]> git.lizzy.rs Git - rust.git/blob - src/tools/clippy/clippy_lints/src/use_self.rs
Rollup merge of #106260 - chenyukang:yukang/fix-106213-doc, r=GuillaumeGomez
[rust.git] / src / tools / clippy / clippy_lints / src / use_self.rs
1 use clippy_utils::diagnostics::span_lint_and_sugg;
2 use clippy_utils::is_from_proc_macro;
3 use clippy_utils::msrvs::{self, Msrv};
4 use clippy_utils::ty::same_type_and_consts;
5 use if_chain::if_chain;
6 use rustc_data_structures::fx::FxHashSet;
7 use rustc_errors::Applicability;
8 use rustc_hir::{
9     self as hir,
10     def::{CtorOf, DefKind, Res},
11     def_id::LocalDefId,
12     intravisit::{walk_inf, walk_ty, Visitor},
13     Expr, ExprKind, FnRetTy, FnSig, GenericArg, HirId, Impl, ImplItemKind, Item, ItemKind, Pat, PatKind, Path, QPath,
14     TyKind,
15 };
16 use rustc_hir_analysis::hir_ty_to_ty;
17 use rustc_lint::{LateContext, LateLintPass};
18 use rustc_session::{declare_tool_lint, impl_lint_pass};
19 use rustc_span::Span;
20
21 declare_clippy_lint! {
22     /// ### What it does
23     /// Checks for unnecessary repetition of structure name when a
24     /// replacement with `Self` is applicable.
25     ///
26     /// ### Why is this bad?
27     /// Unnecessary repetition. Mixed use of `Self` and struct
28     /// name
29     /// feels inconsistent.
30     ///
31     /// ### Known problems
32     /// - Unaddressed false negative in fn bodies of trait implementations
33     ///
34     /// ### Example
35     /// ```rust
36     /// struct Foo;
37     /// impl Foo {
38     ///     fn new() -> Foo {
39     ///         Foo {}
40     ///     }
41     /// }
42     /// ```
43     /// could be
44     /// ```rust
45     /// struct Foo;
46     /// impl Foo {
47     ///     fn new() -> Self {
48     ///         Self {}
49     ///     }
50     /// }
51     /// ```
52     #[clippy::version = "pre 1.29.0"]
53     pub USE_SELF,
54     nursery,
55     "unnecessary structure name repetition whereas `Self` is applicable"
56 }
57
58 #[derive(Default)]
59 pub struct UseSelf {
60     msrv: Msrv,
61     stack: Vec<StackItem>,
62 }
63
64 impl UseSelf {
65     #[must_use]
66     pub fn new(msrv: Msrv) -> Self {
67         Self {
68             msrv,
69             ..Self::default()
70         }
71     }
72 }
73
74 #[derive(Debug)]
75 enum StackItem {
76     Check {
77         impl_id: LocalDefId,
78         in_body: u32,
79         types_to_skip: FxHashSet<HirId>,
80     },
81     NoCheck,
82 }
83
84 impl_lint_pass!(UseSelf => [USE_SELF]);
85
86 const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
87
88 impl<'tcx> LateLintPass<'tcx> for UseSelf {
89     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &Item<'tcx>) {
90         if matches!(item.kind, ItemKind::OpaqueTy(_)) {
91             // skip over `ItemKind::OpaqueTy` in order to lint `foo() -> impl <..>`
92             return;
93         }
94         // We push the self types of `impl`s on a stack here. Only the top type on the stack is
95         // relevant for linting, since this is the self type of the `impl` we're currently in. To
96         // avoid linting on nested items, we push `StackItem::NoCheck` on the stack to signal, that
97         // we're in an `impl` or nested item, that we don't want to lint
98         let stack_item = if_chain! {
99             if let ItemKind::Impl(Impl { self_ty, .. }) = item.kind;
100             if let TyKind::Path(QPath::Resolved(_, item_path)) = self_ty.kind;
101             let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
102             if parameters.as_ref().map_or(true, |params| {
103                 !params.parenthesized && !params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)))
104             });
105             if !item.span.from_expansion();
106             if !is_from_proc_macro(cx, item); // expensive, should be last check
107             then {
108                 StackItem::Check {
109                     impl_id: item.owner_id.def_id,
110                     in_body: 0,
111                     types_to_skip: std::iter::once(self_ty.hir_id).collect(),
112                 }
113             } else {
114                 StackItem::NoCheck
115             }
116         };
117         self.stack.push(stack_item);
118     }
119
120     fn check_item_post(&mut self, _: &LateContext<'_>, item: &Item<'_>) {
121         if !matches!(item.kind, ItemKind::OpaqueTy(_)) {
122             self.stack.pop();
123         }
124     }
125
126     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
127         // We want to skip types in trait `impl`s that aren't declared as `Self` in the trait
128         // declaration. The collection of those types is all this method implementation does.
