]> git.lizzy.rs Git - rust.git/blob - src/tools/clippy/clippy_lints/src/use_self.rs
Rollup merge of #89090 - cjgillot:bare-dyn, r=jackh726
[rust.git] / src / tools / clippy / clippy_lints / src / use_self.rs
1 use clippy_utils::diagnostics::span_lint_and_sugg;
2 use clippy_utils::ty::same_type_and_consts;
3 use clippy_utils::{meets_msrv, msrvs};
4 use if_chain::if_chain;
5 use rustc_data_structures::fx::FxHashSet;
6 use rustc_errors::Applicability;
7 use rustc_hir::{
8     self as hir,
9     def::{CtorOf, DefKind, Res},
10     def_id::LocalDefId,
11     intravisit::{walk_inf, walk_ty, NestedVisitorMap, Visitor},
12     Expr, ExprKind, FnRetTy, FnSig, GenericArg, HirId, Impl, ImplItemKind, Item, ItemKind, Path, QPath, TyKind,
13 };
14 use rustc_lint::{LateContext, LateLintPass, LintContext};
15 use rustc_middle::hir::map::Map;
16 use rustc_middle::ty::AssocKind;
17 use rustc_semver::RustcVersion;
18 use rustc_session::{declare_tool_lint, impl_lint_pass};
19 use rustc_span::Span;
20 use rustc_typeck::hir_ty_to_ty;
21
22 declare_clippy_lint! {
23     /// ### What it does
24     /// Checks for unnecessary repetition of structure name when a
25     /// replacement with `Self` is applicable.
26     ///
27     /// ### Why is this bad?
28     /// Unnecessary repetition. Mixed use of `Self` and struct
29     /// name
30     /// feels inconsistent.
31     ///
32     /// ### Known problems
33     /// - Unaddressed false negative in fn bodies of trait implementations
34     /// - False positive with assotiated types in traits (#4140)
35     ///
36     /// ### Example
37     /// ```rust
38     /// struct Foo {}
39     /// impl Foo {
40     ///     fn new() -> Foo {
41     ///         Foo {}
42     ///     }
43     /// }
44     /// ```
45     /// could be
46     /// ```rust
47     /// struct Foo {}
48     /// impl Foo {
49     ///     fn new() -> Self {
50     ///         Self {}
51     ///     }
52     /// }
53     /// ```
54     #[clippy::version = "pre 1.29.0"]
55     pub USE_SELF,
56     nursery,
57     "unnecessary structure name repetition whereas `Self` is applicable"
58 }
59
60 #[derive(Default)]
61 pub struct UseSelf {
62     msrv: Option<RustcVersion>,
63     stack: Vec<StackItem>,
64 }
65
66 impl UseSelf {
67     #[must_use]
68     pub fn new(msrv: Option<RustcVersion>) -> Self {
69         Self {
70             msrv,
71             ..Self::default()
72         }
73     }
74 }
75
76 #[derive(Debug)]
77 enum StackItem {
78     Check {
79         impl_id: LocalDefId,
80         in_body: u32,
81         types_to_skip: FxHashSet<HirId>,
82     },
83     NoCheck,
84 }
85
86 impl_lint_pass!(UseSelf => [USE_SELF]);
87
88 const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
89
90 impl<'tcx> LateLintPass<'tcx> for UseSelf {
91     fn check_item(&mut self, _cx: &LateContext<'_>, item: &Item<'_>) {
92         if matches!(item.kind, ItemKind::OpaqueTy(_)) {
93             // skip over `ItemKind::OpaqueTy` in order to lint `foo() -> impl <..>`
94             return;
95         }
96         // We push the self types of `impl`s on a stack here. Only the top type on the stack is
97         // relevant for linting, since this is the self type of the `impl` we're currently in. To
98         // avoid linting on nested items, we push `StackItem::NoCheck` on the stack to signal, that
99         // we're in an `impl` or nested item, that we don't want to lint
100         let stack_item = if_chain! {
101             if let ItemKind::Impl(Impl { self_ty, .. }) = item.kind;
102             if let TyKind::Path(QPath::Resolved(_, item_path)) = self_ty.kind;
103             let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
104             if parameters.as_ref().map_or(true, |params| {
105                 !params.parenthesized && !params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)))
106             });
107             then {
108                 StackItem::Check {
109                     impl_id: item.def_id,
110                     in_body: 0,
111                     types_to_skip: std::iter::once(self_ty.hir_id).collect(),
112                 }
113             } else {
114                 StackItem::NoCheck
115             }
116         };
117         self.stack.push(stack_item);
118     }
119
120     fn check_item_post(&mut self, _: &LateContext<'_>, item: &Item<'_>) {
121         if !matches!(item.kind, ItemKind::OpaqueTy(_)) {
122             self.stack.pop();
123         }
124     }
125
126     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
127         // We want to skip types in trait `impl`s that aren't declared as `Self` in the trait
128         // declaration. The collection of those types is all this method implementation does.
