]> git.lizzy.rs Git - rust.git/blobdiff - src/librustc_mir/hair/pattern/_match.rs
Extract constructor application as a Constructor method
[rust.git] / src / librustc_mir / hair / pattern / _match.rs
index 8382ddeabc6fe7eeb35e5384b535bc41116f7dab..093df57087cbe7ec6f19e151bb1329c4873c561e 100644 (file)
 use rustc::lint;
 use rustc::mir::interpret::{truncate, AllocId, ConstValue, Pointer, Scalar};
 use rustc::mir::Field;
+use rustc::util::captures::Captures;
 use rustc::util::common::ErrorReported;
 
 use syntax::attr::{SignedInt, UnsignedInt};
@@ -379,6 +380,25 @@ fn to_tail(&self) -> Self {
     fn iter(&self) -> impl Iterator<Item = &Pat<'tcx>> {
         self.0.iter().map(|p| *p)
     }
+
+    /// This computes `D(self)`. See top of the file for explanations.
+    fn specialize_wildcard(&self) -> Option<Self> {
+        if self.head().is_wildcard() { Some(self.to_tail()) } else { None }
+    }
+
+    /// This computes `S(constructor, self)`. See top of the file for explanations.
+    fn specialize_constructor<'a, 'q>(
+        &self,
+        cx: &mut MatchCheckCtxt<'a, 'tcx>,
+        constructor: &Constructor<'tcx>,
+        wild_patterns: &[&'q Pat<'tcx>],
+    ) -> Option<PatStack<'q, 'tcx>>
+    where
+        'a: 'q,
+        'p: 'q,
+    {
+        specialize(cx, self, constructor, wild_patterns)
+    }
 }
 
 impl<'p, 'tcx> Default for PatStack<'p, 'tcx> {
@@ -407,6 +427,35 @@ pub fn empty() -> Self {
     pub fn push(&mut self, row: PatStack<'p, 'tcx>) {
         self.0.push(row)
     }
+
+    /// Iterate over the first component of each row
+    fn heads<'a>(&'a self) -> impl Iterator<Item = &'a Pat<'tcx>> + Captures<'p> {
+        self.0.iter().map(|r| r.head())
+    }
+
+    /// This computes `D(self)`. See top of the file for explanations.
+    fn specialize_wildcard(&self) -> Self {
+        self.0.iter().filter_map(|r| r.specialize_wildcard()).collect()
+    }
+
+    /// This computes `S(constructor, self)`. See top of the file for explanations.
+    fn specialize_constructor<'a, 'q>(
+        &self,
+        cx: &mut MatchCheckCtxt<'a, 'tcx>,
+        constructor: &Constructor<'tcx>,
+        wild_patterns: &[&'q Pat<'tcx>],
+    ) -> Matrix<'q, 'tcx>
+    where
+        'a: 'q,
+        'p: 'q,
+    {
+        Matrix(
+            self.0
+                .iter()
+                .filter_map(|r| r.specialize_constructor(cx, constructor, wild_patterns))
+                .collect(),
+        )
+    }
 }
 
