize_wildcard(&self) -> Self {
+        self.0.iter().filter_map(|r| r.specialize_wildcard()).collect()
+    }
+
+    /// This computes `S(constructor, self)`. See top of the file for explanations.
+    fn specialize_constructor<'a, 'q>(
+        &self,
+        cx: &mut MatchCheckCtxt<'a, 'tcx>,
+        constructor: &Constructor<'tcx>,
+        ctor_wild_subpatterns: &[&'q Pat<'tcx>],
+    ) -> Matrix<'q, 'tcx>
+    where
+        'a: 'q,
+        'p: 'q,
+    {
+        Matrix(
+            self.0
+                .iter()
+                .filter_map(|r| r.specialize_constructor(cx, constructor, ctor_wild_subpatterns))
+                .collect(),
+        )
+    }
 }
 
 /// Pretty-printer for matrices of patterns, example:
-/// ++++++++++++++++++++++++++
-/// + _     + []             +
-/// ++++++++++++++++++++++++++
-/// + true  + [First]        +
-/// ++++++++++++++++++++++++++
-/// + true  + [Second(true)] +
-/// ++++++++++++++++++++++++++
-/// + false + [_]            +
-/// ++++++++++++++++++++++++++
-/// + _     + [_, _, ..tail] +
-/// ++++++++++++++++++++++++++
+/// +++++++++++++++++++++++++++++
+/// + _     + []                +
+/// +++++++++++++++++++++++++++++
+/// + true  + [First]           +
+/// +++++++++++++++++++++++++++++
+/// + true  + [Second(true)]    +
+/// +++++++++++++++++++++++++++++
+/// + false + [_]               +
+/// +++++++++++++++++++++++++++++
+/// + _     + [_, _, tail @ ..] +
+/// +++++++++++++++++++++++++++++
 impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
         write!(f, "\n")?;
 
         let &Matrix(ref m) = self;
-        let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
-            row.iter().map(|pat| format!("{:?}", pat)).collect()
-        }).collect();
+        let pretty_printed_matrix: Vec<Vec<String>> =
+            m.iter().map(|row| row.iter().map(|pat| format!("{:?}", pat)).collect()).collect();
 
         let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
         assert!(m.iter().all(|row| row.len() == column_count));
-        let column_widths: Vec<usize> = (0..column_count).map(|col| {
-            pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
-        }).collect();
+        let column_widths: Vec<usize> = (0..column_count)
+            .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
+            .collect();
 
         let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
         let br = "+".repeat(total_width);
@@ -346,9 +508,10 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
     }
 }
 
-impl<'p, 'tcx> FromIterator<SmallVec<[&'p Pat<'tcx>; 2]>> for Matrix<'p, 'tcx> {
+impl<'p, 'tcx> FromIterator<PatStack<'p, 'tcx>> for Matrix<'p, 'tcx> {
     fn from_iter<T>(iter: T) -> Self
-        where T: IntoIterator<Item=SmallVec<[&'p Pat<'tcx>; 2]>>
+    where
+        T: IntoIterator<Item = PatStack<'p, 'tcx>>,
     {
         Matrix(iter.into_iter().collect())
     }
@@ -423,8 +586,12 @@ enum Constructor<'tcx> {
     ConstantValue(&'tcx ty::Const<'tcx>, Span),
     /// Ranges of literal values (`2..=5` and `2..5`).
     ConstantRange(u128, u128, Ty<'tcx>, RangeEnd, Span),
-    /// Array patterns of length n.
-    Slice(u64),
+    /// Array patterns of length `n`.
+    FixedLenSlice(u64),
+    /// Slice patterns. Captures any array constructor of `length >= i + j`.
+    VarLenSlice(u64, u64),
+    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively.
+    NonExhaustive,
 }
 
 // Ignore spans when comparing, they don't carry semantic information as they are only for lints.
@@ -432,13 +599,18 @@ impl<'tcx> std::cmp::PartialEq for Constructor<'tcx> {
     fn eq(&self, other: &Self) -> bool {
         match (self, other) {
             (Constructor::Single, Constructor::Single) => true,
+            (Constructor::NonExhaustive, Constructor::NonExhaustive) => true,
             (Constructor::Variant(a), Constructor::Variant(b)) => a == b,
             (Constructor::ConstantValue(a, _), Constructor::ConstantValue(b, _)) => a == b,
             (
                 Constructor::ConstantRange(a_start, a_end, a_ty, a_range_end, _),
                 Constructor::ConstantRange(b_start, b_end, b_ty, b_range_end, _),
             ) => a_start == b_start && a_end == b_end && a_ty == b_ty && a_range_end == b_range_end,
-            (Constructor::Slice(a), Constructor::Slice(b)) => a == b,
+            (Constructor::FixedLenSlice(a), Constructor::FixedLenSlice(b)) => a == b,
+            (
+                Constructor::VarLenSlice(a_prefix, a_suffix),
+                Constructor::VarLenSlice(b_prefix, b_suffix),
+            ) => a_prefix == b_prefix && a_suffix == b_suffix,
             _ => false,
         }
     }
@@ -447,7 +619,7 @@ fn eq(&self, other: &Self) -> bool {
 impl<'tcx> Constructor<'tcx> {
     fn is_slice(&self) -> bool {
         match self {
-            Slice { .. } => true,
+            FixedLenSlice { .. } | VarLenSlice { .. } => true,
             _ => false,
         }
     }
@@ -464,7 +636,7 @@ fn variant_index_for_adt<'a>(
                 VariantIdx::new(0)
             }
             ConstantValue(c, _) => crate::const_eval::const_variant_index(cx.tcx, cx.param_env, c),
-            _ => bug!("bad constructor {:?} for adt {:?}", self, adt)
+            _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
         }
     }
 
