]> git.lizzy.rs Git - rust.git/blobdiff - src/helpers.rs
Detect `std` by checking if the crate defines `#[lang = "start"]` rather than string...
[rust.git] / src / helpers.rs
index dd0530cf48b4e7970dbed0f3fdb681ca004879b9..7f99aa1997068ae3099f0d01112423af4b71e488 100644 (file)
-use std::{mem, iter};
-use std::ffi::{OsStr, OsString};
+use std::convert::{TryFrom, TryInto};
+use std::mem;
+use std::num::NonZeroUsize;
+use std::time::Duration;
 
-use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX};
-use rustc::mir;
-use rustc::ty::{
-    self,
-    layout::{self, LayoutOf, Size, TyLayout},
-};
+use log::trace;
+
+use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
+use rustc_middle::mir;
+use rustc_middle::ty::{self, layout::TyAndLayout, List, TyCtxt};
+use rustc_target::abi::{Align, FieldsShape, LayoutOf, Size, Variants};
+use rustc_target::spec::abi::Abi;
 
 use rand::RngCore;
 
 use crate::*;
 
-impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
-
-pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
-    /// Gets an instance for a path.
-    fn resolve_path(&self, path: &[&str]) -> InterpResult<'tcx, ty::Instance<'tcx>> {
-        let this = self.eval_context_ref();
-        this.tcx
-            .crates()
-            .iter()
-            .find(|&&krate| this.tcx.original_crate_name(krate).as_str() == path[0])
-            .and_then(|krate| {
-                let krate = DefId {
-                    krate: *krate,
-                    index: CRATE_DEF_INDEX,
-                };
-                let mut items = this.tcx.item_children(krate);
-                let mut path_it = path.iter().skip(1).peekable();
-
-                while let Some(segment) = path_it.next() {
-                    for item in mem::replace(&mut items, Default::default()).iter() {
-                        if item.ident.name.as_str() == *segment {
-                            if path_it.peek().is_none() {
-                                return Some(ty::Instance::mono(this.tcx.tcx, item.res.def_id()));
-                            }
-
-                            items = this.tcx.item_children(item.res.def_id());
-                            break;
+impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
+
+/// Gets an instance for a path.
+fn try_resolve_did<'mir, 'tcx>(tcx: TyCtxt<'tcx>, path: &[&str]) -> Option<DefId> {
+    tcx.crates().iter().find(|&&krate| tcx.crate_name(krate).as_str() == path[0]).and_then(
+        |krate| {
+            let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX };
+            let mut items = tcx.item_children(krate);
+            let mut path_it = path.iter().skip(1).peekable();
+
+            while let Some(segment) = path_it.next() {
+                for item in mem::replace(&mut items, Default::default()).iter() {
+                    if item.ident.name.as_str() == *segment {
+                        if path_it.peek().is_none() {
+                            return Some(item.res.def_id());
                         }
+
+                        items = tcx.item_children(item.res.def_id());
+                        break;
                     }
                 }
-                None
-            })
-            .ok_or_else(|| {
-                let path = path.iter().map(|&s| s.to_owned()).collect();
-                err_unsup!(PathNotFound(path)).into()
-            })
+            }
+            None
+        },
+    )
+}
+
+pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
+    /// Gets an instance for a path.
+    fn resolve_path(&self, path: &[&str]) -> ty::Instance<'tcx> {
+        let did = try_resolve_did(self.eval_context_ref().tcx.tcx, path)
+            .unwrap_or_else(|| panic!("failed to find required Rust item: {:?}", path));
+        ty::Instance::mono(self.eval_context_ref().tcx.tcx, did)
+    }
+
+    /// Evaluates the scalar at the specified path. Returns Some(val)
+    /// if the path could be resolved, and None otherwise
+    fn eval_path_scalar(&mut self, path: &[&str]) -> InterpResult<'tcx, ScalarMaybeUninit<Tag>> {
+        let this = self.eval_context_mut();
+        let instance = this.resolve_path(path);
+        let cid = GlobalId { instance, promoted: None };
+        let const_val = this.eval_to_allocation(cid)?;
+        let const_val = this.read_scalar(&const_val.into())?;
+        return Ok(const_val);
+    }
+
+    /// Helper function to get a `libc` constant as a `Scalar`.
+    fn eval_libc(&mut self, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
+        self.eval_context_mut().eval_path_scalar(&["libc", name])?.check_init()
+    }
+
+    /// Helper function to get a `libc` constant as an `i32`.
+    fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> {
+        // TODO: Cache the result.
+        self.eval_libc(name)?.to_i32()
+    }
+
+    /// Helper function to get a `windows` constant as a `Scalar`.
+    fn eval_windows(&mut self, module: &str, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
+        self.eval_context_mut()
+            .eval_path_scalar(&["std", "sys", "windows", module, name])?
+            .check_init()
+    }
+
+    /// Helper function to get a `windows` constant as an `u64`.
+    fn eval_windows_u64(&mut self, module: &str, name: &str) -> InterpResult<'tcx, u64> {
+        // TODO: Cache the result.
+        self.eval_windows(module, name)?.to_u64()
+    }
+
+    /// Helper function to get the `TyAndLayout` of a `libc` type
+    fn libc_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
+        let this = self.eval_context_mut();
+        let ty = this.resolve_path(&["libc", name]).ty(*this.tcx, ty::ParamEnv::reveal_all());
+        this.layout_of(ty)
+    }
+
+    /// Helper function to get the `TyAndLayout` of a `windows` type
+    fn windows_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
+        let this = self.eval_context_mut();
+        let ty = this
+            .resolve_path(&["std", "sys", "windows", "c", name])
+            .ty(*this.tcx, ty::ParamEnv::reveal_all());
+        this.layout_of(ty)
     }
 
