]> git.lizzy.rs Git - minetest.git/blobdiff - src/collision.cpp
Report collisionMoveSimple for client and server. (#13105)
[minetest.git] / src / collision.cpp
index 63186a84a5e72a2b803777f4c8795d652b5097b9..575e70ff9375f263d1eab1ad6357dfd11d4acda7 100644 (file)
 /*
-Minetest-c55
-Copyright (C) 2010 celeron55, Perttu Ahola <celeron55@gmail.com>
+Minetest
+Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
 
 This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 2.1 of the License, or
 (at your option) any later version.
 
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
+GNU Lesser General Public License for more details.
 
-You should have received a copy of the GNU General Public License along
+You should have received a copy of the GNU Lesser General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
 
 #include "collision.h"
+#include <cmath>
 #include "mapblock.h"
 #include "map.h"
+#include "nodedef.h"
+#include "gamedef.h"
+#ifndef SERVER
+#include "client/clientenvironment.h"
+#include "client/localplayer.h"
+#endif
+#include "serverenvironment.h"
+#include "server/serveractiveobject.h"
+#include "util/timetaker.h"
+#include "profiler.h"
 
-collisionMoveResult collisionMoveSimple(Map *map, f32 pos_max_d,
-               const core::aabbox3d<f32> &box_0,
-               f32 dtime, v3f &pos_f, v3f &speed_f)
+#ifdef __FAST_MATH__
+#warning "-ffast-math is known to cause bugs in collision code, do not use!"
+#endif
+
+struct NearbyCollisionInfo {
+       // node
+       NearbyCollisionInfo(bool is_ul, int bouncy, const v3s16 &pos,
+                       const aabb3f &box) :
+               is_unloaded(is_ul),
+               obj(nullptr),
+               bouncy(bouncy),
+               position(pos),
+               box(box)
+       {}
+
+       // object
+       NearbyCollisionInfo(ActiveObject *obj, int bouncy,
+                       const aabb3f &box) :
+               is_unloaded(false),
+               obj(obj),
+               bouncy(bouncy),
+               box(box)
+       {}
+
+       inline bool isObject() const { return obj != nullptr; }
+
+       bool is_unloaded;
+       bool is_step_up = false;
+       ActiveObject *obj;
+       int bouncy;
+       v3s16 position;
+       aabb3f box;
+};
+
+// Helper functions:
+// Truncate floating point numbers to specified number of decimal places
+// in order to move all the floating point error to one side of the correct value
+static inline f32 truncate(const f32 val, const f32 factor)
 {
-       collisionMoveResult result;
+       return truncf(val * factor) / factor;
+}
 
-       v3f oldpos_f = pos_f;
-       v3s16 oldpos_i = floatToInt(oldpos_f, BS);
+static inline v3f truncate(const v3f& vec, const f32 factor)
+{
+       return v3f(
+               truncate(vec.X, factor),
+               truncate(vec.Y, factor),
+               truncate(vec.Z, factor)
+       );
+}
 
-       /*
-               Calculate new position
-       */
-       pos_f += speed_f * dtime;
+// Helper function:
+// Checks for collision of a moving aabbox with a static aabbox
+// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
+// The time after which the collision occurs is stored in dtime.