@@ -481,24 +653,385 @@ fn display(&self, tcx: TyCtxt<'tcx>) -> String {
                     ty::Const::from_bits(tcx, *hi, ty),
                 )
             }
-            Constructor::Slice(val) => format!("[{}]", val),
+            Constructor::FixedLenSlice(val) => format!("[{}]", val),
+            Constructor::VarLenSlice(prefix, suffix) => format!("[{}, .., {}]", prefix, suffix),
             _ => bug!("bad constructor being displayed: `{:?}", self),
         }
     }
+
+    // Returns the set of constructors covered by `self` but not by
+    // anything in `other_ctors`.
+    fn subtract_ctors(
+        &self,
+        tcx: TyCtxt<'tcx>,
+        param_env: ty::ParamEnv<'tcx>,
+        other_ctors: &Vec<Constructor<'tcx>>,
+    ) -> Vec<Constructor<'tcx>> {
+        match *self {
+            // Those constructors can only match themselves.
+            Single | Variant(_) => {
+                if other_ctors.iter().any(|c| c == self) {
+                    vec![]
+                } else {
+                    vec![self.clone()]
+                }
+            }
+            FixedLenSlice(self_len) => {
+                let overlaps = |c: &Constructor<'_>| match *c {
+                    FixedLenSlice(other_len) => other_len == self_len,
+                    VarLenSlice(prefix, suffix) => prefix + suffix <= self_len,
+                    _ => false,
+                };
+                if other_ctors.iter().any(overlaps) { vec![] } else { vec![self.clone()] }
+            }
+            VarLenSlice(..) => {
+                let mut remaining_ctors = vec![self.clone()];
+
+                // For each used ctor, subtract from the current set of constructors.
+                // Naming: we remove the "neg" constructors from the "pos" ones.
+                // Remember, `VarLenSlice(i, j)` covers the union of `FixedLenSlice` from
+                // `i + j` to infinity.
+                for neg_ctor in other_ctors {
+                    remaining_ctors = remaining_ctors
+                        .into_iter()
+                        .flat_map(|pos_ctor| -> SmallVec<[Constructor<'tcx>; 1]> {
+                            // Compute `pos_ctor \ neg_ctor`.
+                            match (&pos_ctor, neg_ctor) {
+                                (&FixedLenSlice(pos_len), &VarLenSlice(neg_prefix, neg_suffix)) => {
+                                    let neg_len = neg_prefix + neg_suffix;
+                                    if neg_len <= pos_len {
+                                        smallvec![]
+                                    } else {
+                                        smallvec![pos_ctor]
+                                    }
+                                }
+                                (
+                                    &VarLenSlice(pos_prefix, pos_suffix),
+                                    &VarLenSlice(neg_prefix, neg_suffix),
+                                ) => {
+                                    let neg_len = neg_prefix + neg_suffix;
+                                    let pos_len = pos_prefix + pos_suffix;
+                                    if neg_len <= pos_len {
+                                        smallvec![]
+                                    } else {
+                                        (pos_len..neg_len).map(FixedLenSlice).collect()
+                                    }
+                                }
+                                (&VarLenSlice(pos_prefix, pos_suffix), &FixedLenSlice(neg_len)) => {
+                                    let pos_len = pos_prefix + pos_suffix;
+                                    if neg_len < pos_len {
+                                        smallvec![pos_ctor]
+                                    } else {
+                                        (pos_len..neg_len)
+                                            .map(FixedLenSlice)
+                                            // We know that `neg_len + 1 >= pos_len >= pos_suffix`.
+                                            .chain(Some(VarLenSlice(
+                                                neg_len + 1 - pos_suffix,
+                                                pos_suffix,
+                                            )))
+                                            .collect()
+                                    }
+                                }
+                                _ if pos_ctor == *neg_ctor => smallvec![],
+                                _ => smallvec![pos_ctor],
+                            }
+                        })
+                        .collect();
+
+                    // If the constructors that have been considered so far already cover
+                    // the entire range of `self`, no need to look at more constructors.
+                    if remaining_ctors.is_empty() {
+                        break;
+                    }
+                }
+
+                remaining_ctors
+            }
+            ConstantRange(..) | ConstantValue(..) => {
+                let mut remaining_ctors = vec![self.clone()];
+                for other_ctor in other_ctors {
+                    if other_ctor == self {
+                        // If a constructor appears in a `match` arm, we can
+                        // eliminate it straight away.
+                        remaining_ctors = vec![]
+                    } else if let Some(interval) = IntRange::from_ctor(tcx, param_env, other_ctor) {
+                        // Refine the required constructors for the type by subtracting
+                        // the range defined by the current constructor pattern.
+                        remaining_ctors = interval.subtract_from(tcx, param_env, remaining_ctors);
+                    }
+
+                    // If the constructor patterns that have been considered so far
+                    // already cover the entire range of values, then we know the
+                    // constructor is not missing, and we can move on to the next one.
+                    if remaining_ctors.is_empty() {
+                        break;
+                    }
+                }
+
+                // If a constructor has not been matched, then it is missing.
+                // We add `remaining_ctors` instead of `self`, because then we can
+                // provide more detailed error information about precisely which
+                // ranges have been omitted.
+                remaining_ctors
+            }
+            // This constructor is never covered by anything else
+            NonExhaustive => vec![NonExhaustive],
+        }
+    }
+
+    /// This returns one wildcard pattern for each argument to this constructor.
+    fn wildcard_subpatterns<'a>(
+        &self,
+        cx: &MatchCheckCtxt<'a, 'tcx>,
+        ty: Ty<'tcx>,
+    ) -> Vec<Pat<'tcx>> {
+        debug!("wildcard_subpatterns({:#?}, {:?})", self, ty);
+
+        match self {
+            Single | Variant(_) => match ty.kind {
+                ty::Tuple(ref fs) => {
+                    fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect()
+                }
+                ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)],
+                ty::Adt(adt, substs) => {
+                    if adt.is_box() {
+                        // Use T as the sub pattern type of Box<T>.
+                        vec![Pat::wildcard_from_ty(substs.type_at(0))]
+                    } else {
+                        let variant = &adt.variants[self.variant_index_for_adt(cx, adt)];
+                        let is_non_exhaustive =
+                            variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
+                        variant
+                            .fields
+                            .iter()
+                            .map(|field| {
+                                let is_visible = adt.is_enum()
+                                    || field.vis.is_accessible_from(cx.module, cx.tcx);
+                                let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
+                                match (is_visible, is_non_exhaustive, is_uninhabited) {
+                                    // Treat all uninhabited types in non-exhaustive variants as
+                                    // `TyErr`.
+                                    (_, true, true) => cx.tcx.types.err,
+                                    // Treat all non-visible fields as `TyErr`. They can't appear
+                                    // in any other pattern from this match (because they are
+                                    // private), so their type does not matter - but we don't want
+                                    // to know they are uninhabited.
+                                    (false, ..) => cx.tcx.types.err,
+                                    (true, ..) => {
+                                        let ty = field.ty(cx.tcx, substs);
+                                        match ty.kind {
+                                            // If the field type returned is an array of an unknown
+                                            // size return an TyErr.
+                                            ty::Array(_, len)
+                                                if len
+                                                    .try_eval_usize(cx.tcx, cx.param_env)
+                                                    .is_none() =>
+                                            {
+                                                cx.tcx.types.err
+                                            }
+                                            _ => ty,
+                                        }
+                                    }
+                                }
+                            })
+                            .map(Pat::wildcard_from_ty)
+                            .collect()
+                    }
+                }
+                _ => vec![],
+            },
+            FixedLenSlice(_) | VarLenSlice(..) => match ty.kind {
+                ty::Slice(ty) | ty::Array(ty, _) => {
+                    let arity = self.arity(cx, ty);
+                    (0..arity).map(|_| Pat::wildcard_from_ty(ty)).collect()
+                }
+                _ => bug!("bad slice pattern {:?} {:?}", self, ty),
+            },
+            ConstantValue(..) | ConstantRange(..) | NonExhaustive => vec![],
+        }
+    }
+
+    /// This computes the arity of a constructor. The arity of a constructor
+    /// is how many subpattern patterns of that constructor should be expanded to.
+    ///
+    /// For instance, a tuple pattern `(_, 42, Some([]))` has the arity of 3.
+    /// A struct pattern's arity is the number of fields it contains, etc.
+    fn arity<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> u64 {
+        debug!("Constructor::arity({:#?}, {:?})", self, ty);
+        match self {
+            Single | Variant(_) => match ty.kind {
+                ty::Tuple(ref fs) => fs.len() as u64,
+                ty::Slice(..) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
+                ty::Ref(..) => 1,
+                ty::Adt(adt, _) => {
+                    adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64
+                }
+                _ => 0,
+            },
+            FixedLenSlice(length) => *length,
+            VarLenSlice(prefix, suffix) => prefix + suffix,
+            ConstantValue(..) | ConstantRange(..) | NonExhaustive => 0,
+        }
+    }
+
+    /// Apply a constructor to a list of patterns, yielding a new pattern. `pats`
+    /// must have as many elements as this constructor's arity.
+    ///
+    /// Examples:
+    /// `self`: `Constructor::Single`
+    /// `ty`: `(u32, u32, u32)`
+    /// `pats`: `[10, 20, _]`
+    /// returns `(10, 20, _)`
+    ///
+    /// `self`: `Constructor::Variant(Option::Some)`
+    /// `ty`: `Option<bool>`
+    /// `pats`: `[false]`
+    /// returns `Some(false)`
+    fn apply<'a>(
+        &self,
+        cx: &MatchCheckCtxt<'a, 'tcx>,
+        ty: Ty<'tcx>,
+        pats: impl IntoIterator<Item = Pat<'tcx>>,
+    ) -> Pat<'tcx> {
+        let mut subpatterns = pats.into_iter();
+
+        let pat = match self {
+            Single | Variant(_) => match ty.kind {
+                ty::Adt(..) | ty::Tuple(..) => {
+                    let subpatterns = subpatterns
+                        .enumerate()
+                        .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
+                        .collect();
+
+                    if let ty::Adt(adt, substs) = ty.kind {
+                        if adt.is_enum() {
+                            PatKind::Variant {
+                                adt_def: adt,
+                                substs,
+                                variant_index: self.variant_index_for_adt(cx, adt),
+                                subpatterns,
+                            }
+                        } else {
+                            PatKind::Leaf { subpatterns }
+                        }
+                    } else {
+                        PatKind::Leaf { subpatterns }
+                    }
+                }
+                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.nth(0).unwrap() },
+                ty::Slice(_) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
+                _ => PatKind::Wild,
+            },
+            FixedLenSlice(_) => {
+                PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
+            }
+            &VarLenSlice(prefix_len, _) => {
+                let prefix = subpatterns.by_ref().take(prefix_len as usize).collect();
+                let suffix = subpatterns.collect();
+                let wild = Pat::wildcard_from_ty(ty);
+                PatKind::Slice { prefix, slice: Some(wild), suffix }
+            }
+            &ConstantValue(value, _) => PatKind::Constant { value },
+            &ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
+                lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
+                hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
+                end,
+            }),
+            NonExhaustive => PatKind::Wild,
+        };
+
+        Pat { ty, span: DUMMY_SP, kind: Box::new(pat) }
+    }
+
+    /// Like `apply`, but where all the subpatterns are wildcards `_`.
+    fn apply_wildcards<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
+        let subpatterns = self.wildcard_subpatterns(cx, ty).into_iter().rev();
+        self.apply(cx, ty, subpatterns)
+    }
 }
 
 #[derive(Clone, Debug)]
 pub enum Usefulness<'tcx> {
     Useful,
     UsefulWithWitness(Vec<Witness<'tcx>>),
-    NotUseful
+    NotUseful,
 }
 
 impl<'tcx> Usefulness<'tcx> {
+    fn new_useful(preference: WitnessPreference) -> Self {
+        match preference {
+            ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]),
+            LeaveOutWitness => Useful,
+        }
+    }
+
     fn is_useful(&self) -> bool {
         match *self {
             NotUseful => false,
-            _ => true
+            _ => true,
+        }
+    }
+
+    fn apply_constructor(
+        self,
+        cx: &MatchCheckCtxt<'_, 'tcx>,
+        ctor: &Constructor<'tcx>,
+        ty: Ty<'tcx>,
+    ) -> Self {
+        match self {
+            UsefulWithWitness(witnesses) => UsefulWithWitness(
+                witnesses
+                    .into_iter()
+                    .map(|witness| witness.apply_constructor(cx, &ctor, ty))
+                    .collect(),
+            ),
+            x => x,
+        }
+    }
+
+    fn apply_wildcard(self, ty: Ty<'tcx>) -> Self {
+        match self {
+            UsefulWithWitness(witnesses) => {
+                let wild = Pat::wildcard_from_ty(ty);
+                UsefulWithWitness(
+                    witnesses
+                        .into_iter()
+                        .map(|mut witness| {
+                            witness.0.push(wild.clone());
+                            witness
+                        })
+                        .collect(),
+                )
+            }
+            x => x,
+        }
+    }
+
+    fn apply_missing_ctors(
+        self,
+        cx: &MatchCheckCtxt<'_, 'tcx>,
+        ty: Ty<'tcx>,
+        missing_ctors: &MissingConstructors<'tcx>,
+    ) -> Self {
+        match self {
+            UsefulWithWitness(witnesses) => {
+                let new_patterns: Vec<_> =
+                    missing_ctors.iter().map(|ctor| ctor.apply_wildcards(cx, ty)).collect();
+                // Add the new patterns to each witness
+                UsefulWithWitness(
+                    witnesses
+                        .into_iter()
+                        .flat_map(|witness| {
+                            new_patterns.iter().map(move |pat| {
+                                let mut witness = witness.clone();
+                                witness.0.push(pat.clone());
+                                witness
+                            })
+                        })
+                        .collect(),
+                )
+            }
+            x => x,
         }
     }
 }
@@ -506,13 +1039,12 @@ fn is_useful(&self) -> bool {
 #[derive(Copy, Clone, Debug)]
 pub enum WitnessPreference {
     ConstructWitness,
-    LeaveOutWitness
+    LeaveOutWitness,
 }
 
 #[derive(Copy, Clone, Debug)]
 struct PatCtxt<'tcx> {
     ty: Ty<'tcx>,
-    max_slice_length: u64,
     span: Span,
 }
 
@@ -557,24 +1089,6 @@ pub fn single_pattern(self) -> Pat<'tcx> {
         self.0.into_iter().next().unwrap()
     }
 
-    fn push_wild_constructor<'a>(
-        mut self,
-        cx: &MatchCheckCtxt<'a, 'tcx>,
-        ctor: &Constructor<'tcx>,
-        ty: Ty<'tcx>)
-        -> Self
-    {
-        let sub_pattern_tys = constructor_sub_pattern_tys(cx, ctor, ty);
-        self.0.extend(sub_pattern_tys.into_iter().map(|ty| {
-            Pat {
-                ty,
-                span: DUMMY_SP,
-                kind: box PatKind::Wild,
-            }
-        }));
-        self.apply_constructor(cx, ctor, ty)
-    }
-
     /// Constructs a partial witness for a pattern given a list of
     /// patterns expanded by the specialization step.
     ///
@@ -590,73 +1104,18 @@ fn push_wild_constructor<'a>(
     /// pats: [(false, "foo"), 42]  => X { a: (false, "foo"), b: 42 }
     fn apply_constructor<'a>(
         mut self,
-        cx: &MatchCheckCtxt<'a,'tcx>,
+        cx: &MatchCheckCtxt<'a, 'tcx>,
         ctor: &Constructor<'tcx>,
-        ty: Ty<'tcx>)
-        -> Self
-    {
-        let arity = constructor_arity(cx, ctor, ty);
+        ty: Ty<'tcx>,
+    ) -> Self {
+        let arity = ctor.arity(cx, ty);
         let pat = {
             let len = self.0.len() as u64;
-            let mut pats = self.0.drain((len - arity) as usize..).rev();
-
-            match ty.kind {
-                ty::Adt(..) |
-                ty::Tuple(..) => {
-                    let pats = pats.enumerate().map(|(i, p)| {
-                        FieldPat {
-                            field: Field::new(i),
-                            pattern: p
-                        }
-                    }).collect();
-
-                    if let ty::Adt(adt, substs) = ty.kind {
-                        if adt.is_enum() {
-                            PatKind::Variant {
-                                adt_def: adt,
-                                substs,
-                                variant_index: ctor.variant_index_for_adt(cx, adt),
-                                subpatterns: pats
-                            }
-                        } else {
-                            PatKind::Leaf { subpatterns: pats }
-                        }
-                    } else {
-                        PatKind::Leaf { subpatterns: pats }
-                    }
-                }
-
-                ty::Ref(..) => {
-                    PatKind::Deref { subpattern: pats.nth(0).unwrap() }
-                }
-
-                ty::Slice(_) | ty::Array(..) => {
-                    PatKind::Slice {
-                        prefix: pats.collect(),
-                        slice: None,
-                        suffix: vec![]
-                    }
-                }
-
-                _ => {
-                    match *ctor {
-                        ConstantValue(value, _) => PatKind::Constant { value },
-                        ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
-                            lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
-                            hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
-                            end,
-                        }),
-                        _ => PatKind::Wild,
-                    }
-                }
-            }
+            let pats = self.0.drain((len - arity) as usize..).rev();
+            ctor.apply(cx, ty, pats)
         };
 