 /// Pretty-printer for matrices of patterns, example:
@@ -592,6 +641,100 @@ fn display(&self, tcx: TyCtxt<'tcx>) -> String {
             _ => bug!("bad constructor being displayed: `{:?}", self),
         }
     }
+
+    fn wildcard_subpatterns<'a>(
+        &self,
+        cx: &MatchCheckCtxt<'a, 'tcx>,
+        ty: Ty<'tcx>,
+    ) -> Vec<Pat<'tcx>> {
+        constructor_sub_pattern_tys(cx, self, ty)
+            .into_iter()
+            .map(|ty| Pat { ty, span: DUMMY_SP, kind: box PatKind::Wild })
+            .collect()
+    }
+
+    /// This computes the arity of a constructor. The arity of a constructor
+    /// is how many subpattern patterns of that constructor should be expanded to.
+    ///
+    /// For instance, a tuple pattern `(_, 42, Some([]))` has the arity of 3.
+    /// A struct pattern's arity is the number of fields it contains, etc.
+    fn arity<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> u64 {
+        debug!("Constructor::arity({:#?}, {:?})", self, ty);
+        match ty.kind {
+            ty::Tuple(ref fs) => fs.len() as u64,
+            ty::Slice(..) | ty::Array(..) => match *self {
+                Slice(length) => length,
+                ConstantValue(..) => 0,
+                _ => bug!("bad slice pattern {:?} {:?}", self, ty),
+            },
+            ty::Ref(..) => 1,
+            ty::Adt(adt, _) => {
+                adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64
+            }
+            _ => 0,
+        }
+    }
+
+    /// Apply a constructor to a list of patterns, yielding a new pattern. `pats`
+    /// must have as many elements as this constructor's arity.
+    ///
+    /// Examples:
+    /// self: Single
+    /// ty: tuple of 3 elements
+    /// pats: [10, 20, _]           => (10, 20, _)
+    ///
+    /// self: Option::Some
+    /// ty: Option<bool>
+    /// pats: [false]  => Some(false)
+    fn apply<'a>(
+        &self,
+        cx: &MatchCheckCtxt<'a, 'tcx>,
+        ty: Ty<'tcx>,
+        pats: impl IntoIterator<Item = Pat<'tcx>>,
+    ) -> Pat<'tcx> {
+        let mut pats = pats.into_iter();
+        let pat = match ty.kind {
+            ty::Adt(..) | ty::Tuple(..) => {
+                let pats = pats
+                    .enumerate()
+                    .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
+                    .collect();
+
+                if let ty::Adt(adt, substs) = ty.kind {
+                    if adt.is_enum() {
+                        PatKind::Variant {
+                            adt_def: adt,
+                            substs,
+                            variant_index: self.variant_index_for_adt(cx, adt),
+                            subpatterns: pats,
+                        }
+                    } else {
+                        PatKind::Leaf { subpatterns: pats }
+                    }
+                } else {
+                    PatKind::Leaf { subpatterns: pats }
+                }
+            }
+
+            ty::Ref(..) => PatKind::Deref { subpattern: pats.nth(0).unwrap() },
+
+            ty::Slice(_) | ty::Array(..) => {
+                PatKind::Slice { prefix: pats.collect(), slice: None, suffix: vec![] }
+            }
+
+            _ => match *self {
+                ConstantValue(value, _) => PatKind::Constant { value },
+                ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
+                    lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
+                    hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
+                    end,
+                }),
+                _ => PatKind::Wild,
+            },
+        };
+
+        Pat { ty, span: DUMMY_SP, kind: Box::new(pat) }
+    }
 }
 
 #[derive(Clone, Debug)]
@@ -670,12 +813,7 @@ fn push_wild_constructor<'a>(
         ctor: &Constructor<'tcx>,
         ty: Ty<'tcx>,
     ) -> Self {
-        let sub_pattern_tys = constructor_sub_pattern_tys(cx, ctor, ty);
-        self.0.extend(sub_pattern_tys.into_iter().map(|ty| Pat {
-            ty,
-            span: DUMMY_SP,
-            kind: box PatKind::Wild,
-        }));
+        self.0.extend(ctor.wildcard_subpatterns(cx, ty));
         self.apply_constructor(cx, ctor, ty)
     }
 
