]> git.lizzy.rs Git - rust.git/blobdiff - compiler/rustc_middle/src/ty/layout.rs
Auto merge of #102596 - scottmcm:option-bool-calloc, r=Mark-Simulacrum
[rust.git] / compiler / rustc_middle / src / ty / layout.rs
index 3c523659df74e15dbada8487c1405d1b9b1c0a79..5f8729a8ddf3caadd4cbb33b5e3c7a27c150340a 100644 (file)
@@ -1,41 +1,23 @@
 use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
-use crate::mir::{GeneratorLayout, GeneratorSavedLocal};
 use crate::ty::normalize_erasing_regions::NormalizationError;
-use crate::ty::{
-    self, layout_sanity_check::sanity_check_layout, subst::SubstsRef, EarlyBinder, ReprOptions, Ty,
-    TyCtxt, TypeVisitable,
-};
+use crate::ty::{self, ReprOptions, Ty, TyCtxt, TypeVisitable};
 use rustc_ast as ast;
 use rustc_attr as attr;
 use rustc_errors::{DiagnosticBuilder, Handler, IntoDiagnostic};
 use rustc_hir as hir;
 use rustc_hir::def_id::DefId;
-use rustc_hir::lang_items::LangItem;
-use rustc_index::bit_set::BitSet;
-use rustc_index::vec::{Idx, IndexVec};
-use rustc_session::{config::OptLevel, DataTypeKind, FieldInfo, SizeKind, VariantInfo};
-use rustc_span::symbol::Symbol;
+use rustc_index::vec::Idx;
+use rustc_session::config::OptLevel;
 use rustc_span::{Span, DUMMY_SP};
-use rustc_target::abi::call::{
-    ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind,
-};
+use rustc_target::abi::call::FnAbi;
 use rustc_target::abi::*;
 use rustc_target::spec::{abi::Abi as SpecAbi, HasTargetSpec, PanicStrategy, Target};
 
-use std::cmp::{self, Ordering};
+use std::cmp::{self};
 use std::fmt;
-use std::iter;
 use std::num::NonZeroUsize;
 use std::ops::Bound;
 
-use rand::{seq::SliceRandom, SeedableRng};
-use rand_xoshiro::Xoshiro128StarStar;
-
-pub fn provide(providers: &mut ty::query::Providers) {
-    *providers =
-        ty::query::Providers { layout_of, fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers };
-}
-
 pub trait IntegerExt {
     fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx>;
     fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer;
@@ -230,1814 +212,12 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
     }
 }
 
-#[instrument(skip(tcx, query), level = "debug")]
-fn layout_of<'tcx>(
-    tcx: TyCtxt<'tcx>,
-    query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
-) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> {
-    let (param_env, ty) = query.into_parts();
-    debug!(?ty);
-
-    let param_env = param_env.with_reveal_all_normalized(tcx);
-    let unnormalized_ty = ty;
-
-    // FIXME: We might want to have two different versions of `layout_of`:
-    // One that can be called after typecheck has completed and can use
-    // `normalize_erasing_regions` here and another one that can be called
-    // before typecheck has completed and uses `try_normalize_erasing_regions`.
-    let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
-        Ok(t) => t,
-        Err(normalization_error) => {
-            return Err(LayoutError::NormalizationFailure(ty, normalization_error));
-        }
-    };
-
-    if ty != unnormalized_ty {
-        // Ensure this layout is also cached for the normalized type.
-        return tcx.layout_of(param_env.and(ty));
-    }
-
-    let cx = LayoutCx { tcx, param_env };
-
-    let layout = cx.layout_of_uncached(ty)?;
-    let layout = TyAndLayout { ty, layout };
-
-    cx.record_layout_for_printing(layout);
-
-    sanity_check_layout(&cx, &layout);
-
-    Ok(layout)
-}
-
 #[derive(Clone, Copy)]
 pub struct LayoutCx<'tcx, C> {
     pub tcx: C,
     pub param_env: ty::ParamEnv<'tcx>,
 }
 
-#[derive(Copy, Clone, Debug)]
-enum StructKind {
-    /// A tuple, closure, or univariant which cannot be coerced to unsized.
-    AlwaysSized,
-    /// A univariant, the last field of which may be coerced to unsized.
-    MaybeUnsized,
-    /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag).
-    Prefixed(Size, Align),
-}
-
-// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`.
-// This is used to go between `memory_index` (source field order to memory order)
-// and `inverse_memory_index` (memory order to source field order).
-// See also `FieldsShape::Arbitrary::memory_index` for more details.
-// FIXME(eddyb) build a better abstraction for permutations, if possible.
-fn invert_mapping(map: &[u32]) -> Vec<u32> {
-    let mut inverse = vec![0; map.len()];
-    for i in 0..map.len() {
-        inverse[map[i] as usize] = i as u32;
-    }
-    inverse
-}
-
-impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
-    fn scalar_pair(&self, a: Scalar, b: Scalar) -> LayoutS<'tcx> {
-        let dl = self.data_layout();
-        let b_align = b.align(dl);
-        let align = a.align(dl).max(b_align).max(dl.aggregate_align);
-        let b_offset = a.size(dl).align_to(b_align.abi);
-        let size = (b_offset + b.size(dl)).align_to(align.abi);
-
-        // HACK(nox): We iter on `b` and then `a` because `max_by_key`
-        // returns the last maximum.
-        let largest_niche = Niche::from_scalar(dl, b_offset, b)
-            .into_iter()
-            .chain(Niche::from_scalar(dl, Size::ZERO, a))
-            .max_by_key(|niche| niche.available(dl));
-
-        LayoutS {
-            variants: Variants::Single { index: VariantIdx::new(0) },
-            fields: FieldsShape::Arbitrary {
-                offsets: vec![Size::ZERO, b_offset],
-                memory_index: vec![0, 1],
-            },
-            abi: Abi::ScalarPair(a, b),
-            largest_niche,
-            align,
-            size,
-        }
-    }
-
-    fn univariant_uninterned(
-        &self,
-        ty: Ty<'tcx>,
-        fields: &[TyAndLayout<'_>],
-        repr: &ReprOptions,
-        kind: StructKind,
-    ) -> Result<LayoutS<'tcx>, LayoutError<'tcx>> {
-        let dl = self.data_layout();
-        let pack = repr.pack;
-        if pack.is_some() && repr.align.is_some() {
-            self.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
-            return Err(LayoutError::Unknown(ty));
-        }
-
-        let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
-
-        let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();
-
-        let optimize = !repr.inhibit_struct_field_reordering_opt();
-        if optimize {
-            let end =
-                if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
-            let optimizing = &mut inverse_memory_index[..end];
-            let field_align = |f: &TyAndLayout<'_>| {
-                if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi }
-            };
-
-            // If `-Z randomize-layout` was enabled for the type definition we can shuffle
-            // the field ordering to try and catch some code making assumptions about layouts
-            // we don't guarantee
-            if repr.can_randomize_type_layout() {
-                // `ReprOptions.layout_seed` is a deterministic seed that we can use to
-                // randomize field ordering with
-                let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed);
-
-                // Shuffle the ordering of the fields
-                optimizing.shuffle(&mut rng);
-
-            // Otherwise we just leave things alone and actually optimize the type's fields
-            } else {
-                match kind {
-                    StructKind::AlwaysSized | StructKind::MaybeUnsized => {
-                        optimizing.sort_by_key(|&x| {
-                            // Place ZSTs first to avoid "interesting offsets",
-                            // especially with only one or two non-ZST fields.
-                            let f = &fields[x as usize];
-                            (!f.is_zst(), cmp::Reverse(field_align(f)))
-                        });
-                    }
-
-                    StructKind::Prefixed(..) => {
-                        // Sort in ascending alignment so that the layout stays optimal
-                        // regardless of the prefix
-                        optimizing.sort_by_key(|&x| field_align(&fields[x as usize]));
-                    }
-                }
-
-                // FIXME(Kixiron): We can always shuffle fields within a given alignment class
-                //                 regardless of the status of `-Z randomize-layout`
-            }
-        }
-
-        // inverse_memory_index holds field indices by increasing memory offset.
-        // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
-        // We now write field offsets to the corresponding offset slot;
-        // field 5 with offset 0 puts 0 in offsets[5].
-        // At the bottom of this function, we invert `inverse_memory_index` to
-        // produce `memory_index` (see `invert_mapping`).
-
-        let mut sized = true;
-        let mut offsets = vec![Size::ZERO; fields.len()];
-        let mut offset = Size::ZERO;
-        let mut largest_niche = None;
-        let mut largest_niche_available = 0;
-
-        if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
-            let prefix_align =
-                if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
-            align = align.max(AbiAndPrefAlign::new(prefix_align));
-            offset = prefix_size.align_to(prefix_align);
-        }
-
-        for &i in &inverse_memory_index {
-            let field = fields[i as usize];
-            if !sized {
-                self.tcx.sess.delay_span_bug(
-                    DUMMY_SP,
-                    &format!(
-                        "univariant: field #{} of `{}` comes after unsized field",
-                        offsets.len(),
-                        ty
-                    ),
-                );
-            }
-
-            if field.is_unsized() {
-                sized = false;
-            }
-
-            // Invariant: offset < dl.obj_size_bound() <= 1<<61
-            let field_align = if let Some(pack) = pack {
-                field.align.min(AbiAndPrefAlign::new(pack))
-            } else {
-                field.align
-            };
-            offset = offset.align_to(field_align.abi);
-            align = align.max(field_align);
-
-            debug!("univariant offset: {:?} field: {:#?}", offset, field);
-            offsets[i as usize] = offset;
-
-            if let Some(mut niche) = field.largest_niche {
-                let available = niche.available(dl);
-                if available > largest_niche_available {
-                    largest_niche_available = available;
-                    niche.offset += offset;
-                    largest_niche = Some(niche);
-                }
-            }
-
-            offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?;
-        }
-
-        if let Some(repr_align) = repr.align {
-            align = align.max(AbiAndPrefAlign::new(repr_align));
-        }
-
-        debug!("univariant min_size: {:?}", offset);
-        let min_size = offset;
-
-        // As stated above, inverse_memory_index holds field indices by increasing offset.
-        // This makes it an already-sorted view of the offsets vec.
-        // To invert it, consider:
-        // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
-        // Field 5 would be the first element, so memory_index is i:
-        // Note: if we didn't optimize, it's already right.
-
-        let memory_index =
-            if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index };
-
-        let size = min_size.align_to(align.abi);
-        let mut abi = Abi::Aggregate { sized };
-
-        // Unpack newtype ABIs and find scalar pairs.
-        if sized && size.bytes() > 0 {
-            // All other fields must be ZSTs.
