]> git.lizzy.rs Git - rust.git/blob - src/tools/miri/src/shims/foreign_items.rs
Merge from rustc
[rust.git] / src / tools / miri / src / shims / foreign_items.rs
1 use std::{collections::hash_map::Entry, io::Write, iter, path::Path};
2
3 use log::trace;
4
5 use rustc_apfloat::Float;
6 use rustc_ast::expand::allocator::AllocatorKind;
7 use rustc_hir::{
8     def::DefKind,
9     def_id::{CrateNum, DefId, LOCAL_CRATE},
10 };
11 use rustc_middle::middle::{
12     codegen_fn_attrs::CodegenFnAttrFlags, dependency_format::Linkage,
13     exported_symbols::ExportedSymbol,
14 };
15 use rustc_middle::mir;
16 use rustc_middle::ty;
17 use rustc_session::config::CrateType;
18 use rustc_span::Symbol;
19 use rustc_target::{
20     abi::{Align, Size},
21     spec::abi::Abi,
22 };
23
24 use super::backtrace::EvalContextExt as _;
25 use crate::helpers::{convert::Truncate, target_os_is_unix};
26 use crate::*;
27
28 /// Returned by `emulate_foreign_item_by_name`.
29 pub enum EmulateByNameResult<'mir, 'tcx> {
30     /// The caller is expected to jump to the return block.
31     NeedsJumping,
32     /// Jumping has already been taken care of.
33     AlreadyJumped,
34     /// A MIR body has been found for the function.
35     MirBody(&'mir mir::Body<'tcx>, ty::Instance<'tcx>),
36     /// The item is not supported.
37     NotSupported,
38 }
39
40 impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
41 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
42     /// Returns the minimum alignment for the target architecture for allocations of the given size.
43     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
44         let this = self.eval_context_ref();
45         // List taken from `library/std/src/sys/common/alloc.rs`.
46         // This list should be kept in sync with the one from libstd.
47         let min_align = match this.tcx.sess.target.arch.as_ref() {
48             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
49             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
50             arch => bug!("Unsupported target architecture: {}", arch),
51         };
52         // Windows always aligns, even small allocations.
53         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
54         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
55         if kind == MiriMemoryKind::WinHeap || size >= min_align {
56             return Align::from_bytes(min_align).unwrap();
57         }
58         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
59         fn prev_power_of_two(x: u64) -> u64 {
60             let next_pow2 = x.next_power_of_two();
61             if next_pow2 == x {
62                 // x *is* a power of two, just use that.
63                 x
64             } else {
65                 // x is between two powers, so next = 2*prev.
66                 next_pow2 / 2
67             }
68         }
69         Align::from_bytes(prev_power_of_two(size)).unwrap()
70     }
71
72     fn malloc(
73         &mut self,
74         size: u64,
75         zero_init: bool,
76         kind: MiriMemoryKind,
77     ) -> InterpResult<'tcx, Pointer<Option<Provenance>>> {
78         let this = self.eval_context_mut();
79         if size == 0 {
80             Ok(Pointer::null())
81         } else {
82             let align = this.min_align(size, kind);
83             let ptr = this.allocate_ptr(Size::from_bytes(size), align, kind.into())?;
84             if zero_init {
85                 // We just allocated this, the access is definitely in-bounds and fits into our address space.
86                 this.write_bytes_ptr(
87                     ptr.into(),
88                     iter::repeat(0u8).take(usize::try_from(size).unwrap()),
89                 )
90                 .unwrap();
91             }
92             Ok(ptr.into())
93         }
94     }
95
96     fn free(
97         &mut self,
98         ptr: Pointer<Option<Provenance>>,
99         kind: MiriMemoryKind,
100     ) -> InterpResult<'tcx> {
101         let this = self.eval_context_mut();
102         if !this.ptr_is_null(ptr)? {
103             this.deallocate_ptr(ptr, None, kind.into())?;
104         }
105         Ok(())
106     }
107
108     fn realloc(
109         &mut self,
110         old_ptr: Pointer<Option<Provenance>>,
111         new_size: u64,
112         kind: MiriMemoryKind,
113     ) -> InterpResult<'tcx, Pointer<Option<Provenance>>> {
114         let this = self.eval_context_mut();
115         let new_align = this.min_align(new_size, kind);
116         if this.ptr_is_null(old_ptr)? {
117             if new_size == 0 {
118                 Ok(Pointer::null())
119             } else {
120                 let new_ptr =
121                     this.allocate_ptr(Size::from_bytes(new_size), new_align, kind.into())?;
122                 Ok(new_ptr.into())
123             }
124         } else {
125             if new_size == 0 {
126                 this.deallocate_ptr(old_ptr, None, kind.into())?;
127                 Ok(Pointer::null())
128             } else {
129                 let new_ptr = this.reallocate_ptr(
130                     old_ptr,
131                     None,
132                     Size::from_bytes(new_size),
133                     new_align,
134                     kind.into(),
135                 )?;
136                 Ok(new_ptr.into())
137             }
138         }
139     }
140
141     /// Lookup the body of a function that has `link_name` as the symbol name.