     /// Write a 0 of the appropriate size to `dest`.
-    fn write_null(&mut self, dest: PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
+    fn write_null(&mut self, dest: &PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
         self.eval_context_mut().write_scalar(Scalar::from_int(0, dest.layout.size), dest)
     }
 
     /// Test if this immediate equals 0.
     fn is_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, bool> {
         let this = self.eval_context_ref();
-        let null = Scalar::from_int(0, this.memory.pointer_size());
+        let null = Scalar::null_ptr(this);
         this.ptr_eq(val, null)
     }
 
     /// Turn a Scalar into an Option<NonNullScalar>
     fn test_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, Option<Scalar<Tag>>> {
         let this = self.eval_context_ref();
-        Ok(if this.is_null(val)? {
-            None
-        } else {
-            Some(val)
-        })
+        Ok(if this.is_null(val)? { None } else { Some(val) })
     }
 
     /// Get the `Place` for a local
     fn local_place(&mut self, local: mir::Local) -> InterpResult<'tcx, PlaceTy<'tcx, Tag>> {
         let this = self.eval_context_mut();
-        let place = mir::Place { base: mir::PlaceBase::Local(local), projection: Box::new([]) };
-        this.eval_place(&place)
+        let place = mir::Place { local: local, projection: List::empty() };
+        this.eval_place(place)
     }
 
     /// Generate some random bytes, and write them to `dest`.
-    fn gen_random(
-        &mut self,
-        ptr: Scalar<Tag>,
-        len: usize,
-    ) -> InterpResult<'tcx>  {
+    fn gen_random(&mut self, ptr: Scalar<Tag>, len: u64) -> InterpResult<'tcx> {
         // Some programs pass in a null pointer and a length of 0
         // to their platform's random-generation function (e.g. getrandom())
         // on Linux. For compatibility with these programs, we don't perform
@@ -95,14 +138,13 @@ fn gen_random(
         }
         let this = self.eval_context_mut();
 
-        let mut data = vec![0; len];
+        let mut data = vec![0; usize::try_from(len).unwrap()];
 
         if this.machine.communicate {
             // Fill the buffer using the host's rng.
             getrandom::getrandom(&mut data)
-                .map_err(|err| err_unsup_format!("getrandom failed: {}", err))?;
-        }
-        else {
+                .map_err(|err| err_unsup_format!("host getrandom failed: {}", err))?;
+        } else {
             let rng = this.memory.extra.rng.get_mut();
             rng.fill_bytes(&mut data);
         }
@@ -110,20 +152,63 @@ fn gen_random(
         this.memory.write_bytes(ptr, data.iter().copied())
     }
 
