]> git.lizzy.rs Git - rust.git/blob - src/tools/clippy/clippy_lints/src/types.rs
Merge branch 'master' into E0688
[rust.git] / src / tools / clippy / clippy_lints / src / types.rs
1 #![allow(rustc::default_hash_types)]
2
3 use std::borrow::Cow;
4 use std::cmp::Ordering;
5 use std::collections::BTreeMap;
6
7 use if_chain::if_chain;
8 use rustc_ast::ast::{FloatTy, IntTy, LitFloatType, LitIntType, LitKind, UintTy};
9 use rustc_errors::{Applicability, DiagnosticBuilder};
10 use rustc_hir as hir;
11 use rustc_hir::intravisit::{walk_body, walk_expr, walk_ty, FnKind, NestedVisitorMap, Visitor};
12 use rustc_hir::{
13     BinOpKind, Block, Body, Expr, ExprKind, FnDecl, FnRetTy, FnSig, GenericArg, GenericParamKind, HirId, ImplItem,
14     ImplItemKind, Item, ItemKind, Lifetime, Local, MatchSource, MutTy, Mutability, QPath, Stmt, StmtKind, TraitFn,
15     TraitItem, TraitItemKind, TyKind, UnOp,
16 };
17 use rustc_lint::{LateContext, LateLintPass, LintContext};
18 use rustc_middle::hir::map::Map;
19 use rustc_middle::lint::in_external_macro;
20 use rustc_middle::ty::{self, InferTy, Ty, TyCtxt, TyS, TypeckTables};
21 use rustc_session::{declare_lint_pass, declare_tool_lint, impl_lint_pass};
22 use rustc_span::hygiene::{ExpnKind, MacroKind};
23 use rustc_span::source_map::Span;
24 use rustc_span::symbol::sym;
25 use rustc_target::abi::LayoutOf;
26 use rustc_target::spec::abi::Abi;
27 use rustc_typeck::hir_ty_to_ty;
28
29 use crate::consts::{constant, Constant};
30 use crate::utils::paths;
31 use crate::utils::{
32     clip, comparisons, differing_macro_contexts, higher, in_constant, indent_of, int_bits, is_type_diagnostic_item,
33     last_path_segment, match_def_path, match_path, method_chain_args, multispan_sugg, numeric_literal::NumericLiteral,
34     qpath_res, sext, snippet, snippet_block_with_applicability, snippet_opt, snippet_with_applicability,
35     snippet_with_macro_callsite, span_lint, span_lint_and_help, span_lint_and_sugg, span_lint_and_then, unsext,
36 };
37
38 declare_clippy_lint! {
39     /// **What it does:** Checks for use of `Box<Vec<_>>` anywhere in the code.
40     ///
41     /// **Why is this bad?** `Vec` already keeps its contents in a separate area on
42     /// the heap. So if you `Box` it, you just add another level of indirection
43     /// without any benefit whatsoever.
44     ///
45     /// **Known problems:** None.
46     ///
47     /// **Example:**
48     /// ```rust,ignore
49     /// struct X {
50     ///     values: Box<Vec<Foo>>,
51     /// }
52     /// ```
53     ///
54     /// Better:
55     ///
56     /// ```rust,ignore
57     /// struct X {
58     ///     values: Vec<Foo>,
59     /// }
60     /// ```
61     pub BOX_VEC,
62     perf,
63     "usage of `Box<Vec<T>>`, vector elements are already on the heap"
64 }
65
66 declare_clippy_lint! {
67     /// **What it does:** Checks for use of `Vec<Box<T>>` where T: Sized anywhere in the code.
68     ///
69     /// **Why is this bad?** `Vec` already keeps its contents in a separate area on
70     /// the heap. So if you `Box` its contents, you just add another level of indirection.
71     ///
72     /// **Known problems:** Vec<Box<T: Sized>> makes sense if T is a large type (see #3530,
73     /// 1st comment).
74     ///
75     /// **Example:**
76     /// ```rust
77     /// struct X {
78     ///     values: Vec<Box<i32>>,
79     /// }
80     /// ```
81     ///
82     /// Better:
83     ///
84     /// ```rust
85     /// struct X {
86     ///     values: Vec<i32>,
87     /// }
88     /// ```
89     pub VEC_BOX,
90     complexity,
91     "usage of `Vec<Box<T>>` where T: Sized, vector elements are already on the heap"
92 }
93
94 declare_clippy_lint! {
95     /// **What it does:** Checks for use of `Option<Option<_>>` in function signatures and type
96     /// definitions
97     ///
98     /// **Why is this bad?** `Option<_>` represents an optional value. `Option<Option<_>>`
99     /// represents an optional optional value which is logically the same thing as an optional
100     /// value but has an unneeded extra level of wrapping.
101     ///
102     /// If you have a case where `Some(Some(_))`, `Some(None)` and `None` are distinct cases,
103     /// consider a custom `enum` instead, with clear names for each case.
104     ///
105     /// **Known problems:** None.
106     ///
107     /// **Example**
108     /// ```rust
109     /// fn get_data() -> Option<Option<u32>> {
110     ///     None
111     /// }
112     /// ```
113     ///
114     /// Better:
115     ///
116     /// ```rust
117     /// pub enum Contents {
118     ///     Data(Vec<u8>), // Was Some(Some(Vec<u8>))
119     ///     NotYetFetched, // Was Some(None)
120     ///     None,          // Was None
121     /// }
122     ///
123     /// fn get_data() -> Contents {
124     ///     Contents::None
125     /// }
126     /// ```
127     pub OPTION_OPTION,
128     pedantic,
129     "usage of `Option<Option<T>>`"
130 }
131
132 declare_clippy_lint! {
133     /// **What it does:** Checks for usage of any `LinkedList`, suggesting to use a
134     /// `Vec` or a `VecDeque` (formerly called `RingBuf`).
135     ///
136     /// **Why is this bad?** Gankro says:
137     ///
138     /// > The TL;DR of `LinkedList` is that it's built on a massive amount of
139     /// pointers and indirection.
140     /// > It wastes memory, it has terrible cache locality, and is all-around slow.
141     /// `RingBuf`, while
142     /// > "only" amortized for push/pop, should be faster in the general case for
143     /// almost every possible
144     /// > workload, and isn't even amortized at all if you can predict the capacity
145     /// you need.
146     /// >
147     /// > `LinkedList`s are only really good if you're doing a lot of merging or
148     /// splitting of lists.
149     /// > This is because they can just mangle some pointers instead of actually
150     /// copying the data. Even
151     /// > if you're doing a lot of insertion in the middle of the list, `RingBuf`
152     /// can still be better
153     /// > because of how expensive it is to seek to the middle of a `LinkedList`.
154     ///
155     /// **Known problems:** False positives – the instances where using a
156     /// `LinkedList` makes sense are few and far between, but they can still happen.
157     ///
158     /// **Example:**
159     /// ```rust
160     /// # use std::collections::LinkedList;
161     /// let x: LinkedList<usize> = LinkedList::new();
162     /// ```
163     pub LINKEDLIST,
164     pedantic,
165     "usage of LinkedList, usually a vector is faster, or a more specialized data structure like a `VecDeque`"
166 }
167
168 declare_clippy_lint! {
169     /// **What it does:** Checks for use of `&Box<T>` anywhere in the code.
170     ///
171     /// **Why is this bad?** Any `&Box<T>` can also be a `&T`, which is more
172     /// general.
173     ///
174     /// **Known problems:** None.
175     ///
176     /// **Example:**
177     /// ```rust,ignore
178     /// fn foo(bar: &Box<T>) { ... }
179     /// ```
180     ///
181     /// Better:
182     ///
183     /// ```rust,ignore
184     /// fn foo(bar: &T) { ... }
185     /// ```
186     pub BORROWED_BOX,
187     complexity,
188     "a borrow of a boxed type"
189 }
190
191 declare_clippy_lint! {
192     /// **What it does:** Checks for use of redundant allocations anywhere in the code.
193     ///
194     /// **Why is this bad?** Expressions such as `Rc<&T>`, `Rc<Rc<T>>`, `Rc<Box<T>>`, `Box<&T>`
195     /// add an unnecessary level of indirection.
196     ///
197     /// **Known problems:** None.
198     ///
199     /// **Example:**
200     /// ```rust
201     /// # use std::rc::Rc;
202     /// fn foo(bar: Rc<&usize>) {}
203     /// ```
204     ///
205     /// Better:
206     ///
207     /// ```rust
208     /// fn foo(bar: &usize) {}
209     /// ```
210     pub REDUNDANT_ALLOCATION,
211     perf,
212     "redundant allocation"
213 }
214
215 pub struct Types {
216     vec_box_size_threshold: u64,
217 }
218
219 impl_lint_pass!(Types => [BOX_VEC, VEC_BOX, OPTION_OPTION, LINKEDLIST, BORROWED_BOX, REDUNDANT_ALLOCATION]);
220
221 impl<'tcx> LateLintPass<'tcx> for Types {
222     fn check_fn(&mut self, cx: &LateContext<'_>, _: FnKind<'_>, decl: &FnDecl<'_>, _: &Body<'_>, _: Span, id: HirId) {
223         // Skip trait implementations; see issue #605.
