]> git.lizzy.rs Git - rust.git/blobdiff - src/libcore/num/f64.rs
auto merge of #15999 : Kimundi/rust/fix_folder, r=nikomatsakis
[rust.git] / src / libcore / num / f64.rs
index d140df30c4273c1448b5469e905a40b0abb34ee8..a3ae8e7c79ea355309dc9189cf13c822966b3b21 100644 (file)
@@ -1,4 +1,4 @@
-// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
+// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
 // file at the top-level directory of this distribution and at
 // http://rust-lang.org/COPYRIGHT.
 //
 // option. This file may not be copied, modified, or distributed
 // except according to those terms.
 
-//! Operations and constants for `f64`
-
-use libc::c_int;
-use num::{Zero, One, strconv};
-use num::{FPCategory, FPNaN, FPInfinite , FPZero, FPSubnormal, FPNormal};
-use prelude::*;
-
-pub use cmath::c_double_targ_consts::*;
-pub use cmp::{min, max};
-
-// An inner module is required to get the #[inline(always)] attribute on the
-// functions.
-pub use self::delegated::*;
-
-macro_rules! delegate(
-    (
-        $(
-            fn $name:ident(
-                $(
-                    $arg:ident : $arg_ty:ty
-                ),*
-            ) -> $rv:ty = $bound_name:path
-        ),*
-    ) => (
-        mod delegated {
-            use cmath::c_double_utils;
-            use libc::{c_double, c_int};
-            use unstable::intrinsics;
-
-            $(
-                #[inline(always)]
-                pub fn $name($( $arg : $arg_ty ),*) -> $rv {
-                    unsafe {
-                        $bound_name($( $arg ),*)
-                    }
-                }
-            )*
-        }
-    )
-)
-
-delegate!(
-    // intrinsics
-    fn abs(n: f64) -> f64 = intrinsics::fabsf64,
-    fn cos(n: f64) -> f64 = intrinsics::cosf64,
-    fn exp(n: f64) -> f64 = intrinsics::expf64,
-    fn exp2(n: f64) -> f64 = intrinsics::exp2f64,
-    fn floor(x: f64) -> f64 = intrinsics::floorf64,
-    fn ln(n: f64) -> f64 = intrinsics::logf64,
-    fn log10(n: f64) -> f64 = intrinsics::log10f64,
-    fn log2(n: f64) -> f64 = intrinsics::log2f64,
-    fn mul_add(a: f64, b: f64, c: f64) -> f64 = intrinsics::fmaf64,
-    fn pow(n: f64, e: f64) -> f64 = intrinsics::powf64,
-    fn powi(n: f64, e: c_int) -> f64 = intrinsics::powif64,
-    fn sin(n: f64) -> f64 = intrinsics::sinf64,
-    fn sqrt(n: f64) -> f64 = intrinsics::sqrtf64,
-
-    // LLVM 3.3 required to use intrinsics for these four
-    fn ceil(n: c_double) -> c_double = c_double_utils::ceil,
-    fn trunc(n: c_double) -> c_double = c_double_utils::trunc,
-    /*
-    fn ceil(n: f64) -> f64 = intrinsics::ceilf64,
-    fn trunc(n: f64) -> f64 = intrinsics::truncf64,
-    fn rint(n: c_double) -> c_double = intrinsics::rintf64,
-    fn nearbyint(n: c_double) -> c_double = intrinsics::nearbyintf64,
-    */
-
-    // cmath
-    fn acos(n: c_double) -> c_double = c_double_utils::acos,
-    fn asin(n: c_double) -> c_double = c_double_utils::asin,
-    fn atan(n: c_double) -> c_double = c_double_utils::atan,
-    fn atan2(a: c_double, b: c_double) -> c_double = c_double_utils::atan2,
-    fn cbrt(n: c_double) -> c_double = c_double_utils::cbrt,
-    fn copysign(x: c_double, y: c_double) -> c_double = c_double_utils::copysign,
-    fn cosh(n: c_double) -> c_double = c_double_utils::cosh,
-    fn erf(n: c_double) -> c_double = c_double_utils::erf,
-    fn erfc(n: c_double) -> c_double = c_double_utils::erfc,
-    fn exp_m1(n: c_double) -> c_double = c_double_utils::exp_m1,
-    fn abs_sub(a: c_double, b: c_double) -> c_double = c_double_utils::abs_sub,
-    fn fmax(a: c_double, b: c_double) -> c_double = c_double_utils::fmax,
-    fn fmin(a: c_double, b: c_double) -> c_double = c_double_utils::fmin,
-    fn next_after(x: c_double, y: c_double) -> c_double = c_double_utils::next_after,
-    fn frexp(n: c_double, value: &mut c_int) -> c_double = c_double_utils::frexp,
-    fn hypot(x: c_double, y: c_double) -> c_double = c_double_utils::hypot,
-    fn ldexp(x: c_double, n: c_int) -> c_double = c_double_utils::ldexp,
-    fn lgamma(n: c_double, sign: &mut c_int) -> c_double = c_double_utils::lgamma,
-    fn log_radix(n: c_double) -> c_double = c_double_utils::log_radix,
-    fn ln_1p(n: c_double) -> c_double = c_double_utils::ln_1p,
-    fn ilog_radix(n: c_double) -> c_int = c_double_utils::ilog_radix,
-    fn modf(n: c_double, iptr: &mut c_double) -> c_double = c_double_utils::modf,
-    fn round(n: c_double) -> c_double = c_double_utils::round,
-    fn ldexp_radix(n: c_double, i: c_int) -> c_double = c_double_utils::ldexp_radix,
-    fn sinh(n: c_double) -> c_double = c_double_utils::sinh,
-    fn tan(n: c_double) -> c_double = c_double_utils::tan,
-    fn tanh(n: c_double) -> c_double = c_double_utils::tanh,
-    fn tgamma(n: c_double) -> c_double = c_double_utils::tgamma,
-    fn j0(n: c_double) -> c_double = c_double_utils::j0,
-    fn j1(n: c_double) -> c_double = c_double_utils::j1,
-    fn jn(i: c_int, n: c_double) -> c_double = c_double_utils::jn,
-    fn y0(n: c_double) -> c_double = c_double_utils::y0,
-    fn y1(n: c_double) -> c_double = c_double_utils::y1,
-    fn yn(i: c_int, n: c_double) -> c_double = c_double_utils::yn
-)
-
-// FIXME (#1433): obtain these in a different way
-
-// These are not defined inside consts:: for consistency with
-// the integer types
-
-pub static radix: uint = 2u;
-
-pub static mantissa_digits: uint = 53u;
-pub static digits: uint = 15u;
-
-pub static epsilon: f64 = 2.2204460492503131e-16_f64;
-
-pub static min_value: f64 = 2.2250738585072014e-308_f64;
-pub static max_value: f64 = 1.7976931348623157e+308_f64;
-
-pub static min_exp: int = -1021;
-pub static max_exp: int = 1024;
-
-pub static min_10_exp: int = -307;
-pub static max_10_exp: int = 308;
-
-pub static NaN: f64 = 0.0_f64/0.0_f64;
-
-pub static infinity: f64 = 1.0_f64/0.0_f64;
-
-pub static neg_infinity: f64 = -1.0_f64/0.0_f64;
-
-#[inline(always)]
-pub fn add(x: f64, y: f64) -> f64 { return x + y; }
-
-#[inline(always)]
-pub fn sub(x: f64, y: f64) -> f64 { return x - y; }
-
-#[inline(always)]
-pub fn mul(x: f64, y: f64) -> f64 { return x * y; }
-
-#[inline(always)]
-pub fn div(x: f64, y: f64) -> f64 { return x / y; }
-
-#[inline(always)]
-pub fn rem(x: f64, y: f64) -> f64 { return x % y; }
-
-#[inline(always)]
-pub fn lt(x: f64, y: f64) -> bool { return x < y; }
-
-#[inline(always)]
-pub fn le(x: f64, y: f64) -> bool { return x <= y; }
-
-#[inline(always)]
-pub fn eq(x: f64, y: f64) -> bool { return x == y; }
-
-#[inline(always)]
-pub fn ne(x: f64, y: f64) -> bool { return x != y; }
-
-#[inline(always)]
-pub fn ge(x: f64, y: f64) -> bool { return x >= y; }
-
-#[inline(always)]
-pub fn gt(x: f64, y: f64) -> bool { return x > y; }
-
-
-// FIXME (#1999): add is_normal, is_subnormal, and fpclassify
-
-/* Module: consts */
-pub mod consts {
-    // FIXME (requires Issue #1433 to fix): replace with mathematical
-    // constants from cmath.
-    /// Archimedes' constant
-    pub static pi: f64 = 3.14159265358979323846264338327950288_f64;
-
-    /// pi/2.0
-    pub static frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64;
-
-    /// pi/4.0
-    pub static frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64;
-
-    /// 1.0/pi
-    pub static frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64;
-
-    /// 2.0/pi
-    pub static frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64;
-
-    /// 2.0/sqrt(pi)
-    pub static frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64;
-
-    /// sqrt(2.0)
-    pub static sqrt2: f64 = 1.41421356237309504880168872420969808_f64;
-
-    /// 1.0/sqrt(2.0)
-    pub static frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64;
-
-    /// Euler's number
-    pub static e: f64 = 2.71828182845904523536028747135266250_f64;
-
-    /// log2(e)
-    pub static log2_e: f64 = 1.44269504088896340735992468100189214_f64;
-
-    /// log10(e)
-    pub static log10_e: f64 = 0.434294481903251827651128918916605082_f64;
-
-    /// ln(2.0)
-    pub static ln_2: f64 = 0.693147180559945309417232121458176568_f64;
-
-    /// ln(10.0)
-    pub static ln_10: f64 = 2.30258509299404568401799145468436421_f64;
-}
+//! Operations and constants for 64-bits floats (`f64` type)
 
