]> git.lizzy.rs Git - rust.git/blobdiff - compiler/rustc_mir_transform/src/dataflow_const_prop.rs
Auto merge of #105003 - flba-eb:only_windows, r=Mark-Simulacrum
[rust.git] / compiler / rustc_mir_transform / src / dataflow_const_prop.rs
index 75d9ea16bd60cbfbe96ec8967b3a4ad3cbe83b23..e9027387413cfe1e97425a7992e74e33384fbfb3 100644 (file)
@@ -1,39 +1,62 @@
 //! A constant propagation optimization pass based on dataflow analysis.
 //!
-//! Tracks places that have a scalar type.
+//! Currently, this pass only propagates scalar values.
 
 use rustc_const_eval::interpret::{ConstValue, ImmTy, Immediate, InterpCx, Scalar};
 use rustc_data_structures::fx::FxHashMap;
 use rustc_middle::mir::visit::{MutVisitor, Visitor};
 use rustc_middle::mir::*;
 use rustc_middle::ty::{self, Ty, TyCtxt};
-use rustc_mir_dataflow::value_analysis::{
-    HasTop, Map, State, TrackElem, ValueAnalysis, ValueOrPlace, ValueOrPlaceOrRef,
-};
+use rustc_mir_dataflow::value_analysis::{Map, State, TrackElem, ValueAnalysis, ValueOrPlace};
 use rustc_mir_dataflow::{lattice::FlatSet, Analysis, ResultsVisitor, SwitchIntEdgeEffects};
-use rustc_span::{sym, DUMMY_SP};
+use rustc_span::DUMMY_SP;
 
 use crate::MirPass;
 
+// These constants are somewhat random guesses and have not been optimized.
+// If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive).
+const BLOCK_LIMIT: usize = 100;
+const PLACE_LIMIT: usize = 100;
+
 pub struct DataflowConstProp;
 
 impl<'tcx> MirPass<'tcx> for DataflowConstProp {
     fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
-        sess.mir_opt_level() >= 1
+        sess.mir_opt_level() >= 3
     }
 
+    #[instrument(skip_all level = "debug")]
     fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
+        if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
+            debug!("aborted dataflow const prop due too many basic blocks");
+            return;
+        }
+
         // Decide which places to track during the analysis.
         let map = Map::from_filter(tcx, body, Ty::is_scalar);
 
+        // We want to have a somewhat linear runtime w.r.t. the number of statements/terminators.
+        // Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function
+        // applications, where `h` is the height of the lattice. Because the height of our lattice
+        // is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However,
+        // because every transfer function application could traverse the whole map, this becomes
+        // `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of
+        // map nodes is strongly correlated to the number of tracked places, this becomes more or
+        // less `O(n)` if we place a constant limit on the number of tracked places.
+        if tcx.sess.mir_opt_level() < 4 && map.tracked_places() > PLACE_LIMIT {
+            debug!("aborted dataflow const prop due to too many tracked places");
+            return;
+        }
+
         // Perform the actual dataflow analysis.
         let analysis = ConstAnalysis::new(tcx, body, map);
-        let results = analysis.wrap().into_engine(tcx, body).iterate_to_fixpoint();
+        let results = debug_span!("analyze")
+            .in_scope(|| analysis.wrap().into_engine(tcx, body).iterate_to_fixpoint());
 
         // Collect results and patch the body afterwards.
         let mut visitor = CollectAndPatch::new(tcx, &results.analysis.0.map);
-        results.visit_reachable_with(body, &mut visitor);
-        visitor.visit_body(body);
+        debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor));
+        debug_span!("patch").in_scope(|| visitor.visit_body(body));
     }
 }
 
@@ -42,7 +65,6 @@ struct ConstAnalysis<'tcx> {
     tcx: TyCtxt<'tcx>,
     ecx: InterpCx<'tcx, 'tcx, DummyMachine>,
     param_env: ty::ParamEnv<'tcx>,
-    propagate_overflow: bool,
 }
 
 impl<'tcx> ValueAnalysis<'tcx> for ConstAnalysis<'tcx> {
@@ -78,26 +100,24 @@ fn handle_assign(
                     let (val, overflow) = self.binary_op(state, *op, left, right);
 