-        self.0.push(Pat {
-            ty,
-            span: DUMMY_SP,
-            kind: Box::new(pat),
-        });
+        self.0.push(pat);
 
         self
     }
@@ -675,37 +1134,33 @@ fn all_constructors<'a, 'tcx>(
 ) -> Vec<Constructor<'tcx>> {
     debug!("all_constructors({:?})", pcx.ty);
     let ctors = match pcx.ty.kind {
-        ty::Bool => {
-            [true, false].iter().map(|&b| {
-                ConstantValue(ty::Const::from_bool(cx.tcx, b), pcx.span)
-            }).collect()
-        }
+        ty::Bool => [true, false]
+            .iter()
+            .map(|&b| ConstantValue(ty::Const::from_bool(cx.tcx, b), pcx.span))
+            .collect(),
         ty::Array(ref sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
             let len = len.eval_usize(cx.tcx, cx.param_env);
-            if len != 0 && cx.is_uninhabited(sub_ty) {
-                vec![]
-            } else {
-                vec![Slice(len)]
-            }
+            if len != 0 && cx.is_uninhabited(sub_ty) { vec![] } else { vec![FixedLenSlice(len)] }
         }
         // Treat arrays of a constant but unknown length like slices.
-        ty::Array(ref sub_ty, _) |
-        ty::Slice(ref sub_ty) => {
+        ty::Array(ref sub_ty, _) | ty::Slice(ref sub_ty) => {
             if cx.is_uninhabited(sub_ty) {
-                vec![Slice(0)]
+                vec![FixedLenSlice(0)]
             } else {
-                (0..pcx.max_slice_length+1).map(|length| Slice(length)).collect()
+                vec![VarLenSlice(0, 0)]
             }
         }
-        ty::Adt(def, substs) if def.is_enum() => {
-            def.variants.iter()
-                .filter(|v| {
-                    !cx.tcx.features().exhaustive_patterns ||
-                    !v.uninhabited_from(cx.tcx, substs, def.adt_kind()).contains(cx.tcx, cx.module)
-                })
-                .map(|v| Variant(v.def_id))
-                .collect()
-        }
+        ty::Adt(def, substs) if def.is_enum() => def
+            .variants
+            .iter()
+            .filter(|v| {
+                !cx.tcx.features().exhaustive_patterns
+                    || !v
+                        .uninhabited_from(cx.tcx, substs, def.adt_kind())
+                        .contains(cx.tcx, cx.module)
+            })
+            .map(|v| Variant(v.def_id))
+            .collect(),
         ty::Char => {
             vec![
                 // The valid Unicode Scalar Value ranges.
@@ -744,111 +1199,37 @@ fn all_constructors<'a, 'tcx>(
             }
         }
     };
-    ctors
-}
 
-fn max_slice_length<'p, 'a, 'tcx, I>(cx: &mut MatchCheckCtxt<'a, 'tcx>, patterns: I) -> u64
-where
-    I: Iterator<Item = &'p Pat<'tcx>>,
-    'tcx: 'p,
-{
-    // The exhaustiveness-checking paper does not include any details on
-    // checking variable-length slice patterns. However, they are matched
-    // by an infinite collection of fixed-length array patterns.
-    //
-    // Checking the infinite set directly would take an infinite amount
-    // of time. However, it turns out that for each finite set of
-    // patterns `P`, all sufficiently large array lengths are equivalent:
-    //
-    // Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies
-    // to exactly the subset `Pₜ` of `P` can be transformed to a slice
-    // `sₘ` for each sufficiently-large length `m` that applies to exactly
-    // the same subset of `P`.
-    //
-    // Because of that, each witness for reachability-checking from one
-    // of the sufficiently-large lengths can be transformed to an
-    // equally-valid witness from any other length, so we only have
-    // to check slice lengths from the "minimal sufficiently-large length"
-    // and below.
-    //
-    // Note that the fact that there is a *single* `sₘ` for each `m`
-    // not depending on the specific pattern in `P` is important: if
-    // you look at the pair of patterns
-    //     `[true, ..]`
-    //     `[.., false]`
-    // Then any slice of length ≥1 that matches one of these two
-    // patterns can be trivially turned to a slice of any
-    // other length ≥1 that matches them and vice-versa - for
-    // but the slice from length 2 `[false, true]` that matches neither
-    // of these patterns can't be turned to a slice from length 1 that
-    // matches neither of these patterns, so we have to consider
-    // slices from length 2 there.
-    //
-    // Now, to see that that length exists and find it, observe that slice
-    // patterns are either "fixed-length" patterns (`[_, _, _]`) or
-    // "variable-length" patterns (`[_, .., _]`).
-    //
-    // For fixed-length patterns, all slices with lengths *longer* than
-    // the pattern's length have the same outcome (of not matching), so
-    // as long as `L` is greater than the pattern's length we can pick
-    // any `sₘ` from that length and get the same result.
-    //
-    // For variable-length patterns, the situation is more complicated,
-    // because as seen above the precise value of `sₘ` matters.
-    //
-    // However, for each variable-length pattern `p` with a prefix of length
-    // `plₚ` and suffix of length `slₚ`, only the first `plₚ` and the last
-    // `slₚ` elements are examined.
-    //
-    // Therefore, as long as `L` is positive (to avoid concerns about empty
-    // types), all elements after the maximum prefix length and before
-    // the maximum suffix length are not examined by any variable-length
-    // pattern, and therefore can be added/removed without affecting
-    // them - creating equivalent patterns from any sufficiently-large
-    // length.
-    //
-    // Of course, if fixed-length patterns exist, we must be sure
-    // that our length is large enough to miss them all, so
-    // we can pick `L = max(FIXED_LEN+1 ∪ {max(PREFIX_LEN) + max(SUFFIX_LEN)})`
-    //
-    // for example, with the above pair of patterns, all elements
-    // but the first and last can be added/removed, so any
-    // witness of length ≥2 (say, `[false, false, true]`) can be
-    // turned to a witness from any other length ≥2.
-
-    let mut max_prefix_len = 0;
-    let mut max_suffix_len = 0;
-    let mut max_fixed_len = 0;
-
-    for row in patterns {
-        match *row.kind {
-            PatKind::Constant { value } => {
-                // extract the length of an array/slice from a constant
-                match (value.val, &value.ty.kind) {
-                    (_, ty::Array(_, n)) => max_fixed_len = cmp::max(
-                        max_fixed_len,
-                        n.eval_usize(cx.tcx, cx.param_env),
-                    ),
-                    (ConstValue::Slice{ start, end, .. }, ty::Slice(_)) => max_fixed_len = cmp::max(
-                        max_fixed_len,
-                        (end - start) as u64,
-                    ),
-                    _ => {},
-                }
-            }
-            PatKind::Slice { ref prefix, slice: None, ref suffix } => {
-                let fixed_len = prefix.len() as u64 + suffix.len() as u64;
-                max_fixed_len = cmp::max(max_fixed_len, fixed_len);
-            }
-            PatKind::Slice { ref prefix, slice: Some(_), ref suffix } => {
-                max_prefix_len = cmp::max(max_prefix_len, prefix.len() as u64);
-                max_suffix_len = cmp::max(max_suffix_len, suffix.len() as u64);
-            }
-            _ => {}
-        }
+    // FIXME: currently the only way I know of something can
+    // be a privately-empty enum is when the exhaustive_patterns
+    // feature flag is not present, so this is only
+    // needed for that case.
+    let is_privately_empty = ctors.is_empty() && !cx.is_uninhabited(pcx.ty);
+    let is_declared_nonexhaustive = cx.is_non_exhaustive_enum(pcx.ty) && !cx.is_local(pcx.ty);
+    let is_non_exhaustive = is_privately_empty
+        || is_declared_nonexhaustive
+        || (pcx.ty.is_ptr_sized_integral() && !cx.tcx.features().precise_pointer_size_matching);
+    if is_non_exhaustive {
+        // If our scrutinee is *privately* an empty enum, we must treat it as though it had an
+        // "unknown" constructor (in that case, all other patterns obviously can't be variants) to
+        // avoid exposing its emptyness. See the `match_privately_empty` test for details.
+        //
+        // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an additionnal
+        // "unknown" constructor. However there is no point in enumerating all possible variants,
+        // because the user can't actually match against them themselves. So we return only the
+        // fictitious constructor.
+        // E.g., in an example like:
+        // ```
+        //     let err: io::ErrorKind = ...;
+        //     match err {
+        //         io::ErrorKind::NotFound => {},
+        //     }
+        // ```
+        // we don't want to show every possible IO error, but instead have only `_` as the witness.
+        return vec![NonExhaustive];
     }
 
-    cmp::max(max_fixed_len + 1, max_prefix_len + max_suffix_len)
+    ctors
 }
 
 /// An inclusive interval, used for precise integer exhaustiveness checking.
@@ -910,7 +1291,7 @@ fn from_const(
                 // This is a more general form of the previous branch.
                 val
             } else {
-                return None
+                return None;
             };
             let val = val ^ bias;
             Some(IntRange { range: val..=val, ty, span })
@@ -981,7 +1362,7 @@ fn from_pat(
                 }
                 box PatKind::AscribeUserType { ref subpattern, .. } => {
                     pat = subpattern;
-                },
+                }
                 _ => return None,
             }
         }
@@ -994,7 +1375,7 @@ fn signed_bias(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> u128 {
                 let bits = Integer::from_attr(&tcx, SignedInt(ity)).size().bits() as u128;
                 1u128 << (bits - 1)
             }
-            _ => 0
+            _ => 0,
         }
     }
 