-impl Num for f64 {}
+#![doc(primitive = "f64")]
+// FIXME: MIN_VALUE and MAX_VALUE literals are parsed as -inf and inf #14353
+#![allow(type_overflow)]
 
-#[cfg(not(test))]
-impl Eq for f64 {
-    #[inline(always)]
-    fn eq(&self, other: &f64) -> bool { (*self) == (*other) }
-    #[inline(always)]
-    fn ne(&self, other: &f64) -> bool { (*self) != (*other) }
-}
+use intrinsics;
+use mem;
+use num::{FPNormal, FPCategory, FPZero, FPSubnormal, FPInfinite, FPNaN};
+use num::Float;
+use option::Option;
 
-#[cfg(not(test))]
-impl ApproxEq<f64> for f64 {
-    #[inline(always)]
-    fn approx_epsilon() -> f64 { 1.0e-6 }
+// FIXME(#5527): These constants should be deprecated once associated
+// constants are implemented in favour of referencing the respective
+// members of `Bounded` and `Float`.
 
-    #[inline(always)]
-    fn approx_eq(&self, other: &f64) -> bool {
-        self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<f64, f64>())
-    }
+pub static RADIX: uint = 2u;
 
-    #[inline(always)]
-    fn approx_eq_eps(&self, other: &f64, approx_epsilon: &f64) -> bool {
-        (*self - *other).abs() < *approx_epsilon
-    }
-}
+pub static MANTISSA_DIGITS: uint = 53u;
+pub static DIGITS: uint = 15u;
 
-#[cfg(not(test))]
-impl Ord for f64 {
-    #[inline(always)]
-    fn lt(&self, other: &f64) -> bool { (*self) < (*other) }
-    #[inline(always)]
-    fn le(&self, other: &f64) -> bool { (*self) <= (*other) }
-    #[inline(always)]
-    fn ge(&self, other: &f64) -> bool { (*self) >= (*other) }
-    #[inline(always)]
-    fn gt(&self, other: &f64) -> bool { (*self) > (*other) }
-}
+pub static EPSILON: f64 = 2.2204460492503131e-16_f64;
 
-impl Orderable for f64 {
-    /// Returns `NaN` if either of the numbers are `NaN`.
-    #[inline(always)]
-    fn min(&self, other: &f64) -> f64 {
-        if self.is_NaN() || other.is_NaN() { Float::NaN() } else { fmin(*self, *other) }
-    }
+/// Smallest finite f64 value
+pub static MIN_VALUE: f64 = -1.7976931348623157e+308_f64;
+/// Smallest positive, normalized f64 value
+pub static MIN_POS_VALUE: f64 = 2.2250738585072014e-308_f64;
+/// Largest finite f64 value
+pub static MAX_VALUE: f64 = 1.7976931348623157e+308_f64;
 
-    /// Returns `NaN` if either of the numbers are `NaN`.
-    #[inline(always)]
-    fn max(&self, other: &f64) -> f64 {
-        if self.is_NaN() || other.is_NaN() { Float::NaN() } else { fmax(*self, *other) }
-    }
+pub static MIN_EXP: int = -1021;
+pub static MAX_EXP: int = 1024;
 
-    #[cfg(stage0)]
-    #[inline(always)]
-    fn clamp(&self, mn: &f64, mx: &f64) -> f64 {
-        if self.is_NaN() { *self }
-        else if !(*self <= *mx) { *mx }
-        else if !(*self >= *mn) { *mn }
-        else { *self }
-    }
+pub static MIN_10_EXP: int = -307;
+pub static MAX_10_EXP: int = 308;
 
-    /// Returns the number constrained within the range `mn <= self <= mx`.
-    /// If any of the numbers are `NaN` then `NaN` is returned.
-    #[cfg(not(stage0))]
-    #[inline(always)]
-    fn clamp(&self, mn: &f64, mx: &f64) -> f64 {
-        cond!(
-            (self.is_NaN())   { *self }
-            (!(*self <= *mx)) { *mx   }
-            (!(*self >= *mn)) { *mn   }
-            _                 { *self }
-        )
-    }
-}
+pub static NAN: f64 = 0.0_f64/0.0_f64;
 
-impl Zero for f64 {
-    #[inline(always)]
-    fn zero() -> f64 { 0.0 }
+pub static INFINITY: f64 = 1.0_f64/0.0_f64;
 
-    /// Returns true if the number is equal to either `0.0` or `-0.0`
-    #[inline(always)]
-    fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 }
-}
-
-impl One for f64 {
-    #[inline(always)]
-    fn one() -> f64 { 1.0 }
-}
+pub static NEG_INFINITY: f64 = -1.0_f64/0.0_f64;
 
