]> git.lizzy.rs Git - minetest.git/blobdiff - src/collision.cpp
Fix jumping at node edge
[minetest.git] / src / collision.cpp
index f8db42d2690ebe5649313200cc5964157f556670..a2d17d51ab50b554884ffb112807e084a4cb76ed 100644 (file)
@@ -1,6 +1,6 @@
 /*
-Minetest-c55
-Copyright (C) 2010 celeron55, Perttu Ahola <celeron55@gmail.com>
+Minetest
+Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
 
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU Lesser General Public License as published by
@@ -22,32 +22,352 @@ with this program; if not, write to the Free Software Foundation, Inc.,
 #include "map.h"
 #include "nodedef.h"
 #include "gamedef.h"
+#include "log.h"
+#include "environment.h"
+#include "serverobject.h"
+#include <vector>
+#include <set>
+#include "util/timetaker.h"
+#include "profiler.h"
 
-collisionMoveResult collisionMoveSimple(Map *map, IGameDef *gamedef,
-               f32 pos_max_d, const core::aabbox3d<f32> &box_0,
-               f32 dtime, v3f &pos_f, v3f &speed_f)
+// float error is 10 - 9.96875 = 0.03125
+//#define COLL_ZERO 0.032 // broken unit tests
+#define COLL_ZERO 0
+
+// Helper function:
+// Checks for collision of a moving aabbox with a static aabbox
+// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
+// The time after which the collision occurs is stored in dtime.
+int axisAlignedCollision(
+               const aabb3f &staticbox, const aabb3f &movingbox,
+               const v3f &speed, f32 d, f32 *dtime)
+{
+       //TimeTaker tt("axisAlignedCollision");
+
+       f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X) - COLL_ZERO;     // reduce box size for solve collision stuck (flying sand)
+       f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later
+       f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z) - COLL_ZERO;
+
+       aabb3f relbox(
+                       movingbox.MinEdge.X - staticbox.MinEdge.X,
+                       movingbox.MinEdge.Y - staticbox.MinEdge.Y,
+                       movingbox.MinEdge.Z - staticbox.MinEdge.Z,
+                       movingbox.MaxEdge.X - staticbox.MinEdge.X,
+                       movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
+                       movingbox.MaxEdge.Z - staticbox.MinEdge.Z
+       );
+
+       if(speed.X > 0) // Check for collision with X- plane
+       {
+               if (relbox.MaxEdge.X <= d) {
+                       *dtime = -relbox.MaxEdge.X / speed.X;
+                       if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
+                                       (relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
+                                       (relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
+                                       (relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
+                               return 0;
+               }
+               else if(relbox.MinEdge.X > xsize)
+               {
+                       return -1;
+               }
+       }
+       else if(speed.X < 0) // Check for collision with X+ plane
+       {
+               if (relbox.MinEdge.X >= xsize - d) {
+                       *dtime = (xsize - relbox.MinEdge.X) / speed.X;
+                       if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
+                                       (relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
+                                       (relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
+                                       (relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
+                               return 0;
+               }
+               else if(relbox.MaxEdge.X < 0)
+               {
+                       return -1;
+               }
+       }
+
+       // NO else if here
+
+       if(speed.Y > 0) // Check for collision with Y- plane
+       {
+               if (relbox.MaxEdge.Y <= d) {
+                       *dtime = -relbox.MaxEdge.Y / speed.Y;
+                       if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
+                                       (relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
+                                       (relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
+                                       (relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