129         if_chain! {
130             if let ImplItemKind::Fn(FnSig { decl, .. }, ..) = impl_item.kind;
131             if let Some(&mut StackItem::Check {
132                 impl_id,
133                 ref mut types_to_skip,
134                 ..
135             }) = self.stack.last_mut();
136             if let Some(impl_trait_ref) = cx.tcx.impl_trait_ref(impl_id);
137             then {
138                 // `self_ty` is the semantic self type of `impl <trait> for <type>`. This cannot be
139                 // `Self`.
140                 let self_ty = impl_trait_ref.self_ty();
141
142                 // `trait_method_sig` is the signature of the function, how it is declared in the
143                 // trait, not in the impl of the trait.
144                 let trait_method = cx
145                     .tcx
146                     .associated_item(impl_item.owner_id)
147                     .trait_item_def_id
148                     .expect("impl method matches a trait method");
149                 let trait_method_sig = cx.tcx.fn_sig(trait_method);
150                 let trait_method_sig = cx.tcx.erase_late_bound_regions(trait_method_sig);
151
152                 // `impl_inputs_outputs` is an iterator over the types (`hir::Ty`) declared in the
153                 // implementation of the trait.
154                 let output_hir_ty = if let FnRetTy::Return(ty) = &decl.output {
155                     Some(&**ty)
156                 } else {
157                     None
158                 };
159                 let impl_inputs_outputs = decl.inputs.iter().chain(output_hir_ty);
160
161                 // `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature.
162                 //
163                 // `trait_sem_ty` (of type `ty::Ty`) is the semantic type for the signature in the
164                 // trait declaration. This is used to check if `Self` was used in the trait
165                 // declaration.
166                 //
167                 // If `any`where in the `trait_sem_ty` the `self_ty` was used verbatim (as opposed
168                 // to `Self`), we want to skip linting that type and all subtypes of it. This
169                 // avoids suggestions to e.g. replace `Vec<u8>` with `Vec<Self>`, in an `impl Trait
170                 // for u8`, when the trait always uses `Vec<u8>`.
171                 //
172                 // See also https://github.com/rust-lang/rust-clippy/issues/2894.
173                 for (impl_hir_ty, trait_sem_ty) in impl_inputs_outputs.zip(trait_method_sig.inputs_and_output) {
174                     if trait_sem_ty.walk().any(|inner| inner == self_ty.into()) {
175                         let mut visitor = SkipTyCollector::default();
176                         visitor.visit_ty(impl_hir_ty);
177                         types_to_skip.extend(visitor.types_to_skip);
178                     }
179                 }
180             }
181         }
182     }
183
184     fn check_body(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
185         // `hir_ty_to_ty` cannot be called in `Body`s or it will panic (sometimes). But in bodies
186         // we can use `cx.typeck_results.node_type(..)` to get the `ty::Ty` from a `hir::Ty`.
187         // However the `node_type()` method can *only* be called in bodies.