-#[cfg(not(test))]
-impl Add<f64,f64> for f64 {
-    fn add(&self, other: &f64) -> f64 { *self + *other }
-}
-#[cfg(not(test))]
-impl Sub<f64,f64> for f64 {
-    fn sub(&self, other: &f64) -> f64 { *self - *other }
-}
-#[cfg(not(test))]
-impl Mul<f64,f64> for f64 {
-    fn mul(&self, other: &f64) -> f64 { *self * *other }
-}
-#[cfg(not(test))]
-impl Div<f64,f64> for f64 {
-    fn div(&self, other: &f64) -> f64 { *self / *other }
-}
-#[cfg(not(test))]
-impl Rem<f64,f64> for f64 {
-    #[inline(always)]
-    fn rem(&self, other: &f64) -> f64 { *self % *other }
-}
-#[cfg(not(test))]
-impl Neg<f64> for f64 {
-    fn neg(&self) -> f64 { -*self }
-}
-
-impl Signed for f64 {
-    /// Computes the absolute value. Returns `NaN` if the number is `NaN`.
-    #[inline(always)]
-    fn abs(&self) -> f64 { abs(*self) }
-
-    ///
-    /// The positive difference of two numbers. Returns `0.0` if the number is less than or
-    /// equal to `other`, otherwise the difference between`self` and `other` is returned.
-    ///
-    #[inline(always)]
-    fn abs_sub(&self, other: &f64) -> f64 { abs_sub(*self, *other) }
-
-    ///
-    /// # Returns
-    ///
-    /// - `1.0` if the number is positive, `+0.0` or `infinity`
-    /// - `-1.0` if the number is negative, `-0.0` or `neg_infinity`
-    /// - `NaN` if the number is NaN
-    ///
-    #[inline(always)]
-    fn signum(&self) -> f64 {
-        if self.is_NaN() { NaN } else { copysign(1.0, *self) }
-    }
-
-    /// Returns `true` if the number is positive, including `+0.0` and `infinity`
-    #[inline(always)]
-    fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == infinity }
-
-    /// Returns `true` if the number is negative, including `-0.0` and `neg_infinity`
-    #[inline(always)]
-    fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity }
-}
-
-impl Round for f64 {
-    /// Round half-way cases toward `neg_infinity`
-    #[inline(always)]
-    fn floor(&self) -> f64 { floor(*self) }
-
-    /// Round half-way cases toward `infinity`
-    #[inline(always)]
-    fn ceil(&self) -> f64 { ceil(*self) }
-
-    /// Round half-way cases away from `0.0`
-    #[inline(always)]
-    fn round(&self) -> f64 { round(*self) }
-
-    /// The integer part of the number (rounds towards `0.0`)
-    #[inline(always)]
-    fn trunc(&self) -> f64 { trunc(*self) }
-
-    ///
-    /// The fractional part of the number, satisfying:
-    ///
-    /// ~~~
-    /// assert!(x == trunc(x) + fract(x))
-    /// ~~~
-    ///
-    #[inline(always)]
-    fn fract(&self) -> f64 { *self - self.trunc() }
-}
-
-impl Fractional for f64 {
-    /// The reciprocal (multiplicative inverse) of the number
-    #[inline(always)]
-    fn recip(&self) -> f64 { 1.0 / *self }
-}
-
-impl Algebraic for f64 {
-    #[inline(always)]
-    fn pow(&self, n: f64) -> f64 { pow(*self, n) }
-
-    #[inline(always)]
-    fn sqrt(&self) -> f64 { sqrt(*self) }
-
-    #[inline(always)]
-    fn rsqrt(&self) -> f64 { self.sqrt().recip() }
-
-    #[inline(always)]
-    fn cbrt(&self) -> f64 { cbrt(*self) }
-
-    #[inline(always)]
-    fn hypot(&self, other: f64) -> f64 { hypot(*self, other) }
-}
-
-impl Trigonometric for f64 {
-    #[inline(always)]
-    fn sin(&self) -> f64 { sin(*self) }
-
-    #[inline(always)]
-    fn cos(&self) -> f64 { cos(*self) }
-
-    #[inline(always)]
-    fn tan(&self) -> f64 { tan(*self) }
-
-    #[inline(always)]
-    fn asin(&self) -> f64 { asin(*self) }
-
-    #[inline(always)]
-    fn acos(&self) -> f64 { acos(*self) }
-
-    #[inline(always)]
-    fn atan(&self) -> f64 { atan(*self) }
-
-    #[inline(always)]
-    fn atan2(&self, other: f64) -> f64 { atan2(*self, other) }
-
-    /// Simultaneously computes the sine and cosine of the number
-    #[inline(always)]
-    fn sin_cos(&self) -> (f64, f64) {
-        (self.sin(), self.cos())
-    }
-}
-
-impl Exponential for f64 {
-    /// Returns the exponential of the number
-    #[inline(always)]
-    fn exp(&self) -> f64 { exp(*self) }
-
-    /// Returns 2 raised to the power of the number
-    #[inline(always)]
-    fn exp2(&self) -> f64 { exp2(*self) }
-
-    /// Returns the natural logarithm of the number
-    #[inline(always)]
-    fn ln(&self) -> f64 { ln(*self) }
-
-    /// Returns the logarithm of the number with respect to an arbitrary base
-    #[inline(always)]
-    fn log(&self, base: f64) -> f64 { self.ln() / base.ln() }
-
-    /// Returns the base 2 logarithm of the number
-    #[inline(always)]
-    fn log2(&self) -> f64 { log2(*self) }
-
-    /// Returns the base 10 logarithm of the number
-    #[inline(always)]
-    fn log10(&self) -> f64 { log10(*self) }
-}
-
-impl Hyperbolic for f64 {
-    #[inline(always)]
-    fn sinh(&self) -> f64 { sinh(*self) }
-
-    #[inline(always)]
-    fn cosh(&self) -> f64 { cosh(*self) }
-
-    #[inline(always)]
-    fn tanh(&self) -> f64 { tanh(*self) }
-
-    ///
-    /// Inverse hyperbolic sine
-    ///
-    /// # Returns
-    ///
-    /// - on success, the inverse hyperbolic sine of `self` will be returned
-    /// - `self` if `self` is `0.0`, `-0.0`, `infinity`, or `neg_infinity`
-    /// - `NaN` if `self` is `NaN`
-    ///
-    #[inline(always)]
-    fn asinh(&self) -> f64 {
-        match *self {
-            neg_infinity => neg_infinity,
-            x => (x + ((x * x) + 1.0).sqrt()).ln(),
-        }
-    }
-
-    ///
-    /// Inverse hyperbolic cosine
-    ///
-    /// # Returns
-    ///
-    /// - on success, the inverse hyperbolic cosine of `self` will be returned
-    /// - `infinity` if `self` is `infinity`
-    /// - `NaN` if `self` is `NaN` or `self < 1.0` (including `neg_infinity`)
-    ///
-    #[inline(always)]
-    fn acosh(&self) -> f64 {
-        match *self {
-            x if x < 1.0 => Float::NaN(),
-            x => (x + ((x * x) - 1.0).sqrt()).ln(),
-        }
-    }
+/// Various useful constants.
+pub mod consts {
+    // FIXME: replace with mathematical constants from cmath.
 
-    ///
-    /// Inverse hyperbolic tangent
-    ///
-    /// # Returns
-    ///
-    /// - on success, the inverse hyperbolic tangent of `self` will be returned
-    /// - `self` if `self` is `0.0` or `-0.0`
-    /// - `infinity` if `self` is `1.0`
-    /// - `neg_infinity` if `self` is `-1.0`
-    /// - `NaN` if the `self` is `NaN` or outside the domain of `-1.0 <= self <= 1.0`
-    ///   (including `infinity` and `neg_infinity`)
-    ///
-    #[inline(always)]
-    fn atanh(&self) -> f64 {
-        0.5 * ((2.0 * *self) / (1.0 - *self)).ln_1p()
-    }
-}
+    // FIXME(#5527): These constants should be deprecated once associated
+    // constants are implemented in favour of referencing the respective members
+    // of `Float`.
 