@@ -698,53 +836,14 @@ fn apply_constructor<'a>(
         ctor: &Constructor<'tcx>,
         ty: Ty<'tcx>,
     ) -> Self {
-        let arity = constructor_arity(cx, ctor, ty);
+        let arity = ctor.arity(cx, ty);
         let pat = {
             let len = self.0.len() as u64;
-            let mut pats = self.0.drain((len - arity) as usize..).rev();
-
-            match ty.kind {
-                ty::Adt(..) | ty::Tuple(..) => {
-                    let pats = pats
-                        .enumerate()
-                        .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
-                        .collect();
-
-                    if let ty::Adt(adt, substs) = ty.kind {
-                        if adt.is_enum() {
-                            PatKind::Variant {
-                                adt_def: adt,
-                                substs,
-                                variant_index: ctor.variant_index_for_adt(cx, adt),
-                                subpatterns: pats,
-                            }
-                        } else {
-                            PatKind::Leaf { subpatterns: pats }
-                        }
-                    } else {
-                        PatKind::Leaf { subpatterns: pats }
-                    }
-                }
-
-                ty::Ref(..) => PatKind::Deref { subpattern: pats.nth(0).unwrap() },
-
-                ty::Slice(_) | ty::Array(..) => {
-                    PatKind::Slice { prefix: pats.collect(), slice: None, suffix: vec![] }
-                }
-
-                _ => match *ctor {
-                    ConstantValue(value, _) => PatKind::Constant { value },
-                    ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
-                        lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
-                        hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
-                        end,
-                    }),
-                    _ => PatKind::Wild,
-                },
-            }
+            let pats = self.0.drain((len - arity) as usize..).rev();
+            ctor.apply(cx, ty, pats)
         };
 
-        self.0.push(Pat { ty, span: DUMMY_SP, kind: Box::new(pat) });
+        self.0.push(pat);
 
         self
     }
@@ -1178,41 +1277,17 @@ fn suspicious_intersection(&self, other: &Self) -> bool {
     }
 }
 
-// A request for missing constructor data in terms of either:
-// - whether or not there any missing constructors; or
-// - the actual set of missing constructors.
-#[derive(PartialEq)]
-enum MissingCtorsInfo {
-    Emptiness,
-    Ctors,
-}
-
-// Used by `compute_missing_ctors`.
-#[derive(Debug, PartialEq)]
-enum MissingCtors<'tcx> {
-    Empty,
-    NonEmpty,
-
-    // Note that the Vec can be empty.
-    Ctors(Vec<Constructor<'tcx>>),
-}
-
-// When `info` is `MissingCtorsInfo::Ctors`, compute a set of constructors
-// equivalent to `all_ctors \ used_ctors`. When `info` is
-// `MissingCtorsInfo::Emptiness`, just determines if that set is empty or not.
-// (The split logic gives a performance win, because we always need to know if
-// the set is empty, but we rarely need the full set, and it can be expensive
-// to compute the full set.)
-fn compute_missing_ctors<'tcx>(
-    info: MissingCtorsInfo,
+type MissingConstructors<'a, 'tcx, F> =
+    std::iter::FlatMap<std::slice::Iter<'a, Constructor<'tcx>>, Vec<Constructor<'tcx>>, F>;
+// Compute a set of constructors equivalent to `all_ctors \ used_ctors`. This
+// returns an iterator, so that we only construct the whole set if needed.
+fn compute_missing_ctors<'a, 'tcx>(
     tcx: TyCtxt<'tcx>,
     param_env: ty::ParamEnv<'tcx>,
-    all_ctors: &Vec<Constructor<'tcx>>,
-    used_ctors: &Vec<Constructor<'tcx>>,
-) -> MissingCtors<'tcx> {
-    let mut missing_ctors = vec![];
-
-    for req_ctor in all_ctors {
+    all_ctors: &'a Vec<Constructor<'tcx>>,
+    used_ctors: &'a Vec<Constructor<'tcx>>,
+) -> MissingConstructors<'a, 'tcx, impl FnMut(&'a Constructor<'tcx>) -> Vec<Constructor<'tcx>>> {
+    all_ctors.iter().flat_map(move |req_ctor| {
         let mut refined_ctors = vec![req_ctor.clone()];
         for used_ctor in used_ctors {
             if used_ctor == req_ctor {
@@ -1226,32 +1301,19 @@ fn compute_missing_ctors<'tcx>(
             }
 