@@ -1023,34 +1404,43 @@ fn subtract_from(
         param_env: ty::ParamEnv<'tcx>,
         ranges: Vec<Constructor<'tcx>>,
     ) -> Vec<Constructor<'tcx>> {
-        let ranges = ranges.into_iter().filter_map(|r| {
-            IntRange::from_ctor(tcx, param_env, &r).map(|i| i.range)
-        });
+        let ranges = ranges
+            .into_iter()
+            .filter_map(|r| IntRange::from_ctor(tcx, param_env, &r).map(|i| i.range));
         let mut remaining_ranges = vec![];
         let ty = self.ty;
         let (lo, hi) = self.range.into_inner();
         for subrange in ranges {
             let (subrange_lo, subrange_hi) = subrange.into_inner();
-            if lo > subrange_hi || subrange_lo > hi  {
+            if lo > subrange_hi || subrange_lo > hi {
                 // The pattern doesn't intersect with the subrange at all,
                 // so the subrange remains untouched.
-                remaining_ranges.push(
-                    Self::range_to_ctor(tcx, ty, subrange_lo..=subrange_hi, self.span),
-                );
+                remaining_ranges.push(Self::range_to_ctor(
+                    tcx,
+                    ty,
+                    subrange_lo..=subrange_hi,
+                    self.span,
+                ));
             } else {
                 if lo > subrange_lo {
                     // The pattern intersects an upper section of the
                     // subrange, so a lower section will remain.
-                    remaining_ranges.push(
-                        Self::range_to_ctor(tcx, ty, subrange_lo..=(lo - 1), self.span),
-                    );
+                    remaining_ranges.push(Self::range_to_ctor(
+                        tcx,
+                        ty,
+                        subrange_lo..=(lo - 1),
+                        self.span,
+                    ));
                 }
                 if hi < subrange_hi {
                     // The pattern intersects a lower section of the
                     // subrange, so an upper section will remain.
-                    remaining_ranges.push(
-                        Self::range_to_ctor(tcx, ty, (hi + 1)..=subrange_hi, self.span),
-                    );
+                    remaining_ranges.push(Self::range_to_ctor(
+                        tcx,
+                        ty,
+                        (hi + 1)..=subrange_hi,
+                        self.span,
+                    ));
                 }
             }
         }
@@ -1087,79 +1477,49 @@ fn suspicious_intersection(&self, other: &Self) -> bool {
     }
 }
 
-// A request for missing constructor data in terms of either:
-// - whether or not there any missing constructors; or
-// - the actual set of missing constructors.
-#[derive(PartialEq)]
-enum MissingCtorsInfo {
-    Emptiness,
-    Ctors,
+// A struct to compute a set of constructors equivalent to `all_ctors \ used_ctors`.
+struct MissingConstructors<'tcx> {
+    tcx: TyCtxt<'tcx>,
+    param_env: ty::ParamEnv<'tcx>,
+    all_ctors: Vec<Constructor<'tcx>>,
+    used_ctors: Vec<Constructor<'tcx>>,
 }
 
-// Used by `compute_missing_ctors`.
-#[derive(Debug, PartialEq)]
-enum MissingCtors<'tcx> {
-    Empty,
-    NonEmpty,
+impl<'tcx> MissingConstructors<'tcx> {
+    fn new(
+        tcx: TyCtxt<'tcx>,
+        param_env: ty::ParamEnv<'tcx>,
+        all_ctors: Vec<Constructor<'tcx>>,
+        used_ctors: Vec<Constructor<'tcx>>,
+    ) -> Self {
+        MissingConstructors { tcx, param_env, all_ctors, used_ctors }
+    }
 
-    // Note that the Vec can be empty.
-    Ctors(Vec<Constructor<'tcx>>),
-}
+    fn into_inner(self) -> (Vec<Constructor<'tcx>>, Vec<Constructor<'tcx>>) {
+        (self.all_ctors, self.used_ctors)
+    }
 
-// When `info` is `MissingCtorsInfo::Ctors`, compute a set of constructors
-// equivalent to `all_ctors \ used_ctors`. When `info` is
-// `MissingCtorsInfo::Emptiness`, just determines if that set is empty or not.
-// (The split logic gives a performance win, because we always need to know if
-// the set is empty, but we rarely need the full set, and it can be expensive
-// to compute the full set.)
-fn compute_missing_ctors<'tcx>(
-    info: MissingCtorsInfo,
-    tcx: TyCtxt<'tcx>,
-    param_env: ty::ParamEnv<'tcx>,
-    all_ctors: &Vec<Constructor<'tcx>>,
-    used_ctors: &Vec<Constructor<'tcx>>,
-) -> MissingCtors<'tcx> {
-    let mut missing_ctors = vec![];
-
-    for req_ctor in all_ctors {
-        let mut refined_ctors = vec![req_ctor.clone()];
-        for used_ctor in used_ctors {
-            if used_ctor == req_ctor {
-                // If a constructor appears in a `match` arm, we can
-                // eliminate it straight away.
-                refined_ctors = vec![]
-            } else if let Some(interval) = IntRange::from_ctor(tcx, param_env, used_ctor) {
-                // Refine the required constructors for the type by subtracting
-                // the range defined by the current constructor pattern.
-                refined_ctors = interval.subtract_from(tcx, param_env, refined_ctors);
-            }
+    fn is_empty(&self) -> bool {
+        self.iter().next().is_none()
+    }
+    /// Whether this contains all the constructors for the given type or only a
+    /// subset.
+    fn all_ctors_are_missing(&self) -> bool {
+        self.used_ctors.is_empty()
+    }
 
-            // If the constructor patterns that have been considered so far
-            // already cover the entire range of values, then we the
-            // constructor is not missing, and we can move on to the next one.
-            if refined_ctors.is_empty() {
-                break;
-            }
-        }
-        // If a constructor has not been matched, then it is missing.
-        // We add `refined_ctors` instead of `req_ctor`, because then we can
-        // provide more detailed error information about precisely which
-        // ranges have been omitted.
-        if info == MissingCtorsInfo::Emptiness {
-            if !refined_ctors.is_empty() {
-                // The set is non-empty; return early.
-                return MissingCtors::NonEmpty;
-            }
-        } else {
-            missing_ctors.extend(refined_ctors);
-        }
+    /// Iterate over all_ctors \ used_ctors
+    fn iter<'a>(&'a self) -> impl Iterator<Item = Constructor<'tcx>> + Captures<'a> {
+        self.all_ctors.iter().flat_map(move |req_ctor| {
+            req_ctor.subtract_ctors(self.tcx, self.param_env, &self.used_ctors)
+        })
     }
+}
 
-    if info == MissingCtorsInfo::Emptiness {
-        // If we reached here, the set is empty.
-        MissingCtors::Empty
-    } else {
-        MissingCtors::Ctors(missing_ctors)
+impl<'tcx> fmt::Debug for MissingConstructors<'tcx> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        let ctors: Vec<_> = self.iter().collect();
+        write!(f, "{:?}", ctors)
     }
 }
 
@@ -1188,8 +1548,8 @@ fn compute_missing_ctors<'tcx>(
 pub fn is_useful<'p, 'a, 'tcx>(
     cx: &mut MatchCheckCtxt<'a, 'tcx>,
     matrix: &Matrix<'p, 'tcx>,
-    v: &[&Pat<'tcx>],
-    witness: WitnessPreference,
+    v: &PatStack<'_, 'tcx>,
+    witness_preference: WitnessPreference,
     hir_id: HirId,
 ) -> Usefulness<'tcx> {
     let &Matrix(ref rows) = matrix;
@@ -1202,21 +1562,19 @@ pub fn is_useful<'p, 'a, 'tcx>(
     // the type of the tuple we're checking is inhabited or not.
     if v.is_empty() {
         return if rows.is_empty() {
-            match witness {
-                ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]),
-                LeaveOutWitness => Useful,
-            }
+            Usefulness::new_useful(witness_preference)
         } else {
             NotUseful
-        }
+        };
     };
 
     assert!(rows.iter().all(|r| r.len() == v.len()));
 
-    let (ty, span) = rows.iter()
-        .map(|r| (r[0].ty, r[0].span))
+    let (ty, span) = matrix
+        .heads()
+        .map(|r| (r.ty, r.span))
         .find(|(ty, _)| !ty.references_error())
-        .unwrap_or((v[0].ty, v[0].span));
+        .unwrap_or((v.head().ty, v.head().span));
     let pcx = PatCtxt {
         // TyErr is used to represent the type of wildcard patterns matching
         // against inaccessible (private) fields of structs, so that we won't
@@ -1238,25 +1596,31 @@ pub fn is_useful<'p, 'a, 'tcx>(
         // introducing uninhabited patterns for inaccessible fields. We
         // need to figure out how to model that.
         ty,
-        max_slice_length: max_slice_length(cx, rows.iter().map(|r| r[0]).chain(Some(v[0]))),
         span,
     };
 
-    debug!("is_useful_expand_first_col: pcx={:#?}, expanding {:#?}", pcx, v[0]);
+    debug!("is_useful_expand_first_col: pcx={:#?}, expanding {:#?}", pcx, v.head());
 
-    if let Some(constructors) = pat_constructors(cx, v[0], pcx) {
-        debug!("is_useful - expanding constructors: {:#?}", constructors);
+    if let Some(constructor) = pat_constructor(cx, v.head(), pcx) {
+        debug!("is_useful - expanding constructor: {:#?}", constructor);
         split_grouped_constructors(
-            cx.tcx, cx.param_env, constructors, matrix, pcx.ty, pcx.span, Some(hir_id),
-        ).into_iter().map(|c|
-            is_useful_specialized(cx, matrix, v, c, pcx.ty, witness, hir_id)
-        ).find(|result| result.is_useful()).unwrap_or(NotUseful)
+            cx.tcx,
+            cx.param_env,
+            pcx,
+            vec![constructor],
+            matrix,
+            pcx.span,
+            Some(hir_id),
+        )
+        .into_iter()
+        .map(|c| is_useful_specialized(cx, matrix, v, c, pcx.ty, witness_preference, hir_id))
+        .find(|result| result.is_useful())
+        .unwrap_or(NotUseful)
     } else {
         debug!("is_useful - expanding wildcard");
 
-        let used_ctors: Vec<Constructor<'_>> = rows.iter().flat_map(|row| {
-            pat_constructors(cx, row[0], pcx).unwrap_or(vec![])
-        }).collect();
+        let used_ctors: Vec<Constructor<'_>> =
+            matrix.heads().filter_map(|p| pat_constructor(cx, p, pcx)).collect();
         debug!("used_ctors = {:#?}", used_ctors);
         // `all_ctors` are all the constructors for the given type, which
         // should all be represented (or caught with the wild pattern `_`).
@@ -1270,131 +1634,65 @@ pub fn is_useful<'p, 'a, 'tcx>(
         // Therefore, if there is some pattern that is unmatched by `matrix`,
         // it will still be unmatched if the first constructor is replaced by
         // any of the constructors in `missing_ctors`
-        //
-        // However, if our scrutinee is *privately* an empty enum, we
-        // must treat it as though it had an "unknown" constructor (in
-        // that case, all other patterns obviously can't be variants)
-        // to avoid exposing its emptyness. See the `match_privately_empty`
-        // test for details.
-        //
-        // FIXME: currently the only way I know of something can
-        // be a privately-empty enum is when the exhaustive_patterns
-        // feature flag is not present, so this is only
-        // needed for that case.
-
-        // Missing constructors are those that are not matched by any
-        // non-wildcard patterns in the current column. We always determine if
-        // the set is empty, but we only fully construct them on-demand,
-        // because they're rarely used and can be big.
-        let cheap_missing_ctors = compute_missing_ctors(
-            MissingCtorsInfo::Emptiness, cx.tcx, cx.param_env, &all_ctors, &used_ctors,
-        );
 