142     fn lookup_exported_symbol(
143         &mut self,
144         link_name: Symbol,
145     ) -> InterpResult<'tcx, Option<(&'mir mir::Body<'tcx>, ty::Instance<'tcx>)>> {
146         let this = self.eval_context_mut();
147         let tcx = this.tcx.tcx;
148
149         // If the result was cached, just return it.
150         // (Cannot use `or_insert` since the code below might have to throw an error.)
151         let entry = this.machine.exported_symbols_cache.entry(link_name);
152         let instance = *match entry {
153             Entry::Occupied(e) => e.into_mut(),
154             Entry::Vacant(e) => {
155                 // Find it if it was not cached.
156                 let mut instance_and_crate: Option<(ty::Instance<'_>, CrateNum)> = None;
157                 // `dependency_formats` includes all the transitive informations needed to link a crate,
158                 // which is what we need here since we need to dig out `exported_symbols` from all transitive
159                 // dependencies.
160                 let dependency_formats = tcx.dependency_formats(());
161                 let dependency_format = dependency_formats
162                     .iter()
163                     .find(|(crate_type, _)| *crate_type == CrateType::Executable)
164                     .expect("interpreting a non-executable crate");
165                 for cnum in iter::once(LOCAL_CRATE).chain(
166                     dependency_format.1.iter().enumerate().filter_map(|(num, &linkage)| {
167                         // We add 1 to the number because that's what rustc also does everywhere it
168                         // calls `CrateNum::new`...
169                         #[allow(clippy::integer_arithmetic)]
170                         (linkage != Linkage::NotLinked).then_some(CrateNum::new(num + 1))
171                     }),
172                 ) {
173                     // We can ignore `_export_info` here: we are a Rust crate, and everything is exported
174                     // from a Rust crate.
175                     for &(symbol, _export_info) in tcx.exported_symbols(cnum) {
176                         if let ExportedSymbol::NonGeneric(def_id) = symbol {
177                             let attrs = tcx.codegen_fn_attrs(def_id);
178                             let symbol_name = if let Some(export_name) = attrs.export_name {
179                                 export_name
180                             } else if attrs.flags.contains(CodegenFnAttrFlags::NO_MANGLE) {
181                                 tcx.item_name(def_id)
182                             } else {
183                                 // Skip over items without an explicitly defined symbol name.
184                                 continue;
185                             };
186                             if symbol_name == link_name {
187                                 if let Some((original_instance, original_cnum)) = instance_and_crate
188                                 {
189                                     // Make sure we are consistent wrt what is 'first' and 'second'.
190                                     let original_span =
191                                         tcx.def_span(original_instance.def_id()).data();
192                                     let span = tcx.def_span(def_id).data();
193                                     if original_span < span {
194                                         throw_machine_stop!(
195                                             TerminationInfo::MultipleSymbolDefinitions {
196                                                 link_name,
197                                                 first: original_span,
198                                                 first_crate: tcx.crate_name(original_cnum),
199                                                 second: span,
200                                                 second_crate: tcx.crate_name(cnum),
201                                             }
202                                         );
203                                     } else {
204                                         throw_machine_stop!(
205                                             TerminationInfo::MultipleSymbolDefinitions {
206                                                 link_name,
207                                                 first: span,
208                                                 first_crate: tcx.crate_name(cnum),
209                                                 second: original_span,
210                                                 second_crate: tcx.crate_name(original_cnum),
211                                             }
212                                         );
213                                     }
214                                 }
215                                 if !matches!(tcx.def_kind(def_id), DefKind::Fn | DefKind::AssocFn) {
216                                     throw_ub_format!(
217                                         "attempt to call an exported symbol that is not defined as a function"
218                                     );
219                                 }
220                                 instance_and_crate = Some((ty::Instance::mono(tcx, def_id), cnum));
221                             }
222                         }
223                     }
224                 }
225
226                 e.insert(instance_and_crate.map(|ic| ic.0))
227             }
228         };
229         match instance {
230             None => Ok(None), // no symbol with this name
231             Some(instance) => Ok(Some((this.load_mir(instance.def, None)?, instance))),
232         }
233     }
234
235     /// Emulates calling a foreign item, failing if the item is not supported.