+                               return 1;
+               }
+               else if(relbox.MinEdge.Y > ysize)
+               {
+                       return -1;
+               }
+       }
+       else if(speed.Y < 0) // Check for collision with Y+ plane
+       {
+               if (relbox.MinEdge.Y >= ysize - d) {
+                       *dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
+                       if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
+                                       (relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
+                                       (relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
+                                       (relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
+                               return 1;
+               }
+               else if(relbox.MaxEdge.Y < 0)
+               {
+                       return -1;
+               }
+       }
+
+       // NO else if here
+
+       if(speed.Z > 0) // Check for collision with Z- plane
+       {
+               if (relbox.MaxEdge.Z <= d) {
+                       *dtime = -relbox.MaxEdge.Z / speed.Z;
+                       if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
+                                       (relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
+                                       (relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
+                                       (relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
+                               return 2;
+               }
+               //else if(relbox.MinEdge.Z > zsize)
+               //{
+               //      return -1;
+               //}
+       }
+       else if(speed.Z < 0) // Check for collision with Z+ plane
+       {
+               if (relbox.MinEdge.Z >= zsize - d) {
+                       *dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
+                       if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
+                                       (relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
+                                       (relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
+                                       (relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
+                               return 2;
+               }
+               //else if(relbox.MaxEdge.Z < 0)
+               //{
+               //      return -1;
+               //}
+       }
+
+       return -1;
+}
+
+// Helper function:
+// Checks if moving the movingbox up by the given distance would hit a ceiling.
+bool wouldCollideWithCeiling(
+               const std::vector<aabb3f> &staticboxes,
+               const aabb3f &movingbox,
+               f32 y_increase, f32 d)
+{
+       //TimeTaker tt("wouldCollideWithCeiling");
+
+       assert(y_increase >= 0);        // pre-condition
+
+       for(std::vector<aabb3f>::const_iterator
+                       i = staticboxes.begin();
+                       i != staticboxes.end(); ++i)
+       {
+               const aabb3f& staticbox = *i;
+               if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
+                               (movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
+                               (movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
+                               (movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
+                               (movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
+                               (movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
+                       return true;
+       }
+
+       return false;
+}
+
+
+collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
+               f32 pos_max_d, const aabb3f &box_0,
+               f32 stepheight, f32 dtime,
+               v3f *pos_f, v3f *speed_f,
+               v3f accel_f, ActiveObject *self,
+               bool collideWithObjects)
 {
+       static bool time_notification_done = false;
+       Map *map = &env->getMap();
+       //TimeTaker tt("collisionMoveSimple");
+       ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
+
        collisionMoveResult result;
 