224         if let Some(hir::Node::Item(item)) = cx.tcx.hir().find(cx.tcx.hir().get_parent_item(id)) {
225             if let ItemKind::Impl { of_trait: Some(_), .. } = item.kind {
226                 return;
227             }
228         }
229
230         self.check_fn_decl(cx, decl);
231     }
232
233     fn check_struct_field(&mut self, cx: &LateContext<'_>, field: &hir::StructField<'_>) {
234         self.check_ty(cx, &field.ty, false);
235     }
236
237     fn check_trait_item(&mut self, cx: &LateContext<'_>, item: &TraitItem<'_>) {
238         match item.kind {
239             TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => self.check_ty(cx, ty, false),
240             TraitItemKind::Fn(ref sig, _) => self.check_fn_decl(cx, &sig.decl),
241             _ => (),
242         }
243     }
244
245     fn check_local(&mut self, cx: &LateContext<'_>, local: &Local<'_>) {
246         if let Some(ref ty) = local.ty {
247             self.check_ty(cx, ty, true);
248         }
249     }
250 }
251
252 /// Checks if `qpath` has last segment with type parameter matching `path`
253 fn match_type_parameter(cx: &LateContext<'_>, qpath: &QPath<'_>, path: &[&str]) -> Option<Span> {
254     let last = last_path_segment(qpath);
255     if_chain! {
256         if let Some(ref params) = last.args;
257         if !params.parenthesized;
258         if let Some(ty) = params.args.iter().find_map(|arg| match arg {
259             GenericArg::Type(ty) => Some(ty),
260             _ => None,
261         });
262         if let TyKind::Path(ref qpath) = ty.kind;
263         if let Some(did) = qpath_res(cx, qpath, ty.hir_id).opt_def_id();
264         if match_def_path(cx, did, path);
265         then {
266             return Some(ty.span);
267         }
268     }
269     None
270 }
271
272 fn match_borrows_parameter(_cx: &LateContext<'_>, qpath: &QPath<'_>) -> Option<Span> {
273     let last = last_path_segment(qpath);
274     if_chain! {
275         if let Some(ref params) = last.args;
276         if !params.parenthesized;
277         if let Some(ty) = params.args.iter().find_map(|arg| match arg {
278             GenericArg::Type(ty) => Some(ty),
279             _ => None,
280         });
281         if let TyKind::Rptr(..) = ty.kind;
282         then {
283             return Some(ty.span);
284         }
285     }
286     None
287 }
288
289 impl Types {
290     pub fn new(vec_box_size_threshold: u64) -> Self {
291         Self { vec_box_size_threshold }
292     }
293
294     fn check_fn_decl(&mut self, cx: &LateContext<'_>, decl: &FnDecl<'_>) {
295         for input in decl.inputs {
296             self.check_ty(cx, input, false);
297         }
298
299         if let FnRetTy::Return(ref ty) = decl.output {
300             self.check_ty(cx, ty, false);
301         }
302     }
303
304     /// Recursively check for `TypePass` lints in the given type. Stop at the first
305     /// lint found.
306     ///
307     /// The parameter `is_local` distinguishes the context of the type; types from
308     /// local bindings should only be checked for the `BORROWED_BOX` lint.
309     #[allow(clippy::too_many_lines)]
310     fn check_ty(&mut self, cx: &LateContext<'_>, hir_ty: &hir::Ty<'_>, is_local: bool) {
311         if hir_ty.span.from_expansion() {
312             return;
313         }
314         match hir_ty.kind {
315             TyKind::Path(ref qpath) if !is_local => {
316                 let hir_id = hir_ty.hir_id;
317                 let res = qpath_res(cx, qpath, hir_id);
318                 if let Some(def_id) = res.opt_def_id() {
319                     if Some(def_id) == cx.tcx.lang_items().owned_box() {
320                         if let Some(span) = match_borrows_parameter(cx, qpath) {
321                             span_lint_and_sugg(
322                                 cx,
323                                 REDUNDANT_ALLOCATION,
324                                 hir_ty.span,
325                                 "usage of `Box<&T>`",
326                                 "try",
327                                 snippet(cx, span, "..").to_string(),
328                                 Applicability::MachineApplicable,
329                             );
330                             return; // don't recurse into the type
331                         }
332                         if match_type_parameter(cx, qpath, &paths::VEC).is_some() {
333                             span_lint_and_help(
334                                 cx,
335                                 BOX_VEC,
336                                 hir_ty.span,
337                                 "you seem to be trying to use `Box<Vec<T>>`. Consider using just `Vec<T>`",
338                                 None,
339                                 "`Vec<T>` is already on the heap, `Box<Vec<T>>` makes an extra allocation.",
340                             );
341                             return; // don't recurse into the type
342                         }
343                     } else if cx.tcx.is_diagnostic_item(sym::Rc, def_id) {
344                         if let Some(span) = match_type_parameter(cx, qpath, &paths::RC) {
345                             span_lint_and_sugg(
346                                 cx,
347                                 REDUNDANT_ALLOCATION,
348                                 hir_ty.span,
349                                 "usage of `Rc<Rc<T>>`",
350                                 "try",
351                                 snippet(cx, span, "..").to_string(),
352                                 Applicability::MachineApplicable,
353                             );
354                             return; // don't recurse into the type
355                         }
356                         if let Some(span) = match_type_parameter(cx, qpath, &paths::BOX) {
357                             span_lint_and_sugg(
358                                 cx,
359                                 REDUNDANT_ALLOCATION,
360                                 hir_ty.span,
361                                 "usage of `Rc<Box<T>>`",
362                                 "try",
363                                 snippet(cx, span, "..").to_string(),
364                                 Applicability::MachineApplicable,
365                             );
366                             return; // don't recurse into the type
367                         }
368                         if let Some(span) = match_borrows_parameter(cx, qpath) {
369                             span_lint_and_sugg(
370                                 cx,
371                                 REDUNDANT_ALLOCATION,
372                                 hir_ty.span,
373                                 "usage of `Rc<&T>`",
374                                 "try",
375                                 snippet(cx, span, "..").to_string(),
376                                 Applicability::MachineApplicable,
377                             );
378                             return; // don't recurse into the type
379                         }
380                     } else if cx.tcx.is_diagnostic_item(sym!(vec_type), def_id) {
381                         if_chain! {
382                             // Get the _ part of Vec<_>
383                             if let Some(ref last) = last_path_segment(qpath).args;
384                             if let Some(ty) = last.args.iter().find_map(|arg| match arg {
385                                 GenericArg::Type(ty) => Some(ty),
386                                 _ => None,
387                             });
388                             // ty is now _ at this point
389                             if let TyKind::Path(ref ty_qpath) = ty.kind;
390                             let res = qpath_res(cx, ty_qpath, ty.hir_id);
391                             if let Some(def_id) = res.opt_def_id();
392                             if Some(def_id) == cx.tcx.lang_items().owned_box();
393                             // At this point, we know ty is Box<T>, now get T
394                             if let Some(ref last) = last_path_segment(ty_qpath).args;
395                             if let Some(boxed_ty) = last.args.iter().find_map(|arg| match arg {
396                                 GenericArg::Type(ty) => Some(ty),
397                                 _ => None,
398                             });
399                             let ty_ty = hir_ty_to_ty(cx.tcx, boxed_ty);
400                             if ty_ty.is_sized(cx.tcx.at(ty.span), cx.param_env);
401                             if let Ok(ty_ty_size) = cx.layout_of(ty_ty).map(|l| l.size.bytes());
402                             if ty_ty_size <= self.vec_box_size_threshold;
403                             then {
404                                 span_lint_and_sugg(
405                                     cx,
406                                     VEC_BOX,
407                                     hir_ty.span,
408                                     "`Vec<T>` is already on the heap, the boxing is unnecessary.",
409                                     "try",
410                                     format!("Vec<{}>", ty_ty),
411                                     Applicability::MachineApplicable,
412                                 );
413                                 return; // don't recurse into the type
414                             }
415                         }
416                     } else if cx.tcx.is_diagnostic_item(sym!(option_type), def_id) {
417                         if match_type_parameter(cx, qpath, &paths::OPTION).is_some() {
418                             span_lint(
419                                 cx,
420                                 OPTION_OPTION,
421                                 hir_ty.span,
422                                 "consider using `Option<T>` instead of `Option<Option<T>>` or a custom \
423                                  enum if you need to distinguish all 3 cases",
424                             );
425                             return; // don't recurse into the type
426                         }
427                     } else if match_def_path(cx, def_id, &paths::LINKED_LIST) {
428                         span_lint_and_help(
429                             cx,
430                             LINKEDLIST,
431                             hir_ty.span,
432                             "I see you're using a LinkedList! Perhaps you meant some other data structure?",
433                             None,
434                             "a `VecDeque` might work",
435                         );
436                         return; // don't recurse into the type
437                     }
438                 }
439                 match *qpath {
440                     QPath::Resolved(Some(ref ty), ref p) => {
441                         self.check_ty(cx, ty, is_local);
442                         for ty in p.segments.iter().flat_map(|seg| {
443                             seg.args
444                                 .as_ref()
445                                 .map_or_else(|| [].iter(), |params| params.args.iter())
446                                 .filter_map(|arg| match arg {
447                                     GenericArg::Type(ty) => Some(ty),
448                                     _ => None,
449                                 })
450                         }) {
451                             self.check_ty(cx, ty, is_local);
452                         }
453                     },
454                     QPath::Resolved(None, ref p) => {
455                         for ty in p.segments.iter().flat_map(|seg| {
456                             seg.args
457                                 .as_ref()
458                                 .map_or_else(|| [].iter(), |params| params.args.iter())
459                                 .filter_map(|arg| match arg {
460                                     GenericArg::Type(ty) => Some(ty),
461                                     _ => None,
462                                 })
463                         }) {
464                             self.check_ty(cx, ty, is_local);
465                         }
466                     },
467                     QPath::TypeRelative(ref ty, ref seg) => {
468                         self.check_ty(cx, ty, is_local);
469                         if let Some(ref params) = seg.args {
470                             for ty in params.args.iter().filter_map(|arg| match arg {
471                                 GenericArg::Type(ty) => Some(ty),
472                                 _ => None,
473                             }) {
474                                 self.check_ty(cx, ty, is_local);
475                             }
476                         }
477                     },
478                 }
479             },
480             TyKind::Rptr(ref lt, ref mut_ty) => self.check_ty_rptr(cx, hir_ty, is_local, lt, mut_ty),
481             // recurse
482             TyKind::Slice(ref ty) | TyKind::Array(ref ty, _) | TyKind::Ptr(MutTy { ref ty, .. }) => {
483                 self.check_ty(cx, ty, is_local)
484             },
485             TyKind::Tup(tys) => {
486                 for ty in tys {
487                     self.check_ty(cx, ty, is_local);
488                 }
489             },
490             _ => {},
491         }
492     }
493
494     fn check_ty_rptr(
495         &mut self,
496         cx: &LateContext<'_>,
497         hir_ty: &hir::Ty<'_>,
498         is_local: bool,
499         lt: &Lifetime,
500         mut_ty: &MutTy<'_>,
501     ) {
502         match mut_ty.ty.kind {
503             TyKind::Path(ref qpath) => {
504                 let hir_id = mut_ty.ty.hir_id;
505                 let def = qpath_res(cx, qpath, hir_id);
506                 if_chain! {
507                     if let Some(def_id) = def.opt_def_id();
508                     if Some(def_id) == cx.tcx.lang_items().owned_box();
509                     if let QPath::Resolved(None, ref path) = *qpath;
510                     if let [ref bx] = *path.segments;
511                     if let Some(ref params) = bx.args;
512                     if !params.parenthesized;
513                     if let Some(inner) = params.args.iter().find_map(|arg| match arg {
514                         GenericArg::Type(ty) => Some(ty),
515                         _ => None,
516                     });
517                     then {
518                         if is_any_trait(inner) {
519                             // Ignore `Box<Any>` types; see issue #1884 for details.