236     /// This function will handle `goto_block` if needed.
237     /// Returns Ok(None) if the foreign item was completely handled
238     /// by this function.
239     /// Returns Ok(Some(body)) if processing the foreign item
240     /// is delegated to another function.
241     fn emulate_foreign_item(
242         &mut self,
243         def_id: DefId,
244         abi: Abi,
245         args: &[OpTy<'tcx, Provenance>],
246         dest: &PlaceTy<'tcx, Provenance>,
247         ret: Option<mir::BasicBlock>,
248         unwind: StackPopUnwind,
249     ) -> InterpResult<'tcx, Option<(&'mir mir::Body<'tcx>, ty::Instance<'tcx>)>> {
250         let this = self.eval_context_mut();
251         let link_name = this.item_link_name(def_id);
252         let tcx = this.tcx.tcx;
253
254         // First: functions that diverge.
255         let ret = match ret {
256             None =>
257                 match link_name.as_str() {
258                     "miri_start_panic" => {
259                         // `check_shim` happens inside `handle_miri_start_panic`.
260                         this.handle_miri_start_panic(abi, link_name, args, unwind)?;
261                         return Ok(None);
262                     }
263                     // This matches calls to the foreign item `panic_impl`.
264                     // The implementation is provided by the function with the `#[panic_handler]` attribute.
265                     "panic_impl" => {
266                         // We don't use `check_shim` here because we are just forwarding to the lang
267                         // item. Argument count checking will be performed when the returned `Body` is
268                         // called.
269                         this.check_abi_and_shim_symbol_clash(abi, Abi::Rust, link_name)?;
270                         let panic_impl_id = tcx.lang_items().panic_impl().unwrap();
271                         let panic_impl_instance = ty::Instance::mono(tcx, panic_impl_id);
272                         return Ok(Some((
273                             this.load_mir(panic_impl_instance.def, None)?,
274                             panic_impl_instance,
275                         )));
276                     }
277                     #[rustfmt::skip]
278                     | "exit"
279                     | "ExitProcess"
280                     => {
281                         let exp_abi = if link_name.as_str() == "exit" {
282                             Abi::C { unwind: false }
283                         } else {
284                             Abi::System { unwind: false }
285                         };
286                         let [code] = this.check_shim(abi, exp_abi, link_name, args)?;
287                         // it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
288                         let code = this.read_scalar(code)?.to_i32()?;
289                         throw_machine_stop!(TerminationInfo::Exit { code: code.into(), leak_check: false });
290                     }
291                     "abort" => {
292                         let [] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
293                         throw_machine_stop!(TerminationInfo::Abort(
294                             "the program aborted execution".to_owned()
295                         ))
296                     }
297                     _ => {
298                         if let Some(body) = this.lookup_exported_symbol(link_name)? {
299                             return Ok(Some(body));
300                         }
301                         this.handle_unsupported(format!(
302                             "can't call (diverging) foreign function: {link_name}"
303                         ))?;
304                         return Ok(None);
305                     }
306                 },
307             Some(p) => p,
308         };
309
310         // Second: functions that return immediately.
311         match this.emulate_foreign_item_by_name(link_name, abi, args, dest)? {
312             EmulateByNameResult::NeedsJumping => {
313                 trace!("{:?}", this.dump_place(**dest));
314                 this.go_to_block(ret);
315             }
316             EmulateByNameResult::AlreadyJumped => (),
317             EmulateByNameResult::MirBody(mir, instance) => return Ok(Some((mir, instance))),
318             EmulateByNameResult::NotSupported => {
319                 if let Some(body) = this.lookup_exported_symbol(link_name)? {
320                     return Ok(Some(body));
321                 }
322
323                 this.handle_unsupported(format!("can't call foreign function: {link_name}"))?;
324                 return Ok(None);
325             }
326         }
327
328         Ok(None)
329     }
330
331     /// Emulates calling the internal __rust_* allocator functions
332     fn emulate_allocator(
333         &mut self,
334         symbol: Symbol,
335         default: impl FnOnce(&mut MiriInterpCx<'mir, 'tcx>) -> InterpResult<'tcx>,
336     ) -> InterpResult<'tcx, EmulateByNameResult<'mir, 'tcx>> {
337         let this = self.eval_context_mut();
338
339         let allocator_kind = if let Some(allocator_kind) = this.tcx.allocator_kind(()) {
340             allocator_kind
341         } else {
342             // in real code, this symbol does not exist without an allocator
343             return Ok(EmulateByNameResult::NotSupported);
344         };
345
346         match allocator_kind {
347             AllocatorKind::Global => {
348                 let (body, instance) = this
349                     .lookup_exported_symbol(symbol)?