             // If the constructor patterns that have been considered so far
-            // already cover the entire range of values, then we the
+            // already cover the entire range of values, then we know the
             // constructor is not missing, and we can move on to the next one.
             if refined_ctors.is_empty() {
                 break;
             }
         }
+
         // If a constructor has not been matched, then it is missing.
         // We add `refined_ctors` instead of `req_ctor`, because then we can
         // provide more detailed error information about precisely which
         // ranges have been omitted.
-        if info == MissingCtorsInfo::Emptiness {
-            if !refined_ctors.is_empty() {
-                // The set is non-empty; return early.
-                return MissingCtors::NonEmpty;
-            }
-        } else {
-            missing_ctors.extend(refined_ctors);
-        }
-    }
-
-    if info == MissingCtorsInfo::Emptiness {
-        // If we reached here, the set is empty.
-        MissingCtors::Empty
-    } else {
-        MissingCtors::Ctors(missing_ctors)
-    }
+        refined_ctors
+    })
 }
 
 /// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html.
@@ -1304,9 +1366,9 @@ pub fn is_useful<'p, 'a, 'tcx>(
 
     assert!(rows.iter().all(|r| r.len() == v.len()));
 
-    let (ty, span) = rows
-        .iter()
-        .map(|r| (r.head().ty, r.head().span))
+    let (ty, span) = matrix
+        .heads()
+        .map(|r| (r.ty, r.span))
         .find(|(ty, _)| !ty.references_error())
         .unwrap_or((v.head().ty, v.head().span));
     let pcx = PatCtxt {
@@ -1330,7 +1392,7 @@ pub fn is_useful<'p, 'a, 'tcx>(
         // introducing uninhabited patterns for inaccessible fields. We
         // need to figure out how to model that.
         ty,
-        max_slice_length: max_slice_length(cx, rows.iter().map(|r| r.head()).chain(Some(v.head()))),
+        max_slice_length: max_slice_length(cx, matrix.heads().chain(Some(v.head()))),
         span,
     };
 
@@ -1354,10 +1416,8 @@ pub fn is_useful<'p, 'a, 'tcx>(
     } else {
         debug!("is_useful - expanding wildcard");
 
-        let used_ctors: Vec<Constructor<'_>> = rows
-            .iter()
-            .flat_map(|row| pat_constructors(cx, row.head(), pcx).unwrap_or(vec![]))
-            .collect();
+        let used_ctors: Vec<Constructor<'_>> =
+            matrix.heads().flat_map(|p| pat_constructors(cx, p, pcx).unwrap_or(vec![])).collect();
         debug!("used_ctors = {:#?}", used_ctors);
         // `all_ctors` are all the constructors for the given type, which
         // should all be represented (or caught with the wild pattern `_`).
@@ -1384,22 +1444,19 @@ pub fn is_useful<'p, 'a, 'tcx>(
         // needed for that case.
 
         // Missing constructors are those that are not matched by any
-        // non-wildcard patterns in the current column. We always determine if
-        // the set is empty, but we only fully construct them on-demand,
-        // because they're rarely used and can be big.
-        let cheap_missing_ctors = compute_missing_ctors(
-            MissingCtorsInfo::Emptiness,
-            cx.tcx,
-            cx.param_env,
-            &all_ctors,
-            &used_ctors,
-        );
+        // non-wildcard patterns in the current column. To determine if
+        // the set is empty, we can check that `.peek().is_none()`, so
+        // we only fully construct them on-demand, because they're rarely used and can be big.
+        let mut missing_ctors =
+            compute_missing_ctors(cx.tcx, cx.param_env, &all_ctors, &used_ctors).peekable();
 
         let is_privately_empty = all_ctors.is_empty() && !cx.is_uninhabited(pcx.ty);
         let is_declared_nonexhaustive = cx.is_non_exhaustive_enum(pcx.ty) && !cx.is_local(pcx.ty);
         debug!(
-            "cheap_missing_ctors={:#?} is_privately_empty={:#?} is_declared_nonexhaustive={:#?}",
-            cheap_missing_ctors, is_privately_empty, is_declared_nonexhaustive
+            "missing_ctors.empty()={:#?} is_privately_empty={:#?} is_declared_nonexhaustive={:#?}",
+            missing_ctors.peek().is_none(),
+            is_privately_empty,
+            is_declared_nonexhaustive
         );
 