                     if let Some(value_target) = value_target {
-                        state.assign_idx(value_target, ValueOrPlaceOrRef::Value(val), self.map());
+                        state.assign_idx(value_target, ValueOrPlace::Value(val), self.map());
                     }
                     if let Some(overflow_target) = overflow_target {
                         let overflow = match overflow {
                             FlatSet::Top => FlatSet::Top,
                             FlatSet::Elem(overflow) => {
-                                if overflow && !self.propagate_overflow {
+                                if overflow {
+                                    // Overflow cannot be reliably propagated. See: https://github.com/rust-lang/rust/pull/101168#issuecomment-1288091446
                                     FlatSet::Top
                                 } else {
-                                    self.wrap_scalar(
-                                        Scalar::from_bool(overflow),
-                                        self.tcx.types.bool,
-                                    )
+                                    self.wrap_scalar(Scalar::from_bool(false), self.tcx.types.bool)
                                 }
                             }
                             FlatSet::Bottom => FlatSet::Bottom,
                         };
                         state.assign_idx(
                             overflow_target,
-                            ValueOrPlaceOrRef::Value(overflow),
+                            ValueOrPlace::Value(overflow),
                             self.map(),
                         );
                     }
@@ -111,39 +131,42 @@ fn handle_rvalue(
         &self,
         rvalue: &Rvalue<'tcx>,
         state: &mut State<Self::Value>,
-    ) -> ValueOrPlaceOrRef<Self::Value> {
+    ) -> ValueOrPlace<Self::Value> {
         match rvalue {
             Rvalue::Cast(
-                CastKind::IntToInt
+                kind @ (CastKind::IntToInt
                 | CastKind::FloatToInt
                 | CastKind::FloatToFloat
-                | CastKind::IntToFloat,
+                | CastKind::IntToFloat),
                 operand,
                 ty,
-            ) => {
-                let operand = self.eval_operand(operand, state);
-                match operand {
-                    FlatSet::Elem(operand) => self
-                        .ecx
-                        .misc_cast(&operand, *ty)
-                        .map(|result| ValueOrPlaceOrRef::Value(self.wrap_immediate(result, *ty)))
-                        .unwrap_or(ValueOrPlaceOrRef::top()),
-                    _ => ValueOrPlaceOrRef::top(),
+            ) => match self.eval_operand(operand, state) {
+                FlatSet::Elem(op) => match kind {
+                    CastKind::IntToInt | CastKind::IntToFloat => {
+                        self.ecx.int_to_int_or_float(&op, *ty)
+                    }
+                    CastKind::FloatToInt | CastKind::FloatToFloat => {
+                        self.ecx.float_to_float_or_int(&op, *ty)
+                    }
+                    _ => unreachable!(),
                 }
-            }
+                .map(|result| ValueOrPlace::Value(self.wrap_immediate(result, *ty)))
+                .unwrap_or(ValueOrPlace::top()),
+                _ => ValueOrPlace::top(),
+            },
             Rvalue::BinaryOp(op, box (left, right)) => {
                 // Overflows must be ignored here.
                 let (val, _overflow) = self.binary_op(state, *op, left, right);
-                ValueOrPlaceOrRef::Value(val)
+                ValueOrPlace::Value(val)
             }
             Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
                 FlatSet::Elem(value) => self
                     .ecx
                     .unary_op(*op, &value)
-                    .map(|val| ValueOrPlaceOrRef::Value(self.wrap_immty(val)))
-                    .unwrap_or(ValueOrPlaceOrRef::Value(FlatSet::Top)),
-                FlatSet::Bottom => ValueOrPlaceOrRef::Value(FlatSet::Bottom),
-                FlatSet::Top => ValueOrPlaceOrRef::Value(FlatSet::Top),
+                    .map(|val| ValueOrPlace::Value(self.wrap_immty(val)))
+                    .unwrap_or(ValueOrPlace::Value(FlatSet::Top)),
+                FlatSet::Bottom => ValueOrPlace::Value(FlatSet::Bottom),
+                FlatSet::Top => ValueOrPlace::Value(FlatSet::Top),
             },
             _ => self.super_rvalue(rvalue, state),
         }
@@ -220,20 +243,12 @@ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 
 impl<'tcx> ConstAnalysis<'tcx> {
     pub fn new(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, map: Map) -> Self {
-        // It can happen that overflow will be detected even though overflow checks are disabled.
-        // This is caused by inlining functions that have #[rustc_inherit_overflow_checks]. Such
-        // overflows must not be propagated if `-C overflow-checks=off`. Also, if the function we
-        // are optimizing here has #[rustc_inherit_overflow_checks], the overflow checks may
-        // actually not be triggered by the consuming crate, so we have to ignore them too.
-        // Related to https://github.com/rust-lang/rust/issues/35310.
-        let propagate_overflow = tcx.sess.overflow_checks()
-            && !tcx.has_attr(body.source.def_id(), sym::rustc_inherit_overflow_checks);
+        let param_env = tcx.param_env(body.source.def_id());
         Self {
             map,
             tcx,
-            ecx: InterpCx::new(tcx, DUMMY_SP, ty::ParamEnv::empty(), DummyMachine),
-            param_env: tcx.param_env(body.source.def_id()),
-            propagate_overflow,
+            ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
+            param_env: param_env,
         }
     }
 
@@ -272,13 +287,11 @@ fn eval_operand(
         };
         match value {
             FlatSet::Top => FlatSet::Top,
-            FlatSet::Elem(ScalarTy(scalar, ty)) => {
-                let layout = self
-                    .tcx
-                    .layout_of(ty::ParamEnv::empty().and(ty))
-                    .expect("this should not happen"); // FIXME
-                FlatSet::Elem(ImmTy::from_scalar(scalar, layout))
-            }
+            FlatSet::Elem(ScalarTy(scalar, ty)) => self
+                .tcx
+                .layout_of(self.param_env.and(ty))
+                .map(|layout| FlatSet::Elem(ImmTy::from_scalar(scalar, layout)))
+                .unwrap_or(FlatSet::Top),
             FlatSet::Bottom => FlatSet::Bottom,
         }
     }
@@ -302,7 +315,13 @@ fn wrap_immty(&self, val: ImmTy<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
 struct CollectAndPatch<'tcx, 'map> {
     tcx: TyCtxt<'tcx>,
     map: &'map Map,
+
+    /// For a given MIR location, this stores the values of the operands used by that location. In
+    /// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are
+    /// properly captured. (This may become UB soon, but it is currently emitted even by safe code.)
     before_effect: FxHashMap<(Location, Place<'tcx>), ScalarTy<'tcx>>,
+
+    /// Stores the assigned values for assignments where the Rvalue is constant.
     assignments: FxHashMap<Location, ScalarTy<'tcx>>,
 }
 
@@ -474,7 +493,7 @@ fn binary_ptr_op(
         _left: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
         _right: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
     ) -> interpret::InterpResult<'tcx, (interpret::Scalar<Self::Provenance>, bool, Ty<'tcx>)> {
-        unimplemented!()
+        throw_unsup!(Unsupported("".into()))
     }
 
     fn expose_ptr(