520                             return;
521                         }
522
523                         let ltopt = if lt.is_elided() {
524                             String::new()
525                         } else {
526                             format!("{} ", lt.name.ident().as_str())
527                         };
528
529                         if mut_ty.mutbl == Mutability::Mut {
530                             // Ignore `&mut Box<T>` types; see issue #2907 for
531                             // details.
532                             return;
533                         }
534                         let mut applicability = Applicability::MachineApplicable;
535                         span_lint_and_sugg(
536                             cx,
537                             BORROWED_BOX,
538                             hir_ty.span,
539                             "you seem to be trying to use `&Box<T>`. Consider using just `&T`",
540                             "try",
541                             format!(
542                                 "&{}{}",
543                                 ltopt,
544                                 &snippet_with_applicability(cx, inner.span, "..", &mut applicability)
545                             ),
546                             Applicability::Unspecified,
547                         );
548                         return; // don't recurse into the type
549                     }
550                 };
551                 self.check_ty(cx, &mut_ty.ty, is_local);
552             },
553             _ => self.check_ty(cx, &mut_ty.ty, is_local),
554         }
555     }
556 }
557
558 // Returns true if given type is `Any` trait.
559 fn is_any_trait(t: &hir::Ty<'_>) -> bool {
560     if_chain! {
561         if let TyKind::TraitObject(ref traits, _) = t.kind;
562         if !traits.is_empty();
563         // Only Send/Sync can be used as additional traits, so it is enough to
564         // check only the first trait.
565         if match_path(&traits[0].trait_ref.path, &paths::ANY_TRAIT);
566         then {
567             return true;
568         }
569     }
570
571     false
572 }
573
574 declare_clippy_lint! {
575     /// **What it does:** Checks for binding a unit value.
576     ///
577     /// **Why is this bad?** A unit value cannot usefully be used anywhere. So
578     /// binding one is kind of pointless.
579     ///
580     /// **Known problems:** None.
581     ///
582     /// **Example:**
583     /// ```rust
584     /// let x = {
585     ///     1;
586     /// };
587     /// ```
588     pub LET_UNIT_VALUE,
589     pedantic,
590     "creating a `let` binding to a value of unit type, which usually can't be used afterwards"
591 }
592
593 declare_lint_pass!(LetUnitValue => [LET_UNIT_VALUE]);
594
595 impl<'tcx> LateLintPass<'tcx> for LetUnitValue {
596     fn check_stmt(&mut self, cx: &LateContext<'tcx>, stmt: &'tcx Stmt<'_>) {
597         if let StmtKind::Local(ref local) = stmt.kind {
598             if is_unit(cx.tables().pat_ty(&local.pat)) {
599                 if in_external_macro(cx.sess(), stmt.span) || local.pat.span.from_expansion() {
600                     return;
601                 }
602                 if higher::is_from_for_desugar(local) {
603                     return;
604                 }
605                 span_lint_and_then(
606                     cx,
607                     LET_UNIT_VALUE,
608                     stmt.span,
609                     "this let-binding has unit value",
610                     |diag| {
611                         if let Some(expr) = &local.init {
612                             let snip = snippet_with_macro_callsite(cx, expr.span, "()");
613                             diag.span_suggestion(
614                                 stmt.span,
615                                 "omit the `let` binding",
616                                 format!("{};", snip),
617                                 Applicability::MachineApplicable, // snippet
618                             );
619                         }
620                     },
621                 );
622             }
623         }
624     }
625 }
626
627 declare_clippy_lint! {
628     /// **What it does:** Checks for comparisons to unit. This includes all binary
629     /// comparisons (like `==` and `<`) and asserts.
630     ///
631     /// **Why is this bad?** Unit is always equal to itself, and thus is just a
632     /// clumsily written constant. Mostly this happens when someone accidentally
633     /// adds semicolons at the end of the operands.
634     ///
635     /// **Known problems:** None.
636     ///
637     /// **Example:**
638     /// ```rust
639     /// # fn foo() {};
640     /// # fn bar() {};
641     /// # fn baz() {};
642     /// if {
643     ///     foo();
644     /// } == {
645     ///     bar();
646     /// } {
647     ///     baz();
648     /// }
649     /// ```
650     /// is equal to
651     /// ```rust
652     /// # fn foo() {};
653     /// # fn bar() {};
654     /// # fn baz() {};
655     /// {
656     ///     foo();
657     ///     bar();
658     ///     baz();
659     /// }
660     /// ```
661     ///
662     /// For asserts:
663     /// ```rust
664     /// # fn foo() {};
665     /// # fn bar() {};
666     /// assert_eq!({ foo(); }, { bar(); });
667     /// ```
668     /// will always succeed
669     pub UNIT_CMP,
670     correctness,
671     "comparing unit values"
672 }
673
674 declare_lint_pass!(UnitCmp => [UNIT_CMP]);
675
676 impl<'tcx> LateLintPass<'tcx> for UnitCmp {
677     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>) {
678         if expr.span.from_expansion() {
679             if let Some(callee) = expr.span.source_callee() {
680                 if let ExpnKind::Macro(MacroKind::Bang, symbol) = callee.kind {
681                     if let ExprKind::Binary(ref cmp, ref left, _) = expr.kind {
682                         let op = cmp.node;
683                         if op.is_comparison() && is_unit(cx.tables().expr_ty(left)) {
684                             let result = match &*symbol.as_str() {
685                                 "assert_eq" | "debug_assert_eq" => "succeed",
686                                 "assert_ne" | "debug_assert_ne" => "fail",
687                                 _ => return,
688                             };
689                             span_lint(
690                                 cx,
691                                 UNIT_CMP,
692                                 expr.span,
693                                 &format!(
694                                     "`{}` of unit values detected. This will always {}",
695                                     symbol.as_str(),
696                                     result
697                                 ),
698                             );
699                         }
700                     }
701                 }
702             }
703             return;
704         }
705         if let ExprKind::Binary(ref cmp, ref left, _) = expr.kind {
706             let op = cmp.node;
707             if op.is_comparison() && is_unit(cx.tables().expr_ty(left)) {
708                 let result = match op {
709                     BinOpKind::Eq | BinOpKind::Le | BinOpKind::Ge => "true",
710                     _ => "false",
711                 };
712                 span_lint(
713                     cx,
714                     UNIT_CMP,
715                     expr.span,
716                     &format!(
717                         "{}-comparison of unit values detected. This will always be {}",
718                         op.as_str(),
719                         result
720                     ),
721                 );
722             }
723         }
724     }
725 }
726
727 declare_clippy_lint! {
728     /// **What it does:** Checks for passing a unit value as an argument to a function without using a
729     /// unit literal (`()`).
730     ///
731     /// **Why is this bad?** This is likely the result of an accidental semicolon.
732     ///
733     /// **Known problems:** None.
734     ///
735     /// **Example:**
736     /// ```rust,ignore
737     /// foo({
738     ///     let a = bar();
739     ///     baz(a);
740     /// })
741     /// ```
742     pub UNIT_ARG,
743     complexity,
744     "passing unit to a function"
745 }
746
747 declare_lint_pass!(UnitArg => [UNIT_ARG]);
748
749 impl<'tcx> LateLintPass<'tcx> for UnitArg {
750     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
751         if expr.span.from_expansion() {
752             return;
753         }
754
755         // apparently stuff in the desugaring of `?` can trigger this
756         // so check for that here
757         // only the calls to `Try::from_error` is marked as desugared,
758         // so we need to check both the current Expr and its parent.
759         if is_questionmark_desugar_marked_call(expr) {
760             return;
761         }
762         if_chain! {
763             let map = &cx.tcx.hir();
764             let opt_parent_node = map.find(map.get_parent_node(expr.hir_id));
765             if let Some(hir::Node::Expr(parent_expr)) = opt_parent_node;
766             if is_questionmark_desugar_marked_call(parent_expr);
767             then {
768                 return;
769             }
770         }
771
772         match expr.kind {
773             ExprKind::Call(_, args) | ExprKind::MethodCall(_, _, args, _) => {
774                 let args_to_recover = args
775                     .iter()
776                     .filter(|arg| {
777                         if is_unit(cx.tables().expr_ty(arg)) && !is_unit_literal(arg) {
778                             if let ExprKind::Match(.., MatchSource::TryDesugar) = &arg.kind {
779                                 false
780                             } else {
781                                 true
782                             }
783                         } else {
784                             false
785                         }
786                     })
787                     .collect::<Vec<_>>();
788                 if !args_to_recover.is_empty() {
789                     lint_unit_args(cx, expr, &args_to_recover);
790                 }
791             },
792             _ => (),
793         }
794     }
795 }
796
797 fn lint_unit_args(cx: &LateContext<'_>, expr: &Expr<'_>, args_to_recover: &[&Expr<'_>]) {
798     let mut applicability = Applicability::MachineApplicable;
799     let (singular, plural) = if args_to_recover.len() > 1 {
800         ("", "s")
801     } else {
802         ("a ", "")
803     };
804     span_lint_and_then(
805         cx,
806         UNIT_ARG,
807         expr.span,
808         &format!("passing {}unit value{} to a function", singular, plural),
809         |db| {
810             let mut or = "";
811             args_to_recover
812                 .iter()
813                 .filter_map(|arg| {
814                     if_chain! {
815                         if let ExprKind::Block(block, _) = arg.kind;
816                         if block.expr.is_none();
817                         if let Some(last_stmt) = block.stmts.iter().last();
818                         if let StmtKind::Semi(last_expr) = last_stmt.kind;
819                         if let Some(snip) = snippet_opt(cx, last_expr.span);
820                         then {
821                             Some((
822                                 last_stmt.span,
823                                 snip,
824                             ))
825                         }
826                         else {
827                             None
828                         }
829                     }
830                 })
831                 .for_each(|(span, sugg)| {
832                     db.span_suggestion(
833                         span,
834                         "remove the semicolon from the last statement in the block",
835                         sugg,
836                         Applicability::MaybeIncorrect,
837                     );
838                     or = "or ";
839                 });
840             let sugg = args_to_recover
841                 .iter()
842                 .filter(|arg| !is_empty_block(arg))
843                 .enumerate()
844                 .map(|(i, arg)| {
845                     let indent = if i == 0 {
846                         0
847                     } else {
848                         indent_of(cx, expr.span).unwrap_or(0)
849                     };
850                     format!(
851                         "{}{};",
852                         " ".repeat(indent),
853                         snippet_block_with_applicability(cx, arg.span, "..", Some(expr.span), &mut applicability)
854                     )
855                 })
856                 .collect::<Vec<String>>();
857             let mut and = "";
858             if !sugg.is_empty() {
859                 let plural = if sugg.len() > 1 { "s" } else { "" };
860                 db.span_suggestion(
861                     expr.span.with_hi(expr.span.lo()),
862                     &format!("{}move the expression{} in front of the call...", or, plural),
863                     format!("{}\n", sugg.join("\n")),
864                     applicability,
865                 );
866                 and = "...and "
867             }
868             db.multipart_suggestion(
869                 &format!("{}use {}unit literal{} instead", and, singular, plural),
870                 args_to_recover
871                     .iter()
872                     .map(|arg| (arg.span, "()".to_string()))
873                     .collect::<Vec<_>>(),
874                 applicability,
875             );
876         },
877     );
878 }
879
880 fn is_empty_block(expr: &Expr<'_>) -> bool {
881     matches!(
882         expr.kind,
883         ExprKind::Block(
884             Block {
885                 stmts: &[], expr: None, ..