         // For privately empty and non-exhaustive enums, we work as if there were an "extra"
@@ -1408,7 +1465,8 @@ pub fn is_useful<'p, 'a, 'tcx>(
             || is_declared_nonexhaustive
             || (pcx.ty.is_ptr_sized_integral() && !cx.tcx.features().precise_pointer_size_matching);
 
-        if cheap_missing_ctors == MissingCtors::Empty && !is_non_exhaustive {
+        if missing_ctors.peek().is_none() && !is_non_exhaustive {
+            drop(missing_ctors); // It was borrowing `all_ctors`, which we want to move.
             split_grouped_constructors(
                 cx.tcx,
                 cx.param_env,
@@ -1423,11 +1481,9 @@ pub fn is_useful<'p, 'a, 'tcx>(
             .find(|result| result.is_useful())
             .unwrap_or(NotUseful)
         } else {
-            let matrix = rows
-                .iter()
-                .filter_map(|r| if r.head().is_wildcard() { Some(r.to_tail()) } else { None })
-                .collect();
-            match is_useful(cx, &matrix, &v.to_tail(), witness, hir_id) {
+            let matrix = matrix.specialize_wildcard();
+            let v = v.to_tail();
+            match is_useful(cx, &matrix, &v, witness, hir_id) {
                 UsefulWithWitness(pats) => {
                     let cx = &*cx;
                     // In this case, there's at least one "free"
@@ -1488,28 +1544,18 @@ pub fn is_useful<'p, 'a, 'tcx>(
                             })
                             .collect()
                     } else {
-                        let expensive_missing_ctors = compute_missing_ctors(
-                            MissingCtorsInfo::Ctors,
-                            cx.tcx,
-                            cx.param_env,
-                            &all_ctors,
-                            &used_ctors,
-                        );
-                        if let MissingCtors::Ctors(missing_ctors) = expensive_missing_ctors {
-                            pats.into_iter()
-                                .flat_map(|witness| {
-                                    missing_ctors.iter().map(move |ctor| {
-                                        // Extends the witness with a "wild" version of this
-                                        // constructor, that matches everything that can be built with
-                                        // it. For example, if `ctor` is a `Constructor::Variant` for
-                                        // `Option::Some`, this pushes the witness for `Some(_)`.
-                                        witness.clone().push_wild_constructor(cx, ctor, pcx.ty)
-                                    })
+                        let missing_ctors: Vec<_> = missing_ctors.collect();
+                        pats.into_iter()
+                            .flat_map(|witness| {
+                                missing_ctors.iter().map(move |ctor| {
+                                    // Extends the witness with a "wild" version of this
+                                    // constructor, that matches everything that can be built with
+                                    // it. For example, if `ctor` is a `Constructor::Variant` for
+                                    // `Option::Some`, this pushes the witness for `Some(_)`.
+                                    witness.clone().push_wild_constructor(cx, ctor, pcx.ty)
                                 })
-                                .collect()
-                        } else {
-                            bug!("cheap missing ctors")
-                        }
+                            })
+                            .collect()
                     };
                     UsefulWithWitness(new_witnesses)
                 }
@@ -1523,7 +1569,7 @@ pub fn is_useful<'p, 'a, 'tcx>(
 /// to the specialised version of both the pattern matrix `P` and the new pattern `q`.
 fn is_useful_specialized<'p, 'a, 'tcx>(
     cx: &mut MatchCheckCtxt<'a, 'tcx>,
-    &Matrix(ref m): &Matrix<'p, 'tcx>,
+    matrix: &Matrix<'p, 'tcx>,
     v: &PatStack<'_, 'tcx>,
     ctor: Constructor<'tcx>,
     lty: Ty<'tcx>,
@@ -1531,13 +1577,11 @@ fn is_useful_specialized<'p, 'a, 'tcx>(
     hir_id: HirId,
 ) -> Usefulness<'tcx> {
     debug!("is_useful_specialized({:#?}, {:#?}, {:?})", v, ctor, lty);
-    let sub_pat_tys = constructor_sub_pattern_tys(cx, &ctor, lty);
-    let wild_patterns_owned: Vec<_> =
-        sub_pat_tys.iter().map(|ty| Pat { ty, span: DUMMY_SP, kind: box PatKind::Wild }).collect();
+
+    let wild_patterns_owned = ctor.wildcard_subpatterns(cx, lty);
     let wild_patterns: Vec<_> = wild_patterns_owned.iter().collect();
-    let matrix =
-        Matrix(m.iter().filter_map(|r| specialize(cx, &r, &ctor, &wild_patterns)).collect());
-    match specialize(cx, v, &ctor, &wild_patterns) {
+    let matrix = matrix.specialize_constructor(cx, &ctor, &wild_patterns);
+    match v.specialize_constructor(cx, &ctor, &wild_patterns) {
         Some(v) => match is_useful(cx, &matrix, &v, witness, hir_id) {
             UsefulWithWitness(witnesses) => UsefulWithWitness(
                 witnesses
@@ -1597,26 +1641,6 @@ fn pat_constructors<'tcx>(
     }
 }
 