-            let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst());
-
-            match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
-                // We have exactly one non-ZST field.
-                (Some((i, field)), None, None) => {
-                    // Field fills the struct and it has a scalar or scalar pair ABI.
-                    if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size
-                    {
-                        match field.abi {
-                            // For plain scalars, or vectors of them, we can't unpack
-                            // newtypes for `#[repr(C)]`, as that affects C ABIs.
-                            Abi::Scalar(_) | Abi::Vector { .. } if optimize => {
-                                abi = field.abi;
-                            }
-                            // But scalar pairs are Rust-specific and get
-                            // treated as aggregates by C ABIs anyway.
-                            Abi::ScalarPair(..) => {
-                                abi = field.abi;
-                            }
-                            _ => {}
-                        }
-                    }
-                }
-
-                // Two non-ZST fields, and they're both scalars.
-                (Some((i, a)), Some((j, b)), None) => {
-                    match (a.abi, b.abi) {
-                        (Abi::Scalar(a), Abi::Scalar(b)) => {
-                            // Order by the memory placement, not source order.
-                            let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
-                                ((i, a), (j, b))
-                            } else {
-                                ((j, b), (i, a))
-                            };
-                            let pair = self.scalar_pair(a, b);
-                            let pair_offsets = match pair.fields {
-                                FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
-                                    assert_eq!(memory_index, &[0, 1]);
-                                    offsets
-                                }
-                                _ => bug!(),
-                            };
-                            if offsets[i] == pair_offsets[0]
-                                && offsets[j] == pair_offsets[1]
-                                && align == pair.align
-                                && size == pair.size
-                            {
-                                // We can use `ScalarPair` only when it matches our
-                                // already computed layout (including `#[repr(C)]`).
-                                abi = pair.abi;
-                            }
-                        }
-                        _ => {}
-                    }
-                }
-
-                _ => {}
-            }
-        }
-
-        if fields.iter().any(|f| f.abi.is_uninhabited()) {
-            abi = Abi::Uninhabited;
-        }
-
-        Ok(LayoutS {
-            variants: Variants::Single { index: VariantIdx::new(0) },
-            fields: FieldsShape::Arbitrary { offsets, memory_index },
-            abi,
-            largest_niche,
-            align,
-            size,
-        })
-    }
-
-    fn layout_of_uncached(&self, ty: Ty<'tcx>) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
-        let tcx = self.tcx;
-        let param_env = self.param_env;
-        let dl = self.data_layout();
-        let scalar_unit = |value: Primitive| {
-            let size = value.size(dl);
-            assert!(size.bits() <= 128);
-            Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
-        };
-        let scalar =
-            |value: Primitive| tcx.intern_layout(LayoutS::scalar(self, scalar_unit(value)));
-
-        let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| {
-            Ok(tcx.intern_layout(self.univariant_uninterned(ty, fields, repr, kind)?))
-        };
-        debug_assert!(!ty.has_infer_types_or_consts());
-
-        Ok(match *ty.kind() {
-            // Basic scalars.
-            ty::Bool => tcx.intern_layout(LayoutS::scalar(
-                self,
-                Scalar::Initialized {
-                    value: Int(I8, false),
-                    valid_range: WrappingRange { start: 0, end: 1 },
-                },
-            )),
-            ty::Char => tcx.intern_layout(LayoutS::scalar(
-                self,
-                Scalar::Initialized {
-                    value: Int(I32, false),
-                    valid_range: WrappingRange { start: 0, end: 0x10FFFF },
-                },
-            )),
-            ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
-            ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
-            ty::Float(fty) => scalar(match fty {
-                ty::FloatTy::F32 => F32,
-                ty::FloatTy::F64 => F64,
-            }),
-            ty::FnPtr(_) => {
-                let mut ptr = scalar_unit(Pointer);
-                ptr.valid_range_mut().start = 1;
-                tcx.intern_layout(LayoutS::scalar(self, ptr))
-            }
-
-            // The never type.
-            ty::Never => tcx.intern_layout(LayoutS {
-                variants: Variants::Single { index: VariantIdx::new(0) },
-                fields: FieldsShape::Primitive,
-                abi: Abi::Uninhabited,
-                largest_niche: None,
-                align: dl.i8_align,
-                size: Size::ZERO,
-            }),
-
-            // Potentially-wide pointers.
-            ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
-                let mut data_ptr = scalar_unit(Pointer);
-                if !ty.is_unsafe_ptr() {
-                    data_ptr.valid_range_mut().start = 1;
-                }
-
-                let pointee = tcx.normalize_erasing_regions(param_env, pointee);
-                if pointee.is_sized(tcx.at(DUMMY_SP), param_env) {
-                    return Ok(tcx.intern_layout(LayoutS::scalar(self, data_ptr)));
-                }
-
-                let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
-                let metadata = match unsized_part.kind() {
-                    ty::Foreign(..) => {
-                        return Ok(tcx.intern_layout(LayoutS::scalar(self, data_ptr)));
-                    }
-                    ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
-                    ty::Dynamic(..) => {
-                        let mut vtable = scalar_unit(Pointer);
-                        vtable.valid_range_mut().start = 1;
-                        vtable
-                    }
-                    _ => return Err(LayoutError::Unknown(unsized_part)),
-                };
-
-                // Effectively a (ptr, meta) tuple.
-                tcx.intern_layout(self.scalar_pair(data_ptr, metadata))
-            }
-
-            ty::Dynamic(_, _, ty::DynStar) => {
-                let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false));
-                data.valid_range_mut().start = 0;
-                let mut vtable = scalar_unit(Pointer);
-                vtable.valid_range_mut().start = 1;
-                tcx.intern_layout(self.scalar_pair(data, vtable))
-            }
-
-            // Arrays and slices.
-            ty::Array(element, mut count) => {
-                if count.has_projections() {
-                    count = tcx.normalize_erasing_regions(param_env, count);
-                    if count.has_projections() {
-                        return Err(LayoutError::Unknown(ty));
-                    }
-                }
-
-                let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?;
-                let element = self.layout_of(element)?;
-                let size =
-                    element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;
-
-                let abi =
-                    if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) {
-                        Abi::Uninhabited
-                    } else {
-                        Abi::Aggregate { sized: true }
-                    };
-
-                let largest_niche = if count != 0 { element.largest_niche } else { None };
-
-                tcx.intern_layout(LayoutS {
-                    variants: Variants::Single { index: VariantIdx::new(0) },
-                    fields: FieldsShape::Array { stride: element.size, count },
-                    abi,
-                    largest_niche,
-                    align: element.align,
-                    size,
-                })
-            }
-            ty::Slice(element) => {
-                let element = self.layout_of(element)?;
-                tcx.intern_layout(LayoutS {
-                    variants: Variants::Single { index: VariantIdx::new(0) },
-                    fields: FieldsShape::Array { stride: element.size, count: 0 },
-                    abi: Abi::Aggregate { sized: false },
-                    largest_niche: None,
-                    align: element.align,
-                    size: Size::ZERO,
-                })
-            }
-            ty::Str => tcx.intern_layout(LayoutS {
-                variants: Variants::Single { index: VariantIdx::new(0) },
-                fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
-                abi: Abi::Aggregate { sized: false },
-                largest_niche: None,
-                align: dl.i8_align,
-                size: Size::ZERO,
-            }),
-
-            // Odd unit types.
-            ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?,
-            ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
-                let mut unit = self.univariant_uninterned(
-                    ty,
-                    &[],
-                    &ReprOptions::default(),
-                    StructKind::AlwaysSized,
-                )?;
-                match unit.abi {
-                    Abi::Aggregate { ref mut sized } => *sized = false,
-                    _ => bug!(),
-                }
-                tcx.intern_layout(unit)
-            }
-
-            ty::Generator(def_id, substs, _) => self.generator_layout(ty, def_id, substs)?,
-
-            ty::Closure(_, ref substs) => {
-                let tys = substs.as_closure().upvar_tys();
-                univariant(
-                    &tys.map(|ty| self.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
-                    &ReprOptions::default(),
-                    StructKind::AlwaysSized,
-                )?
-            }
-
-            ty::Tuple(tys) => {
-                let kind =
-                    if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
-
-                univariant(
-                    &tys.iter().map(|k| self.layout_of(k)).collect::<Result<Vec<_>, _>>()?,
-                    &ReprOptions::default(),
-                    kind,
-                )?
-            }
-
-            // SIMD vector types.
-            ty::Adt(def, substs) if def.repr().simd() => {
-                if !def.is_struct() {
-                    // Should have yielded E0517 by now.
-                    tcx.sess.delay_span_bug(
-                        DUMMY_SP,
-                        "#[repr(simd)] was applied to an ADT that is not a struct",
-                    );
-                    return Err(LayoutError::Unknown(ty));
-                }
-
-                // Supported SIMD vectors are homogeneous ADTs with at least one field:
-                //
-                // * #[repr(simd)] struct S(T, T, T, T);
-                // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
-                // * #[repr(simd)] struct S([T; 4])
-                //
-                // where T is a primitive scalar (integer/float/pointer).
-
-                // SIMD vectors with zero fields are not supported.
-                // (should be caught by typeck)
-                if def.non_enum_variant().fields.is_empty() {
-                    tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
-                }
-
-                // Type of the first ADT field:
-                let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs);
-
-                // Heterogeneous SIMD vectors are not supported:
-                // (should be caught by typeck)
-                for fi in &def.non_enum_variant().fields {
-                    if fi.ty(tcx, substs) != f0_ty {
-                        tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty));
-                    }
-                }
-
-                // The element type and number of elements of the SIMD vector
-                // are obtained from:
-                //
-                // * the element type and length of the single array field, if
-                // the first field is of array type, or
-                //
-                // * the homogeneous field type and the number of fields.
-                let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
-                    // First ADT field is an array:
-
-                    // SIMD vectors with multiple array fields are not supported:
-                    // (should be caught by typeck)
-                    if def.non_enum_variant().fields.len() != 1 {
-                        tcx.sess.fatal(&format!(
-                            "monomorphising SIMD type `{}` with more than one array field",
-                            ty
-                        ));
-                    }
-
-                    // Extract the number of elements from the layout of the array field:
-                    let FieldsShape::Array { count, .. } = self.layout_of(f0_ty)?.layout.fields() else {
-                        return Err(LayoutError::Unknown(ty));
-                    };
-
-                    (*e_ty, *count, true)
-                } else {
-                    // First ADT field is not an array:
-                    (f0_ty, def.non_enum_variant().fields.len() as _, false)
-                };
-
-                // SIMD vectors of zero length are not supported.
-                // Additionally, lengths are capped at 2^16 as a fixed maximum backends must
-                // support.