886             },
887             _,
888         )
889     )
890 }
891
892 fn is_questionmark_desugar_marked_call(expr: &Expr<'_>) -> bool {
893     use rustc_span::hygiene::DesugaringKind;
894     if let ExprKind::Call(ref callee, _) = expr.kind {
895         callee.span.is_desugaring(DesugaringKind::QuestionMark)
896     } else {
897         false
898     }
899 }
900
901 fn is_unit(ty: Ty<'_>) -> bool {
902     match ty.kind {
903         ty::Tuple(slice) if slice.is_empty() => true,
904         _ => false,
905     }
906 }
907
908 fn is_unit_literal(expr: &Expr<'_>) -> bool {
909     match expr.kind {
910         ExprKind::Tup(ref slice) if slice.is_empty() => true,
911         _ => false,
912     }
913 }
914
915 declare_clippy_lint! {
916     /// **What it does:** Checks for casts from any numerical to a float type where
917     /// the receiving type cannot store all values from the original type without
918     /// rounding errors. This possible rounding is to be expected, so this lint is
919     /// `Allow` by default.
920     ///
921     /// Basically, this warns on casting any integer with 32 or more bits to `f32`
922     /// or any 64-bit integer to `f64`.
923     ///
924     /// **Why is this bad?** It's not bad at all. But in some applications it can be
925     /// helpful to know where precision loss can take place. This lint can help find
926     /// those places in the code.
927     ///
928     /// **Known problems:** None.
929     ///
930     /// **Example:**
931     /// ```rust
932     /// let x = u64::MAX;
933     /// x as f64;
934     /// ```
935     pub CAST_PRECISION_LOSS,
936     pedantic,
937     "casts that cause loss of precision, e.g., `x as f32` where `x: u64`"
938 }
939
940 declare_clippy_lint! {
941     /// **What it does:** Checks for casts from a signed to an unsigned numerical
942     /// type. In this case, negative values wrap around to large positive values,
943     /// which can be quite surprising in practice. However, as the cast works as
944     /// defined, this lint is `Allow` by default.
945     ///
946     /// **Why is this bad?** Possibly surprising results. You can activate this lint
947     /// as a one-time check to see where numerical wrapping can arise.
948     ///
949     /// **Known problems:** None.
950     ///
951     /// **Example:**
952     /// ```rust
953     /// let y: i8 = -1;
954     /// y as u128; // will return 18446744073709551615
955     /// ```
956     pub CAST_SIGN_LOSS,
957     pedantic,
958     "casts from signed types to unsigned types, e.g., `x as u32` where `x: i32`"
959 }
960
961 declare_clippy_lint! {
962     /// **What it does:** Checks for casts between numerical types that may
963     /// truncate large values. This is expected behavior, so the cast is `Allow` by
964     /// default.
965     ///
966     /// **Why is this bad?** In some problem domains, it is good practice to avoid
967     /// truncation. This lint can be activated to help assess where additional
968     /// checks could be beneficial.
969     ///
970     /// **Known problems:** None.
971     ///
972     /// **Example:**
973     /// ```rust
974     /// fn as_u8(x: u64) -> u8 {
975     ///     x as u8
976     /// }
977     /// ```
978     pub CAST_POSSIBLE_TRUNCATION,
979     pedantic,
980     "casts that may cause truncation of the value, e.g., `x as u8` where `x: u32`, or `x as i32` where `x: f32`"
981 }
982
983 declare_clippy_lint! {
984     /// **What it does:** Checks for casts from an unsigned type to a signed type of
985     /// the same size. Performing such a cast is a 'no-op' for the compiler,
986     /// i.e., nothing is changed at the bit level, and the binary representation of
987     /// the value is reinterpreted. This can cause wrapping if the value is too big
988     /// for the target signed type. However, the cast works as defined, so this lint
989     /// is `Allow` by default.
990     ///
991     /// **Why is this bad?** While such a cast is not bad in itself, the results can
992     /// be surprising when this is not the intended behavior, as demonstrated by the
993     /// example below.
994     ///
995     /// **Known problems:** None.
996     ///
997     /// **Example:**
998     /// ```rust
999     /// u32::MAX as i32; // will yield a value of `-1`
1000     /// ```
1001     pub CAST_POSSIBLE_WRAP,
1002     pedantic,
1003     "casts that may cause wrapping around the value, e.g., `x as i32` where `x: u32` and `x > i32::MAX`"
1004 }
1005
1006 declare_clippy_lint! {
1007     /// **What it does:** Checks for casts between numerical types that may
1008     /// be replaced by safe conversion functions.
1009     ///
1010     /// **Why is this bad?** Rust's `as` keyword will perform many kinds of
1011     /// conversions, including silently lossy conversions. Conversion functions such
1012     /// as `i32::from` will only perform lossless conversions. Using the conversion
1013     /// functions prevents conversions from turning into silent lossy conversions if
1014     /// the types of the input expressions ever change, and make it easier for
1015     /// people reading the code to know that the conversion is lossless.
1016     ///
1017     /// **Known problems:** None.
1018     ///
1019     /// **Example:**
1020     /// ```rust
1021     /// fn as_u64(x: u8) -> u64 {
1022     ///     x as u64
1023     /// }
1024     /// ```
1025     ///
1026     /// Using `::from` would look like this:
1027     ///
1028     /// ```rust
1029     /// fn as_u64(x: u8) -> u64 {
1030     ///     u64::from(x)
1031     /// }
1032     /// ```
1033     pub CAST_LOSSLESS,
1034     pedantic,
1035     "casts using `as` that are known to be lossless, e.g., `x as u64` where `x: u8`"
1036 }
1037
1038 declare_clippy_lint! {
1039     /// **What it does:** Checks for casts to the same type.
1040     ///
1041     /// **Why is this bad?** It's just unnecessary.
1042     ///
1043     /// **Known problems:** None.
1044     ///
1045     /// **Example:**
1046     /// ```rust
1047     /// let _ = 2i32 as i32;
1048     /// ```
1049     pub UNNECESSARY_CAST,
1050     complexity,
1051     "cast to the same type, e.g., `x as i32` where `x: i32`"
1052 }
1053
1054 declare_clippy_lint! {
1055     /// **What it does:** Checks for casts from a less-strictly-aligned pointer to a
1056     /// more-strictly-aligned pointer
1057     ///
1058     /// **Why is this bad?** Dereferencing the resulting pointer may be undefined
1059     /// behavior.
1060     ///
1061     /// **Known problems:** Using `std::ptr::read_unaligned` and `std::ptr::write_unaligned` or similar
1062     /// on the resulting pointer is fine. Is over-zealous: Casts with manual alignment checks or casts like
1063     /// u64-> u8 -> u16 can be fine. Miri is able to do a more in-depth analysis.
1064     ///
1065     /// **Example:**
1066     /// ```rust
1067     /// let _ = (&1u8 as *const u8) as *const u16;
1068     /// let _ = (&mut 1u8 as *mut u8) as *mut u16;
1069     /// ```
1070     pub CAST_PTR_ALIGNMENT,
1071     pedantic,
1072     "cast from a pointer to a more-strictly-aligned pointer"
1073 }
1074
1075 declare_clippy_lint! {
1076     /// **What it does:** Checks for casts of function pointers to something other than usize
1077     ///
1078     /// **Why is this bad?**
1079     /// Casting a function pointer to anything other than usize/isize is not portable across
1080     /// architectures, because you end up losing bits if the target type is too small or end up with a
1081     /// bunch of extra bits that waste space and add more instructions to the final binary than
1082     /// strictly necessary for the problem
1083     ///
1084     /// Casting to isize also doesn't make sense since there are no signed addresses.
1085     ///
1086     /// **Example**
1087     ///
1088     /// ```rust
1089     /// // Bad
1090     /// fn fun() -> i32 { 1 }
1091     /// let a = fun as i64;
1092     ///
1093     /// // Good
1094     /// fn fun2() -> i32 { 1 }
1095     /// let a = fun2 as usize;
1096     /// ```
1097     pub FN_TO_NUMERIC_CAST,
1098     style,
1099     "casting a function pointer to a numeric type other than usize"
1100 }
1101
1102 declare_clippy_lint! {
1103     /// **What it does:** Checks for casts of a function pointer to a numeric type not wide enough to
1104     /// store address.