350                     .expect("symbol should be present if there is a global allocator");
351
352                 Ok(EmulateByNameResult::MirBody(body, instance))
353             }
354             AllocatorKind::Default => {
355                 default(this)?;
356                 Ok(EmulateByNameResult::NeedsJumping)
357             }
358         }
359     }
360
361     /// Emulates calling a foreign item using its name.
362     fn emulate_foreign_item_by_name(
363         &mut self,
364         link_name: Symbol,
365         abi: Abi,
366         args: &[OpTy<'tcx, Provenance>],
367         dest: &PlaceTy<'tcx, Provenance>,
368     ) -> InterpResult<'tcx, EmulateByNameResult<'mir, 'tcx>> {
369         let this = self.eval_context_mut();
370
371         // First deal with any external C functions in linked .so file.
372         #[cfg(target_os = "linux")]
373         if this.machine.external_so_lib.as_ref().is_some() {
374             use crate::shims::ffi_support::EvalContextExt as _;
375             // An Ok(false) here means that the function being called was not exported
376             // by the specified `.so` file; we should continue and check if it corresponds to
377             // a provided shim.
378             if this.call_external_c_fct(link_name, dest, args)? {
379                 return Ok(EmulateByNameResult::NeedsJumping);
380             }
381         }
382
383         // When adding a new shim, you should follow the following pattern:
384         // ```
385         // "shim_name" => {
386         //     let [arg1, arg2, arg3] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
387         //     let result = this.shim_name(arg1, arg2, arg3)?;
388         //     this.write_scalar(result, dest)?;
389         // }
390         // ```
391         // and then define `shim_name` as a helper function in an extension trait in a suitable file
392         // (see e.g. `unix/fs.rs`):
393         // ```
394         // fn shim_name(
395         //     &mut self,
396         //     arg1: &OpTy<'tcx, Provenance>,
397         //     arg2: &OpTy<'tcx, Provenance>,
398         //     arg3: &OpTy<'tcx, Provenance>)
399         // -> InterpResult<'tcx, Scalar<Provenance>> {
400         //     let this = self.eval_context_mut();
401         //
402         //     // First thing: load all the arguments. Details depend on the shim.
403         //     let arg1 = this.read_scalar(arg1)?.to_u32()?;
404         //     let arg2 = this.read_pointer(arg2)?; // when you need to work with the pointer directly
405         //     let arg3 = this.deref_operand(arg3)?; // when you want to load/store through the pointer at its declared type
406         //
407         //     // ...
408         //
409         //     Ok(Scalar::from_u32(42))
410         // }
411         // ```
412         // You might find existing shims not following this pattern, most
413         // likely because they predate it or because for some reason they cannot be made to fit.
414
415         // Here we dispatch all the shims for foreign functions. If you have a platform specific
416         // shim, add it to the corresponding submodule.
417         match link_name.as_str() {
418             // Miri-specific extern functions
419             "miri_get_alloc_id" => {
420                 let [ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?;
421                 let ptr = this.read_pointer(ptr)?;
422                 let (alloc_id, _, _) = this.ptr_get_alloc_id(ptr).map_err(|_e| {
423                     err_machine_stop!(TerminationInfo::Abort(
424                         format!("pointer passed to miri_get_alloc_id must not be dangling, got {ptr:?}")
425                     ))
426                 })?;
427                 this.write_scalar(Scalar::from_u64(alloc_id.0.get()), dest)?;
428             }
429             "miri_print_borrow_stacks" => {
430                 let [id] = this.check_shim(abi, Abi::Rust, link_name, args)?;
431                 let id = this.read_scalar(id)?.to_u64()?;
432                 if let Some(id) = std::num::NonZeroU64::new(id) {
433                     this.print_stacks(AllocId(id))?;
434                 }
435             }
436             "miri_static_root" => {
437                 let [ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?;
438                 let ptr = this.read_pointer(ptr)?;
439                 let (alloc_id, offset, _) = this.ptr_get_alloc_id(ptr)?;
440                 if offset != Size::ZERO {
441                     throw_unsup_format!("pointer passed to miri_static_root must point to beginning of an allocated block");
442                 }
443                 this.machine.static_roots.push(alloc_id);
444             }
445             "miri_host_to_target_path" => {
446                 let [ptr, out, out_size] = this.check_shim(abi, Abi::Rust, link_name, args)?;
447                 let ptr = this.read_pointer(ptr)?;
448                 let out = this.read_pointer(out)?;
449                 let out_size = this.read_scalar(out_size)?.to_machine_usize(this)?;
450
451                 // The host affects program behavior here, so this requires isolation to be disabled.