-                //
-                // Can't be caught in typeck if the array length is generic.
-                if e_len == 0 {
-                    tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
-                } else if e_len > MAX_SIMD_LANES {
-                    tcx.sess.fatal(&format!(
-                        "monomorphising SIMD type `{}` of length greater than {}",
-                        ty, MAX_SIMD_LANES,
-                    ));
-                }
-
-                // Compute the ABI of the element type:
-                let e_ly = self.layout_of(e_ty)?;
-                let Abi::Scalar(e_abi) = e_ly.abi else {
-                    // This error isn't caught in typeck, e.g., if
-                    // the element type of the vector is generic.
-                    tcx.sess.fatal(&format!(
-                        "monomorphising SIMD type `{}` with a non-primitive-scalar \
-                        (integer/float/pointer) element type `{}`",
-                        ty, e_ty
-                    ))
-                };
-
-                // Compute the size and alignment of the vector:
-                let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?;
-                let align = dl.vector_align(size);
-                let size = size.align_to(align.abi);
-
-                // Compute the placement of the vector fields:
-                let fields = if is_array {
-                    FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }
-                } else {
-                    FieldsShape::Array { stride: e_ly.size, count: e_len }
-                };
-
-                tcx.intern_layout(LayoutS {
-                    variants: Variants::Single { index: VariantIdx::new(0) },
-                    fields,
-                    abi: Abi::Vector { element: e_abi, count: e_len },
-                    largest_niche: e_ly.largest_niche,
-                    size,
-                    align,
-                })
-            }
-
-            // ADTs.
-            ty::Adt(def, substs) => {
-                // Cache the field layouts.
-                let variants = def
-                    .variants()
-                    .iter()
-                    .map(|v| {
-                        v.fields
-                            .iter()
-                            .map(|field| self.layout_of(field.ty(tcx, substs)))
-                            .collect::<Result<Vec<_>, _>>()
-                    })
-                    .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
-
-                if def.is_union() {
-                    if def.repr().pack.is_some() && def.repr().align.is_some() {
-                        self.tcx.sess.delay_span_bug(
-                            tcx.def_span(def.did()),
-                            "union cannot be packed and aligned",
-                        );
-                        return Err(LayoutError::Unknown(ty));
-                    }
-
-                    let mut align =
-                        if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align };
-
-                    if let Some(repr_align) = def.repr().align {
-                        align = align.max(AbiAndPrefAlign::new(repr_align));
-                    }
-
-                    let optimize = !def.repr().inhibit_union_abi_opt();
-                    let mut size = Size::ZERO;
-                    let mut abi = Abi::Aggregate { sized: true };
-                    let index = VariantIdx::new(0);
-                    for field in &variants[index] {
-                        assert!(!field.is_unsized());
-                        align = align.max(field.align);
-
-                        // If all non-ZST fields have the same ABI, forward this ABI
-                        if optimize && !field.is_zst() {
-                            // Discard valid range information and allow undef
-                            let field_abi = match field.abi {
-                                Abi::Scalar(x) => Abi::Scalar(x.to_union()),
-                                Abi::ScalarPair(x, y) => {
-                                    Abi::ScalarPair(x.to_union(), y.to_union())
-                                }
-                                Abi::Vector { element: x, count } => {
-                                    Abi::Vector { element: x.to_union(), count }
-                                }
-                                Abi::Uninhabited | Abi::Aggregate { .. } => {
-                                    Abi::Aggregate { sized: true }
-                                }
-                            };
-
-                            if size == Size::ZERO {
-                                // first non ZST: initialize 'abi'
-                                abi = field_abi;
-                            } else if abi != field_abi {
-                                // different fields have different ABI: reset to Aggregate
-                                abi = Abi::Aggregate { sized: true };
-                            }
-                        }
-
-                        size = cmp::max(size, field.size);
-                    }
-
-                    if let Some(pack) = def.repr().pack {
-                        align = align.min(AbiAndPrefAlign::new(pack));
-                    }
-
-                    return Ok(tcx.intern_layout(LayoutS {
-                        variants: Variants::Single { index },
-                        fields: FieldsShape::Union(
-                            NonZeroUsize::new(variants[index].len())
-                                .ok_or(LayoutError::Unknown(ty))?,
-                        ),
-                        abi,
-                        largest_niche: None,
-                        align,
-                        size: size.align_to(align.abi),
-                    }));
-                }
-
-                // A variant is absent if it's uninhabited and only has ZST fields.
-                // Present uninhabited variants only require space for their fields,
-                // but *not* an encoding of the discriminant (e.g., a tag value).
-                // See issue #49298 for more details on the need to leave space
-                // for non-ZST uninhabited data (mostly partial initialization).
-                let absent = |fields: &[TyAndLayout<'_>]| {
-                    let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited());
-                    let is_zst = fields.iter().all(|f| f.is_zst());
-                    uninhabited && is_zst
-                };
-                let (present_first, present_second) = {
-                    let mut present_variants = variants
-                        .iter_enumerated()
-                        .filter_map(|(i, v)| if absent(v) { None } else { Some(i) });
-                    (present_variants.next(), present_variants.next())
-                };
-                let present_first = match present_first {
-                    Some(present_first) => present_first,
-                    // Uninhabited because it has no variants, or only absent ones.
-                    None if def.is_enum() => {
-                        return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout);
-                    }
-                    // If it's a struct, still compute a layout so that we can still compute the
-                    // field offsets.
-                    None => VariantIdx::new(0),
-                };
-
-                let is_struct = !def.is_enum() ||
-                    // Only one variant is present.
-                    (present_second.is_none() &&
-                    // Representation optimizations are allowed.
-                    !def.repr().inhibit_enum_layout_opt());
-                if is_struct {
-                    // Struct, or univariant enum equivalent to a struct.
-                    // (Typechecking will reject discriminant-sizing attrs.)
-
-                    let v = present_first;
-                    let kind = if def.is_enum() || variants[v].is_empty() {
-                        StructKind::AlwaysSized
-                    } else {
-                        let param_env = tcx.param_env(def.did());
-                        let last_field = def.variant(v).fields.last().unwrap();
-                        let always_sized =
-                            tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env);
-                        if !always_sized {
-                            StructKind::MaybeUnsized
-                        } else {
-                            StructKind::AlwaysSized
-                        }
-                    };
-
-                    let mut st = self.univariant_uninterned(ty, &variants[v], &def.repr(), kind)?;
-                    st.variants = Variants::Single { index: v };
-
-                    if def.is_unsafe_cell() {
-                        let hide_niches = |scalar: &mut _| match scalar {
-                            Scalar::Initialized { value, valid_range } => {
-                                *valid_range = WrappingRange::full(value.size(dl))
-                            }
-                            // Already doesn't have any niches
-                            Scalar::Union { .. } => {}
-                        };
-                        match &mut st.abi {
-                            Abi::Uninhabited => {}
-                            Abi::Scalar(scalar) => hide_niches(scalar),
-                            Abi::ScalarPair(a, b) => {
-                                hide_niches(a);
-                                hide_niches(b);
-                            }
-                            Abi::Vector { element, count: _ } => hide_niches(element),
-                            Abi::Aggregate { sized: _ } => {}
-                        }
-                        st.largest_niche = None;
-                        return Ok(tcx.intern_layout(st));
-                    }
-
-                    let (start, end) = self.tcx.layout_scalar_valid_range(def.did());
-                    match st.abi {
-                        Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
-                            // the asserts ensure that we are not using the
-                            // `#[rustc_layout_scalar_valid_range(n)]`
-                            // attribute to widen the range of anything as that would probably
-                            // result in UB somewhere
-                            // FIXME(eddyb) the asserts are probably not needed,
-                            // as larger validity ranges would result in missed
-                            // optimizations, *not* wrongly assuming the inner
-                            // value is valid. e.g. unions enlarge validity ranges,
-                            // because the values may be uninitialized.
-                            if let Bound::Included(start) = start {
-                                // FIXME(eddyb) this might be incorrect - it doesn't
-                                // account for wrap-around (end < start) ranges.
-                                let valid_range = scalar.valid_range_mut();
-                                assert!(valid_range.start <= start);
-                                valid_range.start = start;
-                            }
-                            if let Bound::Included(end) = end {
-                                // FIXME(eddyb) this might be incorrect - it doesn't
-                                // account for wrap-around (end < start) ranges.
-                                let valid_range = scalar.valid_range_mut();
-                                assert!(valid_range.end >= end);
-                                valid_range.end = end;
-                            }
-
-                            // Update `largest_niche` if we have introduced a larger niche.
-                            let niche = Niche::from_scalar(dl, Size::ZERO, *scalar);
-                            if let Some(niche) = niche {
-                                match st.largest_niche {
-                                    Some(largest_niche) => {
-                                        // Replace the existing niche even if they're equal,
-                                        // because this one is at a lower offset.
-                                        if largest_niche.available(dl) <= niche.available(dl) {
-                                            st.largest_niche = Some(niche);
-                                        }
-                                    }
-                                    None => st.largest_niche = Some(niche),
-                                }
-                            }
-                        }
-                        _ => assert!(
-                            start == Bound::Unbounded && end == Bound::Unbounded,
-                            "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}",
-                            def,
-                            st,
-                        ),
-                    }
-
-                    return Ok(tcx.intern_layout(st));
-                }
-
-                // At this point, we have handled all unions and
-                // structs. (We have also handled univariant enums
-                // that allow representation optimization.)
-                assert!(def.is_enum());
-
-                // Until we've decided whether to use the tagged or
-                // niche filling LayoutS, we don't want to intern the
-                // variant layouts, so we can't store them in the
-                // overall LayoutS. Store the overall LayoutS
-                // and the variant LayoutSs here until then.
-                struct TmpLayout<'tcx> {
-                    layout: LayoutS<'tcx>,
-                    variants: IndexVec<VariantIdx, LayoutS<'tcx>>,
-                }
-
-                let calculate_niche_filling_layout =
-                    || -> Result<Option<TmpLayout<'tcx>>, LayoutError<'tcx>> {
-                        // The current code for niche-filling relies on variant indices
-                        // instead of actual discriminants, so enums with
-                        // explicit discriminants (RFC #2363) would misbehave.
