]> git.lizzy.rs Git - plan9front.git/blob - sys/lib/python/heapq.py
update colemak kbmap, simpler version with scroll working (thanks jeremy)
[plan9front.git] / sys / lib / python / heapq.py
1 # -*- coding: Latin-1 -*-
2
3 """Heap queue algorithm (a.k.a. priority queue).
4
5 Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
6 all k, counting elements from 0.  For the sake of comparison,
7 non-existing elements are considered to be infinite.  The interesting
8 property of a heap is that a[0] is always its smallest element.
9
10 Usage:
11
12 heap = []            # creates an empty heap
13 heappush(heap, item) # pushes a new item on the heap
14 item = heappop(heap) # pops the smallest item from the heap
15 item = heap[0]       # smallest item on the heap without popping it
16 heapify(x)           # transforms list into a heap, in-place, in linear time
17 item = heapreplace(heap, item) # pops and returns smallest item, and adds
18                                # new item; the heap size is unchanged
19
20 Our API differs from textbook heap algorithms as follows:
21
22 - We use 0-based indexing.  This makes the relationship between the
23   index for a node and the indexes for its children slightly less
24   obvious, but is more suitable since Python uses 0-based indexing.
25
26 - Our heappop() method returns the smallest item, not the largest.
27
28 These two make it possible to view the heap as a regular Python list
29 without surprises: heap[0] is the smallest item, and heap.sort()
30 maintains the heap invariant!
31 """
32
33 # Original code by Kevin O'Connor, augmented by Tim Peters and Raymond Hettinger
34
35 __about__ = """Heap queues
36
37 [explanation by François Pinard]
38
39 Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
40 all k, counting elements from 0.  For the sake of comparison,
41 non-existing elements are considered to be infinite.  The interesting
42 property of a heap is that a[0] is always its smallest element.
43
44 The strange invariant above is meant to be an efficient memory
45 representation for a tournament.  The numbers below are `k', not a[k]:
46
47                                    0
48
49                   1                                 2
50
51           3               4                5               6
52
53       7       8       9       10      11      12      13      14
54
55     15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30
56
57
58 In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In
59 an usual binary tournament we see in sports, each cell is the winner
60 over the two cells it tops, and we can trace the winner down the tree
61 to see all opponents s/he had.  However, in many computer applications
62 of such tournaments, we do not need to trace the history of a winner.
63 To be more memory efficient, when a winner is promoted, we try to
64 replace it by something else at a lower level, and the rule becomes
65 that a cell and the two cells it tops contain three different items,
66 but the top cell "wins" over the two topped cells.
67
68 If this heap invariant is protected at all time, index 0 is clearly
69 the overall winner.  The simplest algorithmic way to remove it and
70 find the "next" winner is to move some loser (let's say cell 30 in the
71 diagram above) into the 0 position, and then percolate this new 0 down
72 the tree, exchanging values, until the invariant is re-established.
73 This is clearly logarithmic on the total number of items in the tree.
74 By iterating over all items, you get an O(n ln n) sort.
75
76 A nice feature of this sort is that you can efficiently insert new
77 items while the sort is going on, provided that the inserted items are
78 not "better" than the last 0'th element you extracted.  This is
79 especially useful in simulation contexts, where the tree holds all
80 incoming events, and the "win" condition means the smallest scheduled
81 time.  When an event schedule other events for execution, they are
82 scheduled into the future, so they can easily go into the heap.  So, a
83 heap is a good structure for implementing schedulers (this is what I
84 used for my MIDI sequencer :-).
85
86 Various structures for implementing schedulers have been extensively
87 studied, and heaps are good for this, as they are reasonably speedy,
88 the speed is almost constant, and the worst case is not much different
89 than the average case.  However, there are other representations which
90 are more efficient overall, yet the worst cases might be terrible.
91
92 Heaps are also very useful in big disk sorts.  You most probably all
93 know that a big sort implies producing "runs" (which are pre-sorted
94 sequences, which size is usually related to the amount of CPU memory),
95 followed by a merging passes for these runs, which merging is often
96 very cleverly organised[1].  It is very important that the initial
97 sort produces the longest runs possible.  Tournaments are a good way
98 to that.  If, using all the memory available to hold a tournament, you
99 replace and percolate items that happen to fit the current run, you'll
100 produce runs which are twice the size of the memory for random input,
101 and much better for input fuzzily ordered.
102
103 Moreover, if you output the 0'th item on disk and get an input which
104 may not fit in the current tournament (because the value "wins" over
105 the last output value), it cannot fit in the heap, so the size of the
106 heap decreases.  The freed memory could be cleverly reused immediately
107 for progressively building a second heap, which grows at exactly the
108 same rate the first heap is melting.  When the first heap completely
109 vanishes, you switch heaps and start a new run.  Clever and quite
110 effective!