1105     ///
1106     /// **Why is this bad?**
1107     /// Such a cast discards some bits of the function's address. If this is intended, it would be more
1108     /// clearly expressed by casting to usize first, then casting the usize to the intended type (with
1109     /// a comment) to perform the truncation.
1110     ///
1111     /// **Example**
1112     ///
1113     /// ```rust
1114     /// // Bad
1115     /// fn fn1() -> i16 {
1116     ///     1
1117     /// };
1118     /// let _ = fn1 as i32;
1119     ///
1120     /// // Better: Cast to usize first, then comment with the reason for the truncation
1121     /// fn fn2() -> i16 {
1122     ///     1
1123     /// };
1124     /// let fn_ptr = fn2 as usize;
1125     /// let fn_ptr_truncated = fn_ptr as i32;
1126     /// ```
1127     pub FN_TO_NUMERIC_CAST_WITH_TRUNCATION,
1128     style,
1129     "casting a function pointer to a numeric type not wide enough to store the address"
1130 }
1131
1132 /// Returns the size in bits of an integral type.
1133 /// Will return 0 if the type is not an int or uint variant
1134 fn int_ty_to_nbits(typ: Ty<'_>, tcx: TyCtxt<'_>) -> u64 {
1135     match typ.kind {
1136         ty::Int(i) => match i {
1137             IntTy::Isize => tcx.data_layout.pointer_size.bits(),
1138             IntTy::I8 => 8,
1139             IntTy::I16 => 16,
1140             IntTy::I32 => 32,
1141             IntTy::I64 => 64,
1142             IntTy::I128 => 128,
1143         },
1144         ty::Uint(i) => match i {
1145             UintTy::Usize => tcx.data_layout.pointer_size.bits(),
1146             UintTy::U8 => 8,
1147             UintTy::U16 => 16,
1148             UintTy::U32 => 32,
1149             UintTy::U64 => 64,
1150             UintTy::U128 => 128,
1151         },
1152         _ => 0,
1153     }
1154 }
1155
1156 fn is_isize_or_usize(typ: Ty<'_>) -> bool {
1157     match typ.kind {
1158         ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => true,
1159         _ => false,
1160     }
1161 }
1162
1163 fn span_precision_loss_lint(cx: &LateContext<'_>, expr: &Expr<'_>, cast_from: Ty<'_>, cast_to_f64: bool) {
1164     let mantissa_nbits = if cast_to_f64 { 52 } else { 23 };
1165     let arch_dependent = is_isize_or_usize(cast_from) && cast_to_f64;
1166     let arch_dependent_str = "on targets with 64-bit wide pointers ";
1167     let from_nbits_str = if arch_dependent {
1168         "64".to_owned()
1169     } else if is_isize_or_usize(cast_from) {
1170         "32 or 64".to_owned()
1171     } else {
1172         int_ty_to_nbits(cast_from, cx.tcx).to_string()
1173     };
1174     span_lint(
1175         cx,
1176         CAST_PRECISION_LOSS,
1177         expr.span,
1178         &format!(
1179             "casting `{0}` to `{1}` causes a loss of precision {2}(`{0}` is {3} bits wide, \
1180              but `{1}`'s mantissa is only {4} bits wide)",
1181             cast_from,
1182             if cast_to_f64 { "f64" } else { "f32" },
1183             if arch_dependent { arch_dependent_str } else { "" },
1184             from_nbits_str,
1185             mantissa_nbits
1186         ),
1187     );
1188 }
1189
1190 fn should_strip_parens(op: &Expr<'_>, snip: &str) -> bool {
1191     if let ExprKind::Binary(_, _, _) = op.kind {
1192         if snip.starts_with('(') && snip.ends_with(')') {
1193             return true;
1194         }
1195     }
1196     false
1197 }
1198
1199 fn span_lossless_lint(cx: &LateContext<'_>, expr: &Expr<'_>, op: &Expr<'_>, cast_from: Ty<'_>, cast_to: Ty<'_>) {
1200     // Do not suggest using From in consts/statics until it is valid to do so (see #2267).
1201     if in_constant(cx, expr.hir_id) {
1202         return;
1203     }
1204     // The suggestion is to use a function call, so if the original expression
1205     // has parens on the outside, they are no longer needed.
1206     let mut applicability = Applicability::MachineApplicable;
1207     let opt = snippet_opt(cx, op.span);
1208     let sugg = if let Some(ref snip) = opt {
1209         if should_strip_parens(op, snip) {
1210             &snip[1..snip.len() - 1]
1211         } else {
1212             snip.as_str()
1213         }
1214     } else {
1215         applicability = Applicability::HasPlaceholders;
1216         ".."
1217     };
1218
1219     span_lint_and_sugg(
1220         cx,
1221         CAST_LOSSLESS,
1222         expr.span,
1223         &format!(
1224             "casting `{}` to `{}` may become silently lossy if you later change the type",
1225             cast_from, cast_to
1226         ),
1227         "try",
1228         format!("{}::from({})", cast_to, sugg),
1229         applicability,
1230     );
1231 }
1232
1233 enum ArchSuffix {
1234     _32,
1235     _64,
1236     None,
1237 }
1238
1239 fn check_loss_of_sign(cx: &LateContext<'_>, expr: &Expr<'_>, op: &Expr<'_>, cast_from: Ty<'_>, cast_to: Ty<'_>) {
1240     if !cast_from.is_signed() || cast_to.is_signed() {
1241         return;
1242     }
1243
1244     // don't lint for positive constants
1245     let const_val = constant(cx, &cx.tables(), op);
1246     if_chain! {
1247         if let Some((const_val, _)) = const_val;
1248         if let Constant::Int(n) = const_val;
1249         if let ty::Int(ity) = cast_from.kind;
1250         if sext(cx.tcx, n, ity) >= 0;
1251         then {
1252             return
1253         }
1254     }
1255
1256     // don't lint for the result of methods that always return non-negative values
1257     if let ExprKind::MethodCall(ref path, _, _, _) = op.kind {
1258         let mut method_name = path.ident.name.as_str();
1259         let allowed_methods = ["abs", "checked_abs", "rem_euclid", "checked_rem_euclid"];
1260
1261         if_chain! {
1262             if method_name == "unwrap";
1263             if let Some(arglist) = method_chain_args(op, &["unwrap"]);
1264             if let ExprKind::MethodCall(ref inner_path, _, _, _) = &arglist[0][0].kind;
1265             then {
1266                 method_name = inner_path.ident.name.as_str();
1267             }
1268         }
1269
1270         if allowed_methods.iter().any(|&name| method_name == name) {
1271             return;
1272         }
1273     }
1274
1275     span_lint(
1276         cx,
1277         CAST_SIGN_LOSS,
1278         expr.span,
1279         &format!(
1280             "casting `{}` to `{}` may lose the sign of the value",
1281             cast_from, cast_to
1282         ),
1283     );
1284 }
1285
1286 fn check_truncation_and_wrapping(cx: &LateContext<'_>, expr: &Expr<'_>, cast_from: Ty<'_>, cast_to: Ty<'_>) {
1287     let arch_64_suffix = " on targets with 64-bit wide pointers";
1288     let arch_32_suffix = " on targets with 32-bit wide pointers";
1289     let cast_unsigned_to_signed = !cast_from.is_signed() && cast_to.is_signed();
1290     let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
1291     let to_nbits = int_ty_to_nbits(cast_to, cx.tcx);
1292     let (span_truncation, suffix_truncation, span_wrap, suffix_wrap) =
1293         match (is_isize_or_usize(cast_from), is_isize_or_usize(cast_to)) {
1294             (true, true) | (false, false) => (
1295                 to_nbits < from_nbits,
1296                 ArchSuffix::None,
1297                 to_nbits == from_nbits && cast_unsigned_to_signed,
1298                 ArchSuffix::None,
1299             ),
1300             (true, false) => (
1301                 to_nbits <= 32,
1302                 if to_nbits == 32 {
1303                     ArchSuffix::_64
1304                 } else {
1305                     ArchSuffix::None
1306                 },
1307                 to_nbits <= 32 && cast_unsigned_to_signed,
1308                 ArchSuffix::_32,
1309             ),
1310             (false, true) => (
1311                 from_nbits == 64,
1312                 ArchSuffix::_32,
1313                 cast_unsigned_to_signed,
1314                 if from_nbits == 64 {
1315                     ArchSuffix::_64
1316                 } else {
1317                     ArchSuffix::_32
1318                 },
1319             ),
1320         };
1321     if span_truncation {
1322         span_lint(
1323             cx,
1324             CAST_POSSIBLE_TRUNCATION,
1325             expr.span,
1326             &format!(
1327                 "casting `{}` to `{}` may truncate the value{}",
1328                 cast_from,
1329                 cast_to,
1330                 match suffix_truncation {
1331                     ArchSuffix::_32 => arch_32_suffix,
1332                     ArchSuffix::_64 => arch_64_suffix,
1333                     ArchSuffix::None => "",
1334                 }
1335             ),
1336         );
1337     }
1338     if span_wrap {
1339         span_lint(
1340             cx,
1341             CAST_POSSIBLE_WRAP,
1342             expr.span,
1343             &format!(
1344                 "casting `{}` to `{}` may wrap around the value{}",
1345                 cast_from,
1346                 cast_to,
1347                 match suffix_wrap {
1348                     ArchSuffix::_32 => arch_32_suffix,
1349                     ArchSuffix::_64 => arch_64_suffix,
1350                     ArchSuffix::None => "",
1351                 }
1352             ),
1353         );
1354     }
1355 }
1356
1357 fn check_lossless(cx: &LateContext<'_>, expr: &Expr<'_>, op: &Expr<'_>, cast_from: Ty<'_>, cast_to: Ty<'_>) {
1358     let cast_signed_to_unsigned = cast_from.is_signed() && !cast_to.is_signed();
1359     let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
1360     let to_nbits = int_ty_to_nbits(cast_to, cx.tcx);
1361     if !is_isize_or_usize(cast_from) && !is_isize_or_usize(cast_to) && from_nbits < to_nbits && !cast_signed_to_unsigned
1362     {
1363         span_lossless_lint(cx, expr, op, cast_from, cast_to);
1364     }
1365 }
1366
1367 declare_lint_pass!(Casts => [
1368     CAST_PRECISION_LOSS,
1369     CAST_SIGN_LOSS,
1370     CAST_POSSIBLE_TRUNCATION,
1371     CAST_POSSIBLE_WRAP,
1372     CAST_LOSSLESS,
1373     UNNECESSARY_CAST,
1374     CAST_PTR_ALIGNMENT,
1375     FN_TO_NUMERIC_CAST,
1376     FN_TO_NUMERIC_CAST_WITH_TRUNCATION,
1377 ]);
1378
1379 // Check if the given type is either `core::ffi::c_void` or
1380 // one of the platform specific `libc::<platform>::c_void` of libc.