-                        if def.repr().inhibit_enum_layout_opt()
-                            || def
-                                .variants()
-                                .iter_enumerated()
-                                .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()))
-                        {
-                            return Ok(None);
-                        }
-
-                        if variants.len() < 2 {
-                            return Ok(None);
-                        }
-
-                        let mut align = dl.aggregate_align;
-                        let mut variant_layouts = variants
-                            .iter_enumerated()
-                            .map(|(j, v)| {
-                                let mut st = self.univariant_uninterned(
-                                    ty,
-                                    v,
-                                    &def.repr(),
-                                    StructKind::AlwaysSized,
-                                )?;
-                                st.variants = Variants::Single { index: j };
-
-                                align = align.max(st.align);
-
-                                Ok(st)
-                            })
-                            .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
-
-                        let largest_variant_index = match variant_layouts
-                            .iter_enumerated()
-                            .max_by_key(|(_i, layout)| layout.size.bytes())
-                            .map(|(i, _layout)| i)
-                        {
-                            None => return Ok(None),
-                            Some(i) => i,
-                        };
-
-                        let all_indices = VariantIdx::new(0)..=VariantIdx::new(variants.len() - 1);
-                        let needs_disc = |index: VariantIdx| {
-                            index != largest_variant_index && !absent(&variants[index])
-                        };
-                        let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap()
-                            ..=all_indices.rev().find(|v| needs_disc(*v)).unwrap();
-
-                        let count = niche_variants.size_hint().1.unwrap() as u128;
-
-                        // Find the field with the largest niche
-                        let (field_index, niche, (niche_start, niche_scalar)) = match variants
-                            [largest_variant_index]
-                            .iter()
-                            .enumerate()
-                            .filter_map(|(j, field)| Some((j, field.largest_niche?)))
-                            .max_by_key(|(_, niche)| niche.available(dl))
-                            .and_then(|(j, niche)| Some((j, niche, niche.reserve(self, count)?)))
-                        {
-                            None => return Ok(None),
-                            Some(x) => x,
-                        };
-
-                        let niche_offset = niche.offset
-                            + variant_layouts[largest_variant_index].fields.offset(field_index);
-                        let niche_size = niche.value.size(dl);
-                        let size = variant_layouts[largest_variant_index].size.align_to(align.abi);
-
-                        let all_variants_fit =
-                            variant_layouts.iter_enumerated_mut().all(|(i, layout)| {
-                                if i == largest_variant_index {
-                                    return true;
-                                }
-
-                                layout.largest_niche = None;
-
-                                if layout.size <= niche_offset {
-                                    // This variant will fit before the niche.
-                                    return true;
-                                }
-
-                                // Determine if it'll fit after the niche.
-                                let this_align = layout.align.abi;
-                                let this_offset = (niche_offset + niche_size).align_to(this_align);
-
-                                if this_offset + layout.size > size {
-                                    return false;
-                                }
-
-                                // It'll fit, but we need to make some adjustments.
-                                match layout.fields {
-                                    FieldsShape::Arbitrary { ref mut offsets, .. } => {
-                                        for (j, offset) in offsets.iter_mut().enumerate() {
-                                            if !variants[i][j].is_zst() {
-                                                *offset += this_offset;
-                                            }
-                                        }
-                                    }
-                                    _ => {
-                                        panic!("Layout of fields should be Arbitrary for variants")
-                                    }
-                                }
-
-                                // It can't be a Scalar or ScalarPair because the offset isn't 0.
-                                if !layout.abi.is_uninhabited() {
-                                    layout.abi = Abi::Aggregate { sized: true };
-                                }
-                                layout.size += this_offset;
-
-                                true
-                            });
-
-                        if !all_variants_fit {
-                            return Ok(None);
-                        }
-
-                        let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar);
-
-                        let others_zst = variant_layouts.iter_enumerated().all(|(i, layout)| {
-                            i == largest_variant_index || layout.size == Size::ZERO
-                        });
-                        let same_size = size == variant_layouts[largest_variant_index].size;
-                        let same_align = align == variant_layouts[largest_variant_index].align;
-
-                        let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) {
-                            Abi::Uninhabited
-                        } else if same_size && same_align && others_zst {
-                            match variant_layouts[largest_variant_index].abi {
-                                // When the total alignment and size match, we can use the
-                                // same ABI as the scalar variant with the reserved niche.
-                                Abi::Scalar(_) => Abi::Scalar(niche_scalar),
-                                Abi::ScalarPair(first, second) => {
-                                    // Only the niche is guaranteed to be initialised,
-                                    // so use union layouts for the other primitive.
-                                    if niche_offset == Size::ZERO {
-                                        Abi::ScalarPair(niche_scalar, second.to_union())
-                                    } else {
-                                        Abi::ScalarPair(first.to_union(), niche_scalar)
-                                    }
-                                }
-                                _ => Abi::Aggregate { sized: true },
-                            }
-                        } else {
-                            Abi::Aggregate { sized: true }
-                        };
-
-                        let layout = LayoutS {
-                            variants: Variants::Multiple {
-                                tag: niche_scalar,
-                                tag_encoding: TagEncoding::Niche {
-                                    untagged_variant: largest_variant_index,
-                                    niche_variants,
-                                    niche_start,
-                                },
-                                tag_field: 0,
-                                variants: IndexVec::new(),
-                            },
-                            fields: FieldsShape::Arbitrary {
-                                offsets: vec![niche_offset],
-                                memory_index: vec![0],
-                            },
-                            abi,
-                            largest_niche,
-                            size,
-                            align,
-                        };
-
-                        Ok(Some(TmpLayout { layout, variants: variant_layouts }))
-                    };
-
-                let niche_filling_layout = calculate_niche_filling_layout()?;
-
-                let (mut min, mut max) = (i128::MAX, i128::MIN);
-                let discr_type = def.repr().discr_type();
-                let bits = Integer::from_attr(self, discr_type).size().bits();
-                for (i, discr) in def.discriminants(tcx) {
-                    if variants[i].iter().any(|f| f.abi.is_uninhabited()) {
-                        continue;
-                    }
-                    let mut x = discr.val as i128;
-                    if discr_type.is_signed() {
-                        // sign extend the raw representation to be an i128
-                        x = (x << (128 - bits)) >> (128 - bits);
-                    }
-                    if x < min {
-                        min = x;
-                    }
-                    if x > max {
-                        max = x;
-                    }
-                }
-                // We might have no inhabited variants, so pretend there's at least one.
-                if (min, max) == (i128::MAX, i128::MIN) {
-                    min = 0;
-                    max = 0;
-                }
-                assert!(min <= max, "discriminant range is {}...{}", min, max);
-                let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max);
-
-                let mut align = dl.aggregate_align;
-                let mut size = Size::ZERO;
-
-                // We're interested in the smallest alignment, so start large.
-                let mut start_align = Align::from_bytes(256).unwrap();
-                assert_eq!(Integer::for_align(dl, start_align), None);
-
-                // repr(C) on an enum tells us to make a (tag, union) layout,
-                // so we need to grow the prefix alignment to be at least
-                // the alignment of the union. (This value is used both for
-                // determining the alignment of the overall enum, and the
-                // determining the alignment of the payload after the tag.)
-                let mut prefix_align = min_ity.align(dl).abi;
-                if def.repr().c() {
-                    for fields in &variants {
-                        for field in fields {
-                            prefix_align = prefix_align.max(field.align.abi);
-                        }
-                    }
-                }
-
-                // Create the set of structs that represent each variant.
-                let mut layout_variants = variants
-                    .iter_enumerated()
-                    .map(|(i, field_layouts)| {
-                        let mut st = self.univariant_uninterned(
-                            ty,
-                            &field_layouts,
-                            &def.repr(),
-                            StructKind::Prefixed(min_ity.size(), prefix_align),
-                        )?;
-                        st.variants = Variants::Single { index: i };
-                        // Find the first field we can't move later
-                        // to make room for a larger discriminant.
-                        for field in
-                            st.fields.index_by_increasing_offset().map(|j| field_layouts[j])
-                        {
-                            if !field.is_zst() || field.align.abi.bytes() != 1 {
-                                start_align = start_align.min(field.align.abi);
-                                break;
-                            }
-                        }
-                        size = cmp::max(size, st.size);
-                        align = align.max(st.align);
-                        Ok(st)
-                    })
-                    .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
-
-                // Align the maximum variant size to the largest alignment.
-                size = size.align_to(align.abi);
-
-                if size.bytes() >= dl.obj_size_bound() {
-                    return Err(LayoutError::SizeOverflow(ty));
-                }
-
-                let typeck_ity = Integer::from_attr(dl, def.repr().discr_type());
-                if typeck_ity < min_ity {
-                    // It is a bug if Layout decided on a greater discriminant size than typeck for
-                    // some reason at this point (based on values discriminant can take on). Mostly
-                    // because this discriminant will be loaded, and then stored into variable of
-                    // type calculated by typeck. Consider such case (a bug): typeck decided on
-                    // byte-sized discriminant, but layout thinks we need a 16-bit to store all
-                    // discriminant values. That would be a bug, because then, in codegen, in order
-                    // to store this 16-bit discriminant into 8-bit sized temporary some of the
-                    // space necessary to represent would have to be discarded (or layout is wrong
-                    // on thinking it needs 16 bits)
-                    bug!(
-                        "layout decided on a larger discriminant type ({:?}) than typeck ({:?})",
-                        min_ity,
-                        typeck_ity
-                    );
-                    // However, it is fine to make discr type however large (as an optimisation)
-                    // after this point â€“ we’ll just truncate the value we load in codegen.
-                }
-
-                // Check to see if we should use a different type for the
-                // discriminant. We can safely use a type with the same size
-                // as the alignment of the first field of each variant.
-                // We increase the size of the discriminant to avoid LLVM copying
-                // padding when it doesn't need to. This normally causes unaligned
-                // load/stores and excessive memcpy/memset operations. By using a
-                // bigger integer size, LLVM can be sure about its contents and
-                // won't be so conservative.
-
-                // Use the initial field alignment
-                let mut ity = if def.repr().c() || def.repr().int.is_some() {
-                    min_ity
-                } else {
-                    Integer::for_align(dl, start_align).unwrap_or(min_ity)
-                };
-
-                // If the alignment is not larger than the chosen discriminant size,
-                // don't use the alignment as the final size.
-                if ity <= min_ity {
-                    ity = min_ity;
-                } else {
-                    // Patch up the variants' first few fields.
-                    let old_ity_size = min_ity.size();
-                    let new_ity_size = ity.size();
-                    for variant in &mut layout_variants {
-                        match variant.fields {
-                            FieldsShape::Arbitrary { ref mut offsets, .. } => {
-                                for i in offsets {
-                                    if *i <= old_ity_size {
-                                        assert_eq!(*i, old_ity_size);
-                                        *i = new_ity_size;
-                                    }
-                                }
-                                // We might be making the struct larger.