452                 this.check_no_isolation("`miri_host_to_target_path`")?;
453
454                 // We read this as a plain OsStr and write it as a path, which will convert it to the target.
455                 let path = this.read_os_str_from_c_str(ptr)?.to_owned();
456                 let (success, needed_size) = this.write_path_to_c_str(Path::new(&path), out, out_size)?;
457                 // Return value: 0 on success, otherwise the size it would have needed.
458                 this.write_int(if success { 0 } else { needed_size }, dest)?;
459             }
460
461             // Obtains the size of a Miri backtrace. See the README for details.
462             "miri_backtrace_size" => {
463                 this.handle_miri_backtrace_size(abi, link_name, args, dest)?;
464             }
465
466             // Obtains a Miri backtrace. See the README for details.
467             "miri_get_backtrace" => {
468                 // `check_shim` happens inside `handle_miri_get_backtrace`.
469                 this.handle_miri_get_backtrace(abi, link_name, args, dest)?;
470             }
471
472             // Resolves a Miri backtrace frame. See the README for details.
473             "miri_resolve_frame" => {
474                 // `check_shim` happens inside `handle_miri_resolve_frame`.
475                 this.handle_miri_resolve_frame(abi, link_name, args, dest)?;
476             }
477
478             // Writes the function and file names of a Miri backtrace frame into a user provided buffer. See the README for details.
479             "miri_resolve_frame_names" => {
480                 this.handle_miri_resolve_frame_names(abi, link_name, args)?;
481             }
482
483             // Writes some bytes to the interpreter's stdout/stderr. See the
484             // README for details.
485             "miri_write_to_stdout" | "miri_write_to_stderr" => {
486                 let [bytes] = this.check_shim(abi, Abi::Rust, link_name, args)?;
487                 let (ptr, len) = this.read_immediate(bytes)?.to_scalar_pair();
488                 let ptr = ptr.to_pointer(this)?;
489                 let len = len.to_machine_usize(this)?;
490                 let msg = this.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(len))?;
491
492                 // Note: we're ignoring errors writing to host stdout/stderr.
493                 let _ignore = match link_name.as_str() {
494                     "miri_write_to_stdout" => std::io::stdout().write_all(msg),
495                     "miri_write_to_stderr" => std::io::stderr().write_all(msg),
496                     _ => unreachable!(),
497                 };
498             }
499
500             // Standard C allocation
501             "malloc" => {
502                 let [size] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
503                 let size = this.read_machine_usize(size)?;
504                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C)?;
505                 this.write_pointer(res, dest)?;
506             }
507             "calloc" => {
508                 let [items, len] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
509                 let items = this.read_machine_usize(items)?;
510                 let len = this.read_machine_usize(len)?;
511                 let size =
512                     items.checked_mul(len).ok_or_else(|| err_ub_format!("overflow during calloc size computation"))?;
513                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C)?;
514                 this.write_pointer(res, dest)?;
515             }
516             "free" => {
517                 let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
518                 let ptr = this.read_pointer(ptr)?;
519                 this.free(ptr, MiriMemoryKind::C)?;
520             }
521             "realloc" => {
522                 let [old_ptr, new_size] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
523                 let old_ptr = this.read_pointer(old_ptr)?;
524                 let new_size = this.read_machine_usize(new_size)?;
525                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
526                 this.write_pointer(res, dest)?;
527             }
528
529             // Rust allocation
530             "__rust_alloc" | "miri_alloc" => {
531                 let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
532                 let size = this.read_machine_usize(size)?;
533                 let align = this.read_machine_usize(align)?;
534
535                 let default = |this: &mut MiriInterpCx<'mir, 'tcx>| {
536                     Self::check_alloc_request(size, align)?;
537
538                     let memory_kind = match link_name.as_str() {
539                         "__rust_alloc" => MiriMemoryKind::Rust,
540                         "miri_alloc" => MiriMemoryKind::Miri,
541                         _ => unreachable!(),
542                     };
543
544                     let ptr = this.allocate_ptr(
545                         Size::from_bytes(size),
546                         Align::from_bytes(align).unwrap(),
547                         memory_kind.into(),
548                     )?;
549
550                     this.write_pointer(ptr, dest)
551                 };
552
553                 match link_name.as_str() {
554                     "__rust_alloc" => return this.emulate_allocator(Symbol::intern("__rg_alloc"), default),
555                     "miri_alloc" => {
556                         default(this)?;
557                         return Ok(EmulateByNameResult::NeedsJumping);
558                     },
559                     _ => unreachable!(),
560                 }
561             }
562             "__rust_alloc_zeroed" => {
563                 let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
564                 let size = this.read_machine_usize(size)?;
565                 let align = this.read_machine_usize(align)?;
566
567                 return this.emulate_allocator(Symbol::intern("__rg_alloc_zeroed"), |this| {
568                     Self::check_alloc_request(size, align)?;
569
570                     let ptr = this.allocate_ptr(
571                         Size::from_bytes(size),
572                         Align::from_bytes(align).unwrap(),
573                         MiriMemoryKind::Rust.into(),
574                     )?;
575
576                     // We just allocated this, the access is definitely in-bounds.
