""" This module provides an abstraction layer over common Rust pretty printing functionality needed by both GDB and LLDB. """ import re # Type codes that indicate the kind of type as it appears in DWARF debug # information. This code alone is not sufficient to determine the Rust type. # For example structs, tuples, fat pointers, or enum variants will all have # DWARF_TYPE_CODE_STRUCT. DWARF_TYPE_CODE_STRUCT = 1 DWARF_TYPE_CODE_UNION = 2 DWARF_TYPE_CODE_PTR = 3 DWARF_TYPE_CODE_ARRAY = 4 DWARF_TYPE_CODE_ENUM = 5 # These constants specify the most specific kind of type that could be # determined for a given value. TYPE_KIND_UNKNOWN = -1 TYPE_KIND_EMPTY = 0 TYPE_KIND_SLICE = 1 TYPE_KIND_REGULAR_STRUCT = 2 TYPE_KIND_TUPLE = 3 TYPE_KIND_TUPLE_STRUCT = 4 TYPE_KIND_CSTYLE_VARIANT = 5 TYPE_KIND_TUPLE_VARIANT = 6 TYPE_KIND_STRUCT_VARIANT = 7 TYPE_KIND_STR_SLICE = 8 TYPE_KIND_STD_VEC = 9 TYPE_KIND_STD_STRING = 10 TYPE_KIND_REGULAR_ENUM = 11 TYPE_KIND_COMPRESSED_ENUM = 12 TYPE_KIND_SINGLETON_ENUM = 13 TYPE_KIND_CSTYLE_ENUM = 14 TYPE_KIND_PTR = 15 TYPE_KIND_FIXED_SIZE_VEC = 16 TYPE_KIND_REGULAR_UNION = 17 TYPE_KIND_OS_STRING = 18 TYPE_KIND_STD_VECDEQUE = 19 TYPE_KIND_STD_BTREESET = 20 TYPE_KIND_STD_BTREEMAP = 21 ENCODED_ENUM_PREFIX = "RUST$ENCODED$ENUM$" ENUM_DISR_FIELD_NAME = "RUST$ENUM$DISR" # Slice related constants SLICE_FIELD_NAME_DATA_PTR = "data_ptr" SLICE_FIELD_NAME_LENGTH = "length" SLICE_FIELD_NAMES = [SLICE_FIELD_NAME_DATA_PTR, SLICE_FIELD_NAME_LENGTH] # std::Vec<> related constants STD_VEC_FIELD_NAME_LENGTH = "len" STD_VEC_FIELD_NAME_BUF = "buf" STD_VEC_FIELD_NAMES = [STD_VEC_FIELD_NAME_BUF, STD_VEC_FIELD_NAME_LENGTH] # std::collections::VecDeque<> related constants STD_VECDEQUE_FIELD_NAME_TAIL = "tail" STD_VECDEQUE_FIELD_NAME_HEAD = "head" STD_VECDEQUE_FIELD_NAME_BUF = "buf" STD_VECDEQUE_FIELD_NAMES = [STD_VECDEQUE_FIELD_NAME_TAIL, STD_VECDEQUE_FIELD_NAME_HEAD, STD_VECDEQUE_FIELD_NAME_BUF] # std::collections::BTreeSet<> related constants STD_BTREESET_FIELD_NAMES = ["map"] # std::collections::BTreeMap<> related constants STD_BTREEMAP_FIELD_NAMES = ["root", "length"] # std::String related constants STD_STRING_FIELD_NAMES = ["vec"] # std::ffi::OsString related constants OS_STRING_FIELD_NAMES = ["inner"] class Type(object): """ This class provides a common interface for type-oriented operations. Sub-classes are supposed to wrap a debugger-specific type-object and provide implementations for the abstract methods in this class. """ def __init__(self): self.__type_kind = None def get_unqualified_type_name(self): """ Implementations of this method should return the unqualified name of the type-object they are wrapping. Some examples: 'int' -> 'int' 'std::vec::Vec' -> 'Vec' '&std::option::Option' -> '&std::option::Option' As you can see, type arguments stay fully qualified. """ raise NotImplementedError("Override this method") def get_dwarf_type_kind(self): """ Implementations of this method should return the correct DWARF_TYPE_CODE_* value for the wrapped type-object. """ raise NotImplementedError("Override this method") def get_fields(self): """ Implementations of this method should return a list of field-objects of this type. For Rust-enums (i.e. with DWARF_TYPE_CODE_UNION) these field- objects represent the variants of the enum. Field-objects must have a `name` attribute that gives their name as specified in DWARF. """ assert ((self.get_dwarf_type_kind() == DWARF_TYPE_CODE_STRUCT) or (self.get_dwarf_type_kind() == DWARF_TYPE_CODE_UNION)) raise NotImplementedError("Override this method") def get_wrapped_value(self): """ Returns the debugger-specific type-object wrapped by this object. This is sometimes needed for doing things like pointer-arithmetic in GDB. """ raise NotImplementedError("Override this method") def get_type_kind(self): """This method returns the TYPE_KIND_* value for this type-object.""" if self.__type_kind is None: dwarf_type_code = self.get_dwarf_type_kind() if dwarf_type_code == DWARF_TYPE_CODE_STRUCT: self.__type_kind = self.__classify_struct() elif dwarf_type_code == DWARF_TYPE_CODE_UNION: self.__type_kind = self.__classify_union() elif dwarf_type_code == DWARF_TYPE_CODE_PTR: self.