+    /// Call a function: Push the stack frame and pass the arguments.
+    /// For now, arguments must be scalars (so that the caller does not have to know the layout).
+    fn call_function(
+        &mut self,
+        f: ty::Instance<'tcx>,
+        caller_abi: Abi,
+        args: &[Immediate<Tag>],
+        dest: Option<&PlaceTy<'tcx, Tag>>,
+        stack_pop: StackPopCleanup,
+    ) -> InterpResult<'tcx> {
+        let this = self.eval_context_mut();
+        let param_env = ty::ParamEnv::reveal_all(); // in Miri this is always the param_env we use... and this.param_env is private.
+        let callee_abi = f.ty(*this.tcx, param_env).fn_sig(*this.tcx).abi();
+        if this.machine.enforce_abi && callee_abi != caller_abi {
+            throw_ub_format!(
+                "calling a function with ABI {} using caller ABI {}",
+                callee_abi.name(),
+                caller_abi.name()
+            )
+        }
+
+        // Push frame.
+        let mir = &*this.load_mir(f.def, None)?;
+        this.push_stack_frame(f, mir, dest, stack_pop)?;
+
+        // Initialize arguments.
+        let mut callee_args = this.frame().body.args_iter();
+        for arg in args {
+            let callee_arg = this.local_place(
+                callee_args
+                    .next()
+                    .ok_or_else(|| err_ub_format!("callee has fewer arguments than expected"))?,
+            )?;
+            this.write_immediate(*arg, &callee_arg)?;
+        }
+        if callee_args.next().is_some() {
+            throw_ub_format!("callee has more arguments than expected");
+        }
+
+        Ok(())
+    }
+
     /// Visits the memory covered by `place`, sensitive to freezing: the 3rd parameter
     /// will be true if this is frozen, false if this is in an `UnsafeCell`.
     fn visit_freeze_sensitive(
         &self,
-        place: MPlaceTy<'tcx, Tag>,
+        place: &MPlaceTy<'tcx, Tag>,
         size: Size,
         mut action: impl FnMut(Pointer<Tag>, Size, bool) -> InterpResult<'tcx>,
     ) -> InterpResult<'tcx> {
         let this = self.eval_context_ref();
         trace!("visit_frozen(place={:?}, size={:?})", *place, size);
-        debug_assert_eq!(size,
+        debug_assert_eq!(
+            size,
             this.size_and_align_of_mplace(place)?
-            .map(|(size, _)| size)
-            .unwrap_or_else(|| place.layout.size)
+                .map(|(size, _)| size)
+                .unwrap_or_else(|| place.layout.size)
         );
         // Store how far we proceeded into the place so far. Everything to the left of
         // this offset has already been handled, in the sense that the frozen parts
@@ -143,11 +228,11 @@ fn visit_freeze_sensitive(
             let frozen_size = unsafe_cell_offset - end_offset;
             // Everything between the end_ptr and this `UnsafeCell` is frozen.
             if frozen_size != Size::ZERO {
-                action(end_ptr, frozen_size, /*frozen*/true)?;
+                action(end_ptr, frozen_size, /*frozen*/ true)?;
             }
             // This `UnsafeCell` is NOT frozen.
             if unsafe_cell_size != Size::ZERO {
-                action(unsafe_cell_ptr, unsafe_cell_size, /*frozen*/false)?;
+                action(unsafe_cell_ptr, unsafe_cell_size, /*frozen*/ false)?;
             }
             // Update end end_ptr.
             end_ptr = unsafe_cell_ptr.wrapping_offset(unsafe_cell_size, this);
@@ -161,7 +246,8 @@ fn visit_freeze_sensitive(
                 unsafe_cell_action: |place| {
                     trace!("unsafe_cell_action on {:?}", place.ptr);
                     // We need a size to go on.
-                    let unsafe_cell_size = this.size_and_align_of_mplace(place)?
+                    let unsafe_cell_size = this
+                        .size_and_align_of_mplace(&place)?
                         .map(|(size, _)| size)
                         // for extern types, just cover what we can
                         .unwrap_or_else(|| place.layout.size);
@@ -184,18 +270,17 @@ fn visit_freeze_sensitive(
         /// Visiting the memory covered by a `MemPlace`, being aware of
         /// whether we are inside an `UnsafeCell` or not.
         struct UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
-            where F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>
+        where
+            F: FnMut(&MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
         {
             ecx: &'ecx MiriEvalContext<'mir, 'tcx>,
             unsafe_cell_action: F,
         }
 