577                     this.write_bytes_ptr(ptr.into(), iter::repeat(0u8).take(usize::try_from(size).unwrap())).unwrap();
578                     this.write_pointer(ptr, dest)
579                 });
580             }
581             "__rust_dealloc" | "miri_dealloc" => {
582                 let [ptr, old_size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
583                 let ptr = this.read_pointer(ptr)?;
584                 let old_size = this.read_machine_usize(old_size)?;
585                 let align = this.read_machine_usize(align)?;
586
587                 let default = |this: &mut MiriInterpCx<'mir, 'tcx>| {
588                     let memory_kind = match link_name.as_str() {
589                         "__rust_dealloc" => MiriMemoryKind::Rust,
590                         "miri_dealloc" => MiriMemoryKind::Miri,
591                         _ => unreachable!(),
592                     };
593
594                     // No need to check old_size/align; we anyway check that they match the allocation.
595                     this.deallocate_ptr(
596                         ptr,
597                         Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
598                         memory_kind.into(),
599                     )
600                 };
601
602                 match link_name.as_str() {
603                     "__rust_dealloc" => return this.emulate_allocator(Symbol::intern("__rg_dealloc"), default),
604                     "miri_dealloc" => {
605                         default(this)?;
606                         return Ok(EmulateByNameResult::NeedsJumping);
607                     }
608                     _ => unreachable!(),
609                 }
610             }
611             "__rust_realloc" => {
612                 let [ptr, old_size, align, new_size] = this.check_shim(abi, Abi::Rust, link_name, args)?;
613                 let ptr = this.read_pointer(ptr)?;
614                 let old_size = this.read_machine_usize(old_size)?;
615                 let align = this.read_machine_usize(align)?;
616                 let new_size = this.read_machine_usize(new_size)?;
617                 // No need to check old_size; we anyway check that they match the allocation.
618
619                 return this.emulate_allocator(Symbol::intern("__rg_realloc"), |this| {
620                     Self::check_alloc_request(new_size, align)?;
621
622                     let align = Align::from_bytes(align).unwrap();
623                     let new_ptr = this.reallocate_ptr(
624                         ptr,
625                         Some((Size::from_bytes(old_size), align)),
626                         Size::from_bytes(new_size),
627                         align,
628                         MiriMemoryKind::Rust.into(),
629                     )?;
630                     this.write_pointer(new_ptr, dest)
631                 });
632             }
633
634             // C memory handling functions
635             "memcmp" => {
636                 let [left, right, n] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
637                 let left = this.read_pointer(left)?;
638                 let right = this.read_pointer(right)?;
639                 let n = Size::from_bytes(this.read_machine_usize(n)?);
640
641                 let result = {
642                     let left_bytes = this.read_bytes_ptr_strip_provenance(left, n)?;
643                     let right_bytes = this.read_bytes_ptr_strip_provenance(right, n)?;
644
645                     use std::cmp::Ordering::*;
646                     match left_bytes.cmp(right_bytes) {
647                         Less => -1i32,
648                         Equal => 0,
649                         Greater => 1,
650                     }
651                 };
652
653                 this.write_scalar(Scalar::from_i32(result), dest)?;
654             }
655             "memrchr" => {
656                 let [ptr, val, num] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
657                 let ptr = this.read_pointer(ptr)?;
658                 let val = this.read_scalar(val)?.to_i32()?;
659                 let num = this.read_machine_usize(num)?;
660                 // The docs say val is "interpreted as unsigned char".
661                 #[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
662                 let val = val as u8;
663
664                 if let Some(idx) = this
665                     .read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(num))?