-/// This computes the arity of a constructor. The arity of a constructor
-/// is how many subpattern patterns of that constructor should be expanded to.
-///
-/// For instance, a tuple pattern `(_, 42, Some([]))` has the arity of 3.
-/// A struct pattern's arity is the number of fields it contains, etc.
-fn constructor_arity(cx: &MatchCheckCtxt<'a, 'tcx>, ctor: &Constructor<'tcx>, ty: Ty<'tcx>) -> u64 {
-    debug!("constructor_arity({:#?}, {:?})", ctor, ty);
-    match ty.kind {
-        ty::Tuple(ref fs) => fs.len() as u64,
-        ty::Slice(..) | ty::Array(..) => match *ctor {
-            Slice(length) => length,
-            ConstantValue(..) => 0,
-            _ => bug!("bad slice pattern {:?} {:?}", ctor, ty),
-        },
-        ty::Ref(..) => 1,
-        ty::Adt(adt, _) => adt.variants[ctor.variant_index_for_adt(cx, adt)].fields.len() as u64,
-        _ => 0,
-    }
-}
-
 /// This computes the types of the sub patterns that a constructor should be
 /// expanded to.
 ///
@@ -1793,7 +1817,7 @@ fn split_grouped_constructors<'p, 'tcx>(
     tcx: TyCtxt<'tcx>,
     param_env: ty::ParamEnv<'tcx>,
     ctors: Vec<Constructor<'tcx>>,
-    &Matrix(ref m): &Matrix<'p, 'tcx>,
+    matrix: &Matrix<'p, 'tcx>,
     ty: Ty<'tcx>,
     span: Span,
     hir_id: Option<HirId>,
@@ -1835,7 +1859,8 @@ fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
                 let mut overlaps = vec![];
                 // `borders` is the set of borders between equivalence classes: each equivalence
                 // class lies between 2 borders.
-                let row_borders = m
+                let row_borders = matrix
+                    .0
                     .iter()
                     .flat_map(|row| {
                         IntRange::from_pat(tcx, param_env, row.head()).map(|r| (r, row.len()))
@@ -2013,7 +2038,7 @@ fn specialize<'p, 'a: 'p, 'q: 'p, 'tcx>(
 ) -> Option<PatStack<'p, 'tcx>> {
     let pat = r.head();
 
-    let head = match *pat.kind {
+    let new_head = match *pat.kind {
         PatKind::AscribeUserType { ref subpattern, .. } => {
             specialize(cx, &PatStack::from_pattern(subpattern), constructor, wild_patterns)
         }
@@ -2167,9 +2192,9 @@ fn specialize<'p, 'a: 'p, 'q: 'p, 'tcx>(
             bug!("support for or-patterns has not been fully implemented yet.");
         }
     };
-    debug!("specialize({:#?}, {:#?}) = {:#?}", r.head(), wild_patterns, head);
+    debug!("specialize({:#?}, {:#?}) = {:#?}", r.head(), wild_patterns, new_head);
 
-    head.map(|head| {
+    new_head.map(|head| {
         let mut head = head.0;
         head.extend_from_slice(&r.0[1..]);
         PatStack::from_vec(head)