-        let is_privately_empty = all_ctors.is_empty() && !cx.is_uninhabited(pcx.ty);
-        let is_declared_nonexhaustive = cx.is_non_exhaustive_enum(pcx.ty) && !cx.is_local(pcx.ty);
-        debug!("cheap_missing_ctors={:#?} is_privately_empty={:#?} is_declared_nonexhaustive={:#?}",
-               cheap_missing_ctors, is_privately_empty, is_declared_nonexhaustive);
+        // Missing constructors are those that are not matched by any non-wildcard patterns in the
+        // current column. We only fully construct them on-demand, because they're rarely used and
+        // can be big.
+        let missing_ctors = MissingConstructors::new(cx.tcx, cx.param_env, all_ctors, used_ctors);
 
-        // For privately empty and non-exhaustive enums, we work as if there were an "extra"
-        // `_` constructor for the type, so we can never match over all constructors.
-        let is_non_exhaustive = is_privately_empty || is_declared_nonexhaustive ||
-            (pcx.ty.is_ptr_sized_integral() && !cx.tcx.features().precise_pointer_size_matching);
+        debug!("missing_ctors.empty()={:#?}", missing_ctors.is_empty(),);
 
-        if cheap_missing_ctors == MissingCtors::Empty && !is_non_exhaustive {
-            split_grouped_constructors(
-                cx.tcx, cx.param_env, all_ctors, matrix, pcx.ty, DUMMY_SP, None,
-            )
+        if missing_ctors.is_empty() {
+            let (all_ctors, _) = missing_ctors.into_inner();
+            split_grouped_constructors(cx.tcx, cx.param_env, pcx, all_ctors, matrix, DUMMY_SP, None)
                 .into_iter()
-                .map(|c| is_useful_specialized(cx, matrix, v, c, pcx.ty, witness, hir_id))
+                .map(|c| {
+                    is_useful_specialized(cx, matrix, v, c, pcx.ty, witness_preference, hir_id)
+                })
                 .find(|result| result.is_useful())
                 .unwrap_or(NotUseful)
         } else {
-            let matrix = rows.iter().filter_map(|r| {
-                if r[0].is_wildcard() {
-                    Some(SmallVec::from_slice(&r[1..]))
-                } else {
-                    None
-                }
-            }).collect();
-            match is_useful(cx, &matrix, &v[1..], witness, hir_id) {
-                UsefulWithWitness(pats) => {
-                    let cx = &*cx;
-                    // In this case, there's at least one "free"
-                    // constructor that is only matched against by
-                    // wildcard patterns.
-                    //
-                    // There are 2 ways we can report a witness here.
-                    // Commonly, we can report all the "free"
-                    // constructors as witnesses, e.g., if we have:
-                    //
-                    // ```
-                    //     enum Direction { N, S, E, W }
-                    //     let Direction::N = ...;
-                    // ```
-                    //
-                    // we can report 3 witnesses: `S`, `E`, and `W`.
-                    //
-                    // However, there are 2 cases where we don't want
-                    // to do this and instead report a single `_` witness:
-                    //
-                    // 1) If the user is matching against a non-exhaustive
-                    // enum, there is no point in enumerating all possible
-                    // variants, because the user can't actually match
-                    // against them himself, e.g., in an example like:
-                    // ```
-                    //     let err: io::ErrorKind = ...;
-                    //     match err {
-                    //         io::ErrorKind::NotFound => {},
-                    //     }
-                    // ```
-                    // we don't want to show every possible IO error,
-                    // but instead have `_` as the witness (this is
-                    // actually *required* if the user specified *all*
-                    // IO errors, but is probably what we want in every
-                    // case).
-                    //
-                    // 2) If the user didn't actually specify a constructor
-                    // in this arm, e.g., in
-                    // ```
-                    //     let x: (Direction, Direction, bool) = ...;
-                    //     let (_, _, false) = x;
-                    // ```
-                    // we don't want to show all 16 possible witnesses
-                    // `(<direction-1>, <direction-2>, true)` - we are
-                    // satisfied with `(_, _, true)`. In this case,
-                    // `used_ctors` is empty.
-                    let new_witnesses = if is_non_exhaustive || used_ctors.is_empty() {
-                        // All constructors are unused. Add wild patterns
-                        // rather than each individual constructor.
-                        pats.into_iter().map(|mut witness| {
-                            witness.0.push(Pat {
-                                ty: pcx.ty,
-                                span: DUMMY_SP,
-                                kind: box PatKind::Wild,
-                            });
-                            witness
-                        }).collect()
-                    } else {
-                        let expensive_missing_ctors = compute_missing_ctors(
-                            MissingCtorsInfo::Ctors, cx.tcx, cx.param_env, &all_ctors, &used_ctors,
-                        );
-                        if let MissingCtors::Ctors(missing_ctors) = expensive_missing_ctors {
-                            pats.into_iter().flat_map(|witness| {
-                                missing_ctors.iter().map(move |ctor| {
-                                    // Extends the witness with a "wild" version of this
-                                    // constructor, that matches everything that can be built with
-                                    // it. For example, if `ctor` is a `Constructor::Variant` for
-                                    // `Option::Some`, this pushes the witness for `Some(_)`.
-                                    witness.clone().push_wild_constructor(cx, ctor, pcx.ty)
-                                })
-                            }).collect()
-                        } else {
-                            bug!("cheap missing ctors")
-                        }
-                    };
-                    UsefulWithWitness(new_witnesses)
-                }
-                result => result
+            let matrix = matrix.specialize_wildcard();
+            let v = v.to_tail();
+            let usefulness = is_useful(cx, &matrix, &v, witness_preference, hir_id);
+
+            // In this case, there's at least one "free"
+            // constructor that is only matched against by
+            // wildcard patterns.
+            //
+            // There are 2 ways we can report a witness here.
+            // Commonly, we can report all the "free"
+            // constructors as witnesses, e.g., if we have:
+            //
+            // ```
+            //     enum Direction { N, S, E, W }
+            //     let Direction::N = ...;
+            // ```
+            //
+            // we can report 3 witnesses: `S`, `E`, and `W`.
+            //
+            // However, there is a case where we don't want
+            // to do this and instead report a single `_` witness:
+            // if the user didn't actually specify a constructor
+            // in this arm, e.g., in
+            // ```
+            //     let x: (Direction, Direction, bool) = ...;
+            //     let (_, _, false) = x;
+            // ```
+            // we don't want to show all 16 possible witnesses
+            // `(<direction-1>, <direction-2>, true)` - we are
+            // satisfied with `(_, _, true)`. In this case,
+            // `used_ctors` is empty.
+            if missing_ctors.all_ctors_are_missing() {
+                // All constructors are unused. Add a wild pattern
+                // rather than each individual constructor.
+                usefulness.apply_wildcard(pcx.ty)
+            } else {
+                // Construct for each missing constructor a "wild" version of this
+                // constructor, that matches everything that can be built with
+                // it. For example, if `ctor` is a `Constructor::Variant` for
+                // `Option::Some`, we get the pattern `Some(_)`.
+                usefulness.apply_missing_ctors(cx, pcx.ty, &missing_ctors)
             }
         }
     }
@@ -1404,83 +1702,57 @@ pub fn is_useful<'p, 'a, 'tcx>(
 /// to the specialised version of both the pattern matrix `P` and the new pattern `q`.
 fn is_useful_specialized<'p, 'a, 'tcx>(
     cx: &mut MatchCheckCtxt<'a, 'tcx>,
-    &Matrix(ref m): &Matrix<'p, 'tcx>,
-    v: &[&Pat<'tcx>],
+    matrix: &Matrix<'p, 'tcx>,
+    v: &PatStack<'_, 'tcx>,
     ctor: Constructor<'tcx>,
     lty: Ty<'tcx>,
-    witness: WitnessPreference,
+    witness_preference: WitnessPreference,
     hir_id: HirId,
 ) -> Usefulness<'tcx> {
     debug!("is_useful_specialized({:#?}, {:#?}, {:?})", v, ctor, lty);
-    let sub_pat_tys = constructor_sub_pattern_tys(cx, &ctor, lty);
-    let wild_patterns_owned: Vec<_> = sub_pat_tys.iter().map(|ty| {
-        Pat {
-            ty,
-            span: DUMMY_SP,
-            kind: box PatKind::Wild,
-        }
-    }).collect();
-    let wild_patterns: Vec<_> = wild_patterns_owned.iter().collect();
-    let matrix = Matrix(
-        m.iter()
-            .filter_map(|r| specialize(cx, &r, &ctor, &wild_patterns))
-            .collect()
-    );
-    match specialize(cx, v, &ctor, &wild_patterns) {
-        Some(v) => match is_useful(cx, &matrix, &v, witness, hir_id) {
-            UsefulWithWitness(witnesses) => UsefulWithWitness(
-                witnesses.into_iter()
-                    .map(|witness| witness.apply_constructor(cx, &ctor, lty))
-                    .collect()
-            ),
-            result => result
-        }
-        None => NotUseful
-    }
+
+    let ctor_wild_subpatterns_owned: Vec<_> = ctor.wildcard_subpatterns(cx, lty);
+    let ctor_wild_subpatterns: Vec<_> = ctor_wild_subpatterns_owned.iter().collect();
+    let matrix = matrix.specialize_constructor(cx, &ctor, &ctor_wild_subpatterns);
+    v.specialize_constructor(cx, &ctor, &ctor_wild_subpatterns)
+        .map(|v| is_useful(cx, &matrix, &v, witness_preference, hir_id))
+        .map(|u| u.apply_constructor(cx, &ctor, lty))
+        .unwrap_or(NotUseful)
 }
 