__type_kind = TYPE_KIND_PTR elif dwarf_type_code == DWARF_TYPE_CODE_ARRAY: self.__type_kind = TYPE_KIND_FIXED_SIZE_VEC else: self.__type_kind = TYPE_KIND_UNKNOWN return self.__type_kind def __classify_struct(self): assert self.get_dwarf_type_kind() == DWARF_TYPE_CODE_STRUCT unqualified_type_name = self.get_unqualified_type_name() # STR SLICE if unqualified_type_name == "&str": return TYPE_KIND_STR_SLICE # REGULAR SLICE if (unqualified_type_name.startswith(("&[", "&mut [")) and unqualified_type_name.endswith("]") and self.__conforms_to_field_layout(SLICE_FIELD_NAMES)): return TYPE_KIND_SLICE fields = self.get_fields() field_count = len(fields) # EMPTY STRUCT if field_count == 0: return TYPE_KIND_EMPTY # STD VEC if (unqualified_type_name.startswith("Vec<") and self.__conforms_to_field_layout(STD_VEC_FIELD_NAMES)): return TYPE_KIND_STD_VEC # STD COLLECTION VECDEQUE if (unqualified_type_name.startswith("VecDeque<") and self.__conforms_to_field_layout(STD_VECDEQUE_FIELD_NAMES)): return TYPE_KIND_STD_VECDEQUE # STD COLLECTION BTREESET if (unqualified_type_name.startswith("BTreeSet<") and self.__conforms_to_field_layout(STD_BTREESET_FIELD_NAMES)): return TYPE_KIND_STD_BTREESET # STD COLLECTION BTREEMAP if (unqualified_type_name.startswith("BTreeMap<") and self.__conforms_to_field_layout(STD_BTREEMAP_FIELD_NAMES)): return TYPE_KIND_STD_BTREEMAP # STD STRING if (unqualified_type_name.startswith("String") and self.__conforms_to_field_layout(STD_STRING_FIELD_NAMES)): return TYPE_KIND_STD_STRING # OS STRING if (unqualified_type_name == "OsString" and self.__conforms_to_field_layout(OS_STRING_FIELD_NAMES)): return TYPE_KIND_OS_STRING # ENUM VARIANTS if fields[0].name == ENUM_DISR_FIELD_NAME: if field_count == 1: return TYPE_KIND_CSTYLE_VARIANT elif self.__all_fields_conform_to_tuple_field_naming(1): return TYPE_KIND_TUPLE_VARIANT else: return TYPE_KIND_STRUCT_VARIANT # TUPLE if self.__all_fields_conform_to_tuple_field_naming(0): if unqualified_type_name.startswith("("): return TYPE_KIND_TUPLE else: return TYPE_KIND_TUPLE_STRUCT # REGULAR STRUCT return TYPE_KIND_REGULAR_STRUCT def __classify_union(self): assert self.get_dwarf_type_kind() == DWARF_TYPE_CODE_UNION union_members = self.get_fields() union_member_count = len(union_members) if union_member_count == 0: return TYPE_KIND_EMPTY first_variant_name = union_members[0].name if first_variant_name is None: if union_member_count == 1: return TYPE_KIND_SINGLETON_ENUM else: return TYPE_KIND_REGULAR_ENUM elif first_variant_name.startswith(ENCODED_ENUM_PREFIX): assert union_member_count == 1 return TYPE_KIND_COMPRESSED_ENUM else: return TYPE_KIND_REGULAR_UNION def __conforms_to_field_layout(self, expected_fields): actual_fields = self.get_fields() actual_field_count = len(actual_fields) if actual_field_count != len(expected_fields): return False for i in range(0, actual_field_count): if actual_fields[i].name != expected_fields[i]: return False return True def __all_fields_conform_to_tuple_field_naming(self, start_index): fields = self.get_fields() field_count = len(fields) for i in range(start_index, field_count): field_name = fields[i].name if (field_name is None) or (re.match(r"__\d+$", field_name) is None): return False return True class Value(object): """ This class provides a common interface for value-oriented operations. Sub-classes are supposed to wrap a debugger-specific value-object and provide implementations for the abstract methods in this class. """ def __init__(self, ty): self.type = ty def get_child_at_index(self, index): """Returns the value of the field, array element or variant at the given index""" raise NotImplementedError("Override this method") def as_integer(self): """ Try to convert the wrapped value into a Python integer. This should always succeed for values that are pointers or actual integers. """ raise NotImplementedError("Override this method") def get_wrapped_value(self): """ Returns the debugger-specific value-object wrapped by this object. This is sometimes needed for doing things like pointer-arithmetic in GDB. """ raise NotImplementedError("Override this method") class EncodedEnumInfo(object): """ This class provides facilities for handling enum values with compressed encoding where a non-null field in one variant doubles as the discriminant. """ def __init__(self, enum_val): assert enum_val.type.get_type_kind() == TYPE_KIND_COMPRESSED_ENUM variant_name = enum_val.type.get_fields()[0].name last_separator_index = variant_name.rfind("$") start_index = len(ENCODED_ENUM_PREFIX) indices_substring = variant_name[start_index:last_separator_index].split("$") self.