-                                if variant.size <= old_ity_size {
-                                    variant.size = new_ity_size;
-                                }
-                            }
-                            _ => bug!(),
-                        }
-                    }
-                }
-
-                let tag_mask = ity.size().unsigned_int_max();
-                let tag = Scalar::Initialized {
-                    value: Int(ity, signed),
-                    valid_range: WrappingRange {
-                        start: (min as u128 & tag_mask),
-                        end: (max as u128 & tag_mask),
-                    },
-                };
-                let mut abi = Abi::Aggregate { sized: true };
-
-                if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
-                    abi = Abi::Uninhabited;
-                } else if tag.size(dl) == size {
-                    // Make sure we only use scalar layout when the enum is entirely its
-                    // own tag (i.e. it has no padding nor any non-ZST variant fields).
-                    abi = Abi::Scalar(tag);
-                } else {
-                    // Try to use a ScalarPair for all tagged enums.
-                    let mut common_prim = None;
-                    let mut common_prim_initialized_in_all_variants = true;
-                    for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) {
-                        let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else {
-                            bug!();
-                        };
-                        let mut fields =
-                            iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
-                        let (field, offset) = match (fields.next(), fields.next()) {
-                            (None, None) => {
-                                common_prim_initialized_in_all_variants = false;
-                                continue;
-                            }
-                            (Some(pair), None) => pair,
-                            _ => {
-                                common_prim = None;
-                                break;
-                            }
-                        };
-                        let prim = match field.abi {
-                            Abi::Scalar(scalar) => {
-                                common_prim_initialized_in_all_variants &=
-                                    matches!(scalar, Scalar::Initialized { .. });
-                                scalar.primitive()
-                            }
-                            _ => {
-                                common_prim = None;
-                                break;
-                            }
-                        };
-                        if let Some(pair) = common_prim {
-                            // This is pretty conservative. We could go fancier
-                            // by conflating things like i32 and u32, or even
-                            // realising that (u8, u8) could just cohabit with
-                            // u16 or even u32.
-                            if pair != (prim, offset) {
-                                common_prim = None;
-                                break;
-                            }
-                        } else {
-                            common_prim = Some((prim, offset));
-                        }
-                    }
-                    if let Some((prim, offset)) = common_prim {
-                        let prim_scalar = if common_prim_initialized_in_all_variants {
-                            scalar_unit(prim)
-                        } else {
-                            // Common prim might be uninit.
-                            Scalar::Union { value: prim }
-                        };
-                        let pair = self.scalar_pair(tag, prim_scalar);
-                        let pair_offsets = match pair.fields {
-                            FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
-                                assert_eq!(memory_index, &[0, 1]);
-                                offsets
-                            }
-                            _ => bug!(),
-                        };
-                        if pair_offsets[0] == Size::ZERO
-                            && pair_offsets[1] == *offset
-                            && align == pair.align
-                            && size == pair.size
-                        {
-                            // We can use `ScalarPair` only when it matches our
-                            // already computed layout (including `#[repr(C)]`).
-                            abi = pair.abi;
-                        }
-                    }
-                }
-
-                // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
-                // variants to ensure they are consistent. This is because a downcast is
-                // semantically a NOP, and thus should not affect layout.
-                if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
-                    for variant in &mut layout_variants {
-                        // We only do this for variants with fields; the others are not accessed anyway.
-                        // Also do not overwrite any already existing "clever" ABIs.
-                        if variant.fields.count() > 0
-                            && matches!(variant.abi, Abi::Aggregate { .. })
-                        {
-                            variant.abi = abi;
-                            // Also need to bump up the size and alignment, so that the entire value fits in here.
-                            variant.size = cmp::max(variant.size, size);
-                            variant.align.abi = cmp::max(variant.align.abi, align.abi);
-                        }
-                    }
-                }
-
-                let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);
-
-                let tagged_layout = LayoutS {
-                    variants: Variants::Multiple {
-                        tag,
-                        tag_encoding: TagEncoding::Direct,
-                        tag_field: 0,
-                        variants: IndexVec::new(),
-                    },
-                    fields: FieldsShape::Arbitrary {
-                        offsets: vec![Size::ZERO],
-                        memory_index: vec![0],
-                    },
-                    largest_niche,
-                    abi,
-                    align,
-                    size,
-                };
-
-                let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants };
-
-                let mut best_layout = match (tagged_layout, niche_filling_layout) {
-                    (tl, Some(nl)) => {
-                        // Pick the smaller layout; otherwise,
-                        // pick the layout with the larger niche; otherwise,
-                        // pick tagged as it has simpler codegen.
-                        use Ordering::*;
-                        let niche_size = |tmp_l: &TmpLayout<'_>| {
-                            tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl))
-                        };
-                        match (
-                            tl.layout.size.cmp(&nl.layout.size),
-                            niche_size(&tl).cmp(&niche_size(&nl)),
-                        ) {
-                            (Greater, _) => nl,
-                            (Equal, Less) => nl,
-                            _ => tl,
-                        }
-                    }
-                    (tl, None) => tl,
-                };
-
-                // Now we can intern the variant layouts and store them in the enum layout.
-                best_layout.layout.variants = match best_layout.layout.variants {
-                    Variants::Multiple { tag, tag_encoding, tag_field, .. } => Variants::Multiple {
-                        tag,
-                        tag_encoding,
-                        tag_field,
-                        variants: best_layout
-                            .variants
-                            .into_iter()
-                            .map(|layout| tcx.intern_layout(layout))
-                            .collect(),
-                    },
-                    _ => bug!(),
-                };
-
-                tcx.intern_layout(best_layout.layout)
-            }
-
-            // Types with no meaningful known layout.
-            ty::Projection(_) | ty::Opaque(..) => {
-                // NOTE(eddyb) `layout_of` query should've normalized these away,
-                // if that was possible, so there's no reason to try again here.
-                return Err(LayoutError::Unknown(ty));
-            }
-
-            ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => {
-                bug!("Layout::compute: unexpected type `{}`", ty)
-            }
-
-            ty::Bound(..) | ty::Param(_) | ty::Error(_) => {
-                return Err(LayoutError::Unknown(ty));
-            }
-        })
-    }
-}
-
-/// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
-#[derive(Clone, Debug, PartialEq)]
-enum SavedLocalEligibility {
-    Unassigned,
-    Assigned(VariantIdx),
-    // FIXME: Use newtype_index so we aren't wasting bytes
-    Ineligible(Option<u32>),
-}
-
-// When laying out generators, we divide our saved local fields into two
-// categories: overlap-eligible and overlap-ineligible.
-//
-// Those fields which are ineligible for overlap go in a "prefix" at the
-// beginning of the layout, and always have space reserved for them.
-//
-// Overlap-eligible fields are only assigned to one variant, so we lay
-// those fields out for each variant and put them right after the
-// prefix.
-//
-// Finally, in the layout details, we point to the fields from the
-// variants they are assigned to. It is possible for some fields to be
-// included in multiple variants. No field ever "moves around" in the
-// layout; its offset is always the same.
-//
-// Also included in the layout are the upvars and the discriminant.
-// These are included as fields on the "outer" layout; they are not part
-// of any variant.
-impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
-    /// Compute the eligibility and assignment of each local.
-    fn generator_saved_local_eligibility(
-        &self,
-        info: &GeneratorLayout<'tcx>,
-    ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
-        use SavedLocalEligibility::*;
-
-        let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
-            IndexVec::from_elem_n(Unassigned, info.field_tys.len());
-
-        // The saved locals not eligible for overlap. These will get
-        // "promoted" to the prefix of our generator.
-        let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
-
-        // Figure out which of our saved locals are fields in only
-        // one variant. The rest are deemed ineligible for overlap.
-        for (variant_index, fields) in info.variant_fields.iter_enumerated() {
-            for local in fields {
-                match assignments[*local] {
-                    Unassigned => {
-                        assignments[*local] = Assigned(variant_index);
-                    }
-                    Assigned(idx) => {
-                        // We've already seen this local at another suspension
-                        // point, so it is no longer a candidate.
-                        trace!(
-                            "removing local {:?} in >1 variant ({:?}, {:?})",
-                            local,
-                            variant_index,
-                            idx
-                        );
-                        ineligible_locals.insert(*local);
-                        assignments[*local] = Ineligible(None);
-                    }
-                    Ineligible(_) => {}
-                }
-            }
-        }
-
-        // Next, check every pair of eligible locals to see if they
-        // conflict.
-        for local_a in info.storage_conflicts.rows() {
-            let conflicts_a = info.storage_conflicts.count(local_a);
-            if ineligible_locals.contains(local_a) {
-                continue;
-            }
-
-            for local_b in info.storage_conflicts.iter(local_a) {
-                // local_a and local_b are storage live at the same time, therefore they
-                // cannot overlap in the generator layout. The only way to guarantee
-                // this is if they are in the same variant, or one is ineligible
-                // (which means it is stored in every variant).
-                if ineligible_locals.contains(local_b)
-                    || assignments[local_a] == assignments[local_b]
-                {
-                    continue;
-                }
-
-                // If they conflict, we will choose one to make ineligible.
-                // This is not always optimal; it's just a greedy heuristic that
-                // seems to produce good results most of the time.
-                let conflicts_b = info.storage_conflicts.count(local_b);
-                let (remove, other) =
-                    if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
-                ineligible_locals.insert(remove);
-                assignments[remove] = Ineligible(None);
-                trace!("removing local {:?} due to conflict with {:?}", remove, other);
-            }
-        }
-
-        // Count the number of variants in use. If only one of them, then it is
-        // impossible to overlap any locals in our layout. In this case it's
-        // always better to make the remaining locals ineligible, so we can
-        // lay them out with the other locals in the prefix and eliminate
-        // unnecessary padding bytes.
-        {
-            let mut used_variants = BitSet::new_empty(info.variant_fields.len());
-            for assignment in &assignments {
-                if let Assigned(idx) = assignment {
-                    used_variants.insert(*idx);
-                }
-            }
-            if used_variants.count() < 2 {
-                for assignment in assignments.iter_mut() {
-                    *assignment = Ineligible(None);
-                }
-                ineligible_locals.insert_all();
-            }
-        }
-
-        // Write down the order of our locals that will be promoted to the prefix.
-        {
-            for (idx, local) in ineligible_locals.iter().enumerate() {
-                assignments[local] = Ineligible(Some(idx as u32));
-            }
-        }
-        debug!("generator saved local assignments: {:?}", assignments);
-
-        (ineligible_locals, assignments)
-    }
-
-    /// Compute the full generator layout.