-        impl<'ecx, 'mir, 'tcx, F>
-            ValueVisitor<'mir, 'tcx, Evaluator<'tcx>>
-        for
-            UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
+        impl<'ecx, 'mir, 'tcx: 'mir, F> ValueVisitor<'mir, 'tcx, Evaluator<'mir, 'tcx>>
+            for UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
         where
-            F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>
+            F: FnMut(&MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
         {
             type V = MPlaceTy<'tcx, Tag>;
 
@@ -205,11 +290,11 @@ fn ecx(&self) -> &MiriEvalContext<'mir, 'tcx> {
             }
 
             // Hook to detect `UnsafeCell`.
-            fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>
-            {
+            fn visit_value(&mut self, v: &MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
                 trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
-                let is_unsafe_cell = match v.layout.ty.kind {
-                    ty::Adt(adt, _) => Some(adt.did) == self.ecx.tcx.lang_items().unsafe_cell_type(),
+                let is_unsafe_cell = match v.layout.ty.kind() {
+                    ty::Adt(adt, _) =>
+                        Some(adt.did) == self.ecx.tcx.lang_items().unsafe_cell_type(),
                     _ => false,
                 };
                 if is_unsafe_cell {
@@ -218,12 +303,15 @@ fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>
                 } else if self.ecx.type_is_freeze(v.layout.ty) {
                     // This is `Freeze`, there cannot be an `UnsafeCell`
                     Ok(())
+                } else if matches!(v.layout.fields, FieldsShape::Union(..)) {
+                    // A (non-frozen) union. We fall back to whatever the type says.
+                    (self.unsafe_cell_action)(v)
                 } else {
                     // We want to not actually read from memory for this visit. So, before
                     // walking this value, we have to make sure it is not a
                     // `Variants::Multiple`.
                     match v.layout.variants {
-                        layout::Variants::Multiple { .. } => {
+                        Variants::Multiple { .. } => {
                             // A multi-variant enum, or generator, or so.
                             // Treat this like a union: without reading from memory,
                             // we cannot determine the variant we are in. Reading from
@@ -233,7 +321,7 @@ fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>
                             // `UnsafeCell` action.
                             (self.unsafe_cell_action)(v)
                         }
-                        layout::Variants::Single { .. } => {
+                        Variants::Single { .. } => {
                             // Proceed further, try to find where exactly that `UnsafeCell`
                             // is hiding.
                             self.walk_value(v)
@@ -245,71 +333,40 @@ fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>
             // Make sure we visit aggregrates in increasing offset order.
             fn visit_aggregate(
                 &mut self,
-                place: MPlaceTy<'tcx, Tag>,
-                fields: impl Iterator<Item=InterpResult<'tcx, MPlaceTy<'tcx, Tag>>>,
+                place: &MPlaceTy<'tcx, Tag>,
+                fields: impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>>,
             ) -> InterpResult<'tcx> {
                 match place.layout.fields {
-                    layout::FieldPlacement::Array { .. } => {
+                    FieldsShape::Array { .. } => {
                         // For the array layout, we know the iterator will yield sorted elements so
                         // we can avoid the allocation.
                         self.walk_aggregate(place, fields)
                     }
-                    layout::FieldPlacement::Arbitrary { .. } => {
+                    FieldsShape::Arbitrary { .. } => {
                         // Gather the subplaces and sort them before visiting.
-                        let mut places = fields.collect::<InterpResult<'tcx, Vec<MPlaceTy<'tcx, Tag>>>>()?;
+                        let mut places =
+                            fields.collect::<InterpResult<'tcx, Vec<MPlaceTy<'tcx, Tag>>>>()?;
                         places.sort_by_key(|place| place.ptr.assert_ptr().offset);
                         self.walk_aggregate(place, places.into_iter().map(Ok))
                     }
-                    layout::FieldPlacement::Union { .. } => {
+                    FieldsShape::Union { .. } | FieldsShape::Primitive => {
                         // Uh, what?
-                        bug!("a union is not an aggregate we should ever visit")
+                        bug!("unions/primitives are not aggregates we should ever visit")
                     }
                 }
             }
 