-/// Determines the constructors that the given pattern can be specialized to.
-///
-/// In most cases, there's only one constructor that a specific pattern
-/// represents, such as a specific enum variant or a specific literal value.
-/// Slice patterns, however, can match slices of different lengths. For instance,
-/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
-///
+/// Determines the constructor that the given pattern can be specialized to.
 /// Returns `None` in case of a catch-all, which can't be specialized.
-fn pat_constructors<'tcx>(
+fn pat_constructor<'tcx>(
     cx: &mut MatchCheckCtxt<'_, 'tcx>,
     pat: &Pat<'tcx>,
     pcx: PatCtxt<'tcx>,
-) -> Option<Vec<Constructor<'tcx>>> {
+) -> Option<Constructor<'tcx>> {
     match *pat.kind {
-        PatKind::AscribeUserType { ref subpattern, .. } =>
-            pat_constructors(cx, subpattern, pcx),
+        PatKind::AscribeUserType { ref subpattern, .. } => pat_constructor(cx, subpattern, pcx),
         PatKind::Binding { .. } | PatKind::Wild => None,
-        PatKind::Leaf { .. } | PatKind::Deref { .. } => Some(vec![Single]),
+        PatKind::Leaf { .. } | PatKind::Deref { .. } => Some(Single),
         PatKind::Variant { adt_def, variant_index, .. } => {
-            Some(vec![Variant(adt_def.variants[variant_index].def_id)])
+            Some(Variant(adt_def.variants[variant_index].def_id))
         }
-        PatKind::Constant { value } => Some(vec![ConstantValue(value, pat.span)]),
-        PatKind::Range(PatRange { lo, hi, end }) =>
-            Some(vec![ConstantRange(
-                lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
-                hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
-                lo.ty,
-                end,
-                pat.span,
-            )]),
+        PatKind::Constant { value } => Some(ConstantValue(value, pat.span)),
+        PatKind::Range(PatRange { lo, hi, end }) => Some(ConstantRange(
+            lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
+            hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
+            lo.ty,
+            end,
+            pat.span,
+        )),
         PatKind::Array { .. } => match pcx.ty.kind {
-            ty::Array(_, length) => Some(vec![
-                Slice(length.eval_usize(cx.tcx, cx.param_env))
-            ]),
-            _ => span_bug!(pat.span, "bad ty {:?} for array pattern", pcx.ty)
+            ty::Array(_, length) => Some(FixedLenSlice(length.eval_usize(cx.tcx, cx.param_env))),
+            _ => span_bug!(pat.span, "bad ty {:?} for array pattern", pcx.ty),
         },
         PatKind::Slice { ref prefix, ref slice, ref suffix } => {
-            let pat_len = prefix.len() as u64 + suffix.len() as u64;
+            let prefix = prefix.len() as u64;
+            let suffix = suffix.len() as u64;
             if slice.is_some() {
-                Some((pat_len..pcx.max_slice_length+1).map(Slice).collect())
+                Some(VarLenSlice(prefix, suffix))
             } else {
-                Some(vec![Slice(pat_len)])
+                Some(FixedLenSlice(prefix + suffix))
             }
         }
         PatKind::Or { .. } => {
@@ -1489,83 +1761,6 @@ fn pat_constructors<'tcx>(
     }
 }
 
-/// This computes the arity of a constructor. The arity of a constructor
-/// is how many subpattern patterns of that constructor should be expanded to.
-///
-/// For instance, a tuple pattern `(_, 42, Some([]))` has the arity of 3.
-/// A struct pattern's arity is the number of fields it contains, etc.
-fn constructor_arity(cx: &MatchCheckCtxt<'a, 'tcx>, ctor: &Constructor<'tcx>, ty: Ty<'tcx>) -> u64 {
-    debug!("constructor_arity({:#?}, {:?})", ctor, ty);
-    match ty.kind {
-        ty::Tuple(ref fs) => fs.len() as u64,
-        ty::Slice(..) | ty::Array(..) => match *ctor {
-            Slice(length) => length,
-            ConstantValue(..) => 0,
-            _ => bug!("bad slice pattern {:?} {:?}", ctor, ty)
-        }
-        ty::Ref(..) => 1,
-        ty::Adt(adt, _) => {
-            adt.variants[ctor.variant_index_for_adt(cx, adt)].fields.len() as u64
-        }
-        _ => 0
-    }
-}
-
-/// This computes the types of the sub patterns that a constructor should be
-/// expanded to.
-///
-/// For instance, a tuple pattern (43u32, 'a') has sub pattern types [u32, char].
-fn constructor_sub_pattern_tys<'a, 'tcx>(
-    cx: &MatchCheckCtxt<'a, 'tcx>,
-    ctor: &Constructor<'tcx>,
-    ty: Ty<'tcx>,
-) -> Vec<Ty<'tcx>> {
-    debug!("constructor_sub_pattern_tys({:#?}, {:?})", ctor, ty);
-    match ty.kind {
-        ty::Tuple(ref fs) => fs.into_iter().map(|t| t.expect_ty()).collect(),
-        ty::Slice(ty) | ty::Array(ty, _) => match *ctor {
-            Slice(length) => (0..length).map(|_| ty).collect(),
-            ConstantValue(..) => vec![],
-            _ => bug!("bad slice pattern {:?} {:?}", ctor, ty)
-        }
-        ty::Ref(_, rty, _) => vec![rty],
-        ty::Adt(adt, substs) => {
-            if adt.is_box() {
-                // Use T as the sub pattern type of Box<T>.
-                vec![substs.type_at(0)]
-            } else {
-                let variant = &adt.variants[ctor.variant_index_for_adt(cx, adt)];
-                let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
-                variant.fields.iter().map(|field| {
-                    let is_visible = adt.is_enum()
-                        || field.vis.is_accessible_from(cx.module, cx.tcx);
-                    let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
-                    match (is_visible, is_non_exhaustive, is_uninhabited) {
-                        // Treat all uninhabited types in non-exhaustive variants as `TyErr`.
-                        (_, true, true) => cx.tcx.types.err,
-                        // Treat all non-visible fields as `TyErr`. They can't appear in any
-                        // other pattern from this match (because they are private), so their
-                        // type does not matter - but we don't want to know they are uninhabited.
-                        (false, ..) => cx.tcx.types.err,
-                        (true, ..) => {
-                            let ty = field.ty(cx.tcx, substs);
-                            match ty.kind {
-                                // If the field type returned is an array of an unknown
-                                // size return an TyErr.
-                                ty::Array(_, len)
-                                    if len.try_eval_usize(cx.tcx, cx.param_env).is_none() =>
-                                    cx.tcx.types.err,
-                                _ => ty,
-                            }
-                        },
-                    }
-                }).collect()
-            }
-        }
-        _ => vec![],
-    }
-}
-
 // checks whether a constant is equal to a user-written slice pattern. Only supports byte slices,
 // meaning all other types will compare unequal and thus equal patterns often do not cause the
 // second pattern to lint about unreachable match arms.
@@ -1584,17 +1779,20 @@ fn slice_pat_covered_by_const<'tcx>(
             let n = n.eval_usize(tcx, param_env);
             let ptr = Pointer::new(AllocId(0), offset);
             alloc.get_bytes(&tcx, ptr, Size::from_bytes(n)).unwrap()
-        },
+        }
         (ConstValue::Slice { data, start, end }, ty::Slice(t)) => {
             assert_eq!(*t, tcx.types.u8);
             let ptr = Pointer::new(AllocId(0), Size::from_bytes(start as u64));
             data.get_bytes(&tcx, ptr, Size::from_bytes((end - start) as u64)).unwrap()
-        },
+        }
         // FIXME(oli-obk): create a way to extract fat pointers from ByRef
         (_, ty::Slice(_)) => return Ok(false),
         _ => bug!(
             "slice_pat_covered_by_const: {:#?}, {:#?}, {:#?}, {:#?}",
-            const_val, prefix, slice, suffix,
+            const_val,
+            prefix,
+            slice,
+            suffix,
         ),
     };
 
@@ -1603,9 +1801,10 @@ fn slice_pat_covered_by_const<'tcx>(
         return Ok(false);
     }
 
-    for (ch, pat) in
-        data[..prefix.len()].iter().zip(prefix).chain(
-            data[data.len()-suffix.len()..].iter().zip(suffix))
+    for (ch, pat) in data[..prefix.len()]
+        .iter()
+        .zip(prefix)
+        .chain(data[data.len() - suffix.len()..].iter().zip(suffix))
     {
         match pat.kind {
             box PatKind::Constant { value } => {
@@ -1672,21 +1871,22 @@ fn should_treat_range_exhaustively(tcx: TyCtxt<'tcx>, ctor: &Constructor<'tcx>)
 ///
 /// `hir_id` is `None` when we're evaluating the wildcard pattern, do not lint for overlapping in
 /// ranges that case.
+///
+/// This also splits variable-length slices into fixed-length slices.
 fn split_grouped_constructors<'p, 'tcx>(
     tcx: TyCtxt<'tcx>,
     param_env: ty::ParamEnv<'tcx>,
+    pcx: PatCtxt<'tcx>,
     ctors: Vec<Constructor<'tcx>>,
-    &Matrix(ref m): &Matrix<'p, 'tcx>,
-    ty: Ty<'tcx>,
+    matrix: &Matrix<'p, 'tcx>,
     span: Span,
     hir_id: Option<HirId>,
 ) -> Vec<Constructor<'tcx>> {
+    let ty = pcx.ty;
     let mut split_ctors = Vec::with_capacity(ctors.len());
 
     for ctor in ctors.into_iter() {
         match ctor {
-            // For now, only ranges may denote groups of "subconstructors", so we only need to
-            // special-case constant ranges.
             ConstantRange(..) if should_treat_range_exhaustively(tcx, &ctor) => {
                 // We only care about finding all the subranges within the range of the constructor
                 // range. Anything else is irrelevant, because it is guaranteed to result in
@@ -1718,9 +1918,11 @@ fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
                 let mut overlaps = vec![];
                 // `borders` is the set of borders between equivalence classes: each equivalence
                 // class lies between 2 borders.
-                let row_borders = m.iter()
+                let row_borders = matrix
+                    .0
+                    .iter()
                     .flat_map(|row| {
-                        IntRange::from_pat(tcx, param_env, row[0]).map(|r| (r, row.len()))
+                        IntRange::from_pat(tcx, param_env, row.head()).map(|r| (r, row.len()))
                     })
                     .flat_map(|(range, row_len)| {
                         let intersection = ctor_range.intersection(&range);
@@ -1745,11 +1947,11 @@ fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
 
                 lint_overlapping_patterns(tcx, hir_id, ctor_range, ty, overlaps);
 