-    fn generator_layout(
-        &self,
-        ty: Ty<'tcx>,
-        def_id: hir::def_id::DefId,
-        substs: SubstsRef<'tcx>,
-    ) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
-        use SavedLocalEligibility::*;
-        let tcx = self.tcx;
-        let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs);
-
-        let Some(info) = tcx.generator_layout(def_id) else {
-            return Err(LayoutError::Unknown(ty));
-        };
-        let (ineligible_locals, assignments) = self.generator_saved_local_eligibility(&info);
-
-        // Build a prefix layout, including "promoting" all ineligible
-        // locals as part of the prefix. We compute the layout of all of
-        // these fields at once to get optimal packing.
-        let tag_index = substs.as_generator().prefix_tys().count();
-
-        // `info.variant_fields` already accounts for the reserved variants, so no need to add them.
-        let max_discr = (info.variant_fields.len() - 1) as u128;
-        let discr_int = Integer::fit_unsigned(max_discr);
-        let discr_int_ty = discr_int.to_ty(tcx, false);
-        let tag = Scalar::Initialized {
-            value: Primitive::Int(discr_int, false),
-            valid_range: WrappingRange { start: 0, end: max_discr },
-        };
-        let tag_layout = self.tcx.intern_layout(LayoutS::scalar(self, tag));
-        let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout };
-
-        let promoted_layouts = ineligible_locals
-            .iter()
-            .map(|local| subst_field(info.field_tys[local]))
-            .map(|ty| tcx.mk_maybe_uninit(ty))
-            .map(|ty| self.layout_of(ty));
-        let prefix_layouts = substs
-            .as_generator()
-            .prefix_tys()
-            .map(|ty| self.layout_of(ty))
-            .chain(iter::once(Ok(tag_layout)))
-            .chain(promoted_layouts)
-            .collect::<Result<Vec<_>, _>>()?;
-        let prefix = self.univariant_uninterned(
-            ty,
-            &prefix_layouts,
-            &ReprOptions::default(),
-            StructKind::AlwaysSized,
-        )?;
-
-        let (prefix_size, prefix_align) = (prefix.size, prefix.align);
-
-        // Split the prefix layout into the "outer" fields (upvars and
-        // discriminant) and the "promoted" fields. Promoted fields will
-        // get included in each variant that requested them in
-        // GeneratorLayout.
-        debug!("prefix = {:#?}", prefix);
-        let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
-            FieldsShape::Arbitrary { mut offsets, memory_index } => {
-                let mut inverse_memory_index = invert_mapping(&memory_index);
-
-                // "a" (`0..b_start`) and "b" (`b_start..`) correspond to
-                // "outer" and "promoted" fields respectively.
-                let b_start = (tag_index + 1) as u32;
-                let offsets_b = offsets.split_off(b_start as usize);
-                let offsets_a = offsets;
-
-                // Disentangle the "a" and "b" components of `inverse_memory_index`
-                // by preserving the order but keeping only one disjoint "half" each.
-                // FIXME(eddyb) build a better abstraction for permutations, if possible.
-                let inverse_memory_index_b: Vec<_> =
-                    inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect();
-                inverse_memory_index.retain(|&i| i < b_start);
-                let inverse_memory_index_a = inverse_memory_index;
-
-                // Since `inverse_memory_index_{a,b}` each only refer to their
-                // respective fields, they can be safely inverted
-                let memory_index_a = invert_mapping(&inverse_memory_index_a);
-                let memory_index_b = invert_mapping(&inverse_memory_index_b);
-
-                let outer_fields =
-                    FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
-                (outer_fields, offsets_b, memory_index_b)
-            }
-            _ => bug!(),
-        };
-
-        let mut size = prefix.size;
-        let mut align = prefix.align;
-        let variants = info
-            .variant_fields
-            .iter_enumerated()
-            .map(|(index, variant_fields)| {
-                // Only include overlap-eligible fields when we compute our variant layout.
-                let variant_only_tys = variant_fields
-                    .iter()
-                    .filter(|local| match assignments[**local] {
-                        Unassigned => bug!(),
-                        Assigned(v) if v == index => true,
-                        Assigned(_) => bug!("assignment does not match variant"),
-                        Ineligible(_) => false,
-                    })
-                    .map(|local| subst_field(info.field_tys[*local]));
-
-                let mut variant = self.univariant_uninterned(
-                    ty,
-                    &variant_only_tys
-                        .map(|ty| self.layout_of(ty))
-                        .collect::<Result<Vec<_>, _>>()?,
-                    &ReprOptions::default(),
-                    StructKind::Prefixed(prefix_size, prefix_align.abi),
-                )?;
-                variant.variants = Variants::Single { index };
-
-                let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
-                    bug!();
-                };
-
-                // Now, stitch the promoted and variant-only fields back together in
-                // the order they are mentioned by our GeneratorLayout.
-                // Because we only use some subset (that can differ between variants)
-                // of the promoted fields, we can't just pick those elements of the
-                // `promoted_memory_index` (as we'd end up with gaps).
-                // So instead, we build an "inverse memory_index", as if all of the
-                // promoted fields were being used, but leave the elements not in the
-                // subset as `INVALID_FIELD_IDX`, which we can filter out later to
-                // obtain a valid (bijective) mapping.
-                const INVALID_FIELD_IDX: u32 = !0;
-                let mut combined_inverse_memory_index =
-                    vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()];
-                let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
-                let combined_offsets = variant_fields
-                    .iter()
-                    .enumerate()
-                    .map(|(i, local)| {
-                        let (offset, memory_index) = match assignments[*local] {
-                            Unassigned => bug!(),
-                            Assigned(_) => {
-                                let (offset, memory_index) =
-                                    offsets_and_memory_index.next().unwrap();
-                                (offset, promoted_memory_index.len() as u32 + memory_index)
-                            }
-                            Ineligible(field_idx) => {
-                                let field_idx = field_idx.unwrap() as usize;
-                                (promoted_offsets[field_idx], promoted_memory_index[field_idx])
-                            }
-                        };
-                        combined_inverse_memory_index[memory_index as usize] = i as u32;
-                        offset
-                    })
-                    .collect();
-
-                // Remove the unused slots and invert the mapping to obtain the
-                // combined `memory_index` (also see previous comment).
-                combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX);
-                let combined_memory_index = invert_mapping(&combined_inverse_memory_index);
-
-                variant.fields = FieldsShape::Arbitrary {
-                    offsets: combined_offsets,
-                    memory_index: combined_memory_index,
-                };
-
-                size = size.max(variant.size);
-                align = align.max(variant.align);
-                Ok(tcx.intern_layout(variant))
-            })
-            .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
-
-        size = size.align_to(align.abi);
-
-        let abi =
-            if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) {
-                Abi::Uninhabited
-            } else {
-                Abi::Aggregate { sized: true }
-            };
-
-        let layout = tcx.intern_layout(LayoutS {
-            variants: Variants::Multiple {
-                tag,
-                tag_encoding: TagEncoding::Direct,
-                tag_field: tag_index,
-                variants,
-            },
-            fields: outer_fields,
-            abi,
-            largest_niche: prefix.largest_niche,
-            size,
-            align,
-        });
-        debug!("generator layout ({:?}): {:#?}", ty, layout);
-        Ok(layout)
-    }
-
-    /// This is invoked by the `layout_of` query to record the final
-    /// layout of each type.
-    #[inline(always)]
-    fn record_layout_for_printing(&self, layout: TyAndLayout<'tcx>) {
-        // If we are running with `-Zprint-type-sizes`, maybe record layouts
-        // for dumping later.
-        if self.tcx.sess.opts.unstable_opts.print_type_sizes {
-            self.record_layout_for_printing_outlined(layout)
-        }
-    }
-
-    fn record_layout_for_printing_outlined(&self, layout: TyAndLayout<'tcx>) {
-        // Ignore layouts that are done with non-empty environments or
-        // non-monomorphic layouts, as the user only wants to see the stuff
-        // resulting from the final codegen session.
-        if layout.ty.has_param_types_or_consts() || !self.param_env.caller_bounds().is_empty() {
-            return;
-        }
-
-        // (delay format until we actually need it)
-        let record = |kind, packed, opt_discr_size, variants| {
-            let type_desc = format!("{:?}", layout.ty);
-            self.tcx.sess.code_stats.record_type_size(
-                kind,
-                type_desc,
-                layout.align.abi,
-                layout.size,
-                packed,
-                opt_discr_size,
-                variants,
-            );
-        };
-
-        let adt_def = match *layout.ty.kind() {
-            ty::Adt(ref adt_def, _) => {
-                debug!("print-type-size t: `{:?}` process adt", layout.ty);
-                adt_def
-            }
-
-            ty::Closure(..) => {
-                debug!("print-type-size t: `{:?}` record closure", layout.ty);
-                record(DataTypeKind::Closure, false, None, vec![]);
-                return;
-            }
-
-            _ => {
-                debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
-                return;
-            }
-        };
-
-        let adt_kind = adt_def.adt_kind();
-        let adt_packed = adt_def.repr().pack.is_some();
-
-        let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
-            let mut min_size = Size::ZERO;
-            let field_info: Vec<_> = flds
-                .iter()
-                .enumerate()
-                .map(|(i, &name)| {
-                    let field_layout = layout.field(self, i);
-                    let offset = layout.fields.offset(i);
-                    let field_end = offset + field_layout.size;
-                    if min_size < field_end {
-                        min_size = field_end;
-                    }
-                    FieldInfo {
-                        name,
-                        offset: offset.bytes(),
-                        size: field_layout.size.bytes(),
-                        align: field_layout.align.abi.bytes(),
-                    }
-                })
-                .collect();
-
-            VariantInfo {
-                name: n,
-                kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
-                align: layout.align.abi.bytes(),
-                size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
-                fields: field_info,
-            }
-        };
-
-        match layout.variants {
-            Variants::Single { index } => {
-                if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
-                    debug!(
-                        "print-type-size `{:#?}` variant {}",
-                        layout,
-                        adt_def.variant(index).name
-                    );
-                    let variant_def = &adt_def.variant(index);
-                    let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
-                    record(
-                        adt_kind.into(),
-                        adt_packed,
-                        None,
-                        vec![build_variant_info(Some(variant_def.name), &fields, layout)],
-                    );
-                } else {
-                    // (This case arises for *empty* enums; so give it
-                    // zero variants.)
-                    record(adt_kind.into(), adt_packed, None, vec![]);
-                }
-            }
-
-            Variants::Multiple { tag, ref tag_encoding, .. } => {
-                debug!(
-                    "print-type-size `{:#?}` adt general variants def {}",
-                    layout.ty,
-                    adt_def.variants().len()
-                );
-                let variant_infos: Vec<_> = adt_def
-                    .variants()
-                    .iter_enumerated()
-                    .map(|(i, variant_def)| {
-                        let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
-                        build_variant_info(
-                            Some(variant_def.name),
-                            &fields,
-                            layout.for_variant(self, i),
-                        )
-                    })
-                    .collect();
-                record(
-                    adt_kind.into(),
-                    adt_packed,
-                    match tag_encoding {
-                        TagEncoding::Direct => Some(tag.size(self)),
-                        _ => None,
-                    },
-                    variant_infos,
-                );
-            }
-        }
-    }
-}
-
 /// Type size "skeleton", i.e., the only information determining a type's size.