111
112 In a word, heaps are useful memory structures to know.  I use them in
113 a few applications, and I think it is good to keep a `heap' module
114 around. :-)
115
116 --------------------
117 [1] The disk balancing algorithms which are current, nowadays, are
118 more annoying than clever, and this is a consequence of the seeking
119 capabilities of the disks.  On devices which cannot seek, like big
120 tape drives, the story was quite different, and one had to be very
121 clever to ensure (far in advance) that each tape movement will be the
122 most effective possible (that is, will best participate at
123 "progressing" the merge).  Some tapes were even able to read
124 backwards, and this was also used to avoid the rewinding time.
125 Believe me, real good tape sorts were quite spectacular to watch!
126 From all times, sorting has always been a Great Art! :-)
127 """
128
129 __all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'nlargest',
130            'nsmallest']
131
132 from itertools import islice, repeat, count, imap, izip, tee
133 from operator import itemgetter, neg
134 import bisect
135
136 def heappush(heap, item):
137     """Push item onto heap, maintaining the heap invariant."""
138     heap.append(item)
139     _siftdown(heap, 0, len(heap)-1)
140
141 def heappop(heap):
142     """Pop the smallest item off the heap, maintaining the heap invariant."""
143     lastelt = heap.pop()    # raises appropriate IndexError if heap is empty
144     if heap:
145         returnitem = heap[0]
146         heap[0] = lastelt
147         _siftup(heap, 0)
148     else:
149         returnitem = lastelt
150     return returnitem
151
152 def heapreplace(heap, item):
153     """Pop and return the current smallest value, and add the new item.
154
155     This is more efficient than heappop() followed by heappush(), and can be
156     more appropriate when using a fixed-size heap.  Note that the value
157     returned may be larger than item!  That constrains reasonable uses of
158     this routine unless written as part of a conditional replacement:
159
160         if item > heap[0]:
161             item = heapreplace(heap, item)
162     """
163     returnitem = heap[0]    # raises appropriate IndexError if heap is empty
164     heap[0] = item
165     _siftup(heap, 0)
166     return returnitem
167
168 def heapify(x):
169     """Transform list into a heap, in-place, in O(len(heap)) time."""
170     n = len(x)
171     # Transform bottom-up.  The largest index there's any point to looking at
172     # is the largest with a child index in-range, so must have 2*i + 1 < n,
173     # or i < (n-1)/2.  If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
174     # j-1 is the largest, which is n//2 - 1.  If n is odd = 2*j+1, this is
175     # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
176     for i in reversed(xrange(n//2)):
177         _siftup(x, i)
178
179 def nlargest(n, iterable):
180     """Find the n largest elements in a dataset.
181
182     Equivalent to:  sorted(iterable, reverse=True)[:n]
183     """
184     it = iter(iterable)
185     result = list(islice(it, n))
186     if not result:
187         return result
188     heapify(result)
189     _heapreplace = heapreplace
190     sol = result[0]         # sol --> smallest of the nlargest
191     for elem in it:
192         if elem <= sol:
193             continue
194         _heapreplace(result, elem)
195         sol = result[0]
196     result.sort(reverse=True)
197     return result
198
199 def nsmallest(n, iterable):
200     """Find the n smallest elements in a dataset.
201
202     Equivalent to:  sorted(iterable)[:n]
203     """
204     if hasattr(iterable, '__len__') and n * 10 <= len(iterable):
205         # For smaller values of n, the bisect method is faster than a minheap.
206         # It is also memory efficient, consuming only n elements of space.
207         it = iter(iterable)
208         result = sorted(islice(it, 0, n))
209         if not result:
210             return result
211         insort = bisect.insort
212         pop = result.pop
213         los = result[-1]    # los --> Largest of the nsmallest
214         for elem in it:
215             if los <= elem:
216                 continue
217             insort(result, elem)
218             pop()
219             los = result[-1]
220         return result
221     # An alternative approach manifests the whole iterable in memory but
222     # saves comparisons by heapifying all at once.  Also, saves time
223     # over bisect.insort() which has O(n) data movement time for every
224     # insertion.  Finding the n smallest of an m length iterable requires
225     #    O(m) + O(n log m) comparisons.
226     h = list(iterable)
227     heapify(h)
228     return map(heappop, repeat(h, min(n, len(h))))
229
230 # 'heap' is a heap at all indices >= startpos, except possibly for pos.  pos
231 # is the index of a leaf with a possibly out-of-order value.  Restore the
232 # heap invariant.