-                // We're going to iterate through every pair of borders, making sure that each
-                // represents an interval of nonnegative length, and convert each such interval
-                // into a constructor.
-                for IntRange { range, .. } in borders.windows(2).filter_map(|window| {
-                    match (window[0], window[1]) {
+                // We're going to iterate through every adjacent pair of borders, making sure that
+                // each represents an interval of nonnegative length, and convert each such
+                // interval into a constructor.
+                for IntRange { range, .. } in
+                    borders.windows(2).filter_map(|window| match (window[0], window[1]) {
                         (Border::JustBefore(n), Border::JustBefore(m)) => {
                             if n < m {
                                 Some(IntRange { range: n..=(m - 1), ty, span })
@@ -1761,11 +1963,126 @@ fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
                             Some(IntRange { range: n..=u128::MAX, ty, span })
                         }
                         (Border::AfterMax, _) => None,
-                    }
-                }) {
+                    })
+                {
                     split_ctors.push(IntRange::range_to_ctor(tcx, ty, range, span));
                 }
             }
+            VarLenSlice(self_prefix, self_suffix) => {
+                // The exhaustiveness-checking paper does not include any details on
+                // checking variable-length slice patterns. However, they are matched
+                // by an infinite collection of fixed-length array patterns.
+                //
+                // Checking the infinite set directly would take an infinite amount
+                // of time. However, it turns out that for each finite set of
+                // patterns `P`, all sufficiently large array lengths are equivalent:
+                //
+                // Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies
+                // to exactly the subset `Pₜ` of `P` can be transformed to a slice
+                // `sₘ` for each sufficiently-large length `m` that applies to exactly
+                // the same subset of `P`.
+                //
+                // Because of that, each witness for reachability-checking from one
+                // of the sufficiently-large lengths can be transformed to an
+                // equally-valid witness from any other length, so we only have
+                // to check slice lengths from the "minimal sufficiently-large length"
+                // and below.
+                //
+                // Note that the fact that there is a *single* `sₘ` for each `m`
+                // not depending on the specific pattern in `P` is important: if
+                // you look at the pair of patterns
+                //     `[true, ..]`
+                //     `[.., false]`
+                // Then any slice of length ≥1 that matches one of these two
+                // patterns can be trivially turned to a slice of any
+                // other length ≥1 that matches them and vice-versa - for
+                // but the slice from length 2 `[false, true]` that matches neither
+                // of these patterns can't be turned to a slice from length 1 that
+                // matches neither of these patterns, so we have to consider
+                // slices from length 2 there.
+                //
+                // Now, to see that that length exists and find it, observe that slice
+                // patterns are either "fixed-length" patterns (`[_, _, _]`) or
+                // "variable-length" patterns (`[_, .., _]`).
+                //
+                // For fixed-length patterns, all slices with lengths *longer* than
+                // the pattern's length have the same outcome (of not matching), so
+                // as long as `L` is greater than the pattern's length we can pick
+                // any `sₘ` from that length and get the same result.
+                //
+                // For variable-length patterns, the situation is more complicated,
+                // because as seen above the precise value of `sₘ` matters.
+                //
+                // However, for each variable-length pattern `p` with a prefix of length
+                // `plₚ` and suffix of length `slₚ`, only the first `plₚ` and the last
+                // `slₚ` elements are examined.
+                //
+                // Therefore, as long as `L` is positive (to avoid concerns about empty
+                // types), all elements after the maximum prefix length and before
+                // the maximum suffix length are not examined by any variable-length
+                // pattern, and therefore can be added/removed without affecting
+                // them - creating equivalent patterns from any sufficiently-large
+                // length.
+                //
+                // Of course, if fixed-length patterns exist, we must be sure
+                // that our length is large enough to miss them all, so
+                // we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
+                //
+                // for example, with the above pair of patterns, all elements
+                // but the first and last can be added/removed, so any
+                // witness of length ≥2 (say, `[false, false, true]`) can be
+                // turned to a witness from any other length ≥2.
+
+                let mut max_prefix_len = self_prefix;
+                let mut max_suffix_len = self_suffix;
+                let mut max_fixed_len = 0;
+
+                for row in matrix.heads() {
+                    match *row.kind {
+                        PatKind::Constant { value } => {
+                            // extract the length of an array/slice from a constant
+                            match (value.val, &value.ty.kind) {
+                                (_, ty::Array(_, n)) => {
+                                    max_fixed_len =
+                                        cmp::max(max_fixed_len, n.eval_usize(tcx, param_env))
+                                }
+                                (ConstValue::Slice { start, end, .. }, ty::Slice(_)) => {
+                                    max_fixed_len = cmp::max(max_fixed_len, (end - start) as u64)
+                                }
+                                _ => {}
+                            }
+                        }
+                        PatKind::Slice { ref prefix, slice: None, ref suffix } => {
+                            let fixed_len = prefix.len() as u64 + suffix.len() as u64;
+                            max_fixed_len = cmp::max(max_fixed_len, fixed_len);
+                        }
+                        PatKind::Slice { ref prefix, slice: Some(_), ref suffix } => {
+                            max_prefix_len = cmp::max(max_prefix_len, prefix.len() as u64);
+                            max_suffix_len = cmp::max(max_suffix_len, suffix.len() as u64);
+                        }
+                        _ => {}
+                    }
+                }
+
+                // For diagnostics, we keep the prefix and suffix lengths separate, so in the case
+                // where `max_fixed_len + 1` is the largest, we adapt `max_prefix_len` accordingly,
+                // so that `L = max_prefix_len + max_suffix_len`.
+                if max_fixed_len + 1 >= max_prefix_len + max_suffix_len {
+                    // The subtraction can't overflow thanks to the above check.
+                    // The new `max_prefix_len` is also guaranteed to be larger than its previous
+                    // value.
+                    max_prefix_len = max_fixed_len + 1 - max_suffix_len;
+                }
+
+                // `ctor` originally covered the range `(self_prefix + self_suffix..infinity)`. We
+                // now split it into two: lengths smaller than `max_prefix_len + max_suffix_len`
+                // are treated independently as fixed-lengths slices, and lengths above are
+                // captured by a final VarLenSlice constructor.
+                split_ctors.extend(
+                    (self_prefix + self_suffix..max_prefix_len + max_suffix_len).map(FixedLenSlice),
+                );
+                split_ctors.push(VarLenSlice(max_prefix_len, max_suffix_len));
+            }
             // Any other constructor can be used unchanged.
             _ => split_ctors.push(ctor),
         }
@@ -1791,10 +2108,13 @@ fn lint_overlapping_patterns(
         err.span_label(ctor_range.span, "overlapping patterns");
         for int_range in overlaps {
             // Use the real type for user display of the ranges:
-            err.span_label(int_range.span, &format!(
-                "this range overlaps on `{}`",
-                IntRange::range_to_ctor(tcx, ty, int_range.range, DUMMY_SP).display(tcx),
-            ));
+            err.span_label(
+                int_range.span,
+                &format!(
+                    "this range overlaps on `{}`",
+                    IntRange::range_to_ctor(tcx, ty, int_range.range, DUMMY_SP).display(tcx),
+                ),
+            );
         }
         err.emit();
     }
@@ -1812,8 +2132,9 @@ fn constructor_covered_by_range<'tcx>(
         _ => bug!("`constructor_covered_by_range` called with {:?}", pat),
     };
     trace!("constructor_covered_by_range {:#?}, {:#?}, {:#?}, {}", ctor, from, to, ty);
-    let cmp_from = |c_from| compare_const_vals(tcx, c_from, from, param_env, ty)
-        .map(|res| res != Ordering::Less);
+    let cmp_from = |c_from| {
+        compare_const_vals(tcx, c_from, from, param_env, ty).map(|res| res != Ordering::Less)
+    };
     let cmp_to = |c_to| compare_const_vals(tcx, c_to, to, param_env, ty);
     macro_rules! some_or_ok {
         ($e:expr) => {
@@ -1826,37 +2147,31 @@ macro_rules! some_or_ok {
     match *ctor {
         ConstantValue(value, _) => {
             let to = some_or_ok!(cmp_to(value));
-            let end = (to == Ordering::Less) ||
-                      (end == RangeEnd::Included && to == Ordering::Equal);
+            let end =
+                (to == Ordering::Less) || (end == RangeEnd::Included && to == Ordering::Equal);
             Ok(some_or_ok!(cmp_from(value)) && end)
-        },
+        }
         ConstantRange(from, to, ty, RangeEnd::Included, _) => {
-            let to = some_or_ok!(cmp_to(ty::Const::from_bits(
-                tcx,
-                to,
-                ty::ParamEnv::empty().and(ty),
-            )));
-            let end = (to == Ordering::Less) ||
-                      (end == RangeEnd::Included && to == Ordering::Equal);
+            let to =
+                some_or_ok!(cmp_to(ty::Const::from_bits(tcx, to, ty::ParamEnv::empty().and(ty),)));
+            let end =
+                (to == Ordering::Less) || (end == RangeEnd::Included && to == Ordering::Equal);
             Ok(some_or_ok!(cmp_from(ty::Const::from_bits(
                 tcx,
                 from,
                 ty::ParamEnv::empty().and(ty),
             ))) && end)
-        },
+        }
         ConstantRange(from, to, ty, RangeEnd::Excluded, _) => {
-            let to = some_or_ok!(cmp_to(ty::Const::from_bits(
-                tcx,
-                to,
-                ty::ParamEnv::empty().and(ty)
-            )));
-            let end = (to == Ordering::Less) ||
-                      (end == RangeEnd::Excluded && to == Ordering::Equal);
+            let to =
+                some_or_ok!(cmp_to(ty::Const::from_bits(tcx, to, ty::ParamEnv::empty().and(ty))));
+            let end =
+                (to == Ordering::Less) || (end == RangeEnd::Excluded && to == Ordering::Equal);
             Ok(some_or_ok!(cmp_from(ty::Const::from_bits(
                 tcx,
                 from,
-                ty::ParamEnv::empty().and(ty)))
-            ) && end)
+                ty::ParamEnv::empty().and(ty)
+            ))) && end)
         }
         Single => Ok(true),
         _ => bug!(),
@@ -1866,10 +2181,10 @@ macro_rules! some_or_ok {
 fn patterns_for_variant<'p, 'a: 'p, 'tcx>(
     cx: &mut MatchCheckCtxt<'a, 'tcx>,
     subpatterns: &'p [FieldPat<'tcx>],
-    wild_patterns: &[&'p Pat<'tcx>],
+    ctor_wild_subpatterns: &[&'p Pat<'tcx>],
     is_non_exhaustive: bool,
-) -> SmallVec<[&'p Pat<'tcx>; 2]> {
-    let mut result = SmallVec::from_slice(wild_patterns);
+) -> PatStack<'p, 'tcx> {
+    let mut result = SmallVec::from_slice(ctor_wild_subpatterns);
 
     for subpat in subpatterns {
         if !is_non_exhaustive || !cx.is_uninhabited(subpat.pattern.ty) {
@@ -1877,33 +2192,42 @@ fn patterns_for_variant<'p, 'a: 'p, 'tcx>(
         }
     }
 
-    debug!("patterns_for_variant({:#?}, {:#?}) = {:#?}", subpatterns, wild_patterns, result);
-    result
+    debug!(
+        "patterns_for_variant({:#?}, {:#?}) = {:#?}",
+        subpatterns, ctor_wild_subpatterns, result
+    );
+    PatStack::from_vec(result)
 }
 