 /// While this is conservative, (aside from constant sizes, only pointers,
 /// newtypes thereof and null pointer optimized enums are allowed), it is
@@ -2064,7 +244,7 @@ pub fn compute(
         tcx: TyCtxt<'tcx>,
         param_env: ty::ParamEnv<'tcx>,
     ) -> Result<SizeSkeleton<'tcx>, LayoutError<'tcx>> {
-        debug_assert!(!ty.has_infer_types_or_consts());
+        debug_assert!(!ty.has_non_region_infer());
 
         // First try computing a static layout.
         let err = match tcx.layout_of(param_env.and(ty)) {
@@ -2080,7 +260,7 @@ pub fn compute(
                 let tail = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
                 match tail.kind() {
                     ty::Param(_) | ty::Projection(_) => {
-                        debug_assert!(tail.has_param_types_or_consts());
+                        debug_assert!(tail.has_non_region_param());
                         Ok(SizeSkeleton::Pointer { non_zero, tail: tcx.erase_regions(tail) })
                     }
                     _ => bug!(
@@ -2754,117 +934,6 @@ fn is_unit(this: TyAndLayout<'tcx>) -> bool {
     }
 }
 
-impl<'tcx> ty::Instance<'tcx> {
-    // NOTE(eddyb) this is private to avoid using it from outside of
-    // `fn_abi_of_instance` - any other uses are either too high-level
-    // for `Instance` (e.g. typeck would use `Ty::fn_sig` instead),
-    // or should go through `FnAbi` instead, to avoid losing any
-    // adjustments `fn_abi_of_instance` might be performing.
-    #[tracing::instrument(level = "debug", skip(tcx, param_env))]
-    fn fn_sig_for_fn_abi(
-        &self,
-        tcx: TyCtxt<'tcx>,
-        param_env: ty::ParamEnv<'tcx>,
-    ) -> ty::PolyFnSig<'tcx> {
-        let ty = self.ty(tcx, param_env);
-        match *ty.kind() {
-            ty::FnDef(..) => {
-                // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering
-                // parameters unused if they show up in the signature, but not in the `mir::Body`
-                // (i.e. due to being inside a projection that got normalized, see
-                // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping
-                // track of a polymorphization `ParamEnv` to allow normalizing later.
-                //
-                // We normalize the `fn_sig` again after substituting at a later point.
-                let mut sig = match *ty.kind() {
-                    ty::FnDef(def_id, substs) => tcx
-                        .bound_fn_sig(def_id)
-                        .map_bound(|fn_sig| {
-                            tcx.normalize_erasing_regions(tcx.param_env(def_id), fn_sig)
-                        })
-                        .subst(tcx, substs),
-                    _ => unreachable!(),
-                };
-
-                if let ty::InstanceDef::VTableShim(..) = self.def {
-                    // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`.
-                    sig = sig.map_bound(|mut sig| {
-                        let mut inputs_and_output = sig.inputs_and_output.to_vec();
-                        inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]);
-                        sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output);
-                        sig
-                    });
-                }
-                sig
-            }
-            ty::Closure(def_id, substs) => {
-                let sig = substs.as_closure().sig();
-
-                let bound_vars = tcx.mk_bound_variable_kinds(
-                    sig.bound_vars()
-                        .iter()
-                        .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
-                );
-                let br = ty::BoundRegion {
-                    var: ty::BoundVar::from_usize(bound_vars.len() - 1),
-                    kind: ty::BoundRegionKind::BrEnv,
-                };
-                let env_region = ty::ReLateBound(ty::INNERMOST, br);
-                let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap();
-
-                let sig = sig.skip_binder();
-                ty::Binder::bind_with_vars(
-                    tcx.mk_fn_sig(
-                        iter::once(env_ty).chain(sig.inputs().iter().cloned()),
-                        sig.output(),
-                        sig.c_variadic,
-                        sig.unsafety,
-                        sig.abi,
-                    ),
-                    bound_vars,
-                )
-            }
-            ty::Generator(_, substs, _) => {
-                let sig = substs.as_generator().poly_sig();
-
-                let bound_vars = tcx.mk_bound_variable_kinds(
-                    sig.bound_vars()
-                        .iter()
-                        .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
-                );
-                let br = ty::BoundRegion {
-                    var: ty::BoundVar::from_usize(bound_vars.len() - 1),
-                    kind: ty::BoundRegionKind::BrEnv,
-                };
-                let env_region = ty::ReLateBound(ty::INNERMOST, br);
-                let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty);
-
-                let pin_did = tcx.require_lang_item(LangItem::Pin, None);
-                let pin_adt_ref = tcx.adt_def(pin_did);
-                let pin_substs = tcx.intern_substs(&[env_ty.into()]);
-                let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs);
-
-                let sig = sig.skip_binder();
-                let state_did = tcx.require_lang_item(LangItem::GeneratorState, None);
-                let state_adt_ref = tcx.adt_def(state_did);
-                let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]);
-                let ret_ty = tcx.mk_adt(state_adt_ref, state_substs);
-                ty::Binder::bind_with_vars(
-                    tcx.mk_fn_sig(
-                        [env_ty, sig.resume_ty].iter(),
-                        &ret_ty,
-                        false,
-                        hir::Unsafety::Normal,
-                        rustc_target::spec::abi::Abi::Rust,
-                    ),
-                    bound_vars,
-                )
-            }
-            _ => bug!("unexpected type {:?} in Instance::fn_sig", ty),
-        }
-    }
-}
-
 /// Calculates whether a function's ABI can unwind or not.
 ///
 /// This takes two primary parameters:
@@ -3007,40 +1076,6 @@ pub fn fn_can_unwind<'tcx>(tcx: TyCtxt<'tcx>, fn_def_id: Option<DefId>, abi: Spe
     }
 }
 
-#[inline]
-pub fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi) -> Conv {
-    use rustc_target::spec::abi::Abi::*;
-    match tcx.sess.target.adjust_abi(abi) {
-        RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust,
-        RustCold => Conv::RustCold,
-
-        // It's the ABI's job to select this, not ours.
-        System { .. } => bug!("system abi should be selected elsewhere"),
-        EfiApi => bug!("eficall abi should be selected elsewhere"),
-
-        Stdcall { .. } => Conv::X86Stdcall,
-        Fastcall { .. } => Conv::X86Fastcall,
-        Vectorcall { .. } => Conv::X86VectorCall,
-        Thiscall { .. } => Conv::X86ThisCall,
-        C { .. } => Conv::C,
-        Unadjusted => Conv::C,
-        Win64 { .. } => Conv::X86_64Win64,
-        SysV64 { .. } => Conv::X86_64SysV,
-        Aapcs { .. } => Conv::ArmAapcs,
-        CCmseNonSecureCall => Conv::CCmseNonSecureCall,
-        PtxKernel => Conv::PtxKernel,
-        Msp430Interrupt => Conv::Msp430Intr,
-        X86Interrupt => Conv::X86Intr,
-        AmdGpuKernel => Conv::AmdGpuKernel,
-        AvrInterrupt => Conv::AvrInterrupt,
-        AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt,
-        Wasm => Conv::C,
-
-        // These API constants ought to be more specific...
-        Cdecl { .. } => Conv::C,
-    }
-}
-
 /// Error produced by attempting to compute or adjust a `FnAbi`.
 #[derive(Copy, Clone, Debug, HashStable)]
 pub enum FnAbiError<'tcx> {
@@ -3159,367 +1194,3 @@ fn fn_abi_of_instance(
 }
 
 impl<'tcx, C: FnAbiOfHelpers<'tcx>> FnAbiOf<'tcx> for C {}
-
-fn fn_abi_of_fn_ptr<'tcx>(
-    tcx: TyCtxt<'tcx>,
-    query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
-) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
-    let (param_env, (sig, extra_args)) = query.into_parts();
-
-    LayoutCx { tcx, param_env }.fn_abi_new_uncached(sig, extra_args, None, None, false)
-}
-
-fn fn_abi_of_instance<'tcx>(
-    tcx: TyCtxt<'tcx>,
-    query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
-) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
-    let (param_env, (instance, extra_args)) = query.into_parts();
-
-    let sig = instance.fn_sig_for_fn_abi(tcx, param_env);
-
-    let caller_location = if instance.def.requires_caller_location(tcx) {
-        Some(tcx.caller_location_ty())
-    } else {
-        None
-    };
-
-    LayoutCx { tcx, param_env }.fn_abi_new_uncached(
-        sig,
-        extra_args,
-        caller_location,
-        Some(instance.def_id()),
-        matches!(instance.def, ty::InstanceDef::Virtual(..)),
-    )
-}
-
-// Handle safe Rust thin and fat pointers.
-pub fn adjust_for_rust_scalar<'tcx>(
-    cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
-    attrs: &mut ArgAttributes,
-    scalar: Scalar,
-    layout: TyAndLayout<'tcx>,
-    offset: Size,
-    is_return: bool,
-) {
-    // Booleans are always a noundef i1 that needs to be zero-extended.
-    if scalar.is_bool() {
-        attrs.ext(ArgExtension::Zext);
-        attrs.set(ArgAttribute::NoUndef);
-        return;
-    }
-
-    // Scalars which have invalid values cannot be undef.
-    if !scalar.is_always_valid(&cx) {
-        attrs.set(ArgAttribute::NoUndef);
-    }
-
-    // Only pointer types handled below.
-    let Scalar::Initialized { value: Pointer, valid_range} = scalar else { return };
-
-    if !valid_range.contains(0) {
-        attrs.set(ArgAttribute::NonNull);
-    }
-
-    if let Some(pointee) = layout.pointee_info_at(&cx, offset) {
-        if let Some(kind) = pointee.safe {
-            attrs.pointee_align = Some(pointee.align);
-
-            // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable
-            // for the entire duration of the function as they can be deallocated
-            // at any time. Same for shared mutable references. If LLVM had a
-            // way to say "dereferenceable on entry" we could use it here.
-            attrs.pointee_size = match kind {
-                PointerKind::UniqueBorrowed
-                | PointerKind::UniqueBorrowedPinned
-                | PointerKind::Frozen => pointee.size,
-                PointerKind::SharedMutable | PointerKind::UniqueOwned => Size::ZERO,
-            };
-
-            // `Box`, `&T`, and `&mut T` cannot be undef.