-            // We have to do *something* for unions.
-            fn visit_union(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>
-            {
-                // With unions, we fall back to whatever the type says, to hopefully be consistent
-                // with LLVM IR.
-                // FIXME: are we consistent, and is this really the behavior we want?
-                let frozen = self.ecx.type_is_freeze(v.layout.ty);
-                if frozen {
-                    Ok(())
-                } else {
-                    (self.unsafe_cell_action)(v)
-                }
-            }
-
-            // We should never get to a primitive, but always short-circuit somewhere above.
-            fn visit_primitive(&mut self, _v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>
-            {
-                bug!("we should always short-circuit before coming to a primitive")
+            fn visit_union(
+                &mut self,
+                _v: &MPlaceTy<'tcx, Tag>,
+                _fields: NonZeroUsize,
+            ) -> InterpResult<'tcx> {
+                bug!("we should have already handled unions in `visit_value`")
             }
         }
     }
 
-    /// Helper function to get a `libc` constant as a `Scalar`.
-    fn eval_libc(&mut self, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
-        self.eval_context_mut()
-            .eval_path_scalar(&["libc", name])?
-            .ok_or_else(|| err_unsup_format!("Path libc::{} cannot be resolved.", name))?
-            .not_undef()
-    }
-
-    /// Helper function to get a `libc` constant as an `i32`.
-    fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> {
-        self.eval_libc(name)?.to_i32()
-    }
-
-    /// Helper function to get the `TyLayout` of a `libc` type
-    fn libc_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyLayout<'tcx>> {
-        let this = self.eval_context_mut();
-        let ty = this.resolve_path(&["libc", name])?.ty(*this.tcx);
-        this.layout_of(ty)
-    }
-
-    // Writes several `ImmTy`s contiguosly into memory. This is useful when you have to pack
+    // Writes several `ImmTy`s contiguously into memory. This is useful when you have to pack
     // different values into a struct.
     fn write_packed_immediates(
         &mut self,
@@ -323,7 +380,7 @@ fn write_packed_immediates(
         for &imm in imms {
             this.write_immediate_to_mplace(
                 *imm,
-                place.offset(offset, None, imm.layout, &*this.tcx)?,
+                &place.offset(offset, MemPlaceMeta::None, imm.layout, &*this.tcx)?,
             )?;
             offset += imm.layout.size;
         }
@@ -333,25 +390,54 @@ fn write_packed_immediates(
     /// Helper function used inside the shims of foreign functions to check that isolation is
     /// disabled. It returns an error using the `name` of the foreign function if this is not the
     /// case.
-    fn check_no_isolation(&mut self, name: &str) -> InterpResult<'tcx> {
-        if !self.eval_context_mut().machine.communicate {
-            throw_unsup_format!("`{}` not available when isolation is enabled. Pass the flag `-Zmiri-disable-isolation` to disable it.", name)
+    fn check_no_isolation(&self, name: &str) -> InterpResult<'tcx> {
+        if !self.eval_context_ref().machine.communicate {
+            isolation_error(name)?;
         }
         Ok(())
     }
 
+    /// Helper function used inside the shims of foreign functions to assert that the target OS
+    /// is `target_os`. It panics showing a message with the `name` of the foreign function
+    /// if this is not the case.
+    fn assert_target_os(&self, target_os: &str, name: &str) {
+        assert_eq!(
+            self.eval_context_ref().tcx.sess.target.os,
+            target_os,
+            "`{}` is only available on the `{}` target OS",
+            name,
+            target_os,
+        )
+    }
+
+    /// Get last error variable as a place, lazily allocating thread-local storage for it if
+    /// necessary.
+    fn last_error_place(&mut self) -> InterpResult<'tcx, MPlaceTy<'tcx, Tag>> {
+        let this = self.eval_context_mut();
+        if let Some(errno_place) = this.active_thread_ref().last_error {
+            Ok(errno_place)
+        } else {
+            // Allocate new place, set initial value to 0.
+            let errno_layout = this.machine.layouts.u32;
+            let errno_place = this.allocate(errno_layout, MiriMemoryKind::Machine.into());
+            this.write_scalar(Scalar::from_u32(0), &errno_place.into())?;
+            this.active_thread_mut().last_error = Some(errno_place);
+            Ok(errno_place)
+        }
+    }
+
     /// Sets the last error variable.
     fn set_last_error(&mut self, scalar: Scalar<Tag>) -> InterpResult<'tcx> {
         let this = self.eval_context_mut();
-        let errno_place = this.machine.last_error.unwrap();
-        this.write_scalar(scalar, errno_place.into())
+        let errno_place = this.last_error_place()?;
+        this.write_scalar(scalar, &errno_place.into())
     }
 