-impl Real for f64 {
     /// Archimedes' constant
-    #[inline(always)]
-    fn pi() -> f64 { 3.14159265358979323846264338327950288 }
+    pub static PI: f64 = 3.14159265358979323846264338327950288_f64;
 
-    /// 2.0 * pi
-    #[inline(always)]
-    fn two_pi() -> f64 { 6.28318530717958647692528676655900576 }
+    /// pi * 2.0
+    pub static PI_2: f64 = 6.28318530717958647692528676655900576_f64;
 
-    /// pi / 2.0
-    #[inline(always)]
-    fn frac_pi_2() -> f64 { 1.57079632679489661923132169163975144 }
+    /// pi/2.0
+    pub static FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
 
-    /// pi / 3.0
-    #[inline(always)]
-    fn frac_pi_3() -> f64 { 1.04719755119659774615421446109316763 }
+    /// pi/3.0
+    pub static FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
 
-    /// pi / 4.0
-    #[inline(always)]
-    fn frac_pi_4() -> f64 { 0.785398163397448309615660845819875721 }
+    /// pi/4.0
+    pub static FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
 
-    /// pi / 6.0
-    #[inline(always)]
-    fn frac_pi_6() -> f64 { 0.52359877559829887307710723054658381 }
+    /// pi/6.0
+    pub static FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
 
-    /// pi / 8.0
-    #[inline(always)]
-    fn frac_pi_8() -> f64 { 0.39269908169872415480783042290993786 }
+    /// pi/8.0
+    pub static FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
 
-    /// 1.0 / pi
-    #[inline(always)]
-    fn frac_1_pi() -> f64 { 0.318309886183790671537767526745028724 }
+    /// 1.0/pi
+    pub static FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
 
-    /// 2.0 / pi
-    #[inline(always)]
-    fn frac_2_pi() -> f64 { 0.636619772367581343075535053490057448 }
+    /// 2.0/pi
+    pub static FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
 
-    /// 2.0 / sqrt(pi)
-    #[inline(always)]
-    fn frac_2_sqrtpi() -> f64 { 1.12837916709551257389615890312154517 }
+    /// 2.0/sqrt(pi)
+    pub static FRAC_2_SQRTPI: f64 = 1.12837916709551257389615890312154517_f64;
 
     /// sqrt(2.0)
-    #[inline(always)]
-    fn sqrt2() -> f64 { 1.41421356237309504880168872420969808 }
+    pub static SQRT2: f64 = 1.41421356237309504880168872420969808_f64;
 
-    /// 1.0 / sqrt(2.0)
-    #[inline(always)]
-    fn frac_1_sqrt2() -> f64 { 0.707106781186547524400844362104849039 }
+    /// 1.0/sqrt(2.0)
+    pub static FRAC_1_SQRT2: f64 = 0.707106781186547524400844362104849039_f64;
 
     /// Euler's number
-    #[inline(always)]
-    fn e() -> f64 { 2.71828182845904523536028747135266250 }
+    pub static E: f64 = 2.71828182845904523536028747135266250_f64;
 
     /// log2(e)
-    #[inline(always)]
-    fn log2_e() -> f64 { 1.44269504088896340735992468100189214 }
+    pub static LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
 
     /// log10(e)
-    #[inline(always)]
-    fn log10_e() -> f64 { 0.434294481903251827651128918916605082 }
+    pub static LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
 
     /// ln(2.0)
-    #[inline(always)]
-    fn ln_2() -> f64 { 0.693147180559945309417232121458176568 }
+    pub static LN_2: f64 = 0.693147180559945309417232121458176568_f64;
 
     /// ln(10.0)
-    #[inline(always)]
-    fn ln_10() -> f64 { 2.30258509299404568401799145468436421 }
-
-    /// Converts to degrees, assuming the number is in radians
-    #[inline(always)]
-    fn to_degrees(&self) -> f64 { *self * (180.0 / Real::pi::<f64>()) }
-
-    /// Converts to radians, assuming the number is in degrees
-    #[inline(always)]
-    fn to_radians(&self) -> f64 { *self * (Real::pi::<f64>() / 180.0) }
-}
-
-impl RealExt for f64 {
-    #[inline(always)]
-    fn lgamma(&self) -> (int, f64) {
-        let mut sign = 0;
-        let result = lgamma(*self, &mut sign);
-        (sign as int, result)
-    }
-
-    #[inline(always)]
-    fn tgamma(&self) -> f64 { tgamma(*self) }
-
-    #[inline(always)]
-    fn j0(&self) -> f64 { j0(*self) }
-
-    #[inline(always)]
-    fn j1(&self) -> f64 { j1(*self) }
-
-    #[inline(always)]
-    fn jn(&self, n: int) -> f64 { jn(n as c_int, *self) }
-
-    #[inline(always)]
-    fn y0(&self) -> f64 { y0(*self) }
-
-    #[inline(always)]
-    fn y1(&self) -> f64 { y1(*self) }
-
-    #[inline(always)]
-    fn yn(&self, n: int) -> f64 { yn(n as c_int, *self) }
-}
-
-impl Bounded for f64 {
-    #[inline(always)]
-    fn min_value() -> f64 { 2.2250738585072014e-308 }
-
-    #[inline(always)]
-    fn max_value() -> f64 { 1.7976931348623157e+308 }
-}
-
-impl Primitive for f64 {
-    #[inline(always)]
-    fn bits() -> uint { 64 }
-
-    #[inline(always)]
-    fn bytes() -> uint { Primitive::bits::<f64>() / 8 }
+    pub static LN_10: f64 = 2.30258509299404568401799145468436421_f64;
 }
 
 impl Float for f64 {
-    #[inline(always)]
-    fn NaN() -> f64 { 0.0 / 0.0 }
+    #[inline]
+    fn nan() -> f64 { NAN }
 
-    #[inline(always)]
-    fn infinity() -> f64 { 1.0 / 0.0 }
+    #[inline]
+    fn infinity() -> f64 { INFINITY }
 
-    #[inline(always)]
-    fn neg_infinity() -> f64 { -1.0 / 0.0 }
+    #[inline]
+    fn neg_infinity() -> f64 { NEG_INFINITY }
 
-    #[inline(always)]
+    #[inline]
     fn neg_zero() -> f64 { -0.0 }
 
-    /// Returns `true` if the number is NaN
-    #[inline(always)]
-    fn is_NaN(&self) -> bool { *self != *self }
+    /// Returns `true` if the number is NaN.
+    #[inline]
+    fn is_nan(self) -> bool { self != self }
 
-    /// Returns `true` if the number is infinite
-    #[inline(always)]
-    fn is_infinite(&self) -> bool {
-        *self == Float::infinity() || *self == Float::neg_infinity()
+    /// Returns `true` if the number is infinite.
+    #[inline]
+    fn is_infinite(self) -> bool {
+        self == Float::infinity() || self == Float::neg_infinity()
     }
 
-    /// Returns `true` if the number is neither infinite or NaN
-    #[inline(always)]
-    fn is_finite(&self) -> bool {
-        !(self.is_NaN() || self.is_infinite())
+    /// Returns `true` if the number is neither infinite or NaN.
+    #[inline]
+    fn is_finite(self) -> bool {
+        !(self.is_nan() || self.is_infinite())
     }
 
-    /// Returns `true` if the number is neither zero, infinite, subnormal or NaN
-    #[inline(always)]
-    fn is_normal(&self) -> bool {
+    /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
+    #[inline]
+    fn is_normal(self) -> bool {
         self.classify() == FPNormal
     }
 
-    /// Returns the floating point category of the number. If only one property is going to
-    /// be tested, it is generally faster to use the specific predicate instead.
-    fn classify(&self) -> FPCategory {
+    /// Returns the floating point category of the number. If only one property
+    /// is going to be tested, it is generally faster to use the specific
+    /// predicate instead.
+    fn classify(self) -> FPCategory {
         static EXP_MASK: u64 = 0x7ff0000000000000;
         static MAN_MASK: u64 = 0x000fffffffffffff;
 
-        match (
-            unsafe { ::cast::transmute::<f64,u64>(*self) } & MAN_MASK,
-            unsafe { ::cast::transmute::<f64,u64>(*self) } & EXP_MASK,
-        ) {
+        let bits: u64 = unsafe { mem::transmute(self) };
+        match (bits & MAN_MASK, bits & EXP_MASK) {
             (0, 0)        => FPZero,
             (_, 0)        => FPSubnormal,
             (0, EXP_MASK) => FPInfinite,
@@ -711,595 +162,219 @@ fn classify(&self) -> FPCategory {
         }
     }
 