-/// This is the main specialization step. It expands the first pattern in the given row
+/// This is the main specialization step. It expands the pattern
 /// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
 /// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
+/// Returns `None` if the pattern does not have the given constructor.
 ///
-/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
+/// OTOH, slice patterns with a subslice pattern (tail @ ..) can be expanded into multiple
 /// different patterns.
 /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
 /// fields filled with wild patterns.
-fn specialize<'p, 'a: 'p, 'tcx>(
+fn specialize_one_pattern<'p, 'a: 'p, 'q: 'p, 'tcx>(
     cx: &mut MatchCheckCtxt<'a, 'tcx>,
-    r: &[&'p Pat<'tcx>],
+    mut pat: &'q Pat<'tcx>,
     constructor: &Constructor<'tcx>,
-    wild_patterns: &[&'p Pat<'tcx>],
-) -> Option<SmallVec<[&'p Pat<'tcx>; 2]>> {
-    let pat = &r[0];
+    ctor_wild_subpatterns: &[&'p Pat<'tcx>],
+) -> Option<PatStack<'p, 'tcx>> {
+    while let PatKind::AscribeUserType { ref subpattern, .. } = *pat.kind {
+        pat = subpattern;
+    }
 
-    let head = match *pat.kind {
-        PatKind::AscribeUserType { ref subpattern, .. } => {
-            specialize(cx, ::std::slice::from_ref(&subpattern), constructor, wild_patterns)
-        }
+    if let NonExhaustive = constructor {
+        // Only a wildcard pattern can match the special extra constructor
+        return if pat.is_wildcard() { Some(PatStack::default()) } else { None };
+    }
+
+    let result = match *pat.kind {
+        PatKind::AscribeUserType { .. } => bug!(), // Handled above
 
         PatKind::Binding { .. } | PatKind::Wild => {
-            Some(SmallVec::from_slice(wild_patterns))
+            Some(PatStack::from_slice(ctor_wild_subpatterns))
         }
 
         PatKind::Variant { adt_def, variant_index, ref subpatterns, .. } => {
@@ -1911,16 +2235,16 @@ fn specialize<'p, 'a: 'p, 'tcx>(
             let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !cx.is_local(pat.ty);
             Some(Variant(variant.def_id))
                 .filter(|variant_constructor| variant_constructor == constructor)
-                .map(|_| patterns_for_variant(cx, subpatterns, wild_patterns, is_non_exhaustive))
+                .map(|_| {
+                    patterns_for_variant(cx, subpatterns, ctor_wild_subpatterns, is_non_exhaustive)
+                })
         }
 
         PatKind::Leaf { ref subpatterns } => {
-            Some(patterns_for_variant(cx, subpatterns, wild_patterns, false))
+            Some(patterns_for_variant(cx, subpatterns, ctor_wild_subpatterns, false))
         }
 
-        PatKind::Deref { ref subpattern } => {
-            Some(smallvec![subpattern])
-        }
+        PatKind::Deref { ref subpattern } => Some(PatStack::from_pattern(subpattern)),
 
         PatKind::Constant { value } if constructor.is_slice() => {
             // We extract an `Option` for the pointer because slices of zero
@@ -1928,39 +2252,28 @@ fn specialize<'p, 'a: 'p, 'tcx>(
             // just integers. The only time they should be pointing to memory
             // is when they are subslices of nonzero slices.
             let (alloc, offset, n, ty) = match value.ty.kind {
-                ty::Array(t, n) => {
-                    match value.val {
-                        ConstValue::ByRef { offset, alloc, .. } => (
-                            alloc,
-                            offset,
-                            n.eval_usize(cx.tcx, cx.param_env),
-                            t,
-                        ),
-                        _ => span_bug!(
-                            pat.span,
-                            "array pattern is {:?}", value,
-                        ),
+                ty::Array(t, n) => match value.val {
+                    ConstValue::ByRef { offset, alloc, .. } => {
+                        (alloc, offset, n.eval_usize(cx.tcx, cx.param_env), t)
                     }
+                    _ => span_bug!(pat.span, "array pattern is {:?}", value,),
                 },
                 ty::Slice(t) => {
                     match value.val {
-                        ConstValue::Slice { data, start, end } => (
-                            data,
-                            Size::from_bytes(start as u64),
-                            (end - start) as u64,
-                            t,
-                        ),
+                        ConstValue::Slice { data, start, end } => {
+                            (data, Size::from_bytes(start as u64), (end - start) as u64, t)
+                        }
                         ConstValue::ByRef { .. } => {
                             // FIXME(oli-obk): implement `deref` for `ConstValue`
                             return None;
-                        },
+                        }
                         _ => span_bug!(
                             pat.span,
                             "slice pattern constant must be scalar pair but is {:?}",
                             value,
                         ),
                     }
-                },
+                }
                 _ => span_bug!(
                     pat.span,
                     "unexpected const-val {:?} with ctor {:?}",
@@ -1968,45 +2281,41 @@ fn specialize<'p, 'a: 'p, 'tcx>(
                     constructor,
                 ),
             };
-            if wild_patterns.len() as u64 == n {
+            if ctor_wild_subpatterns.len() as u64 == n {
                 // convert a constant slice/array pattern to a list of patterns.
                 let layout = cx.tcx.layout_of(cx.param_env.and(ty)).ok()?;
                 let ptr = Pointer::new(AllocId(0), offset);
-                (0..n).map(|i| {
-                    let ptr = ptr.offset(layout.size * i, &cx.tcx).ok()?;
-                    let scalar = alloc.read_scalar(
-                        &cx.tcx, ptr, layout.size,
-                    ).ok()?;
-                    let scalar = scalar.not_undef().ok()?;
-                    let value = ty::Const::from_scalar(cx.tcx, scalar, ty);
-                    let pattern = Pat {
-                        ty,
-                        span: pat.span,
-                        kind: box PatKind::Constant { value },
-                    };
-                    Some(&*cx.pattern_arena.alloc(pattern))
-                }).collect()
+                (0..n)
+                    .map(|i| {
+                        let ptr = ptr.offset(layout.size * i, &cx.tcx).ok()?;
+                        let scalar = alloc.read_scalar(&cx.tcx, ptr, layout.size).ok()?;
+                        let scalar = scalar.not_undef().ok()?;
+                        let value = ty::Const::from_scalar(cx.tcx, scalar, ty);
+                        let pattern =
+                            Pat { ty, span: pat.span, kind: box PatKind::Constant { value } };
+                        Some(&*cx.pattern_arena.alloc(pattern))
+                    })
+                    .collect()
             } else {
                 None
             }
         }
 
-        PatKind::Constant { .. } |
-        PatKind::Range { .. } => {
+        PatKind::Constant { .. } | PatKind::Range { .. } => {
             // If the constructor is a:
             // - Single value: add a row if the pattern contains the constructor.
             // - Range: add a row if the constructor intersects the pattern.
             if should_treat_range_exhaustively(cx.tcx, constructor) {
-                match (IntRange::from_ctor(cx.tcx, cx.param_env, constructor),
-                       IntRange::from_pat(cx.tcx, cx.param_env, pat)) {
-                    (Some(ctor), Some(pat)) => {
-                        ctor.intersection(&pat).map(|_| {
-                            let (pat_lo, pat_hi) = pat.range.into_inner();
-                            let (ctor_lo, ctor_hi) = ctor.range.into_inner();
-                            assert!(pat_lo <= ctor_lo && ctor_hi <= pat_hi);
-                            smallvec![]
-                        })
-                    }
+                match (
+                    IntRange::from_ctor(cx.tcx, cx.param_env, constructor),
+                    IntRange::from_pat(cx.tcx, cx.param_env, pat),
+                ) {
+                    (Some(ctor), Some(pat)) => ctor.intersection(&pat).map(|_| {
+                        let (pat_lo, pat_hi) = pat.range.into_inner();
+                        let (ctor_lo, ctor_hi) = ctor.range.into_inner();
+                        assert!(pat_lo <= ctor_lo && ctor_hi <= pat_hi);
+                        PatStack::default()
+                    }),
                     _ => None,
                 }
             } else {
@@ -2016,54 +2325,61 @@ fn specialize<'p, 'a: 'p, 'tcx>(
                 // range so intersection actually devolves into being covered
                 // by the pattern.
                 match constructor_covered_by_range(cx.tcx, cx.param_env, constructor, pat) {
-                    Ok(true) => Some(smallvec![]),
+                    Ok(true) => Some(PatStack::default()),
                     Ok(false) | Err(ErrorReported) => None,
                 }
             }
         }
 
-        PatKind::Array { ref prefix, ref slice, ref suffix } |
-        PatKind::Slice { ref prefix, ref slice, ref suffix } => {
-            match *constructor {
-                Slice(..) => {
-                    let pat_len = prefix.len() + suffix.len();
-                    if let Some(slice_count) = wild_patterns.len().checked_sub(pat_len) {
-                        if slice_count == 0 || slice.is_some() {
-                            Some(prefix.iter().chain(
-                                    wild_patterns.iter().map(|p| *p)
-                                                 .skip(prefix.len())
-                                                 .take(slice_count)
-                                                 .chain(suffix.iter())
-                            ).collect())
-                        } else {
-                            None
-                        }
+        PatKind::Array { ref prefix, ref slice, ref suffix }
+        | PatKind::Slice { ref prefix, ref slice, ref suffix } => match *constructor {
+            FixedLenSlice(..) | VarLenSlice(..) => {
+                let pat_len = prefix.len() + suffix.len();
+                if let Some(slice_count) = ctor_wild_subpatterns.len().checked_sub(pat_len) {
+                    if slice_count == 0 || slice.is_some() {
+                        Some(
+                            prefix
+                                .iter()
+                                .chain(
+                                    ctor_wild_subpatterns
+                                        .iter()
+                                        .map(|p| *p)
+                                        .skip(prefix.len())
+                                        .take(slice_count)
+                                        .chain(suffix.iter()),
+                                )
+                                .collect(),
+                        )
                     } else {
                         None
                     }
+                } else {
+                    None
                 }
-                ConstantValue(cv, _) => {
-                    match slice_pat_covered_by_const(
-                        cx.tcx, pat.span, cv, prefix, slice, suffix, cx.param_env,
-                    ) {
-                        Ok(true) => Some(smallvec![]),
-                        Ok(false) => None,
-                        Err(ErrorReported) => None
-                    }
+            }
+            ConstantValue(cv, _) => {
+                match slice_pat_covered_by_const(
+                    cx.tcx,
+                    pat.span,
+                    cv,
+                    prefix,
+                    slice,
+                    suffix,
+                    cx.param_env,
+                ) {
+                    Ok(true) => Some(PatStack::default()),
+                    Ok(false) => None,
+                    Err(ErrorReported) => None,
                 }
-                _ => span_bug!(pat.span,
-                    "unexpected ctor {:?} for slice pat", constructor)
             }
-        }
+            _ => span_bug!(pat.span, "unexpected ctor {:?} for slice pat", constructor),
+        },
 
         PatKind::Or { .. } => {
             bug!("support for or-patterns has not been fully implemented yet.");
         }
     };
-    debug!("specialize({:#?}, {:#?}) = {:#?}", r[0], wild_patterns, head);
+    debug!("specialize({:#?}, {:#?}) = {:#?}", pat, ctor_wild_subpatterns, result);
 
-    head.map(|mut head| {
-        head.extend_from_slice(&r[1 ..]);
-        head
-    })
+    result
 }