+       /*
+               Calculate new velocity
+       */
+       if (dtime > 0.5) {
+               if (!time_notification_done) {
+                       time_notification_done = true;
+                       infostream << "collisionMoveSimple: maximum step interval exceeded,"
+                                       " lost movement details!"<<std::endl;
+               }
+               dtime = 0.5;
+       } else {
+               time_notification_done = false;
+       }
+       *speed_f += accel_f * dtime;
+
        // If there is no speed, there are no collisions
-       if(speed_f.getLength() == 0)
+       if (speed_f->getLength() == 0)
                return result;
 
-       v3f oldpos_f = pos_f;
-       v3s16 oldpos_i = floatToInt(oldpos_f, BS);
+       // Limit speed for avoiding hangs
+       speed_f->Y = rangelim(speed_f->Y, -5000, 5000);
+       speed_f->X = rangelim(speed_f->X, -5000, 5000);
+       speed_f->Z = rangelim(speed_f->Z, -5000, 5000);
 
        /*
-               Calculate new position
+               Collect node boxes in movement range
        */
-       pos_f += speed_f * dtime;
+       std::vector<aabb3f> cboxes;
+       std::vector<bool> is_unloaded;
+       std::vector<bool> is_step_up;
+       std::vector<bool> is_object;
+       std::vector<int> bouncy_values;
+       std::vector<v3s16> node_positions;
+       {
+       //TimeTaker tt2("collisionMoveSimple collect boxes");
+    ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
+
+       v3s16 oldpos_i = floatToInt(*pos_f, BS);
+       v3s16 newpos_i = floatToInt(*pos_f + *speed_f * dtime, BS);
+       s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
+       s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
+       s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
+       s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
+       s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
+       s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
+
+       bool any_position_valid = false;
+
+       // The order is important here, must be y first
+       for(s16 y = max_y; y >= min_y; y--)
+       for(s16 x = min_x; x <= max_x; x++)
+       for(s16 z = min_z; z <= max_z; z++)
+       {
+               v3s16 p(x,y,z);
+
+               bool is_position_valid;
+               MapNode n = map->getNodeNoEx(p, &is_position_valid);
+
+               if (is_position_valid) {
+                       // Object collides into walkable nodes
+
+                       any_position_valid = true;
+                       const ContentFeatures &f = gamedef->getNodeDefManager()->get(n);
+                       if(f.walkable == false)
+                               continue;
+                       int n_bouncy_value = itemgroup_get(f.groups, "bouncy");
+
+                       std::vector<aabb3f> nodeboxes = n.getCollisionBoxes(gamedef->ndef());
+                       for(std::vector<aabb3f>::iterator
+                                       i = nodeboxes.begin();
+                                       i != nodeboxes.end(); ++i)
+                       {
+                               aabb3f box = *i;
+                               box.MinEdge += v3f(x, y, z)*BS;
+                               box.MaxEdge += v3f(x, y, z)*BS;
+                               cboxes.push_back(box);
+                               is_unloaded.push_back(false);
+                               is_step_up.push_back(false);
+                               bouncy_values.push_back(n_bouncy_value);
+                               node_positions.push_back(p);
+                               is_object.push_back(false);
+                       }
+               }
+               else {
+                       // Collide with unloaded nodes
+                       aabb3f box = getNodeBox(p, BS);
+                       cboxes.push_back(box);
+                       is_unloaded.push_back(true);
+                       is_step_up.push_back(false);
+                       bouncy_values.push_back(0);
+                       node_positions.push_back(p);
+                       is_object.push_back(false);
+               }
+       }
+
+       // Do not move if world has not loaded yet, since custom node boxes
+       // are not available for collision detection.
+       if (!any_position_valid)
+               return result;
+
+       } // tt2
+
+       if(collideWithObjects)
+       {
+               ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
+               //TimeTaker tt3("collisionMoveSimple collect object boxes");
+
+               /* add object boxes to cboxes */
+
+               std::vector<ActiveObject*> objects;
+#ifndef SERVER
+               ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
+               if (c_env != 0) {
+                       f32 distance = speed_f->getLength();
+                       std::vector<DistanceSortedActiveObject> clientobjects;
+                       c_env->getActiveObjects(*pos_f, distance * 1.5, clientobjects);
+                       for (size_t i=0; i < clientobjects.size(); i++) {
+                               if ((self == 0) || (self != clientobjects[i].obj)) {
+                                       objects.push_back((ActiveObject*)clientobjects[i].obj);
+                               }
+                       }
+               }
+               else
+#endif
+               {
+                       ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
+                       if (s_env != 0) {
+                               f32 distance = speed_f->getLength();
+                               std::vector<u16> s_objects;
+                               s_env->getObjectsInsideRadius(s_objects, *pos_f, distance * 1.5);
+                               for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); ++iter) {
+                                       ServerActiveObject *current = s_env->getActiveObject(*iter);
+                                       if ((self == 0) || (self != current)) {
+                                               objects.push_back((ActiveObject*)current);
+                                       }
+                               }
+                       }
+               }
+
+               for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
+                               iter != objects.end(); ++iter) {
+                       ActiveObject *object = *iter;
+
+                       if (object != NULL) {
+                               aabb3f object_collisionbox;
+                               if (object->getCollisionBox(&object_collisionbox) &&
+                                               object->collideWithObjects()) {
+                                       cboxes.push_back(object_collisionbox);
+                                       is_unloaded.push_back(false);
+                                       is_step_up.push_back(false);
+                                       bouncy_values.push_back(0);
+                                       node_positions.push_back(v3s16(0,0,0));
+                                       is_object.push_back(true);
+                               }
+                       }
+               }
+       } //tt3
+
+       assert(cboxes.size() == is_unloaded.size());    // post-condition
+       assert(cboxes.size() == is_step_up.size());     // post-condition
+       assert(cboxes.size() == bouncy_values.size());  // post-condition
+       assert(cboxes.size() == node_positions.size()); // post-condition
+       assert(cboxes.size() == is_object.size());      // post-condition
 