-    #[inline(always)]
-    fn mantissa_digits() -> uint { 53 }
+    #[inline]
+    fn mantissa_digits(_: Option<f64>) -> uint { MANTISSA_DIGITS }
 
-    #[inline(always)]
-    fn digits() -> uint { 15 }
+    #[inline]
+    fn digits(_: Option<f64>) -> uint { DIGITS }
 
-    #[inline(always)]
-    fn epsilon() -> f64 { 2.2204460492503131e-16 }
+    #[inline]
+    fn epsilon() -> f64 { EPSILON }
 
-    #[inline(always)]
-    fn min_exp() -> int { -1021 }
+    #[inline]
+    fn min_exp(_: Option<f64>) -> int { MIN_EXP }
 
-    #[inline(always)]
-    fn max_exp() -> int { 1024 }
+    #[inline]
+    fn max_exp(_: Option<f64>) -> int { MAX_EXP }
 
-    #[inline(always)]
-    fn min_10_exp() -> int { -307 }
+    #[inline]
+    fn min_10_exp(_: Option<f64>) -> int { MIN_10_EXP }
 
-    #[inline(always)]
-    fn max_10_exp() -> int { 308 }
+    #[inline]
+    fn max_10_exp(_: Option<f64>) -> int { MAX_10_EXP }
 
-    /// Constructs a floating point number by multiplying `x` by 2 raised to the power of `exp`
-    #[inline(always)]
-    fn ldexp(x: f64, exp: int) -> f64 {
-        ldexp(x, exp as c_int)
-    }
+    #[inline]
+    fn min_pos_value(_: Option<f64>) -> f64 { MIN_POS_VALUE }
 
-    ///
-    /// Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
-    ///
-    /// - `self = x * pow(2, exp)`
-    /// - `0.5 <= abs(x) < 1.0`
-    ///
-    #[inline(always)]
-    fn frexp(&self) -> (f64, int) {
-        let mut exp = 0;
-        let x = frexp(*self, &mut exp);
-        (x, exp as int)
+    /// Returns the mantissa, exponent and sign as integers.
+    fn integer_decode(self) -> (u64, i16, i8) {
+        let bits: u64 = unsafe { mem::transmute(self) };
+        let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
+        let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
+        let mantissa = if exponent == 0 {
+            (bits & 0xfffffffffffff) << 1
+        } else {
+            (bits & 0xfffffffffffff) | 0x10000000000000
+        };
+        // Exponent bias + mantissa shift
+        exponent -= 1023 + 52;
+        (mantissa, exponent, sign)
     }
 
-    ///
-    /// Returns the exponential of the number, minus `1`, in a way that is accurate
-    /// even if the number is close to zero
-    ///
-    #[inline(always)]
-    fn exp_m1(&self) -> f64 { exp_m1(*self) }
-
-    ///
-    /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately
-    /// than if the operations were performed separately
-    ///
-    #[inline(always)]
-    fn ln_1p(&self) -> f64 { ln_1p(*self) }
-
-    ///
-    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This
-    /// produces a more accurate result with better performance than a separate multiplication
-    /// operation followed by an add.
-    ///
-    #[inline(always)]
-    fn mul_add(&self, a: f64, b: f64) -> f64 {
-        mul_add(*self, a, b)
+    /// Rounds towards minus infinity.
+    #[inline]
+    fn floor(self) -> f64 {
+        unsafe { intrinsics::floorf64(self) }
     }
 
-    /// Returns the next representable floating-point value in the direction of `other`
-    #[inline(always)]
-    fn next_after(&self, other: f64) -> f64 {
-        next_after(*self, other)
+    /// Rounds towards plus infinity.
+    #[inline]
+    fn ceil(self) -> f64 {
+        unsafe { intrinsics::ceilf64(self) }
     }
-}
-
-//
-// Section: String Conversions
-//
-
-///
-/// Converts a float to a string
-///
-/// # Arguments
-///
-/// * num - The float value
-///
-#[inline(always)]
-pub fn to_str(num: f64) -> ~str {
-    let (r, _) = strconv::to_str_common(
-        &num, 10u, true, strconv::SignNeg, strconv::DigAll);
-    r
-}
 
-///
-/// Converts a float to a string in hexadecimal format
-///
-/// # Arguments
-///
-/// * num - The float value
-///
-#[inline(always)]
-pub fn to_str_hex(num: f64) -> ~str {
-    let (r, _) = strconv::to_str_common(
-        &num, 16u, true, strconv::SignNeg, strconv::DigAll);
-    r
-}
-
-///
-/// Converts a float to a string in a given radix
-///
-/// # Arguments
-///
-/// * num - The float value
-/// * radix - The base to use
-///
-/// # Failure
-///
-/// Fails if called on a special value like `inf`, `-inf` or `NaN` due to
-/// possible misinterpretation of the result at higher bases. If those values
-/// are expected, use `to_str_radix_special()` instead.
-///
-#[inline(always)]
-pub fn to_str_radix(num: f64, rdx: uint) -> ~str {
-    let (r, special) = strconv::to_str_common(
-        &num, rdx, true, strconv::SignNeg, strconv::DigAll);
-    if special { fail!("number has a special value, \
-                      try to_str_radix_special() if those are expected") }
-    r
-}
+    /// Rounds to nearest integer. Rounds half-way cases away from zero.
+    #[inline]
+    fn round(self) -> f64 {
+        unsafe { intrinsics::roundf64(self) }
+    }
 
-///
-/// Converts a float to a string in a given radix, and a flag indicating
-/// whether it's a special value
-///
-/// # Arguments
-///
-/// * num - The float value
-/// * radix - The base to use
-///
-#[inline(always)]
-pub fn to_str_radix_special(num: f64, rdx: uint) -> (~str, bool) {
-    strconv::to_str_common(&num, rdx, true,
-                           strconv::SignNeg, strconv::DigAll)
-}
+    /// Returns the integer part of the number (rounds towards zero).
+    #[inline]
+    fn trunc(self) -> f64 {
+        unsafe { intrinsics::truncf64(self) }
+    }
 
-///
-/// Converts a float to a string with exactly the number of
-/// provided significant digits
-///
-/// # Arguments
-///
-/// * num - The float value
-/// * digits - The number of significant digits
-///
-#[inline(always)]
-pub fn to_str_exact(num: f64, dig: uint) -> ~str {
-    let (r, _) = strconv::to_str_common(
-        &num, 10u, true, strconv::SignNeg, strconv::DigExact(dig));
-    r
-}
+    /// The fractional part of the number, satisfying:
+    ///
+    /// ```rust
+    /// let x = 1.65f64;
+    /// assert!(x == x.trunc() + x.fract())
+    /// ```
+    #[inline]
+    fn fract(self) -> f64 { self - self.trunc() }
 
-///
-/// Converts a float to a string with a maximum number of
-/// significant digits
-///
-/// # Arguments
-///
-/// * num - The float value
-/// * digits - The number of significant digits
-///
-#[inline(always)]
-pub fn to_str_digits(num: f64, dig: uint) -> ~str {
-    let (r, _) = strconv::to_str_common(
-        &num, 10u, true, strconv::SignNeg, strconv::DigMax(dig));
-    r
-}
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error. This produces a more accurate result with better performance than
+    /// a separate multiplication operation followed by an add.
+    #[inline]
+    fn mul_add(self, a: f64, b: f64) -> f64 {
+        unsafe { intrinsics::fmaf64(self, a, b) }
+    }
 
-impl to_str::ToStr for f64 {
-    #[inline(always)]
-    fn to_str(&self) -> ~str { to_str_digits(*self, 8) }
-}
+    /// Returns the reciprocal (multiplicative inverse) of the number.
+    #[inline]
+    fn recip(self) -> f64 { 1.0 / self }
 