666                     .iter()
667                     .rev()
668                     .position(|&c| c == val)
669                 {
670                     let idx = u64::try_from(idx).unwrap();
671                     #[allow(clippy::integer_arithmetic)] // idx < num, so this never wraps
672                     let new_ptr = ptr.offset(Size::from_bytes(num - idx - 1), this)?;
673                     this.write_pointer(new_ptr, dest)?;
674                 } else {
675                     this.write_null(dest)?;
676                 }
677             }
678             "memchr" => {
679                 let [ptr, val, num] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
680                 let ptr = this.read_pointer(ptr)?;
681                 let val = this.read_scalar(val)?.to_i32()?;
682                 let num = this.read_machine_usize(num)?;
683                 // The docs say val is "interpreted as unsigned char".
684                 #[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
685                 let val = val as u8;
686
687                 let idx = this
688                     .read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(num))?
689                     .iter()
690                     .position(|&c| c == val);
691                 if let Some(idx) = idx {
692                     let new_ptr = ptr.offset(Size::from_bytes(idx as u64), this)?;
693                     this.write_pointer(new_ptr, dest)?;
694                 } else {
695                     this.write_null(dest)?;
696                 }
697             }
698             "strlen" => {
699                 let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
700                 let ptr = this.read_pointer(ptr)?;
701                 let n = this.read_c_str(ptr)?.len();
702                 this.write_scalar(Scalar::from_machine_usize(u64::try_from(n).unwrap(), this), dest)?;
703             }
704
705             // math functions (note that there are also intrinsics for some other functions)
706             #[rustfmt::skip]
707             | "cbrtf"
708             | "coshf"
709             | "sinhf"
710             | "tanf"
711             | "tanhf"
712             | "acosf"
713             | "asinf"
714             | "atanf"
715             | "log1pf"
716             | "expm1f"
717             => {
718                 let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
719                 // FIXME: Using host floats.
720                 let f = f32::from_bits(this.read_scalar(f)?.to_u32()?);
721                 let res = match link_name.as_str() {
722                     "cbrtf" => f.cbrt(),
723                     "coshf" => f.cosh(),
724                     "sinhf" => f.sinh(),
725                     "tanf" => f.tan(),
726                     "tanhf" => f.tanh(),
727                     "acosf" => f.acos(),
728                     "asinf" => f.asin(),
729                     "atanf" => f.atan(),
730                     "log1pf" => f.ln_1p(),
731                     "expm1f" => f.exp_m1(),
732                     _ => bug!(),
733                 };
734                 this.write_scalar(Scalar::from_u32(res.to_bits()), dest)?;
735             }
736             #[rustfmt::skip]
737             | "_hypotf"
738             | "hypotf"
739             | "atan2f"
740             | "fdimf"
741             => {
742                 let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
743                 // underscore case for windows, here and below
744                 // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
745                 // FIXME: Using host floats.
746                 let f1 = f32::from_bits(this.read_scalar(f1)?.to_u32()?);
747                 let f2 = f32::from_bits(this.read_scalar(f2)?.to_u32()?);
748                 let res = match link_name.as_str() {
749                     "_hypotf" | "hypotf" => f1.hypot(f2),
750                     "atan2f" => f1.atan2(f2),
751                     #[allow(deprecated)]
752                     "fdimf" => f1.abs_sub(f2),
753                     _ => bug!(),
754                 };
755                 this.write_scalar(Scalar::from_u32(res.to_bits()), dest)?;
756             }
757             #[rustfmt::skip]
758             | "cbrt"
759             | "cosh"
760             | "sinh"
761             | "tan"
762             | "tanh"
763             | "acos"
764             | "asin"
765             | "atan"
766             | "log1p"
767             | "expm1"
768             => {
769                 let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
770                 // FIXME: Using host floats.
771                 let f = f64::from_bits(this.read_scalar(f)?.to_u64()?);
772                 let res = match link_name.as_str() {
773                     "cbrt" => f.cbrt(),
774                     "cosh" => f.cosh(),
775                     "sinh" => f.sinh(),
776                     "tan" => f.tan(),
777                     "tanh" => f.tanh(),
778                     "acos" => f.acos(),
779                     "asin" => f.asin(),
780                     "atan" => f.atan(),
781                     "log1p" => f.ln_1p(),
782                     "expm1" => f.exp_m1(),
783                     _ => bug!(),
784                 };
785                 this.write_scalar(Scalar::from_u64(res.to_bits()), dest)?;
786             }
787             #[rustfmt::skip]
788             | "_hypot"
789             | "hypot"
790             | "atan2"
791             | "fdim"
792             => {
793                 let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
794                 // FIXME: Using host floats.