+CollisionAxis axisAlignedCollision(
+               const aabb3f &staticbox, const aabb3f &movingbox,
+               const v3f &speed, f32 *dtime)
+{
+       //TimeTaker tt("axisAlignedCollision");
 
-       /*
-               Collision detection
-       */
-       
-       // position in nodes
-       v3s16 pos_i = floatToInt(pos_f, BS);
-       
-       /*
-               Collision uncertainty radius
-               Make it a bit larger than the maximum distance of movement
-       */
-       f32 d = pos_max_d * 1.1;
-       // A fairly large value in here makes moving smoother
-       //f32 d = 0.15*BS;
+       aabb3f relbox(
+                       (movingbox.MaxEdge.X - movingbox.MinEdge.X) + (staticbox.MaxEdge.X - staticbox.MinEdge.X),                                              // sum of the widths
+                       (movingbox.MaxEdge.Y - movingbox.MinEdge.Y) + (staticbox.MaxEdge.Y - staticbox.MinEdge.Y),
+                       (movingbox.MaxEdge.Z - movingbox.MinEdge.Z) + (staticbox.MaxEdge.Z - staticbox.MinEdge.Z),
+                       std::max(movingbox.MaxEdge.X, staticbox.MaxEdge.X) - std::min(movingbox.MinEdge.X, staticbox.MinEdge.X),        //outer bounding 'box' dimensions
+                       std::max(movingbox.MaxEdge.Y, staticbox.MaxEdge.Y) - std::min(movingbox.MinEdge.Y, staticbox.MinEdge.Y),
+                       std::max(movingbox.MaxEdge.Z, staticbox.MaxEdge.Z) - std::min(movingbox.MinEdge.Z, staticbox.MinEdge.Z)
+       );
 
-       // This should always apply, otherwise there are glitches
-       assert(d > pos_max_d);
-       
-       /*
-               Calculate collision box
-       */
-       core::aabbox3d<f32> box = box_0;
-       box.MaxEdge += pos_f;
-       box.MinEdge += pos_f;
-       core::aabbox3d<f32> oldbox = box_0;
-       oldbox.MaxEdge += oldpos_f;
-       oldbox.MinEdge += oldpos_f;
+       const f32 dtime_max = *dtime;
+       f32 inner_margin;               // the distance of clipping recovery
+       f32 distance;
+       f32 time;
+
+
+       if (speed.Y) {
+               distance = relbox.MaxEdge.Y - relbox.MinEdge.Y;
+               *dtime = distance / std::abs(speed.Y);
+               time = std::max(*dtime, 0.0f);
+
+               if (*dtime <= dtime_max) {
+                       inner_margin = std::max(-0.5f * (staticbox.MaxEdge.Y - staticbox.MinEdge.Y), -2.0f);
+
+                       if ((speed.Y > 0 && staticbox.MinEdge.Y - movingbox.MaxEdge.Y > inner_margin) ||
+                               (speed.Y < 0 && movingbox.MinEdge.Y - staticbox.MaxEdge.Y > inner_margin)) {
+                               if (
+                                       (std::max(movingbox.MaxEdge.X + speed.X * time, staticbox.MaxEdge.X)
+                                               - std::min(movingbox.MinEdge.X + speed.X * time, staticbox.MinEdge.X)
+                                               - relbox.MinEdge.X < 0) &&
+                                               (std::max(movingbox.MaxEdge.Z + speed.Z * time, staticbox.MaxEdge.Z)
+                                                       - std::min(movingbox.MinEdge.Z + speed.Z * time, staticbox.MinEdge.Z)
+                                                       - relbox.MinEdge.Z < 0)
+                                       )
+                                       return COLLISION_AXIS_Y;
+                       }
+               }
+               else {
+                       return COLLISION_AXIS_NONE;
+               }
+       }
+
+       // NO else if here
+
+       if (speed.X) {
+               distance = relbox.MaxEdge.X - relbox.MinEdge.X;
+               *dtime = distance / std::abs(speed.X);
+               time = std::max(*dtime, 0.0f);
+
+               if (*dtime <= dtime_max) {
+                       inner_margin = std::max(-0.5f * (staticbox.MaxEdge.X - staticbox.MinEdge.X), -2.0f);
+
+                       if ((speed.X > 0 && staticbox.MinEdge.X - movingbox.MaxEdge.X > inner_margin) ||
+                               (speed.X < 0 && movingbox.MinEdge.X - staticbox.MaxEdge.X > inner_margin)) {
+                               if (
+                                       (std::max(movingbox.MaxEdge.Y + speed.Y * time, staticbox.MaxEdge.Y)
+                                               - std::min(movingbox.MinEdge.Y + speed.Y * time, staticbox.MinEdge.Y)
+                                               - relbox.MinEdge.Y < 0) &&
+                                               (std::max(movingbox.MaxEdge.Z + speed.Z * time, staticbox.MaxEdge.Z)
+                                                       - std::min(movingbox.MinEdge.Z + speed.Z * time, staticbox.MinEdge.Z)
+                                                       - relbox.MinEdge.Z < 0)
+                                       )
+                                       return COLLISION_AXIS_X;
+                       }
+               } else {
+                       return COLLISION_AXIS_NONE;
+               }
+       }
+
+       // NO else if here
+
+       if (speed.Z) {
+               distance = relbox.MaxEdge.Z - relbox.MinEdge.Z;
+               *dtime = distance / std::abs(speed.Z);
+               time = std::max(*dtime, 0.0f);
+
+               if (*dtime <= dtime_max) {
+                       inner_margin = std::max(-0.5f * (staticbox.MaxEdge.Z - staticbox.MinEdge.Z), -2.0f);
+
+                       if ((speed.Z > 0 && staticbox.MinEdge.Z - movingbox.MaxEdge.Z > inner_margin) ||
+                               (speed.Z < 0 && movingbox.MinEdge.Z - staticbox.MaxEdge.Z > inner_margin)) {
+                               if (
+                                       (std::max(movingbox.MaxEdge.X + speed.X * time, staticbox.MaxEdge.X)
+                                               - std::min(movingbox.MinEdge.X + speed.X * time, staticbox.MinEdge.X)
+                                               - relbox.MinEdge.X < 0) &&
+                                               (std::max(movingbox.MaxEdge.Y + speed.Y * time, staticbox.MaxEdge.Y)
+                                                       - std::min(movingbox.MinEdge.Y + speed.Y * time, staticbox.MinEdge.Y)
+                                                       - relbox.MinEdge.Y < 0)
+                                       )
+                                       return COLLISION_AXIS_Z;
+                       }
+               }
+       }
+
+       return COLLISION_AXIS_NONE;
+}
+
+// Helper function:
+// Checks if moving the movingbox up by the given distance would hit a ceiling.