-impl num::ToStrRadix for f64 {
-    #[inline(always)]
-    fn to_str_radix(&self, rdx: uint) -> ~str {
-        to_str_radix(*self, rdx)
+    #[inline]
+    fn powf(self, n: f64) -> f64 {
+        unsafe { intrinsics::powf64(self, n) }
     }
-}
-
-///
-/// Convert a string in base 10 to a float.
-/// Accepts a optional decimal exponent.
-///
-/// This function accepts strings such as
-///
-/// * '3.14'
-/// * '+3.14', equivalent to '3.14'
-/// * '-3.14'
-/// * '2.5E10', or equivalently, '2.5e10'
-/// * '2.5E-10'
-/// * '.' (understood as 0)
-/// * '5.'
-/// * '.5', or, equivalently,  '0.5'
-/// * '+inf', 'inf', '-inf', 'NaN'
-///
-/// Leading and trailing whitespace represent an error.
-///
-/// # Arguments
-///
-/// * num - A string
-///
-/// # Return value
-///
-/// `none` if the string did not represent a valid number.  Otherwise,
-/// `Some(n)` where `n` is the floating-point number represented by `num`.
-///
-#[inline(always)]
-pub fn from_str(num: &str) -> Option<f64> {
-    strconv::from_str_common(num, 10u, true, true, true,
-                             strconv::ExpDec, false, false)
-}
 
-///
-/// Convert a string in base 16 to a float.
-/// Accepts a optional binary exponent.
-///
-/// This function accepts strings such as
-///
-/// * 'a4.fe'
-/// * '+a4.fe', equivalent to 'a4.fe'
-/// * '-a4.fe'
-/// * '2b.aP128', or equivalently, '2b.ap128'
-/// * '2b.aP-128'
-/// * '.' (understood as 0)
-/// * 'c.'
-/// * '.c', or, equivalently,  '0.c'
-/// * '+inf', 'inf', '-inf', 'NaN'
-///
-/// Leading and trailing whitespace represent an error.
-///
-/// # Arguments
-///
-/// * num - A string
-///
-/// # Return value
-///
-/// `none` if the string did not represent a valid number.  Otherwise,
-/// `Some(n)` where `n` is the floating-point number represented by `[num]`.
-///
-#[inline(always)]
-pub fn from_str_hex(num: &str) -> Option<f64> {
-    strconv::from_str_common(num, 16u, true, true, true,
-                             strconv::ExpBin, false, false)
-}
+    #[inline]
+    fn powi(self, n: i32) -> f64 {
+        unsafe { intrinsics::powif64(self, n) }
+    }
 
-///
-/// Convert a string in an given base to a float.
-///
-/// Due to possible conflicts, this function does **not** accept
-/// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
-/// does it recognize exponents of any kind.
-///
-/// Leading and trailing whitespace represent an error.
-///
-/// # Arguments
-///
-/// * num - A string
-/// * radix - The base to use. Must lie in the range [2 .. 36]
-///
-/// # Return value
-///
-/// `none` if the string did not represent a valid number. Otherwise,
-/// `Some(n)` where `n` is the floating-point number represented by `num`.
-///
-#[inline(always)]
-pub fn from_str_radix(num: &str, rdx: uint) -> Option<f64> {
-    strconv::from_str_common(num, rdx, true, true, false,
-                             strconv::ExpNone, false, false)
-}
+    /// sqrt(2.0)
+    #[inline]
+    fn sqrt2() -> f64 { consts::SQRT2 }
 
-impl FromStr for f64 {
-    #[inline(always)]
-    fn from_str(val: &str) -> Option<f64> { from_str(val) }
-}
+    /// 1.0 / sqrt(2.0)
+    #[inline]
+    fn frac_1_sqrt2() -> f64 { consts::FRAC_1_SQRT2 }
 
-impl num::FromStrRadix for f64 {
-    #[inline(always)]
-    fn from_str_radix(val: &str, rdx: uint) -> Option<f64> {
-        from_str_radix(val, rdx)
+    #[inline]
+    fn sqrt(self) -> f64 {
+        unsafe { intrinsics::sqrtf64(self) }
     }
-}
 
-#[cfg(test)]
-mod tests {
-    use f64::*;
-    use num::*;
-    use super::*;
-    use prelude::*;
+    #[inline]
+    fn rsqrt(self) -> f64 { self.sqrt().recip() }
 
-    #[test]
-    fn test_num() {
-        num::test_num(10f64, 2f64);
-    }
-
-    #[test]
-    fn test_min() {
-        assert_eq!(1f64.min(&2f64), 1f64);
-        assert_eq!(2f64.min(&1f64), 1f64);
-        assert!(1f64.min(&Float::NaN::<f64>()).is_NaN());
-        assert!(Float::NaN::<f64>().min(&1f64).is_NaN());
-    }
+    /// Archimedes' constant
+    #[inline]
+    fn pi() -> f64 { consts::PI }
 
-    #[test]
-    fn test_max() {
-        assert_eq!(1f64.max(&2f64), 2f64);
-        assert_eq!(2f64.max(&1f64), 2f64);
-        assert!(1f64.max(&Float::NaN::<f64>()).is_NaN());
-        assert!(Float::NaN::<f64>().max(&1f64).is_NaN());
-    }
+    /// 2.0 * pi
+    #[inline]
+    fn two_pi() -> f64 { consts::PI_2 }
 
-    #[test]
-    fn test_clamp() {
-        assert_eq!(1f64.clamp(&2f64, &4f64), 2f64);
-        assert_eq!(8f64.clamp(&2f64, &4f64), 4f64);
-        assert_eq!(3f64.clamp(&2f64, &4f64), 3f64);
-        assert!(3f64.clamp(&Float::NaN::<f64>(), &4f64).is_NaN());
-        assert!(3f64.clamp(&2f64, &Float::NaN::<f64>()).is_NaN());
-        assert!(Float::NaN::<f64>().clamp(&2f64, &4f64).is_NaN());
-    }
+    /// pi / 2.0
+    #[inline]
+    fn frac_pi_2() -> f64 { consts::FRAC_PI_2 }
 
-    #[test]
-    fn test_floor() {
-        assert_approx_eq!(1.0f64.floor(), 1.0f64);
-        assert_approx_eq!(1.3f64.floor(), 1.0f64);
-        assert_approx_eq!(1.5f64.floor(), 1.0f64);
-        assert_approx_eq!(1.7f64.floor(), 1.0f64);
-        assert_approx_eq!(0.0f64.floor(), 0.0f64);
-        assert_approx_eq!((-0.0f64).floor(), -0.0f64);
-        assert_approx_eq!((-1.0f64).floor(), -1.0f64);
-        assert_approx_eq!((-1.3f64).floor(), -2.0f64);
-        assert_approx_eq!((-1.5f64).floor(), -2.0f64);
-        assert_approx_eq!((-1.7f64).floor(), -2.0f64);
-    }
+    /// pi / 3.0
+    #[inline]
+    fn frac_pi_3() -> f64 { consts::FRAC_PI_3 }
 
-    #[test]
-    fn test_ceil() {
-        assert_approx_eq!(1.0f64.ceil(), 1.0f64);
-        assert_approx_eq!(1.3f64.ceil(), 2.0f64);
-        assert_approx_eq!(1.5f64.ceil(), 2.0f64);
-        assert_approx_eq!(1.7f64.ceil(), 2.0f64);
-        assert_approx_eq!(0.0f64.ceil(), 0.0f64);
-        assert_approx_eq!((-0.0f64).ceil(), -0.0f64);
-        assert_approx_eq!((-1.0f64).ceil(), -1.0f64);
-        assert_approx_eq!((-1.3f64).ceil(), -1.0f64);
-        assert_approx_eq!((-1.5f64).ceil(), -1.0f64);
-        assert_approx_eq!((-1.7f64).ceil(), -1.0f64);
-    }
+    /// pi / 4.0
+    #[inline]
+    fn frac_pi_4() -> f64 { consts::FRAC_PI_4 }
 