__enum_val = enum_val self.__disr_field_indices = [int(index) for index in indices_substring] self.__null_variant_name = variant_name[last_separator_index + 1:] def is_null_variant(self): ty = self.__enum_val.type sole_variant_val = self.__enum_val.get_child_at_index(0) discriminant_val = sole_variant_val for disr_field_index in self.__disr_field_indices: discriminant_val = discriminant_val.get_child_at_index(disr_field_index) # If the discriminant field is a fat pointer we have to consider the # first word as the true discriminant if discriminant_val.type.get_dwarf_type_kind() == DWARF_TYPE_CODE_STRUCT: discriminant_val = discriminant_val.get_child_at_index(0) return discriminant_val.as_integer() == 0 def get_non_null_variant_val(self): return self.__enum_val.get_child_at_index(0) def get_null_variant_name(self): return self.__null_variant_name def get_discriminant_value_as_integer(enum_val): assert enum_val.type.get_dwarf_type_kind() == DWARF_TYPE_CODE_UNION # we can take any variant here because the discriminant has to be the same # for all of them. variant_val = enum_val.get_child_at_index(0) disr_val = variant_val.get_child_at_index(0) return disr_val.as_integer() def extract_length_ptr_and_cap_from_std_vec(vec_val): assert vec_val.type.get_type_kind() == TYPE_KIND_STD_VEC length_field_index = STD_VEC_FIELD_NAMES.index(STD_VEC_FIELD_NAME_LENGTH) buf_field_index = STD_VEC_FIELD_NAMES.index(STD_VEC_FIELD_NAME_BUF) length = vec_val.get_child_at_index(length_field_index).as_integer() buf = vec_val.get_child_at_index(buf_field_index) vec_ptr_val = buf.get_child_at_index(0) capacity = buf.get_child_at_index(1).as_integer() data_ptr = vec_ptr_val.get_child_at_index(0) assert data_ptr.type.get_dwarf_type_kind() == DWARF_TYPE_CODE_PTR return (length, data_ptr, capacity) def extract_tail_head_ptr_and_cap_from_std_vecdeque(vec_val): assert vec_val.type.get_type_kind() == TYPE_KIND_STD_VECDEQUE tail_field_index = STD_VECDEQUE_FIELD_NAMES.index(STD_VECDEQUE_FIELD_NAME_TAIL) head_field_index = STD_VECDEQUE_FIELD_NAMES.index(STD_VECDEQUE_FIELD_NAME_HEAD) buf_field_index = STD_VECDEQUE_FIELD_NAMES.index(STD_VECDEQUE_FIELD_NAME_BUF) tail = vec_val.get_child_at_index(tail_field_index).as_integer() head = vec_val.get_child_at_index(head_field_index).as_integer() buf = vec_val.get_child_at_index(buf_field_index) vec_ptr_val = buf.get_child_at_index(0) capacity = buf.get_child_at_index(1).as_integer() data_ptr = vec_ptr_val.get_child_at_index(0) assert data_ptr.type.get_dwarf_type_kind() == DWARF_TYPE_CODE_PTR return (tail, head, data_ptr, capacity) def extract_length_and_ptr_from_slice(slice_val): assert (slice_val.type.get_type_kind() == TYPE_KIND_SLICE or slice_val.type.get_type_kind() == TYPE_KIND_STR_SLICE) length_field_index = SLICE_FIELD_NAMES.index(SLICE_FIELD_NAME_LENGTH) ptr_field_index = SLICE_FIELD_NAMES.index(SLICE_FIELD_NAME_DATA_PTR) length = slice_val.get_child_at_index(length_field_index).as_integer() data_ptr = slice_val.get_child_at_index(ptr_field_index) assert data_ptr.type.get_dwarf_type_kind() == DWARF_TYPE_CODE_PTR return (length, data_ptr) UNQUALIFIED_TYPE_MARKERS = frozenset(["(", "[", "&", "*"]) def extract_type_name(qualified_type_name): """Extracts the type name from a fully qualified path""" if qualified_type_name[0] in UNQUALIFIED_TYPE_MARKERS: return qualified_type_name end_of_search = qualified_type_name.find("<") if end_of_search < 0: end_of_search = len(qualified_type_name) index = qualified_type_name.rfind("::", 0, end_of_search) if index < 0: return qualified_type_name else: return qualified_type_name[index + 2:] try: compat_str = unicode # Python 2 except NameError: compat_str = str