     /// Gets the last error variable.
     fn get_last_error(&mut self) -> InterpResult<'tcx, Scalar<Tag>> {
         let this = self.eval_context_mut();
-        let errno_place = this.machine.last_error.unwrap();
-        this.read_scalar(errno_place.into())?.not_undef()
+        let errno_place = this.last_error_place()?;
+        this.read_scalar(&errno_place.into())?.check_init()
     }
 
     /// Sets the last OS error using a `std::io::Error`. This function tries to produce the most
@@ -359,8 +445,9 @@ fn get_last_error(&mut self) -> InterpResult<'tcx, Scalar<Tag>> {
     fn set_last_error_from_io_error(&mut self, e: std::io::Error) -> InterpResult<'tcx> {
         use std::io::ErrorKind::*;
         let this = self.eval_context_mut();
-        let target = &this.tcx.tcx.sess.target.target;
-        let last_error = if target.options.target_family == Some("unix".to_owned()) {
+        let target = &this.tcx.sess.target;
+        let target_os = &target.os;
+        let last_error = if target.families.contains(&"unix".to_owned()) {
             this.eval_libc(match e.kind() {
                 ConnectionRefused => "ECONNREFUSED",
                 ConnectionReset => "ECONNRESET",
@@ -376,11 +463,27 @@ fn set_last_error_from_io_error(&mut self, e: std::io::Error) -> InterpResult<'t
                 TimedOut => "ETIMEDOUT",
                 AlreadyExists => "EEXIST",
                 WouldBlock => "EWOULDBLOCK",
-                _ => throw_unsup_format!("The {} error cannot be transformed into a raw os error", e)
+                _ => {
+                    throw_unsup_format!("io error {} cannot be transformed into a raw os error", e)
+                }
             })?
+        } else if target.families.contains(&"windows".to_owned()) {
+            // FIXME: we have to finish implementing the Windows equivalent of this.
+            this.eval_windows(
+                "c",
+                match e.kind() {
+                    NotFound => "ERROR_FILE_NOT_FOUND",
+                    _ => throw_unsup_format!(
+                        "io error {} cannot be transformed into a raw os error",
+                        e
+                    ),
+                },
+            )?
         } else {
-            // FIXME: we have to implement the Windows equivalent of this.
-            throw_unsup_format!("Setting the last OS error from an io::Error is unsupported for {}.", target.target_os)
+            throw_unsup_format!(
+                "setting the last OS error from an io::Error is unsupported for {}.",
+                target_os
+            )
         };
         this.set_last_error(last_error)
     }
@@ -404,58 +507,171 @@ fn try_unwrap_io_result<T: From<i32>>(
         }
     }
 
-    /// Helper function to read an OsString from a null-terminated sequence of bytes, which is what
-    /// the Unix APIs usually handle.
-    fn read_os_string_from_c_string(&mut self, scalar: Scalar<Tag>) -> InterpResult<'tcx, OsString> {
-        let bytes = self.eval_context_mut().memory.read_c_str(scalar)?;
-        Ok(bytes_to_os_str(bytes)?.into())
+    fn read_scalar_at_offset(
+        &self,
+        op: &OpTy<'tcx, Tag>,
+        offset: u64,
+        layout: TyAndLayout<'tcx>,
+    ) -> InterpResult<'tcx, ScalarMaybeUninit<Tag>> {
+        let this = self.eval_context_ref();
+        let op_place = this.deref_operand(op)?;
+        let offset = Size::from_bytes(offset);
+        // Ensure that the following read at an offset is within bounds
+        assert!(op_place.layout.size >= offset + layout.size);
+        let value_place = op_place.offset(offset, MemPlaceMeta::None, layout, this)?;
+        this.read_scalar(&value_place.into())
+    }
+
+    fn write_scalar_at_offset(
+        &mut self,
+        op: &OpTy<'tcx, Tag>,
+        offset: u64,
+        value: impl Into<ScalarMaybeUninit<Tag>>,
+        layout: TyAndLayout<'tcx>,
+    ) -> InterpResult<'tcx, ()> {
+        let this = self.eval_context_mut();
+        let op_place = this.deref_operand(op)?;
+        let offset = Size::from_bytes(offset);
+        // Ensure that the following read at an offset is within bounds
+        assert!(op_place.layout.size >= offset + layout.size);
+        let value_place = op_place.offset(offset, MemPlaceMeta::None, layout, this)?;
+        this.write_scalar(value, &value_place.into())
     }
 