-    #[test]
-    fn test_round() {
-        assert_approx_eq!(1.0f64.round(), 1.0f64);
-        assert_approx_eq!(1.3f64.round(), 1.0f64);
-        assert_approx_eq!(1.5f64.round(), 2.0f64);
-        assert_approx_eq!(1.7f64.round(), 2.0f64);
-        assert_approx_eq!(0.0f64.round(), 0.0f64);
-        assert_approx_eq!((-0.0f64).round(), -0.0f64);
-        assert_approx_eq!((-1.0f64).round(), -1.0f64);
-        assert_approx_eq!((-1.3f64).round(), -1.0f64);
-        assert_approx_eq!((-1.5f64).round(), -2.0f64);
-        assert_approx_eq!((-1.7f64).round(), -2.0f64);
-    }
+    /// pi / 6.0
+    #[inline]
+    fn frac_pi_6() -> f64 { consts::FRAC_PI_6 }
 
-    #[test]
-    fn test_trunc() {
-        assert_approx_eq!(1.0f64.trunc(), 1.0f64);
-        assert_approx_eq!(1.3f64.trunc(), 1.0f64);
-        assert_approx_eq!(1.5f64.trunc(), 1.0f64);
-        assert_approx_eq!(1.7f64.trunc(), 1.0f64);
-        assert_approx_eq!(0.0f64.trunc(), 0.0f64);
-        assert_approx_eq!((-0.0f64).trunc(), -0.0f64);
-        assert_approx_eq!((-1.0f64).trunc(), -1.0f64);
-        assert_approx_eq!((-1.3f64).trunc(), -1.0f64);
-        assert_approx_eq!((-1.5f64).trunc(), -1.0f64);
-        assert_approx_eq!((-1.7f64).trunc(), -1.0f64);
-    }
+    /// pi / 8.0
+    #[inline]
+    fn frac_pi_8() -> f64 { consts::FRAC_PI_8 }
 
-    #[test]
-    fn test_fract() {
-        assert_approx_eq!(1.0f64.fract(), 0.0f64);
-        assert_approx_eq!(1.3f64.fract(), 0.3f64);
-        assert_approx_eq!(1.5f64.fract(), 0.5f64);
-        assert_approx_eq!(1.7f64.fract(), 0.7f64);
-        assert_approx_eq!(0.0f64.fract(), 0.0f64);
-        assert_approx_eq!((-0.0f64).fract(), -0.0f64);
-        assert_approx_eq!((-1.0f64).fract(), -0.0f64);
-        assert_approx_eq!((-1.3f64).fract(), -0.3f64);
-        assert_approx_eq!((-1.5f64).fract(), -0.5f64);
-        assert_approx_eq!((-1.7f64).fract(), -0.7f64);
-    }
+    /// 1.0 / pi
+    #[inline]
+    fn frac_1_pi() -> f64 { consts::FRAC_1_PI }
 
-    #[test]
-    fn test_asinh() {
-        assert_eq!(0.0f64.asinh(), 0.0f64);
-        assert_eq!((-0.0f64).asinh(), -0.0f64);
-        assert_eq!(Float::infinity::<f64>().asinh(), Float::infinity::<f64>());
-        assert_eq!(Float::neg_infinity::<f64>().asinh(), Float::neg_infinity::<f64>());
-        assert!(Float::NaN::<f64>().asinh().is_NaN());
-        assert_approx_eq!(2.0f64.asinh(), 1.443635475178810342493276740273105f64);
-        assert_approx_eq!((-2.0f64).asinh(), -1.443635475178810342493276740273105f64);
-    }
+    /// 2.0 / pi
+    #[inline]
+    fn frac_2_pi() -> f64 { consts::FRAC_2_PI }
 
-    #[test]
-    fn test_acosh() {
-        assert_eq!(1.0f64.acosh(), 0.0f64);
-        assert!(0.999f64.acosh().is_NaN());
-        assert_eq!(Float::infinity::<f64>().acosh(), Float::infinity::<f64>());
-        assert!(Float::neg_infinity::<f64>().acosh().is_NaN());
-        assert!(Float::NaN::<f64>().acosh().is_NaN());
-        assert_approx_eq!(2.0f64.acosh(), 1.31695789692481670862504634730796844f64);
-        assert_approx_eq!(3.0f64.acosh(), 1.76274717403908605046521864995958461f64);
-    }
+    /// 2.0 / sqrt(pi)
+    #[inline]
+    fn frac_2_sqrtpi() -> f64 { consts::FRAC_2_SQRTPI }
 
-    #[test]
-    fn test_atanh() {
-        assert_eq!(0.0f64.atanh(), 0.0f64);
-        assert_eq!((-0.0f64).atanh(), -0.0f64);
-        assert_eq!(1.0f64.atanh(), Float::infinity::<f64>());
-        assert_eq!((-1.0f64).atanh(), Float::neg_infinity::<f64>());
-        assert!(2f64.atanh().atanh().is_NaN());
-        assert!((-2f64).atanh().atanh().is_NaN());
-        assert!(Float::infinity::<f64>().atanh().is_NaN());
-        assert!(Float::neg_infinity::<f64>().atanh().is_NaN());
-        assert!(Float::NaN::<f64>().atanh().is_NaN());
-        assert_approx_eq!(0.5f64.atanh(), 0.54930614433405484569762261846126285f64);
-        assert_approx_eq!((-0.5f64).atanh(), -0.54930614433405484569762261846126285f64);
-    }
+    /// Euler's number
+    #[inline]
+    fn e() -> f64 { consts::E }
 
-    #[test]
-    fn test_real_consts() {
-        assert_approx_eq!(Real::two_pi::<f64>(), 2.0 * Real::pi::<f64>());
-        assert_approx_eq!(Real::frac_pi_2::<f64>(), Real::pi::<f64>() / 2f64);
-        assert_approx_eq!(Real::frac_pi_3::<f64>(), Real::pi::<f64>() / 3f64);
-        assert_approx_eq!(Real::frac_pi_4::<f64>(), Real::pi::<f64>() / 4f64);
-        assert_approx_eq!(Real::frac_pi_6::<f64>(), Real::pi::<f64>() / 6f64);
-        assert_approx_eq!(Real::frac_pi_8::<f64>(), Real::pi::<f64>() / 8f64);
-        assert_approx_eq!(Real::frac_1_pi::<f64>(), 1f64 / Real::pi::<f64>());
-        assert_approx_eq!(Real::frac_2_pi::<f64>(), 2f64 / Real::pi::<f64>());
-        assert_approx_eq!(Real::frac_2_sqrtpi::<f64>(), 2f64 / Real::pi::<f64>().sqrt());
-        assert_approx_eq!(Real::sqrt2::<f64>(), 2f64.sqrt());
-        assert_approx_eq!(Real::frac_1_sqrt2::<f64>(), 1f64 / 2f64.sqrt());
-        assert_approx_eq!(Real::log2_e::<f64>(), Real::e::<f64>().log2());
-        assert_approx_eq!(Real::log10_e::<f64>(), Real::e::<f64>().log10());
-        assert_approx_eq!(Real::ln_2::<f64>(), 2f64.ln());
-        assert_approx_eq!(Real::ln_10::<f64>(), 10f64.ln());
-    }
+    /// log2(e)
+    #[inline]
+    fn log2_e() -> f64 { consts::LOG2_E }
 
-    #[test]
-    pub fn test_abs() {
-        assert_eq!(infinity.abs(), infinity);
-        assert_eq!(1f64.abs(), 1f64);
-        assert_eq!(0f64.abs(), 0f64);
-        assert_eq!((-0f64).abs(), 0f64);
-        assert_eq!((-1f64).abs(), 1f64);
-        assert_eq!(neg_infinity.abs(), infinity);
-        assert_eq!((1f64/neg_infinity).abs(), 0f64);
-        assert!(NaN.abs().is_NaN());
-    }
+    /// log10(e)
+    #[inline]
+    fn log10_e() -> f64 { consts::LOG10_E }
 