795                 let f1 = f64::from_bits(this.read_scalar(f1)?.to_u64()?);
796                 let f2 = f64::from_bits(this.read_scalar(f2)?.to_u64()?);
797                 let res = match link_name.as_str() {
798                     "_hypot" | "hypot" => f1.hypot(f2),
799                     "atan2" => f1.atan2(f2),
800                     #[allow(deprecated)]
801                     "fdim" => f1.abs_sub(f2),
802                     _ => bug!(),
803                 };
804                 this.write_scalar(Scalar::from_u64(res.to_bits()), dest)?;
805             }
806             #[rustfmt::skip]
807             | "_ldexp"
808             | "ldexp"
809             | "scalbn"
810             => {
811                 let [x, exp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
812                 // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
813                 let x = this.read_scalar(x)?.to_f64()?;
814                 let exp = this.read_scalar(exp)?.to_i32()?;
815
816                 // Saturating cast to i16. Even those are outside the valid exponent range so
817                 // `scalbn` below will do its over/underflow handling.
818                 let exp = if exp > i32::from(i16::MAX) {
819                     i16::MAX
820                 } else if exp < i32::from(i16::MIN) {
821                     i16::MIN
822                 } else {
823                     exp.try_into().unwrap()
824                 };
825
826                 let res = x.scalbn(exp);
827                 this.write_scalar(Scalar::from_f64(res), dest)?;
828             }
829
830             // Architecture-specific shims
831             "llvm.x86.addcarry.64" if this.tcx.sess.target.arch == "x86_64" => {
832                 // Computes u8+u64+u64, returning tuple (u8,u64) comprising the output carry and truncated sum.
833                 let [c_in, a, b] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
834                 let c_in = this.read_scalar(c_in)?.to_u8()?;
835                 let a = this.read_scalar(a)?.to_u64()?;
836                 let b = this.read_scalar(b)?.to_u64()?;
837
838                 #[allow(clippy::integer_arithmetic)] // adding two u64 and a u8 cannot wrap in a u128
839                 let wide_sum = u128::from(c_in) + u128::from(a) + u128::from(b);
840                 #[allow(clippy::integer_arithmetic)] // it's a u128, we can shift by 64
841                 let (c_out, sum) = ((wide_sum >> 64).truncate::<u8>(), wide_sum.truncate::<u64>());
842
843                 let c_out_field = this.place_field(dest, 0)?;
844                 this.write_scalar(Scalar::from_u8(c_out), &c_out_field)?;
845                 let sum_field = this.place_field(dest, 1)?;
846                 this.write_scalar(Scalar::from_u64(sum), &sum_field)?;
847             }
848             "llvm.x86.sse2.pause" if this.tcx.sess.target.arch == "x86" || this.tcx.sess.target.arch == "x86_64" => {
849                 let [] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
850                 this.yield_active_thread();
851             }
852             "llvm.aarch64.isb" if this.tcx.sess.target.arch == "aarch64" => {
853                 let [arg] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
854                 let arg = this.read_scalar(arg)?.to_i32()?;
855                 match arg {
856                     15 => { // SY ("full system scope")
857                         this.yield_active_thread();
858                     }
859                     _ => {
860                         throw_unsup_format!("unsupported llvm.aarch64.isb argument {}", arg);
861                     }
862                 }
863             }
864
865             // Platform-specific shims
866             _ => match this.tcx.sess.target.os.as_ref() {
867                 target if target_os_is_unix(target) => return shims::unix::foreign_items::EvalContextExt::emulate_foreign_item_by_name(this, link_name, abi, args, dest),
868                 "windows" => return shims::windows::foreign_items::EvalContextExt::emulate_foreign_item_by_name(this, link_name, abi, args, dest),
869                 target => throw_unsup_format!("the target `{}` is not supported", target),
870             }
871         };
872         // We only fall through to here if we did *not* hit the `_` arm above,
873         // i.e., if we actually emulated the function with one of the shims.
874         Ok(EmulateByNameResult::NeedsJumping)
875     }
876
877     /// Check some basic requirements for this allocation request:
878     /// non-zero size, power-of-two alignment.
879     fn check_alloc_request(size: u64, align: u64) -> InterpResult<'tcx> {
880         if size == 0 {
881             throw_ub_format!("creating allocation with size 0");
882         }
883         if !align.is_power_of_two() {
884             throw_ub_format!("creating allocation with non-power-of-two alignment {}", align);
885         }
886         Ok(())
887     }
888 }