129         if_chain! {
130             if let ImplItemKind::Fn(FnSig { decl, .. }, ..) = impl_item.kind;
131             if let Some(&mut StackItem::Check {
132                 impl_id,
133                 ref mut types_to_skip,
134                 ..
135             }) = self.stack.last_mut();
136             if let Some(impl_trait_ref) = cx.tcx.impl_trait_ref(impl_id);
137             then {
138                 // `self_ty` is the semantic self type of `impl <trait> for <type>`. This cannot be
139                 // `Self`.
140                 let self_ty = impl_trait_ref.self_ty();
141
142                 // `trait_method_sig` is the signature of the function, how it is declared in the
143                 // trait, not in the impl of the trait.
144                 let trait_method = cx
145                     .tcx
146                     .associated_items(impl_trait_ref.def_id)
147                     .find_by_name_and_kind(cx.tcx, impl_item.ident, AssocKind::Fn, impl_trait_ref.def_id)
148                     .expect("impl method matches a trait method");
149                 let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
150                 let trait_method_sig = cx.tcx.erase_late_bound_regions(trait_method_sig);
151
152                 // `impl_inputs_outputs` is an iterator over the types (`hir::Ty`) declared in the
153                 // implementation of the trait.
154                 let output_hir_ty = if let FnRetTy::Return(ty) = &decl.output {
155                     Some(&**ty)
156                 } else {
157                     None
158                 };
159                 let impl_inputs_outputs = decl.inputs.iter().chain(output_hir_ty);
160
161                 // `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature.
162                 //
163                 // `trait_sem_ty` (of type `ty::Ty`) is the semantic type for the signature in the
164                 // trait declaration. This is used to check if `Self` was used in the trait
165                 // declaration.
166                 //
167                 // If `any`where in the `trait_sem_ty` the `self_ty` was used verbatim (as opposed
168                 // to `Self`), we want to skip linting that type and all subtypes of it. This
169                 // avoids suggestions to e.g. replace `Vec<u8>` with `Vec<Self>`, in an `impl Trait
170                 // for u8`, when the trait always uses `Vec<u8>`.
171                 //
172                 // See also https://github.com/rust-lang/rust-clippy/issues/2894.
173                 for (impl_hir_ty, trait_sem_ty) in impl_inputs_outputs.zip(trait_method_sig.inputs_and_output) {
174                     if trait_sem_ty.walk(cx.tcx).any(|inner| inner == self_ty.into()) {
175                         let mut visitor = SkipTyCollector::default();
176                         visitor.visit_ty(impl_hir_ty);
177                         types_to_skip.extend(visitor.types_to_skip);
178                     }
179                 }
180             }
181         }
182     }
183
184     fn check_body(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
185         // `hir_ty_to_ty` cannot be called in `Body`s or it will panic (sometimes). But in bodies
186         // we can use `cx.typeck_results.node_type(..)` to get the `ty::Ty` from a `hir::Ty`.
187         // However the `node_type()` method can *only* be called in bodies.