-    /// Helper function to write an OsStr as a null-terminated sequence of bytes, which is what
-    /// the Unix APIs usually handle. This function returns `Ok(false)` without trying to write if
-    /// `size` is not large enough to fit the contents of `os_string` plus a null terminator. It
-    /// returns `Ok(true)` if the writing process was successful.
-    fn write_os_str_to_c_string(
+    /// Parse a `timespec` struct and return it as a `std::time::Duration`. It returns `None`
+    /// if the value in the `timespec` struct is invalid. Some libc functions will return
+    /// `EINVAL` in this case.
+    fn read_timespec(
         &mut self,
-        os_str: &OsStr,
-        scalar: Scalar<Tag>,
-        size: u64
-    ) -> InterpResult<'tcx, bool> {
-        let bytes = os_str_to_bytes(os_str)?;
-        // If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null
-        // terminator to memory using the `ptr` pointer would cause an out-of-bounds access.
-        if size <= bytes.len() as u64 {
-            return Ok(false);
+        timespec_ptr_op: &OpTy<'tcx, Tag>,
+    ) -> InterpResult<'tcx, Option<Duration>> {
+        let this = self.eval_context_mut();
+        let tp = this.deref_operand(timespec_ptr_op)?;
+        let seconds_place = this.mplace_field(&tp, 0)?;
+        let seconds_scalar = this.read_scalar(&seconds_place.into())?;
+        let seconds = seconds_scalar.to_machine_isize(this)?;
+        let nanoseconds_place = this.mplace_field(&tp, 1)?;
+        let nanoseconds_scalar = this.read_scalar(&nanoseconds_place.into())?;
+        let nanoseconds = nanoseconds_scalar.to_machine_isize(this)?;
+
+        Ok(try {
+            // tv_sec must be non-negative.
+            let seconds: u64 = seconds.try_into().ok()?;
+            // tv_nsec must be non-negative.
+            let nanoseconds: u32 = nanoseconds.try_into().ok()?;
+            if nanoseconds >= 1_000_000_000 {
+                // tv_nsec must not be greater than 999,999,999.
+                None?
+            }
+            Duration::new(seconds, nanoseconds)
+        })
+    }
+
+    fn read_c_str<'a>(&'a self, sptr: Scalar<Tag>) -> InterpResult<'tcx, &'a [u8]>
+    where
+        'tcx: 'a,
+        'mir: 'a,
+    {
+        let this = self.eval_context_ref();
+        let size1 = Size::from_bytes(1);
+        let ptr = this.force_ptr(sptr)?; // We need to read at least 1 byte, so we can eagerly get a ptr.
+
+        // Step 1: determine the length.
+        let mut len = Size::ZERO;
+        loop {
+            // FIXME: We are re-getting the allocation each time around the loop.
+            // Would be nice if we could somehow "extend" an existing AllocRange.
+            let alloc = this.memory.get(ptr.offset(len, this)?.into(), size1, Align::ONE)?.unwrap(); // not a ZST, so we will get a result
+            let byte = alloc.read_scalar(alloc_range(Size::ZERO, size1))?.to_u8()?;
+            if byte == 0 {
+                break;
+            } else {
+                len = len + size1;
+            }
         }
-        self.eval_context_mut().memory.write_bytes(scalar, bytes.iter().copied().chain(iter::once(0u8)))?;
-        Ok(true)
+
+        // Step 2: get the bytes.
+        this.memory.read_bytes(ptr.into(), len)
+    }
+
+    fn read_wide_str(&self, sptr: Scalar<Tag>) -> InterpResult<'tcx, Vec<u16>> {
+        let this = self.eval_context_ref();
+        let size2 = Size::from_bytes(2);
+        let align2 = Align::from_bytes(2).unwrap();
+
+        let mut ptr = this.force_ptr(sptr)?; // We need to read at least 1 wchar, so we can eagerly get a ptr.
+        let mut wchars = Vec::new();
+        loop {
+            // FIXME: We are re-getting the allocation each time around the loop.
+            // Would be nice if we could somehow "extend" an existing AllocRange.
+            let alloc = this.memory.get(ptr.into(), size2, align2)?.unwrap(); // not a ZST, so we will get a result
+            let wchar = alloc.read_scalar(alloc_range(Size::ZERO, size2))?.to_u16()?;
+            if wchar == 0 {
+                break;
+            } else {
+                wchars.push(wchar);
+                ptr = ptr.offset(size2, this)?;
+            }
+        }
+
+        Ok(wchars)
+    }
+
+    /// Check that the ABI is what we expect.
+    fn check_abi<'a>(&self, abi: Abi, exp_abi: Abi) -> InterpResult<'a, ()> {
+        if self.eval_context_ref().machine.enforce_abi && abi != exp_abi {
+            throw_ub_format!(
+                "calling a function with ABI {} using caller ABI {}",
+                exp_abi.name(),
+                abi.name()
+            )
+        }
+        Ok(())
+    }
+
+    fn in_std(&self) -> bool {
+        let this = self.eval_context_ref();
+        this.tcx.def_path(this.frame().instance.def_id()).krate
+            == this.tcx.def_path(this.tcx.lang_items().start_fn().unwrap()).krate
     }
 }
 