+bool wouldCollideWithCeiling(
+               const std::vector<NearbyCollisionInfo> &cinfo,
+               const aabb3f &movingbox,
+               f32 y_increase, f32 d)
+{
+       //TimeTaker tt("wouldCollideWithCeiling");
+
+       assert(y_increase >= 0);        // pre-condition
+
+       for (const auto &it : cinfo) {
+               const aabb3f &staticbox = it.box;
+               if ((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
+                               (movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
+                               (movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
+                               (movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
+                               (movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
+                               (movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
+                       return true;
+       }
+
+       return false;
+}
+
+static inline void getNeighborConnectingFace(const v3s16 &p,
+       const NodeDefManager *nodedef, Map *map, MapNode n, int v, int *neighbors)
+{
+       MapNode n2 = map->getNode(p);
+       if (nodedef->nodeboxConnects(n, n2, v))
+               *neighbors |= v;
+}
+
+collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
+               f32 pos_max_d, const aabb3f &box_0,
+               f32 stepheight, f32 dtime,
+               v3f *pos_f, v3f *speed_f,
+               v3f accel_f, ActiveObject *self,
+               bool collideWithObjects)
+{
+       #define PROFILER_NAME(text) (s_env ? ("Server: " text) : ("Client: " text))
+       static bool time_notification_done = false;
+       Map *map = &env->getMap();
+       ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
+
+       ScopeProfiler sp(g_profiler, PROFILER_NAME("collisionMoveSimple()"), SPT_AVG);
+
+       collisionMoveResult result;
 
        /*
-               If the object lies on a walkable node, this is set to true.
+               Calculate new velocity
        */
-       result.touching_ground = false;
-       
+       if (dtime > 0.5f) {
+               if (!time_notification_done) {
+                       time_notification_done = true;
+                       infostream << "collisionMoveSimple: maximum step interval exceeded,"
+                                       " lost movement details!"<<std::endl;
+               }
+               dtime = 0.5f;
+       } else {
+               time_notification_done = false;
+       }
+
+       v3f dpos_f = (*speed_f + accel_f * 0.5f * dtime) * dtime;
+       v3f newpos_f = *pos_f + dpos_f;
+       *speed_f += accel_f * dtime;
+
+       // If the object is static, there are no collisions
+       if (dpos_f == v3f())
+               return result;
+
+       // Limit speed for avoiding hangs
+       speed_f->Y = rangelim(speed_f->Y, -5000, 5000);
+       speed_f->X = rangelim(speed_f->X, -5000, 5000);
+       speed_f->Z = rangelim(speed_f->Z, -5000, 5000);
+
+       *speed_f = truncate(*speed_f, 10000.0f);
+
        /*
-               Go through every node around the object
-               TODO: Calculate the range of nodes that need to be checked
+               Collect node boxes in movement range
        */
-       for(s16 y = oldpos_i.Y - 1; y <= oldpos_i.Y + 2; y++)
-       for(s16 z = oldpos_i.Z - 1; z <= oldpos_i.Z + 1; z++)
-       for(s16 x = oldpos_i.X - 1; x <= oldpos_i.X + 1; x++)
+       std::vector<NearbyCollisionInfo> cinfo;
        {
-               try{
+       //TimeTaker tt2("collisionMoveSimple collect boxes");
+       ScopeProfiler sp2(g_profiler, PROFILER_NAME("collisionMoveSimple(): collect boxes"), SPT_AVG);
+
+       v3f minpos_f(
+               MYMIN(pos_f->X, newpos_f.X),
+               MYMIN(pos_f->Y, newpos_f.Y) + 0.01f * BS, // bias rounding, player often at +/-n.5