188         if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
189             *in_body = in_body.saturating_add(1);
190         }
191     }
192
193     fn check_body_post(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
194         if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
195             *in_body = in_body.saturating_sub(1);
196         }
197     }
198
199     fn check_ty(&mut self, cx: &LateContext<'_>, hir_ty: &hir::Ty<'_>) {
200         if_chain! {
201             if !hir_ty.span.from_expansion();
202             if meets_msrv(self.msrv.as_ref(), &msrvs::TYPE_ALIAS_ENUM_VARIANTS);
203             if let Some(&StackItem::Check {
204                 impl_id,
205                 in_body,
206                 ref types_to_skip,
207             }) = self.stack.last();
208             if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind;
209             if !matches!(path.res, Res::SelfTy(..) | Res::Def(DefKind::TyParam, _));
210             if !types_to_skip.contains(&hir_ty.hir_id);
211             let ty = if in_body > 0 {
212                 cx.typeck_results().node_type(hir_ty.hir_id)
213             } else {
214                 hir_ty_to_ty(cx.tcx, hir_ty)
215             };
216             if same_type_and_consts(ty, cx.tcx.type_of(impl_id));
217             let hir = cx.tcx.hir();
218             // prevents false positive on `#[derive(serde::Deserialize)]`
219             if !hir.span(hir.get_parent_node(hir_ty.hir_id)).in_derive_expansion();
220             then {
221                 span_lint(cx, hir_ty.span);
222             }
223         }
224     }
225
226     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
227         if_chain! {
228             if !expr.span.from_expansion();
229             if meets_msrv(self.msrv.as_ref(), &msrvs::TYPE_ALIAS_ENUM_VARIANTS);
230             if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last();
231             if cx.typeck_results().expr_ty(expr) == cx.tcx.type_of(impl_id);
232             then {} else { return; }
233         }
234         match expr.kind {
235             ExprKind::Struct(QPath::Resolved(_, path), ..) => match path.res {
236                 Res::SelfTy(..) => (),
237                 Res::Def(DefKind::Variant, _) => lint_path_to_variant(cx, path),
238                 _ => span_lint(cx, path.span),
239             },
240             // tuple struct instantiation (`Foo(arg)` or `Enum::Foo(arg)`)
241             ExprKind::Call(fun, _) => {
242                 if let ExprKind::Path(QPath::Resolved(_, path)) = fun.kind {
243                     if let Res::Def(DefKind::Ctor(ctor_of, _), ..) = path.res {
244                         match ctor_of {
245                             CtorOf::Variant => lint_path_to_variant(cx, path),
246                             CtorOf::Struct => span_lint(cx, path.span),
247                         }
248                     }
249                 }
250             },
251             // unit enum variants (`Enum::A`)
252             ExprKind::Path(QPath::Resolved(_, path)) => lint_path_to_variant(cx, path),
253             _ => (),
254         }
255     }
256
257     extract_msrv_attr!(LateContext);
258 }
259
260 #[derive(Default)]
261 struct SkipTyCollector {
262     types_to_skip: Vec<HirId>,
263 }
264
265 impl<'tcx> Visitor<'tcx> for SkipTyCollector {
266     type Map = Map<'tcx>;
267
268     fn visit_infer(&mut self, inf: &hir::InferArg) {
269         self.types_to_skip.push(inf.hir_id);
270
271         walk_inf(self, inf);
272     }
273     fn visit_ty(&mut self, hir_ty: &hir::Ty<'_>) {
274         self.types_to_skip.push(hir_ty.hir_id);
275
276         walk_ty(self, hir_ty);
277     }
278
279     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
280         NestedVisitorMap::None
281     }
282 }
283
284 fn span_lint(cx: &LateContext<'_>, span: Span) {
285     span_lint_and_sugg(
286         cx,
287         USE_SELF,
288         span,
289         "unnecessary structure name repetition",
290         "use the applicable keyword",
291         "Self".to_owned(),
292         Applicability::MachineApplicable,
293     );
294 }
295
296 fn lint_path_to_variant(cx: &LateContext<'_>, path: &Path<'_>) {
297     if let [.., self_seg, _variant] = path.segments {
298         let span = path
299             .span
300             .with_hi(self_seg.args().span_ext().unwrap_or(self_seg.ident.span).hi());
301         span_lint(cx, span);
302     }
303 }