-#[cfg(target_os = "unix")]
-fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
-    std::os::unix::ffi::OsStringExt::into_bytes(os_str)
+/// Check that the number of args is what we expect.
+pub fn check_arg_count<'a, 'tcx, const N: usize>(
+    args: &'a [OpTy<'tcx, Tag>],
+) -> InterpResult<'tcx, &'a [OpTy<'tcx, Tag>; N]>
+where
+    &'a [OpTy<'tcx, Tag>; N]: TryFrom<&'a [OpTy<'tcx, Tag>]>,
+{
+    if let Ok(ops) = args.try_into() {
+        return Ok(ops);
+    }
+    throw_ub_format!("incorrect number of arguments: got {}, expected {}", args.len(), N)
 }
 
-#[cfg(target_os = "unix")]
-fn bytes_to_os_str<'tcx, 'a>(bytes: &'a[u8]) -> InterpResult<'tcx, &'a OsStr> {
-    Ok(std::os::unix::ffi::OsStringExt::from_bytes(bytes))
+pub fn isolation_error(name: &str) -> InterpResult<'static> {
+    throw_machine_stop!(TerminationInfo::UnsupportedInIsolation(format!(
+        "{} not available when isolation is enabled",
+        name,
+    )))
 }
 
-// On non-unix platforms the best we can do to transform bytes from/to OS strings is to do the
-// intermediate transformation into strings. Which invalidates non-utf8 paths that are actually
-// valid.
-#[cfg(not(target_os = "unix"))]
-fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
-    os_str
-        .to_str()
-        .map(|s| s.as_bytes())
-        .ok_or_else(|| err_unsup_format!("{:?} is not a valid utf-8 string", os_str).into())
+pub fn immty_from_int_checked<'tcx>(
+    int: impl Into<i128>,
+    layout: TyAndLayout<'tcx>,
+) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
+    let int = int.into();
+    Ok(ImmTy::try_from_int(int, layout).ok_or_else(|| {
+        err_unsup_format!("signed value {:#x} does not fit in {} bits", int, layout.size.bits())
+    })?)
 }
 
-#[cfg(not(target_os = "unix"))]
-fn bytes_to_os_str<'tcx, 'a>(bytes: &'a[u8]) -> InterpResult<'tcx, &'a OsStr> {
-    let s = std::str::from_utf8(bytes)
-        .map_err(|_| err_unsup_format!("{:?} is not a valid utf-8 string", bytes))?;
-    Ok(&OsStr::new(s))
+pub fn immty_from_uint_checked<'tcx>(
+    int: impl Into<u128>,
+    layout: TyAndLayout<'tcx>,
+) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
+    let int = int.into();
+    Ok(ImmTy::try_from_uint(int, layout).ok_or_else(|| {
+        err_unsup_format!("unsigned value {:#x} does not fit in {} bits", int, layout.size.bits())
+    })?)
 }