        /*
                Collision detection
        */
-       
-       // position in nodes
-       v3s16 pos_i = floatToInt(pos_f, BS);
-       
+
        /*
                Collision uncertainty radius
                Make it a bit larger than the maximum distance of movement
@@ -57,202 +377,143 @@ collisionMoveResult collisionMoveSimple(Map *map, IGameDef *gamedef,
        //f32 d = 0.15*BS;
 
        // This should always apply, otherwise there are glitches
-       assert(d > pos_max_d);
-       
-       /*
-               Calculate collision box
-       */
-       core::aabbox3d<f32> box = box_0;
-       box.MaxEdge += pos_f;
-       box.MinEdge += pos_f;
-       core::aabbox3d<f32> oldbox = box_0;
-       oldbox.MaxEdge += oldpos_f;
-       oldbox.MinEdge += oldpos_f;
+       assert(d > pos_max_d);  // invariant
 
-       /*
-               If the object lies on a walkable node, this is set to true.
-       */
-       result.touching_ground = false;
-       
-       /*
-               Go through every node around the object
-       */
-       s16 min_x = (box_0.MinEdge.X / BS) - 2;
-       s16 min_y = (box_0.MinEdge.Y / BS) - 2;
-       s16 min_z = (box_0.MinEdge.Z / BS) - 2;
-       s16 max_x = (box_0.MaxEdge.X / BS) + 1;
-       s16 max_y = (box_0.MaxEdge.Y / BS) + 1;
-       s16 max_z = (box_0.MaxEdge.Z / BS) + 1;
-       for(s16 y = oldpos_i.Y + min_y; y <= oldpos_i.Y + max_y; y++)
-       for(s16 z = oldpos_i.Z + min_z; z <= oldpos_i.Z + max_z; z++)
-       for(s16 x = oldpos_i.X + min_x; x <= oldpos_i.X + max_x; x++)
-       {
-               try{
-                       // Object collides into walkable nodes
-                       MapNode n = map->getNode(v3s16(x,y,z));
-                       if(gamedef->getNodeDefManager()->get(n).walkable == false)
-                               continue;
-               }
-               catch(InvalidPositionException &e)
-               {
-                       // Doing nothing here will block the object from
-                       // walking over map borders
+       int loopcount = 0;
+
+       while(dtime > BS * 1e-10) {
+               //TimeTaker tt3("collisionMoveSimple dtime loop");
+        ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
+
+               // Avoid infinite loop
+               loopcount++;
+               if (loopcount >= 100) {
+                       warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
+                       dtime = 0;
+                       break;
                }
 
-               core::aabbox3d<f32> nodebox = getNodeBox(v3s16(x,y,z), BS);
-               
-               /*
-                       See if the object is touching ground.
+               aabb3f movingbox = box_0;
+               movingbox.MinEdge += *pos_f;
+               movingbox.MaxEdge += *pos_f;
 
-                       Object touches ground if object's minimum Y is near node's
-                       maximum Y and object's X-Z-area overlaps with the node's
-                       X-Z-area.
+               int nearest_collided = -1;
+               f32 nearest_dtime = dtime;
+               u32 nearest_boxindex = -1;
 