+               MYMIN(pos_f->Z, newpos_f.Z)
+       );
+       v3f maxpos_f(
+               MYMAX(pos_f->X, newpos_f.X),
+               MYMAX(pos_f->Y, newpos_f.Y),
+               MYMAX(pos_f->Z, newpos_f.Z)
+       );
+       v3s16 min = floatToInt(minpos_f + box_0.MinEdge, BS) - v3s16(1, 1, 1);
+       v3s16 max = floatToInt(maxpos_f + box_0.MaxEdge, BS) + v3s16(1, 1, 1);
+
+       bool any_position_valid = false;
+
+       v3s16 p;
+       for (p.X = min.X; p.X <= max.X; p.X++)
+       for (p.Y = min.Y; p.Y <= max.Y; p.Y++)
+       for (p.Z = min.Z; p.Z <= max.Z; p.Z++) {
+               bool is_position_valid;
+               MapNode n = map->getNode(p, &is_position_valid);
+
+               if (is_position_valid && n.getContent() != CONTENT_IGNORE) {
                        // Object collides into walkable nodes
-                       if(content_walkable(map->getNode(v3s16(x,y,z)).d) == false)
+
+                       any_position_valid = true;
+                       const NodeDefManager *nodedef = gamedef->getNodeDefManager();
+                       const ContentFeatures &f = nodedef->get(n);
+
+                       if (!f.walkable)
                                continue;
+
+                       // Negative bouncy may have a meaning, but we need +value here.
+                       int n_bouncy_value = abs(itemgroup_get(f.groups, "bouncy"));
+
+                       int neighbors = 0;
+                       if (f.drawtype == NDT_NODEBOX &&
+                               f.node_box.type == NODEBOX_CONNECTED) {
+                               v3s16 p2 = p;
+
+                               p2.Y++;
+                               getNeighborConnectingFace(p2, nodedef, map, n, 1, &neighbors);
+
+                               p2 = p;
+                               p2.Y--;
+                               getNeighborConnectingFace(p2, nodedef, map, n, 2, &neighbors);
+
+                               p2 = p;
+                               p2.Z--;
+                               getNeighborConnectingFace(p2, nodedef, map, n, 4, &neighbors);
+
+                               p2 = p;
+                               p2.X--;
+                               getNeighborConnectingFace(p2, nodedef, map, n, 8, &neighbors);
+
+                               p2 = p;
+                               p2.Z++;
+                               getNeighborConnectingFace(p2, nodedef, map, n, 16, &neighbors);
+
+                               p2 = p;
+                               p2.X++;
+                               getNeighborConnectingFace(p2, nodedef, map, n, 32, &neighbors);
+                       }
+                       std::vector<aabb3f> nodeboxes;
+                       n.getCollisionBoxes(gamedef->ndef(), &nodeboxes, neighbors);
+
+                       // Calculate float position only once
+                       v3f posf = intToFloat(p, BS);
+                       for (auto box : nodeboxes) {
+                               box.MinEdge += posf;
+                               box.MaxEdge += posf;
+                               cinfo.emplace_back(false, n_bouncy_value, p, box);
+                       }
+               } else {
+                       // Collide with unloaded nodes (position invalid) and loaded
+                       // CONTENT_IGNORE nodes (position valid)
+                       aabb3f box = getNodeBox(p, BS);
+                       cinfo.emplace_back(true, 0, p, box);
+               }
+       }
+
+       // Do not move if world has not loaded yet, since custom node boxes
+       // are not available for collision detection.
+       // This also intentionally occurs in the case of the object being positioned
+       // solely on loaded CONTENT_IGNORE nodes, no matter where they come from.