-            // Note that this only applies to the value of the pointer itself;
-            // this attribute doesn't make it UB for the pointed-to data to be undef.
-            attrs.set(ArgAttribute::NoUndef);
-
-            // The aliasing rules for `Box<T>` are still not decided, but currently we emit
-            // `noalias` for it. This can be turned off using an unstable flag.
-            // See https://github.com/rust-lang/unsafe-code-guidelines/issues/326
-            let noalias_for_box = cx.tcx.sess.opts.unstable_opts.box_noalias.unwrap_or(true);
-
-            // `&mut` pointer parameters never alias other parameters,
-            // or mutable global data
-            //
-            // `&T` where `T` contains no `UnsafeCell<U>` is immutable,
-            // and can be marked as both `readonly` and `noalias`, as
-            // LLVM's definition of `noalias` is based solely on memory
-            // dependencies rather than pointer equality
-            //
-            // Due to past miscompiles in LLVM, we apply a separate NoAliasMutRef attribute
-            // for UniqueBorrowed arguments, so that the codegen backend can decide whether
-            // or not to actually emit the attribute. It can also be controlled with the
-            // `-Zmutable-noalias` debugging option.
-            let no_alias = match kind {
-                PointerKind::SharedMutable
-                | PointerKind::UniqueBorrowed
-                | PointerKind::UniqueBorrowedPinned => false,
-                PointerKind::UniqueOwned => noalias_for_box,
-                PointerKind::Frozen => !is_return,
-            };
-            if no_alias {
-                attrs.set(ArgAttribute::NoAlias);
-            }
-
-            if kind == PointerKind::Frozen && !is_return {
-                attrs.set(ArgAttribute::ReadOnly);
-            }
-
-            if kind == PointerKind::UniqueBorrowed && !is_return {
-                attrs.set(ArgAttribute::NoAliasMutRef);
-            }
-        }
-    }
-}
-
-impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
-    // FIXME(eddyb) perhaps group the signature/type-containing (or all of them?)
-    // arguments of this method, into a separate `struct`.
-    #[tracing::instrument(
-        level = "debug",
-        skip(self, caller_location, fn_def_id, force_thin_self_ptr)
-    )]
-    fn fn_abi_new_uncached(
-        &self,
-        sig: ty::PolyFnSig<'tcx>,
-        extra_args: &[Ty<'tcx>],
-        caller_location: Option<Ty<'tcx>>,
-        fn_def_id: Option<DefId>,
-        // FIXME(eddyb) replace this with something typed, like an `enum`.
-        force_thin_self_ptr: bool,
-    ) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
-        let sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, sig);
-
-        let conv = conv_from_spec_abi(self.tcx(), sig.abi);
-
-        let mut inputs = sig.inputs();
-        let extra_args = if sig.abi == RustCall {
-            assert!(!sig.c_variadic && extra_args.is_empty());
-
-            if let Some(input) = sig.inputs().last() {
-                if let ty::Tuple(tupled_arguments) = input.kind() {
-                    inputs = &sig.inputs()[0..sig.inputs().len() - 1];
-                    tupled_arguments
-                } else {
-                    bug!(
-                        "argument to function with \"rust-call\" ABI \
-                            is not a tuple"
-                    );
-                }
-            } else {
-                bug!(
-                    "argument to function with \"rust-call\" ABI \
-                        is not a tuple"
-                );
-            }
-        } else {
-            assert!(sig.c_variadic || extra_args.is_empty());
-            extra_args
-        };
-
-        let target = &self.tcx.sess.target;
-        let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl" | "uclibc");
-        let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu";
-        let linux_s390x_gnu_like =
-            target.os == "linux" && target.arch == "s390x" && target_env_gnu_like;
-        let linux_sparc64_gnu_like =
-            target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like;
-        let linux_powerpc_gnu_like =
-            target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like;
-        use SpecAbi::*;
-        let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall);
-
-        let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| -> Result<_, FnAbiError<'tcx>> {
-            let span = tracing::debug_span!("arg_of");
-            let _entered = span.enter();
-            let is_return = arg_idx.is_none();
-
-            let layout = self.layout_of(ty)?;
-            let layout = if force_thin_self_ptr && arg_idx == Some(0) {
-                // Don't pass the vtable, it's not an argument of the virtual fn.
-                // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait`
-                // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen
-                make_thin_self_ptr(self, layout)
-            } else {
-                layout
-            };
-
-            let mut arg = ArgAbi::new(self, layout, |layout, scalar, offset| {
-                let mut attrs = ArgAttributes::new();
-                adjust_for_rust_scalar(*self, &mut attrs, scalar, *layout, offset, is_return);
-                attrs
-            });
-
-            if arg.layout.is_zst() {
-                // For some forsaken reason, x86_64-pc-windows-gnu
-                // doesn't ignore zero-sized struct arguments.
-                // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl,uclibc}.
-                if is_return
-                    || rust_abi
-                    || (!win_x64_gnu
-                        && !linux_s390x_gnu_like
-                        && !linux_sparc64_gnu_like
-                        && !linux_powerpc_gnu_like)
-                {
-                    arg.mode = PassMode::Ignore;
-                }
-            }
-
-            Ok(arg)
-        };
-
-        let mut fn_abi = FnAbi {
-            ret: arg_of(sig.output(), None)?,
-            args: inputs
-                .iter()
-                .copied()
-                .chain(extra_args.iter().copied())
-                .chain(caller_location)
-                .enumerate()
-                .map(|(i, ty)| arg_of(ty, Some(i)))
-                .collect::<Result<_, _>>()?,
-            c_variadic: sig.c_variadic,
-            fixed_count: inputs.len() as u32,
-            conv,
-            can_unwind: fn_can_unwind(self.tcx(), fn_def_id, sig.abi),
-        };
-        self.fn_abi_adjust_for_abi(&mut fn_abi, sig.abi)?;
-        debug!("fn_abi_new_uncached = {:?}", fn_abi);
-        Ok(self.tcx.arena.alloc(fn_abi))
-    }
-
-    #[tracing::instrument(level = "trace", skip(self))]
-    fn fn_abi_adjust_for_abi(
-        &self,
-        fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>,
-        abi: SpecAbi,
-    ) -> Result<(), FnAbiError<'tcx>> {
-        if abi == SpecAbi::Unadjusted {
-            return Ok(());
-        }
-
-        if abi == SpecAbi::Rust
-            || abi == SpecAbi::RustCall
-            || abi == SpecAbi::RustIntrinsic
-            || abi == SpecAbi::PlatformIntrinsic
-        {
-            let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>| {
-                if arg.is_ignore() {
-                    return;
-                }
-
-                match arg.layout.abi {
-                    Abi::Aggregate { .. } => {}
-
-                    // This is a fun case! The gist of what this is doing is
-                    // that we want callers and callees to always agree on the
-                    // ABI of how they pass SIMD arguments. If we were to *not*
-                    // make these arguments indirect then they'd be immediates
-                    // in LLVM, which means that they'd used whatever the
-                    // appropriate ABI is for the callee and the caller. That
-                    // means, for example, if the caller doesn't have AVX
-                    // enabled but the callee does, then passing an AVX argument
-                    // across this boundary would cause corrupt data to show up.
-                    //
-                    // This problem is fixed by unconditionally passing SIMD
-                    // arguments through memory between callers and callees
-                    // which should get them all to agree on ABI regardless of
-                    // target feature sets. Some more information about this
-                    // issue can be found in #44367.
-                    //
-                    // Note that the platform intrinsic ABI is exempt here as
-                    // that's how we connect up to LLVM and it's unstable
-                    // anyway, we control all calls to it in libstd.
-                    Abi::Vector { .. }
-                        if abi != SpecAbi::PlatformIntrinsic
-                            && self.tcx.sess.target.simd_types_indirect =>
-                    {
-                        arg.make_indirect();
-                        return;
-                    }
-
-                    _ => return,
-                }
-
-                let size = arg.layout.size;
-                if arg.layout.is_unsized() || size > Pointer.size(self) {
-                    arg.make_indirect();
-                } else {
-                    // We want to pass small aggregates as immediates, but using
-                    // a LLVM aggregate type for this leads to bad optimizations,
-                    // so we pick an appropriately sized integer type instead.
-                    arg.cast_to(Reg { kind: RegKind::Integer, size });
-                }
-            };
-            fixup(&mut fn_abi.ret);
-            for arg in fn_abi.args.iter_mut() {
-                fixup(arg);
-            }
-        } else {
-            fn_abi.adjust_for_foreign_abi(self, abi)?;
-        }
-
-        Ok(())
-    }
-}
-
-#[tracing::instrument(level = "debug", skip(cx))]
-fn make_thin_self_ptr<'tcx>(
-    cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
-    layout: TyAndLayout<'tcx>,
-) -> TyAndLayout<'tcx> {
-    let tcx = cx.tcx();
-    let fat_pointer_ty = if layout.is_unsized() {
-        // unsized `self` is passed as a pointer to `self`
-        // FIXME (mikeyhew) change this to use &own if it is ever added to the language
-        tcx.mk_mut_ptr(layout.ty)
-    } else {
-        match layout.abi {
-            Abi::ScalarPair(..) | Abi::Scalar(..) => (),
-            _ => bug!("receiver type has unsupported layout: {:?}", layout),
-        }
-
-        // In the case of Rc<Self>, we need to explicitly pass a *mut RcBox<Self>
-        // with a Scalar (not ScalarPair) ABI. This is a hack that is understood
-        // elsewhere in the compiler as a method on a `dyn Trait`.
-        // To get the type `*mut RcBox<Self>`, we just keep unwrapping newtypes until we
-        // get a built-in pointer type
-        let mut fat_pointer_layout = layout;
-        'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr()
-            && !fat_pointer_layout.ty.is_region_ptr()
-        {
-            for i in 0..fat_pointer_layout.fields.count() {
-                let field_layout = fat_pointer_layout.field(cx, i);
-
-                if !field_layout.is_zst() {
-                    fat_pointer_layout = field_layout;
-                    continue 'descend_newtypes;
-                }
-            }
-
-            bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout);
-        }
-
-        fat_pointer_layout.ty
-    };
-
-    // we now have a type like `*mut RcBox<dyn Trait>`
-    // change its layout to that of `*mut ()`, a thin pointer, but keep the same type
-    // this is understood as a special case elsewhere in the compiler
-    let unit_ptr_ty = tcx.mk_mut_ptr(tcx.mk_unit());
-
-    TyAndLayout {
-        ty: fat_pointer_ty,
-
-        // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result`
-        // should always work because the type is always `*mut ()`.
-        ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
-    }
-}