1381 fn is_c_void(cx: &LateContext<'_>, ty: Ty<'_>) -> bool {
1382     if let ty::Adt(adt, _) = ty.kind {
1383         let names = cx.get_def_path(adt.did);
1384
1385         if names.is_empty() {
1386             return false;
1387         }
1388         if names[0] == sym!(libc) || names[0] == sym::core && *names.last().unwrap() == sym!(c_void) {
1389             return true;
1390         }
1391     }
1392     false
1393 }
1394
1395 /// Returns the mantissa bits wide of a fp type.
1396 /// Will return 0 if the type is not a fp
1397 fn fp_ty_mantissa_nbits(typ: Ty<'_>) -> u32 {
1398     match typ.kind {
1399         ty::Float(FloatTy::F32) => 23,
1400         ty::Float(FloatTy::F64) | ty::Infer(InferTy::FloatVar(_)) => 52,
1401         _ => 0,
1402     }
1403 }
1404
1405 impl<'tcx> LateLintPass<'tcx> for Casts {
1406     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1407         if expr.span.from_expansion() {
1408             return;
1409         }
1410         if let ExprKind::Cast(ref ex, _) = expr.kind {
1411             let (cast_from, cast_to) = (cx.tables().expr_ty(ex), cx.tables().expr_ty(expr));
1412             lint_fn_to_numeric_cast(cx, expr, ex, cast_from, cast_to);
1413             if let ExprKind::Lit(ref lit) = ex.kind {
1414                 if_chain! {
1415                     if let LitKind::Int(n, _) = lit.node;
1416                     if let Some(src) = snippet_opt(cx, lit.span);
1417                     if cast_to.is_floating_point();
1418                     if let Some(num_lit) = NumericLiteral::from_lit_kind(&src, &lit.node);
1419                     let from_nbits = 128 - n.leading_zeros();
1420                     let to_nbits = fp_ty_mantissa_nbits(cast_to);
1421                     if from_nbits != 0 && to_nbits != 0 && from_nbits <= to_nbits && num_lit.is_decimal();
1422                     then {
1423                         span_lint_and_sugg(
1424                             cx,
1425                             UNNECESSARY_CAST,
1426                             expr.span,
1427                             &format!("casting integer literal to `{}` is unnecessary", cast_to),
1428                             "try",
1429                             format!("{}_{}", n, cast_to),
1430                             Applicability::MachineApplicable,
1431                         );
1432                         return;
1433                     }
1434                 }
1435                 match lit.node {
1436                     LitKind::Int(_, LitIntType::Unsuffixed) | LitKind::Float(_, LitFloatType::Unsuffixed) => {},
1437                     _ => {
1438                         if cast_from.kind == cast_to.kind && !in_external_macro(cx.sess(), expr.span) {
1439                             span_lint(
1440                                 cx,
1441                                 UNNECESSARY_CAST,
1442                                 expr.span,
1443                                 &format!(
1444                                     "casting to the same type is unnecessary (`{}` -> `{}`)",
1445                                     cast_from, cast_to
1446                                 ),
1447                             );
1448                         }
1449                     },
1450                 }
1451             }
1452             if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx.sess(), expr.span) {
1453                 lint_numeric_casts(cx, expr, ex, cast_from, cast_to);
1454             }
1455
1456             lint_cast_ptr_alignment(cx, expr, cast_from, cast_to);
1457         }
1458     }
1459 }
1460
1461 fn lint_numeric_casts<'tcx>(
1462     cx: &LateContext<'tcx>,
1463     expr: &Expr<'tcx>,
1464     cast_expr: &Expr<'_>,
1465     cast_from: Ty<'tcx>,
1466     cast_to: Ty<'tcx>,
1467 ) {
1468     match (cast_from.is_integral(), cast_to.is_integral()) {
1469         (true, false) => {
1470             let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
1471             let to_nbits = if let ty::Float(FloatTy::F32) = cast_to.kind {
1472                 32
1473             } else {
1474                 64
1475             };
1476             if is_isize_or_usize(cast_from) || from_nbits >= to_nbits {
1477                 span_precision_loss_lint(cx, expr, cast_from, to_nbits == 64);
1478             }
1479             if from_nbits < to_nbits {
1480                 span_lossless_lint(cx, expr, cast_expr, cast_from, cast_to);
1481             }
1482         },
1483         (false, true) => {
1484             span_lint(
1485                 cx,
1486                 CAST_POSSIBLE_TRUNCATION,
1487                 expr.span,
1488                 &format!("casting `{}` to `{}` may truncate the value", cast_from, cast_to),
1489             );
1490             if !cast_to.is_signed() {
1491                 span_lint(
1492                     cx,
1493                     CAST_SIGN_LOSS,
1494                     expr.span,
1495                     &format!(
1496                         "casting `{}` to `{}` may lose the sign of the value",
1497                         cast_from, cast_to
1498                     ),
1499                 );
1500             }
1501         },
1502         (true, true) => {
1503             check_loss_of_sign(cx, expr, cast_expr, cast_from, cast_to);
1504             check_truncation_and_wrapping(cx, expr, cast_from, cast_to);
1505             check_lossless(cx, expr, cast_expr, cast_from, cast_to);
1506         },
1507         (false, false) => {
1508             if let (&ty::Float(FloatTy::F64), &ty::Float(FloatTy::F32)) = (&cast_from.kind, &cast_to.kind) {
1509                 span_lint(
1510                     cx,
1511                     CAST_POSSIBLE_TRUNCATION,
1512                     expr.span,
1513                     "casting `f64` to `f32` may truncate the value",
1514                 );
1515             }
1516             if let (&ty::Float(FloatTy::F32), &ty::Float(FloatTy::F64)) = (&cast_from.kind, &cast_to.kind) {
1517                 span_lossless_lint(cx, expr, cast_expr, cast_from, cast_to);
1518             }
1519         },
1520     }
1521 }
1522
1523 fn lint_cast_ptr_alignment<'tcx>(cx: &LateContext<'tcx>, expr: &Expr<'_>, cast_from: Ty<'tcx>, cast_to: Ty<'tcx>) {
1524     if_chain! {
1525         if let ty::RawPtr(from_ptr_ty) = &cast_from.kind;
1526         if let ty::RawPtr(to_ptr_ty) = &cast_to.kind;
1527         if let Ok(from_layout) = cx.layout_of(from_ptr_ty.ty);
1528         if let Ok(to_layout) = cx.layout_of(to_ptr_ty.ty);
1529         if from_layout.align.abi < to_layout.align.abi;
1530         // with c_void, we inherently need to trust the user
1531         if !is_c_void(cx, from_ptr_ty.ty);
1532         // when casting from a ZST, we don't know enough to properly lint
1533         if !from_layout.is_zst();
1534         then {
1535             span_lint(
1536                 cx,
1537                 CAST_PTR_ALIGNMENT,
1538                 expr.span,
1539                 &format!(
1540                     "casting from `{}` to a more-strictly-aligned pointer (`{}`) ({} < {} bytes)",
1541                     cast_from,
1542                     cast_to,
1543                     from_layout.align.abi.bytes(),
1544                     to_layout.align.abi.bytes(),
1545                 ),
1546             );
1547         }
1548     }
1549 }
1550
1551 fn lint_fn_to_numeric_cast(
1552     cx: &LateContext<'_>,
1553     expr: &Expr<'_>,
1554     cast_expr: &Expr<'_>,
1555     cast_from: Ty<'_>,
1556     cast_to: Ty<'_>,
1557 ) {
1558     // We only want to check casts to `ty::Uint` or `ty::Int`
1559     match cast_to.kind {
1560         ty::Uint(_) | ty::Int(..) => { /* continue on */ },
1561         _ => return,
1562     }
1563     match cast_from.kind {
1564         ty::FnDef(..) | ty::FnPtr(_) => {
1565             let mut applicability = Applicability::MaybeIncorrect;
1566             let from_snippet = snippet_with_applicability(cx, cast_expr.span, "x", &mut applicability);
1567
1568             let to_nbits = int_ty_to_nbits(cast_to, cx.tcx);
1569             if to_nbits < cx.tcx.data_layout.pointer_size.bits() {
1570                 span_lint_and_sugg(
1571                     cx,
1572                     FN_TO_NUMERIC_CAST_WITH_TRUNCATION,
1573                     expr.span,
1574                     &format!(
1575                         "casting function pointer `{}` to `{}`, which truncates the value",
1576                         from_snippet, cast_to
1577                     ),
1578                     "try",
1579                     format!("{} as usize", from_snippet),
1580                     applicability,
1581                 );
1582             } else if cast_to.kind != ty::Uint(UintTy::Usize) {
1583                 span_lint_and_sugg(
1584                     cx,
1585                     FN_TO_NUMERIC_CAST,
1586                     expr.span,
1587                     &format!("casting function pointer `{}` to `{}`", from_snippet, cast_to),
1588                     "try",
1589                     format!("{} as usize", from_snippet),
1590                     applicability,
1591                 );
1592             }
1593         },
1594         _ => {},
1595     }
1596 }
1597
1598 declare_clippy_lint! {
1599     /// **What it does:** Checks for types used in structs, parameters and `let`
1600     /// declarations above a certain complexity threshold.
1601     ///
1602     /// **Why is this bad?** Too complex types make the code less readable. Consider
1603     /// using a `type` definition to simplify them.
1604     ///
1605     /// **Known problems:** None.