188         if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
189             *in_body = in_body.saturating_add(1);
190         }
191     }
192
193     fn check_body_post(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
194         if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
195             *in_body = in_body.saturating_sub(1);
196         }
197     }
198
199     fn check_ty(&mut self, cx: &LateContext<'_>, hir_ty: &hir::Ty<'_>) {
200         if_chain! {
201             if !hir_ty.span.from_expansion();
202             if self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS);
203             if let Some(&StackItem::Check {
204                 impl_id,
205                 in_body,
206                 ref types_to_skip,
207             }) = self.stack.last();
208             if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind;
209             if !matches!(
210                 path.res,
211                 Res::SelfTyParam { .. }
212                 | Res::SelfTyAlias { .. }
213                 | Res::Def(DefKind::TyParam, _)
214             );
215             if !types_to_skip.contains(&hir_ty.hir_id);
216             let ty = if in_body > 0 {
217                 cx.typeck_results().node_type(hir_ty.hir_id)
218             } else {
219                 hir_ty_to_ty(cx.tcx, hir_ty)
220             };
221             if same_type_and_consts(ty, cx.tcx.type_of(impl_id));
222             then {
223                 span_lint(cx, hir_ty.span);
224             }
225         }
226     }
227
228     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
229         if_chain! {
230             if !expr.span.from_expansion();
231             if self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS);
232             if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last();
233             if cx.typeck_results().expr_ty(expr) == cx.tcx.type_of(impl_id);
234             then {} else { return; }
235         }
236         match expr.kind {
237             ExprKind::Struct(QPath::Resolved(_, path), ..) => check_path(cx, path),
238             ExprKind::Call(fun, _) => {
239                 if let ExprKind::Path(QPath::Resolved(_, path)) = fun.kind {
240                     check_path(cx, path);
241                 }
242             },
243             ExprKind::Path(QPath::Resolved(_, path)) => check_path(cx, path),
244             _ => (),
245         }
246     }
247
248     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &Pat<'_>) {
249         if_chain! {
250             if !pat.span.from_expansion();
251             if self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS);
252             if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last();
253             // get the path from the pattern
254             if let PatKind::Path(QPath::Resolved(_, path))
255                  | PatKind::TupleStruct(QPath::Resolved(_, path), _, _)
256                  | PatKind::Struct(QPath::Resolved(_, path), _, _) = pat.kind;
257             if cx.typeck_results().pat_ty(pat) == cx.tcx.type_of(impl_id);
258             then {
259                 check_path(cx, path);
260             }
261         }
262     }
263
264     extract_msrv_attr!(LateContext);
265 }
266
267 #[derive(Default)]
268 struct SkipTyCollector {
269     types_to_skip: Vec<HirId>,
270 }
271
272 impl<'tcx> Visitor<'tcx> for SkipTyCollector {
273     fn visit_infer(&mut self, inf: &hir::InferArg) {
274         self.types_to_skip.push(inf.hir_id);
275
276         walk_inf(self, inf);
277     }
278     fn visit_ty(&mut self, hir_ty: &hir::Ty<'_>) {
279         self.types_to_skip.push(hir_ty.hir_id);
280
281         walk_ty(self, hir_ty);
282     }
283 }
284
285 fn span_lint(cx: &LateContext<'_>, span: Span) {
286     span_lint_and_sugg(
287         cx,
288         USE_SELF,
289         span,
290         "unnecessary structure name repetition",
291         "use the applicable keyword",
292         "Self".to_owned(),
293         Applicability::MachineApplicable,
294     );
295 }
296
297 fn check_path(cx: &LateContext<'_>, path: &Path<'_>) {
298     match path.res {
299         Res::Def(DefKind::Ctor(CtorOf::Variant, _) | DefKind::Variant, ..) => {
300             lint_path_to_variant(cx, path);
301         },
302         Res::Def(DefKind::Ctor(CtorOf::Struct, _) | DefKind::Struct, ..) => span_lint(cx, path.span),
303         _ => (),
304     }
305 }
306
307 fn lint_path_to_variant(cx: &LateContext<'_>, path: &Path<'_>) {
308     if let [.., self_seg, _variant] = path.segments {
309         let span = path
310             .span
311             .with_hi(self_seg.args().span_ext().unwrap_or(self_seg.ident.span).hi());
312         span_lint(cx, span);
313     }
314 }