+       if (!any_position_valid) {
+               *speed_f = v3f(0, 0, 0);
+               return result;
+       }
+
+       } // tt2
+
+       if(collideWithObjects)
+       {
+               /* add object boxes to cinfo */
+
+               std::vector<ActiveObject*> objects;
+#ifndef SERVER
+               ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
+               if (c_env != 0) {
+                       // Calculate distance by speed, add own extent and 1.5m of tolerance
+                       f32 distance = speed_f->getLength() * dtime +
+                               box_0.getExtent().getLength() + 1.5f * BS;
+                       std::vector<DistanceSortedActiveObject> clientobjects;
+                       c_env->getActiveObjects(*pos_f, distance, clientobjects);
+
+                       for (auto &clientobject : clientobjects) {
+                               // Do collide with everything but itself and the parent CAO
+                               if (!self || (self != clientobject.obj &&
+                                               self != clientobject.obj->getParent())) {
+                                       objects.push_back((ActiveObject*) clientobject.obj);
+                               }
+                       }
                }
-               catch(InvalidPositionException &e)
+               else
+#endif
                {
-                       // Doing nothing here will block the object from
-                       // walking over map borders
+                       if (s_env != NULL) {
+                               // Calculate distance by speed, add own extent and 1.5m of tolerance
+                               f32 distance = speed_f->getLength() * dtime +
+                                       box_0.getExtent().getLength() + 1.5f * BS;
+
+                               // search for objects which are not us, or we are not its parent
+                               // we directly use the callback to populate the result to prevent
+                               // a useless result loop here
+                               auto include_obj_cb = [self, &objects] (ServerActiveObject *obj) {
+                                       if (!obj->isGone() &&
+                                               (!self || (self != obj && self != obj->getParent()))) {
+                                               objects.push_back((ActiveObject *)obj);
+                                       }
+                                       return false;
+                               };
+
+                               std::vector<ServerActiveObject *> s_objects;
+                               s_env->getObjectsInsideRadius(s_objects, *pos_f, distance, include_obj_cb);
+                       }
+               }
+
+               for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
+                               iter != objects.end(); ++iter) {
+                       ActiveObject *object = *iter;
+
+                       if (object && object->collideWithObjects()) {
+                               aabb3f object_collisionbox;
+                               if (object->getCollisionBox(&object_collisionbox))
+                                       cinfo.emplace_back(object, 0, object_collisionbox);
+                       }
+               }
+#ifndef SERVER
+               if (self && c_env) {
+                       LocalPlayer *lplayer = c_env->getLocalPlayer();
+                       if (lplayer->getParent() == nullptr) {
+                               aabb3f lplayer_collisionbox = lplayer->getCollisionbox();
+                               v3f lplayer_pos = lplayer->getPosition();
+                               lplayer_collisionbox.MinEdge += lplayer_pos;
+                               lplayer_collisionbox.MaxEdge += lplayer_pos;
+                               ActiveObject *obj = (ActiveObject*) lplayer->getCAO();
+                               cinfo.emplace_back(obj, 0, lplayer_collisionbox);
+                       }
+               }
+#endif
+       } //tt3
+
+       /*
+               Collision detection
+       */
+
+       f32 d = 0.0f;
+
+       int loopcount = 0;
+
+       while(dtime > BS * 1e-10f) {
+               // Avoid infinite loop
+               loopcount++;
+               if (loopcount >= 100) {
+                       warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
+                       break;
                }
 
-               core::aabbox3d<f32> nodebox = getNodeBox(v3s16(x,y,z), BS);
-               
+               aabb3f movingbox = box_0;
+               movingbox.MinEdge += *pos_f;
+               movingbox.MaxEdge += *pos_f;
+
+               CollisionAxis nearest_collided = COLLISION_AXIS_NONE;
+               f32 nearest_dtime = dtime;
+               int nearest_boxindex = -1;
+
+               /*
+                       Go through every nodebox, find nearest collision
+               */
+               for (u32 boxindex = 0; boxindex < cinfo.size(); boxindex++) {
+                       const NearbyCollisionInfo &box_info = cinfo[boxindex];
+                       // Ignore if already stepped up this nodebox.
+                       if (box_info.is_step_up)
+                               continue;
+
+                       // Find nearest collision of the two boxes (raytracing-like)
+                       f32 dtime_tmp = nearest_dtime;
+                       CollisionAxis collided = axisAlignedCollision(box_info.box,
+                                       movingbox, *speed_f, &dtime_tmp);
+
+                       if (collided == -1 || dtime_tmp >= nearest_dtime)
+                               continue;
+
+                       nearest_dtime = dtime_tmp;
+                       nearest_collided = collided;
+                       nearest_boxindex = boxindex;
+               }
+
+               if (nearest_collided == COLLISION_AXIS_NONE) {
+                       // No collision with any collision box.