233 def _siftdown(heap, startpos, pos):
234     newitem = heap[pos]
235     # Follow the path to the root, moving parents down until finding a place
236     # newitem fits.
237     while pos > startpos:
238         parentpos = (pos - 1) >> 1
239         parent = heap[parentpos]
240         if parent <= newitem:
241             break
242         heap[pos] = parent
243         pos = parentpos
244     heap[pos] = newitem
245
246 # The child indices of heap index pos are already heaps, and we want to make
247 # a heap at index pos too.  We do this by bubbling the smaller child of
248 # pos up (and so on with that child's children, etc) until hitting a leaf,
249 # then using _siftdown to move the oddball originally at index pos into place.
250 #
251 # We *could* break out of the loop as soon as we find a pos where newitem <=
252 # both its children, but turns out that's not a good idea, and despite that
253 # many books write the algorithm that way.  During a heap pop, the last array
254 # element is sifted in, and that tends to be large, so that comparing it
255 # against values starting from the root usually doesn't pay (= usually doesn't
256 # get us out of the loop early).  See Knuth, Volume 3, where this is
257 # explained and quantified in an exercise.
258 #
259 # Cutting the # of comparisons is important, since these routines have no
260 # way to extract "the priority" from an array element, so that intelligence
261 # is likely to be hiding in custom __cmp__ methods, or in array elements
262 # storing (priority, record) tuples.  Comparisons are thus potentially
263 # expensive.
264 #
265 # On random arrays of length 1000, making this change cut the number of
266 # comparisons made by heapify() a little, and those made by exhaustive
267 # heappop() a lot, in accord with theory.  Here are typical results from 3
268 # runs (3 just to demonstrate how small the variance is):
269 #
270 # Compares needed by heapify     Compares needed by 1000 heappops
271 # --------------------------     --------------------------------
272 # 1837 cut to 1663               14996 cut to 8680
273 # 1855 cut to 1659               14966 cut to 8678
274 # 1847 cut to 1660               15024 cut to 8703
275 #
276 # Building the heap by using heappush() 1000 times instead required
277 # 2198, 2148, and 2219 compares:  heapify() is more efficient, when
278 # you can use it.
279 #
280 # The total compares needed by list.sort() on the same lists were 8627,
281 # 8627, and 8632 (this should be compared to the sum of heapify() and
282 # heappop() compares):  list.sort() is (unsurprisingly!) more efficient
283 # for sorting.
284
285 def _siftup(heap, pos):
286     endpos = len(heap)
287     startpos = pos
288     newitem = heap[pos]
289     # Bubble up the smaller child until hitting a leaf.
290     childpos = 2*pos + 1    # leftmost child position
291     while childpos < endpos:
292         # Set childpos to index of smaller child.
293         rightpos = childpos + 1
294         if rightpos < endpos and heap[rightpos] <= heap[childpos]:
295             childpos = rightpos
296         # Move the smaller child up.
297         heap[pos] = heap[childpos]
298         pos = childpos
299         childpos = 2*pos + 1
300     # The leaf at pos is empty now.  Put newitem there, and bubble it up
301     # to its final resting place (by sifting its parents down).
302     heap[pos] = newitem
303     _siftdown(heap, startpos, pos)
304
305 # If available, use C implementation
306 try:
307     from _heapq import heappush, heappop, heapify, heapreplace, nlargest, nsmallest
308 except ImportError:
309     pass
310
311 # Extend the implementations of nsmallest and nlargest to use a key= argument
312 _nsmallest = nsmallest
313 def nsmallest(n, iterable, key=None):
314     """Find the n smallest elements in a dataset.
315
316     Equivalent to:  sorted(iterable, key=key)[:n]
317     """
318     in1, in2 = tee(iterable)
319     it = izip(imap(key, in1), count(), in2)                 # decorate
320     result = _nsmallest(n, it)
321     return map(itemgetter(2), result)                       # undecorate
322
323 _nlargest = nlargest
324 def nlargest(n, iterable, key=None):
325     """Find the n largest elements in a dataset.
326
327     Equivalent to:  sorted(iterable, key=key, reverse=True)[:n]
328     """
329     in1, in2 = tee(iterable)
330     it = izip(imap(key, in1), imap(neg, count()), in2)      # decorate
331     result = _nlargest(n, it)
332     return map(itemgetter(2), result)                       # undecorate
333
334 if __name__ == "__main__":
335     # Simple sanity test
336     heap = []
337     data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
338     for item in data:
339         heappush(heap, item)
340     sort = []
341     while heap:
342         sort.append(heappop(heap))
343     print sort