1606     ///
1607     /// **Example:**
1608     /// ```rust
1609     /// # use std::rc::Rc;
1610     /// struct Foo {
1611     ///     inner: Rc<Vec<Vec<Box<(u32, u32, u32, u32)>>>>,
1612     /// }
1613     /// ```
1614     pub TYPE_COMPLEXITY,
1615     complexity,
1616     "usage of very complex types that might be better factored into `type` definitions"
1617 }
1618
1619 pub struct TypeComplexity {
1620     threshold: u64,
1621 }
1622
1623 impl TypeComplexity {
1624     #[must_use]
1625     pub fn new(threshold: u64) -> Self {
1626         Self { threshold }
1627     }
1628 }
1629
1630 impl_lint_pass!(TypeComplexity => [TYPE_COMPLEXITY]);
1631
1632 impl<'tcx> LateLintPass<'tcx> for TypeComplexity {
1633     fn check_fn(
1634         &mut self,
1635         cx: &LateContext<'tcx>,
1636         _: FnKind<'tcx>,
1637         decl: &'tcx FnDecl<'_>,
1638         _: &'tcx Body<'_>,
1639         _: Span,
1640         _: HirId,
1641     ) {
1642         self.check_fndecl(cx, decl);
1643     }
1644
1645     fn check_struct_field(&mut self, cx: &LateContext<'tcx>, field: &'tcx hir::StructField<'_>) {
1646         // enum variants are also struct fields now
1647         self.check_type(cx, &field.ty);
1648     }
1649
1650     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) {
1651         match item.kind {
1652             ItemKind::Static(ref ty, _, _) | ItemKind::Const(ref ty, _) => self.check_type(cx, ty),
1653             // functions, enums, structs, impls and traits are covered
1654             _ => (),
1655         }
1656     }
1657
1658     fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) {
1659         match item.kind {
1660             TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => self.check_type(cx, ty),
1661             TraitItemKind::Fn(FnSig { ref decl, .. }, TraitFn::Required(_)) => self.check_fndecl(cx, decl),
1662             // methods with default impl are covered by check_fn
1663             _ => (),
1664         }
1665     }
1666
1667     fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx ImplItem<'_>) {
1668         match item.kind {
1669             ImplItemKind::Const(ref ty, _) | ImplItemKind::TyAlias(ref ty) => self.check_type(cx, ty),
1670             // methods are covered by check_fn
1671             _ => (),
1672         }
1673     }
1674
1675     fn check_local(&mut self, cx: &LateContext<'tcx>, local: &'tcx Local<'_>) {
1676         if let Some(ref ty) = local.ty {
1677             self.check_type(cx, ty);
1678         }
1679     }
1680 }
1681
1682 impl<'tcx> TypeComplexity {
1683     fn check_fndecl(&self, cx: &LateContext<'tcx>, decl: &'tcx FnDecl<'_>) {
1684         for arg in decl.inputs {
1685             self.check_type(cx, arg);
1686         }
1687         if let FnRetTy::Return(ref ty) = decl.output {
1688             self.check_type(cx, ty);
1689         }
1690     }
1691
1692     fn check_type(&self, cx: &LateContext<'_>, ty: &hir::Ty<'_>) {
1693         if ty.span.from_expansion() {
1694             return;
1695         }
1696         let score = {
1697             let mut visitor = TypeComplexityVisitor { score: 0, nest: 1 };
1698             visitor.visit_ty(ty);
1699             visitor.score
1700         };
1701
1702         if score > self.threshold {
1703             span_lint(
1704                 cx,
1705                 TYPE_COMPLEXITY,
1706                 ty.span,
1707                 "very complex type used. Consider factoring parts into `type` definitions",
1708             );
1709         }
1710     }
1711 }
1712
1713 /// Walks a type and assigns a complexity score to it.
1714 struct TypeComplexityVisitor {
1715     /// total complexity score of the type
1716     score: u64,
1717     /// current nesting level
1718     nest: u64,
1719 }
1720
1721 impl<'tcx> Visitor<'tcx> for TypeComplexityVisitor {
1722     type Map = Map<'tcx>;
1723
1724     fn visit_ty(&mut self, ty: &'tcx hir::Ty<'_>) {
1725         let (add_score, sub_nest) = match ty.kind {
1726             // _, &x and *x have only small overhead; don't mess with nesting level
1727             TyKind::Infer | TyKind::Ptr(..) | TyKind::Rptr(..) => (1, 0),
1728
1729             // the "normal" components of a type: named types, arrays/tuples
1730             TyKind::Path(..) | TyKind::Slice(..) | TyKind::Tup(..) | TyKind::Array(..) => (10 * self.nest, 1),
1731
1732             // function types bring a lot of overhead
1733             TyKind::BareFn(ref bare) if bare.abi == Abi::Rust => (50 * self.nest, 1),
1734
1735             TyKind::TraitObject(ref param_bounds, _) => {
1736                 let has_lifetime_parameters = param_bounds.iter().any(|bound| {
1737                     bound.bound_generic_params.iter().any(|gen| match gen.kind {
1738                         GenericParamKind::Lifetime { .. } => true,
1739                         _ => false,
1740                     })
1741                 });
1742                 if has_lifetime_parameters {
1743                     // complex trait bounds like A<'a, 'b>
1744                     (50 * self.nest, 1)
1745                 } else {
1746                     // simple trait bounds like A + B
1747                     (20 * self.nest, 0)
1748                 }
1749             },
1750
1751             _ => (0, 0),
1752         };
1753         self.score += add_score;
1754         self.nest += sub_nest;
1755         walk_ty(self, ty);
1756         self.nest -= sub_nest;
1757     }
1758     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1759         NestedVisitorMap::None
1760     }
1761 }
1762
1763 declare_clippy_lint! {
1764     /// **What it does:** Checks for expressions where a character literal is cast
1765     /// to `u8` and suggests using a byte literal instead.
1766     ///
1767     /// **Why is this bad?** In general, casting values to smaller types is
1768     /// error-prone and should be avoided where possible. In the particular case of
1769     /// converting a character literal to u8, it is easy to avoid by just using a
1770     /// byte literal instead. As an added bonus, `b'a'` is even slightly shorter
1771     /// than `'a' as u8`.
1772     ///
1773     /// **Known problems:** None.
1774     ///
1775     /// **Example:**
1776     /// ```rust,ignore
1777     /// 'x' as u8
1778     /// ```
1779     ///
1780     /// A better version, using the byte literal:
1781     ///
1782     /// ```rust,ignore
1783     /// b'x'
1784     /// ```
1785     pub CHAR_LIT_AS_U8,
1786     complexity,
1787     "casting a character literal to `u8` truncates"
1788 }
1789
1790 declare_lint_pass!(CharLitAsU8 => [CHAR_LIT_AS_U8]);
1791
1792 impl<'tcx> LateLintPass<'tcx> for CharLitAsU8 {
1793     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1794         if_chain! {
1795             if !expr.span.from_expansion();
1796             if let ExprKind::Cast(e, _) = &expr.kind;
1797             if let ExprKind::Lit(l) = &e.kind;
1798             if let LitKind::Char(c) = l.node;
1799             if ty::Uint(UintTy::U8) == cx.tables().expr_ty(expr).kind;
1800             then {
1801                 let mut applicability = Applicability::MachineApplicable;
1802                 let snippet = snippet_with_applicability(cx, e.span, "'x'", &mut applicability);
1803
1804                 span_lint_and_then(
1805                     cx,
1806                     CHAR_LIT_AS_U8,
1807                     expr.span,
1808                     "casting a character literal to `u8` truncates",
1809                     |diag| {
1810                         diag.note("`char` is four bytes wide, but `u8` is a single byte");
1811
1812                         if c.is_ascii() {
1813                             diag.span_suggestion(
1814                                 expr.span,
1815                                 "use a byte literal instead",
1816                                 format!("b{}", snippet),
1817                                 applicability,
1818                             );
1819                         }
1820                 });
1821             }
1822         }
1823     }
1824 }
1825
1826 declare_clippy_lint! {
1827     /// **What it does:** Checks for comparisons where one side of the relation is
1828     /// either the minimum or maximum value for its type and warns if it involves a
1829     /// case that is always true or always false. Only integer and boolean types are
1830     /// checked.
1831     ///
1832     /// **Why is this bad?** An expression like `min <= x` may misleadingly imply
1833     /// that it is possible for `x` to be less than the minimum. Expressions like
1834     /// `max < x` are probably mistakes.
1835     ///
1836     /// **Known problems:** For `usize` the size of the current compile target will
1837     /// be assumed (e.g., 64 bits on 64 bit systems). This means code that uses such
1838     /// a comparison to detect target pointer width will trigger this lint. One can
1839     /// use `mem::sizeof` and compare its value or conditional compilation
1840     /// attributes
1841     /// like `#[cfg(target_pointer_width = "64")] ..` instead.