+                       *pos_f += truncate(*speed_f * dtime, 100.0f);
+                       dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
+               } else {
+                       // Otherwise, a collision occurred.
+                       NearbyCollisionInfo &nearest_info = cinfo[nearest_boxindex];
+                       const aabb3f& cbox = nearest_info.box;
+
+                       //movingbox except moved to the horizontal position it would be after step up
+                       aabb3f stepbox = movingbox;
+                       stepbox.MinEdge.X += speed_f->X * dtime;
+                       stepbox.MinEdge.Z += speed_f->Z * dtime;
+                       stepbox.MaxEdge.X += speed_f->X * dtime;
+                       stepbox.MaxEdge.Z += speed_f->Z * dtime;
+                       // Check for stairs.
+                       bool step_up = (nearest_collided != COLLISION_AXIS_Y) && // must not be Y direction
+                                       (movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
+                                       (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
+                                       (!wouldCollideWithCeiling(cinfo, stepbox,
+                                                       cbox.MaxEdge.Y - movingbox.MinEdge.Y,
+                                                       d));
+
+                       // Get bounce multiplier
+                       float bounce = -(float)nearest_info.bouncy / 100.0f;
+
+                       // Move to the point of collision and reduce dtime by nearest_dtime
+                       if (nearest_dtime < 0) {
+                               // Handle negative nearest_dtime
+                               if (!step_up) {
+                                       if (nearest_collided == COLLISION_AXIS_X)
+                                               pos_f->X += speed_f->X * nearest_dtime;
+                                       if (nearest_collided == COLLISION_AXIS_Y)
+                                               pos_f->Y += speed_f->Y * nearest_dtime;
+                                       if (nearest_collided == COLLISION_AXIS_Z)
+                                               pos_f->Z += speed_f->Z * nearest_dtime;
+                               }
+                       } else {
+                               *pos_f += truncate(*speed_f * nearest_dtime, 100.0f);
+                               dtime -= nearest_dtime;
+                       }
+
+                       bool is_collision = true;
+                       if (nearest_info.is_unloaded)
+                               is_collision = false;
+
+                       CollisionInfo info;
+                       if (nearest_info.isObject())
+                               info.type = COLLISION_OBJECT;
+                       else
+                               info.type = COLLISION_NODE;
+
+                       info.node_p = nearest_info.position;
+                       info.object = nearest_info.obj;
+                       info.old_speed = *speed_f;
+                       info.plane = nearest_collided;
+
+                       // Set the speed component that caused the collision to zero
+                       if (step_up) {
+                               // Special case: Handle stairs
+                               nearest_info.is_step_up = true;
+                               is_collision = false;
+                       } else if (nearest_collided == COLLISION_AXIS_X) {
+                               if (fabs(speed_f->X) > BS * 3)
+                                       speed_f->X *= bounce;
+                               else
+                                       speed_f->X = 0;
+                               result.collides = true;
+                       } else if (nearest_collided == COLLISION_AXIS_Y) {
+                               if(fabs(speed_f->Y) > BS * 3)
+                                       speed_f->Y *= bounce;
+                               else
+                                       speed_f->Y = 0;
+                               result.collides = true;
+                       } else if (nearest_collided == COLLISION_AXIS_Z) {
+                               if (fabs(speed_f->Z) > BS * 3)
+                                       speed_f->Z *= bounce;
+                               else
+                                       speed_f->Z = 0;
+                               result.collides = true;
+                       }
+
+                       info.new_speed = *speed_f;
+                       if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1f * BS)
+                               is_collision = false;
+
+                       if (is_collision) {
+                               info.axis = nearest_collided;
+                               result.collisions.push_back(info);
+                       }
+               }
+       }
+
+       /*
+               Final touches: Check if standing on ground, step up stairs.
+       */
+       aabb3f box = box_0;
+       box.MinEdge += *pos_f;
+       box.MaxEdge += *pos_f;
+       for (const auto &box_info : cinfo) {
+               const aabb3f &cbox = box_info.box;
+
                /*
                        See if the object is touching ground.