-                       Use 0.15*BS so that it is easier to get on a node.
-               */
-               if(
-                               //fabs(nodebox.MaxEdge.Y-box.MinEdge.Y) < d
-                               fabs(nodebox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS
-                               && nodebox.MaxEdge.X-d > box.MinEdge.X
-                               && nodebox.MinEdge.X+d < box.MaxEdge.X
-                               && nodebox.MaxEdge.Z-d > box.MinEdge.Z
-                               && nodebox.MinEdge.Z+d < box.MaxEdge.Z
-               ){
-                       result.touching_ground = true;
-               }
-               
-               // If object doesn't intersect with node, ignore node.
-               if(box.intersectsWithBox(nodebox) == false)
-                       continue;
-               
                /*
-                       Go through every axis
+                       Go through every nodebox, find nearest collision
                */
-               v3f dirs[3] = {
-                       v3f(0,0,1), // back-front
-                       v3f(0,1,0), // top-bottom
-                       v3f(1,0,0), // right-left
-               };
-               for(u16 i=0; i<3; i++)
-               {
-                       /*
-                               Calculate values along the axis
-                       */
-                       f32 nodemax = nodebox.MaxEdge.dotProduct(dirs[i]);
-                       f32 nodemin = nodebox.MinEdge.dotProduct(dirs[i]);
-                       f32 objectmax = box.MaxEdge.dotProduct(dirs[i]);
-                       f32 objectmin = box.MinEdge.dotProduct(dirs[i]);
-                       f32 objectmax_old = oldbox.MaxEdge.dotProduct(dirs[i]);
-                       f32 objectmin_old = oldbox.MinEdge.dotProduct(dirs[i]);
-                       
-                       /*
-                               Check collision for the axis.
-                               Collision happens when object is going through a surface.
-                       */
-                       bool negative_axis_collides =
-                               (nodemax > objectmin && nodemax <= objectmin_old + d
-                                       && speed_f.dotProduct(dirs[i]) < 0);
-                       bool positive_axis_collides =
-                               (nodemin < objectmax && nodemin >= objectmax_old - d
-                                       && speed_f.dotProduct(dirs[i]) > 0);
-                       bool main_axis_collides =
-                                       negative_axis_collides || positive_axis_collides;
-                       
-                       /*
-                               Check overlap of object and node in other axes
-                       */
-                       bool other_axes_overlap = true;
-                       for(u16 j=0; j<3; j++)
-                       {
-                               if(j == i)
-                                       continue;
-                               f32 nodemax = nodebox.MaxEdge.dotProduct(dirs[j]);
-                               f32 nodemin = nodebox.MinEdge.dotProduct(dirs[j]);
-                               f32 objectmax = box.MaxEdge.dotProduct(dirs[j]);
-                               f32 objectmin = box.MinEdge.dotProduct(dirs[j]);
-                               if(!(nodemax - d > objectmin && nodemin + d < objectmax))
-                               {
-                                       other_axes_overlap = false;
-                                       break;
+               for (u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) {
+                       // Find nearest collision of the two boxes (raytracing-like)
+                       f32 dtime_tmp;
+                       int collided = axisAlignedCollision(
+                                       cboxes[boxindex], movingbox, *speed_f, d, &dtime_tmp);
+
+                       // Ignore if already stepped up this nodebox.
+                       if (is_step_up[boxindex]) {
+                               pos_f->Y += (cboxes[boxindex].MaxEdge.Y - movingbox.MinEdge.Y);
+                               continue;
+                       }
+
+                       if (collided == -1 || dtime_tmp >= nearest_dtime)
+                               continue;
+
+                       nearest_dtime = dtime_tmp;
+                       nearest_collided = collided;
+                       nearest_boxindex = boxindex;
+               }
+
+               if (nearest_collided == -1) {
+                       // No collision with any collision box.
+                       *pos_f += *speed_f * dtime;
+                       dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
+               } else {
+                       // Otherwise, a collision occurred.
+
+                       const aabb3f& cbox = cboxes[nearest_boxindex];
+                       // Check for stairs.
+                       bool step_up = (nearest_collided != 1) && // must not be Y direction
+                                       (movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
+                                       (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
+                                       (!wouldCollideWithCeiling(cboxes, movingbox,
+                                                       cbox.MaxEdge.Y - movingbox.MinEdge.Y,
+                                                       d));
+
+                       // Get bounce multiplier
+                       bool bouncy = (bouncy_values[nearest_boxindex] >= 1);
+                       float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0;
+
+                       // Move to the point of collision and reduce dtime by nearest_dtime
+                       if (nearest_dtime < 0) {
+                               // Handle negative nearest_dtime (can be caused by the d allowance)
+                               if (!step_up) {
+                                       if (nearest_collided == 0)
+                                               pos_f->X += speed_f->X * nearest_dtime;
+                                       if (nearest_collided == 1)
+                                               pos_f->Y += speed_f->Y * nearest_dtime;
+                                       if (nearest_collided == 2)
+                                               pos_f->Z += speed_f->Z * nearest_dtime;
                                }
+                       } else {
+                               *pos_f += *speed_f * nearest_dtime;
+                               dtime -= nearest_dtime;
                        }
-                       
-                       /*
-                               If this is a collision, revert the pos_f in the main
-                               direction.
-                       */
-                       if(other_axes_overlap && main_axis_collides)
-                       {
-                               speed_f -= speed_f.dotProduct(dirs[i]) * dirs[i];
-                               pos_f -= pos_f.dotProduct(dirs[i]) * dirs[i];
-                               pos_f += oldpos_f.dotProduct(dirs[i]) * dirs[i];
-                               result.collides = true;
+
+                       bool is_collision = true;
+                       if (is_unloaded[nearest_boxindex])
+                               is_collision = false;
+
+                       CollisionInfo info;
+                       if (is_object[nearest_boxindex]) {
+                               info.type = COLLISION_OBJECT;
+                               result.standing_on_object = true;
+                       } else {
+                               info.type = COLLISION_NODE;
                        }
-               
-               }
-       } // xyz
-       
-       return result;
-}
 
-collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef,
-               f32 pos_max_d, const core::aabbox3d<f32> &box_0,
-               f32 dtime, v3f &pos_f, v3f &speed_f)
-{
-       collisionMoveResult final_result;
-       
-       // If there is no speed, there are no collisions
-       if(speed_f.getLength() == 0)
-               return final_result;
-
-       // Maximum time increment (for collision detection etc)
-       // time = distance / speed
-       f32 dtime_max_increment = pos_max_d / speed_f.getLength();
-       
-       // Maximum time increment is 10ms or lower
-       if(dtime_max_increment > 0.01)
-               dtime_max_increment = 0.01;
-       
-       // Don't allow overly huge dtime
-       if(dtime > 2.0)
-               dtime = 2.0;
-       
-       f32 dtime_downcount = dtime;
-
-       u32 loopcount = 0;
-       do
-       {
-               loopcount++;
+                       info.node_p = node_positions[nearest_boxindex];
+                       info.bouncy = bouncy;
+                       info.old_speed = *speed_f;
 
-               f32 dtime_part;
-               if(dtime_downcount > dtime_max_increment)
-               {
-                       dtime_part = dtime_max_increment;
-                       dtime_downcount -= dtime_part;
-               }
-               else
-               {
-                       dtime_part = dtime_downcount;
-                       /*
-                               Setting this to 0 (no -=dtime_part) disables an infinite loop
-                               when dtime_part is so small that dtime_downcount -= dtime_part
-                               does nothing
-                       */
-                       dtime_downcount = 0;
-               }
+                       // Set the speed component that caused the collision to zero
+                       if (step_up) {
+                               // Special case: Handle stairs
+                               is_step_up[nearest_boxindex] = true;
+                               is_collision = false;
+                       } else if(nearest_collided == 0) { // X
+                               if (fabs(speed_f->X) > BS * 3)
+                                       speed_f->X *= bounce;
+                               else
+                                       speed_f->X = 0;
+                               result.collides = true;
+                               result.collides_xz = true;
+                       } else if(nearest_collided == 1) { // Y
+                               if (fabs(speed_f->Y) > BS * 3) {
+                                       speed_f->Y *= bounce;
+                               } else {
+                                       speed_f->Y = 0;
+                                       result.touching_ground = true;
+                               }
+                               result.collides = true;
+                       } else if(nearest_collided == 2) { // Z
+                               if (fabs(speed_f->Z) > BS * 3)
+                                       speed_f->Z *= bounce;
+                               else
+                                       speed_f->Z = 0;
+                               result.collides = true;
+                               result.collides_xz = true;
+                       }
 
-               collisionMoveResult result = collisionMoveSimple(map, gamedef,
-                               pos_max_d, box_0, dtime_part, pos_f, speed_f);
+                       info.new_speed = *speed_f;
+                       if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1 * BS)
+                               is_collision = false;
 
-               if(result.touching_ground)
-                       final_result.touching_ground = true;
-               if(result.collides)
-                       final_result.collides = true;
+                       if (is_collision) {
+                               result.collisions.push_back(info);
+                       }
+               }
        }
-       while(dtime_downcount > 0.001);
-               
 
-       return final_result;
+       return result;
 }
-
-