-    #[test]
-    fn test_abs_sub() {
-        assert_eq!((-1f64).abs_sub(&1f64), 0f64);
-        assert_eq!(1f64.abs_sub(&1f64), 0f64);
-        assert_eq!(1f64.abs_sub(&0f64), 1f64);
-        assert_eq!(1f64.abs_sub(&-1f64), 2f64);
-        assert_eq!(neg_infinity.abs_sub(&0f64), 0f64);
-        assert_eq!(infinity.abs_sub(&1f64), infinity);
-        assert_eq!(0f64.abs_sub(&neg_infinity), infinity);
-        assert_eq!(0f64.abs_sub(&infinity), 0f64);
-        assert!(NaN.abs_sub(&-1f64).is_NaN());
-        assert!(1f64.abs_sub(&NaN).is_NaN());
-    }
+    /// ln(2.0)
+    #[inline]
+    fn ln_2() -> f64 { consts::LN_2 }
 
-    #[test]
-    fn test_signum() {
-        assert_eq!(infinity.signum(), 1f64);
-        assert_eq!(1f64.signum(), 1f64);
-        assert_eq!(0f64.signum(), 1f64);
-        assert_eq!((-0f64).signum(), -1f64);
-        assert_eq!((-1f64).signum(), -1f64);
-        assert_eq!(neg_infinity.signum(), -1f64);
-        assert_eq!((1f64/neg_infinity).signum(), -1f64);
-        assert!(NaN.signum().is_NaN());
-    }
+    /// ln(10.0)
+    #[inline]
+    fn ln_10() -> f64 { consts::LN_10 }
 
-    #[test]
-    fn test_is_positive() {
-        assert!(infinity.is_positive());
-        assert!(1f64.is_positive());
-        assert!(0f64.is_positive());
-        assert!(!(-0f64).is_positive());
-        assert!(!(-1f64).is_positive());
-        assert!(!neg_infinity.is_positive());
-        assert!(!(1f64/neg_infinity).is_positive());
-        assert!(!NaN.is_positive());
+    /// Returns the exponential of the number.
+    #[inline]
+    fn exp(self) -> f64 {
+        unsafe { intrinsics::expf64(self) }
     }
 
-    #[test]
-    fn test_is_negative() {
-        assert!(!infinity.is_negative());
-        assert!(!1f64.is_negative());
-        assert!(!0f64.is_negative());
-        assert!((-0f64).is_negative());
-        assert!((-1f64).is_negative());
-        assert!(neg_infinity.is_negative());
-        assert!((1f64/neg_infinity).is_negative());
-        assert!(!NaN.is_negative());
+    /// Returns 2 raised to the power of the number.
+    #[inline]
+    fn exp2(self) -> f64 {
+        unsafe { intrinsics::exp2f64(self) }
     }
 
-    #[test]
-    fn test_approx_eq() {
-        assert!(1.0f64.approx_eq(&1f64));
-        assert!(0.9999999f64.approx_eq(&1f64));
-        assert!(1.000001f64.approx_eq_eps(&1f64, &1.0e-5));
-        assert!(1.0000001f64.approx_eq_eps(&1f64, &1.0e-6));
-        assert!(!1.0000001f64.approx_eq_eps(&1f64, &1.0e-7));
+    /// Returns the natural logarithm of the number.
+    #[inline]
+    fn ln(self) -> f64 {
+        unsafe { intrinsics::logf64(self) }
     }
 
-    #[test]
-    fn test_primitive() {
-        assert_eq!(Primitive::bits::<f64>(), sys::size_of::<f64>() * 8);
-        assert_eq!(Primitive::bytes::<f64>(), sys::size_of::<f64>());
-    }
+    /// Returns the logarithm of the number with respect to an arbitrary base.
+    #[inline]
+    fn log(self, base: f64) -> f64 { self.ln() / base.ln() }
 
-    #[test]
-    fn test_is_normal() {
-        assert!(!Float::NaN::<f64>().is_normal());
-        assert!(!Float::infinity::<f64>().is_normal());
-        assert!(!Float::neg_infinity::<f64>().is_normal());
-        assert!(!Zero::zero::<f64>().is_normal());
-        assert!(!Float::neg_zero::<f64>().is_normal());
-        assert!(1f64.is_normal());
-        assert!(1e-307f64.is_normal());
-        assert!(!1e-308f64.is_normal());
+    /// Returns the base 2 logarithm of the number.
+    #[inline]
+    fn log2(self) -> f64 {
+        unsafe { intrinsics::log2f64(self) }
     }
 
-    #[test]
-    fn test_classify() {
-        assert_eq!(Float::NaN::<f64>().classify(), FPNaN);
-        assert_eq!(Float::infinity::<f64>().classify(), FPInfinite);
-        assert_eq!(Float::neg_infinity::<f64>().classify(), FPInfinite);
-        assert_eq!(Zero::zero::<f64>().classify(), FPZero);
-        assert_eq!(Float::neg_zero::<f64>().classify(), FPZero);
-        assert_eq!(1e-307f64.classify(), FPNormal);
-        assert_eq!(1e-308f64.classify(), FPSubnormal);
+    /// Returns the base 10 logarithm of the number.
+    #[inline]
+    fn log10(self) -> f64 {
+        unsafe { intrinsics::log10f64(self) }
     }
 
-    #[test]
-    fn test_ldexp() {
-        // We have to use from_str until base-2 exponents
-        // are supported in floating-point literals
-        let f1: f64 = from_str_hex("1p-123").unwrap();
-        let f2: f64 = from_str_hex("1p-111").unwrap();
-        assert_eq!(Float::ldexp(1f64, -123), f1);
-        assert_eq!(Float::ldexp(1f64, -111), f2);
-
-        assert_eq!(Float::ldexp(0f64, -123), 0f64);
-        assert_eq!(Float::ldexp(-0f64, -123), -0f64);
-        assert_eq!(Float::ldexp(Float::infinity::<f64>(), -123),
-                   Float::infinity::<f64>());
-        assert_eq!(Float::ldexp(Float::neg_infinity::<f64>(), -123),
-                   Float::neg_infinity::<f64>());
-        assert!(Float::ldexp(Float::NaN::<f64>(), -123).is_NaN());
-    }
+    /// Converts to degrees, assuming the number is in radians.
+    #[inline]
+    fn to_degrees(self) -> f64 { self * (180.0f64 / Float::pi()) }
 
-    #[test]
-    fn test_frexp() {
-        // We have to use from_str until base-2 exponents
-        // are supported in floating-point literals
-        let f1: f64 = from_str_hex("1p-123").unwrap();
-        let f2: f64 = from_str_hex("1p-111").unwrap();
-        let (x1, exp1) = f1.frexp();
-        let (x2, exp2) = f2.frexp();
-        assert_eq!((x1, exp1), (0.5f64, -122));
-        assert_eq!((x2, exp2), (0.5f64, -110));
-        assert_eq!(Float::ldexp(x1, exp1), f1);
-        assert_eq!(Float::ldexp(x2, exp2), f2);
-
-        assert_eq!(0f64.frexp(), (0f64, 0));
-        assert_eq!((-0f64).frexp(), (-0f64, 0));
-        assert_eq!(match Float::infinity::<f64>().frexp() { (x, _) => x },
-                   Float::infinity::<f64>())
-        assert_eq!(match Float::neg_infinity::<f64>().frexp() { (x, _) => x },
-                   Float::neg_infinity::<f64>())
-        assert!(match Float::NaN::<f64>().frexp() { (x, _) => x.is_NaN() })
+    /// Converts to radians, assuming the number is in degrees.
+    #[inline]
+    fn to_radians(self) -> f64 {
+        let value: f64 = Float::pi();
+        self * (value / 180.0)
     }
 }
+