 
                        Object touches ground if object's minimum Y is near node's
                        maximum Y and object's X-Z-area overlaps with the node's
                        X-Z-area.
-
-                       Use 0.15*BS so that it is easier to get on a node.
                */
-               if(
-                               //fabs(nodebox.MaxEdge.Y-box.MinEdge.Y) < d
-                               fabs(nodebox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS
-                               && nodebox.MaxEdge.X-d > box.MinEdge.X
-                               && nodebox.MinEdge.X+d < box.MaxEdge.X
-                               && nodebox.MaxEdge.Z-d > box.MinEdge.Z
-                               && nodebox.MinEdge.Z+d < box.MaxEdge.Z
-               ){
-                       result.touching_ground = true;
-               }
-               
-               // If object doesn't intersect with node, ignore node.
-               if(box.intersectsWithBox(nodebox) == false)
-                       continue;
-               
-               /*
-                       Go through every axis
-               */
-               v3f dirs[3] = {
-                       v3f(0,0,1), // back-front
-                       v3f(0,1,0), // top-bottom
-                       v3f(1,0,0), // right-left
-               };
-               for(u16 i=0; i<3; i++)
-               {
-                       /*
-                               Calculate values along the axis
-                       */
-                       f32 nodemax = nodebox.MaxEdge.dotProduct(dirs[i]);
-                       f32 nodemin = nodebox.MinEdge.dotProduct(dirs[i]);
-                       f32 objectmax = box.MaxEdge.dotProduct(dirs[i]);
-                       f32 objectmin = box.MinEdge.dotProduct(dirs[i]);
-                       f32 objectmax_old = oldbox.MaxEdge.dotProduct(dirs[i]);
-                       f32 objectmin_old = oldbox.MinEdge.dotProduct(dirs[i]);
-                       
-                       /*
-                               Check collision for the axis.
-                               Collision happens when object is going through a surface.
-                       */
-                       bool negative_axis_collides =
-                               (nodemax > objectmin && nodemax <= objectmin_old + d
-                                       && speed_f.dotProduct(dirs[i]) < 0);
-                       bool positive_axis_collides =
-                               (nodemin < objectmax && nodemin >= objectmax_old - d
-                                       && speed_f.dotProduct(dirs[i]) > 0);
-                       bool main_axis_collides =
-                                       negative_axis_collides || positive_axis_collides;
-                       
-                       /*
-                               Check overlap of object and node in other axes
-                       */
-                       bool other_axes_overlap = true;
-                       for(u16 j=0; j<3; j++)
-                       {
-                               if(j == i)
-                                       continue;
-                               f32 nodemax = nodebox.MaxEdge.dotProduct(dirs[j]);
-                               f32 nodemin = nodebox.MinEdge.dotProduct(dirs[j]);
-                               f32 objectmax = box.MaxEdge.dotProduct(dirs[j]);
-                               f32 objectmin = box.MinEdge.dotProduct(dirs[j]);
-                               if(!(nodemax - d > objectmin && nodemin + d < objectmax))
-                               {
-                                       other_axes_overlap = false;
-                                       break;
-                               }
+
+               if (cbox.MaxEdge.X - d > box.MinEdge.X && cbox.MinEdge.X + d < box.MaxEdge.X &&
+                               cbox.MaxEdge.Z - d > box.MinEdge.Z &&
+                               cbox.MinEdge.Z + d < box.MaxEdge.Z) {
+                       if (box_info.is_step_up) {
+                               pos_f->Y += cbox.MaxEdge.Y - box.MinEdge.Y;
+                               box = box_0;
+                               box.MinEdge += *pos_f;
+                               box.MaxEdge += *pos_f;
                        }
-                       
-                       /*
-                               If this is a collision, revert the pos_f in the main
-                               direction.
-                       */
-                       if(other_axes_overlap && main_axis_collides)
-                       {
-                               speed_f -= speed_f.dotProduct(dirs[i]) * dirs[i];
-                               pos_f -= pos_f.dotProduct(dirs[i]) * dirs[i];
-                               pos_f += oldpos_f.dotProduct(dirs[i]) * dirs[i];
+                       if (std::fabs(cbox.MaxEdge.Y - box.MinEdge.Y) < 0.05f) {
+                               result.touching_ground = true;
+
+                               if (box_info.isObject())
+                                       result.standing_on_object = true;
                        }
-               
                }
-       } // xyz
-       
+       }
+
        return result;
 }
-
-