1842     ///
1843     /// **Example:**
1844     ///
1845     /// ```rust
1846     /// let vec: Vec<isize> = Vec::new();
1847     /// if vec.len() <= 0 {}
1848     /// if 100 > i32::MAX {}
1849     /// ```
1850     pub ABSURD_EXTREME_COMPARISONS,
1851     correctness,
1852     "a comparison with a maximum or minimum value that is always true or false"
1853 }
1854
1855 declare_lint_pass!(AbsurdExtremeComparisons => [ABSURD_EXTREME_COMPARISONS]);
1856
1857 enum ExtremeType {
1858     Minimum,
1859     Maximum,
1860 }
1861
1862 struct ExtremeExpr<'a> {
1863     which: ExtremeType,
1864     expr: &'a Expr<'a>,
1865 }
1866
1867 enum AbsurdComparisonResult {
1868     AlwaysFalse,
1869     AlwaysTrue,
1870     InequalityImpossible,
1871 }
1872
1873 fn is_cast_between_fixed_and_target<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>) -> bool {
1874     if let ExprKind::Cast(ref cast_exp, _) = expr.kind {
1875         let precast_ty = cx.tables().expr_ty(cast_exp);
1876         let cast_ty = cx.tables().expr_ty(expr);
1877
1878         return is_isize_or_usize(precast_ty) != is_isize_or_usize(cast_ty);
1879     }
1880
1881     false
1882 }
1883
1884 fn detect_absurd_comparison<'tcx>(
1885     cx: &LateContext<'tcx>,
1886     op: BinOpKind,
1887     lhs: &'tcx Expr<'_>,
1888     rhs: &'tcx Expr<'_>,
1889 ) -> Option<(ExtremeExpr<'tcx>, AbsurdComparisonResult)> {
1890     use crate::types::AbsurdComparisonResult::{AlwaysFalse, AlwaysTrue, InequalityImpossible};
1891     use crate::types::ExtremeType::{Maximum, Minimum};
1892     use crate::utils::comparisons::{normalize_comparison, Rel};
1893
1894     // absurd comparison only makes sense on primitive types
1895     // primitive types don't implement comparison operators with each other
1896     if cx.tables().expr_ty(lhs) != cx.tables().expr_ty(rhs) {
1897         return None;
1898     }
1899
1900     // comparisons between fix sized types and target sized types are considered unanalyzable
1901     if is_cast_between_fixed_and_target(cx, lhs) || is_cast_between_fixed_and_target(cx, rhs) {
1902         return None;
1903     }
1904
1905     let (rel, normalized_lhs, normalized_rhs) = normalize_comparison(op, lhs, rhs)?;
1906
1907     let lx = detect_extreme_expr(cx, normalized_lhs);
1908     let rx = detect_extreme_expr(cx, normalized_rhs);
1909
1910     Some(match rel {
1911         Rel::Lt => {
1912             match (lx, rx) {
1913                 (Some(l @ ExtremeExpr { which: Maximum, .. }), _) => (l, AlwaysFalse), // max < x
1914                 (_, Some(r @ ExtremeExpr { which: Minimum, .. })) => (r, AlwaysFalse), // x < min
1915                 _ => return None,
1916             }
1917         },
1918         Rel::Le => {
1919             match (lx, rx) {
1920                 (Some(l @ ExtremeExpr { which: Minimum, .. }), _) => (l, AlwaysTrue), // min <= x
1921                 (Some(l @ ExtremeExpr { which: Maximum, .. }), _) => (l, InequalityImpossible), // max <= x
1922                 (_, Some(r @ ExtremeExpr { which: Minimum, .. })) => (r, InequalityImpossible), // x <= min
1923                 (_, Some(r @ ExtremeExpr { which: Maximum, .. })) => (r, AlwaysTrue), // x <= max
1924                 _ => return None,
1925             }
1926         },
1927         Rel::Ne | Rel::Eq => return None,
1928     })
1929 }
1930
1931 fn detect_extreme_expr<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> Option<ExtremeExpr<'tcx>> {
1932     use crate::types::ExtremeType::{Maximum, Minimum};
1933
1934     let ty = cx.tables().expr_ty(expr);
1935
1936     let cv = constant(cx, cx.tables(), expr)?.0;
1937
1938     let which = match (&ty.kind, cv) {
1939         (&ty::Bool, Constant::Bool(false)) | (&ty::Uint(_), Constant::Int(0)) => Minimum,
1940         (&ty::Int(ity), Constant::Int(i)) if i == unsext(cx.tcx, i128::MIN >> (128 - int_bits(cx.tcx, ity)), ity) => {
1941             Minimum
1942         },
1943
1944         (&ty::Bool, Constant::Bool(true)) => Maximum,
1945         (&ty::Int(ity), Constant::Int(i)) if i == unsext(cx.tcx, i128::MAX >> (128 - int_bits(cx.tcx, ity)), ity) => {
1946             Maximum
1947         },
1948         (&ty::Uint(uty), Constant::Int(i)) if clip(cx.tcx, u128::MAX, uty) == i => Maximum,
1949
1950         _ => return None,
1951     };
1952     Some(ExtremeExpr { which, expr })
1953 }
1954
1955 impl<'tcx> LateLintPass<'tcx> for AbsurdExtremeComparisons {
1956     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1957         use crate::types::AbsurdComparisonResult::{AlwaysFalse, AlwaysTrue, InequalityImpossible};
1958         use crate::types::ExtremeType::{Maximum, Minimum};
1959
1960         if let ExprKind::Binary(ref cmp, ref lhs, ref rhs) = expr.kind {
1961             if let Some((culprit, result)) = detect_absurd_comparison(cx, cmp.node, lhs, rhs) {
1962                 if !expr.span.from_expansion() {
1963                     let msg = "this comparison involving the minimum or maximum element for this \
1964                                type contains a case that is always true or always false";
1965
1966                     let conclusion = match result {
1967                         AlwaysFalse => "this comparison is always false".to_owned(),
1968                         AlwaysTrue => "this comparison is always true".to_owned(),
1969                         InequalityImpossible => format!(
1970                             "the case where the two sides are not equal never occurs, consider using `{} == {}` \
1971                              instead",
1972                             snippet(cx, lhs.span, "lhs"),
1973                             snippet(cx, rhs.span, "rhs")
1974                         ),
1975                     };
1976
1977                     let help = format!(
1978                         "because `{}` is the {} value for this type, {}",
1979                         snippet(cx, culprit.expr.span, "x"),
1980                         match culprit.which {
1981                             Minimum => "minimum",
1982                             Maximum => "maximum",
1983                         },
1984                         conclusion
1985                     );
1986
1987                     span_lint_and_help(cx, ABSURD_EXTREME_COMPARISONS, expr.span, msg, None, &help);
1988                 }
1989             }
1990         }
1991     }
1992 }
1993
1994 declare_clippy_lint! {
1995     /// **What it does:** Checks for comparisons where the relation is always either
1996     /// true or false, but where one side has been upcast so that the comparison is
1997     /// necessary. Only integer types are checked.
1998     ///
1999     /// **Why is this bad?** An expression like `let x : u8 = ...; (x as u32) > 300`
2000     /// will mistakenly imply that it is possible for `x` to be outside the range of
2001     /// `u8`.
2002     ///
2003     /// **Known problems:**
2004     /// https://github.com/rust-lang/rust-clippy/issues/886
2005     ///
2006     /// **Example:**
2007     /// ```rust
2008     /// let x: u8 = 1;
2009     /// (x as u32) > 300;
2010     /// ```
2011     pub INVALID_UPCAST_COMPARISONS,
2012     pedantic,
2013     "a comparison involving an upcast which is always true or false"
2014 }
2015
2016 declare_lint_pass!(InvalidUpcastComparisons => [INVALID_UPCAST_COMPARISONS]);
2017
2018 #[derive(Copy, Clone, Debug, Eq)]
2019 enum FullInt {
2020     S(i128),
2021     U(u128),
2022 }
2023
2024 impl FullInt {
2025     #[allow(clippy::cast_sign_loss)]
2026     #[must_use]
2027     fn cmp_s_u(s: i128, u: u128) -> Ordering {
2028         if s < 0 {
2029             Ordering::Less
2030         } else if u > (i128::MAX as u128) {
2031             Ordering::Greater
2032         } else {
2033             (s as u128).cmp(&u)
2034         }
2035     }
2036 }
2037
2038 impl PartialEq for FullInt {
2039     #[must_use]
2040     fn eq(&self, other: &Self) -> bool {
2041         self.partial_cmp(other).expect("`partial_cmp` only returns `Some(_)`") == Ordering::Equal
2042     }
2043 }
2044
2045 impl PartialOrd for FullInt {
2046     #[must_use]
2047     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2048         Some(match (self, other) {
2049             (&Self::S(s), &Self::S(o)) => s.cmp(&o),
2050             (&Self::U(s), &Self::U(o)) => s.cmp(&o),
2051             (&Self::S(s), &Self::U(o)) => Self::cmp_s_u(s, o),
2052             (&Self::U(s), &Self::S(o)) => Self::cmp_s_u(o, s).reverse(),
2053         })
2054     }
2055 }
2056 impl Ord for FullInt {
2057     #[must_use]
2058     fn cmp(&self, other: &Self) -> Ordering {
2059         self.partial_cmp(other)
2060             .expect("`partial_cmp` for FullInt can never return `None`")
2061     }
2062 }
2063
2064 fn numeric_cast_precast_bounds<'a>(cx: &LateContext<'_>, expr: &'a Expr<'_>) -> Option<(FullInt, FullInt)> {
2065     if let ExprKind::Cast(ref cast_exp, _) = expr.kind {
2066         let pre_cast_ty = cx.tables().expr_ty(cast_exp);
2067         let cast_ty = cx.tables().expr_ty(expr);
2068         // if it's a cast from i32 to u32 wrapping will invalidate all these checks
2069         if cx.layout_of(pre_cast_ty).ok().map(|l| l.size) == cx.layout_of(cast_ty).ok().map(|l| l.size) {
2070             return None;
2071         }
2072         match pre_cast_ty.kind {
2073             ty::Int(int_ty) => Some(match int_ty {
2074                 IntTy::I8 => (FullInt::S(i128::from(i8::MIN)), FullInt::S(i128::from(i8::MAX))),
2075                 IntTy::I16 => (FullInt::S(i128::from(i16::MIN)), FullInt::S(i128::from(i16::MAX))),
2076                 IntTy::I32 => (FullInt::S(i128::from(i32::MIN)), FullInt::S(i128::from(i32::MAX))),
2077                 IntTy::I64 => (FullInt::S(i128::from(i64::MIN)), FullInt::S(i128::from(i64::MAX))),
2078                 IntTy::I128 => (FullInt::S(i128::MIN), FullInt::S(i128::MAX)),
2079                 IntTy::Isize => (FullInt::S(isize::MIN as i128), FullInt::S(isize::MAX as i128)),
2080             }),
2081             ty::Uint(uint_ty) => Some(match uint_ty {
2082                 UintTy::U8 => (FullInt::U(u128::from(u8::MIN)), FullInt::U(u128::from(u8::MAX))),
2083                 UintTy::U16 => (FullInt::U(u128::from(u16::MIN)), FullInt::U(u128::from(u16::MAX))),
2084                 UintTy::U32 => (FullInt::U(u128::from(u32::MIN)), FullInt::U(u128::from(u32::MAX))),
2085                 UintTy::U64 => (FullInt::U(u128::from(u64::MIN)), FullInt::U(u128::from(u64::MAX))),
2086                 UintTy::U128 => (FullInt::U(u128::MIN), FullInt::U(u128::MAX)),
2087                 UintTy::Usize => (FullInt::U(usize::MIN as u128), FullInt::U(usize::MAX as u128)),
2088             }),
2089             _ => None,
2090         }
2091     } else {
2092         None
2093     }
2094 }
2095
2096 fn node_as_const_fullint<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> Option<FullInt> {
2097     let val = constant(cx, cx.tables(), expr)?.0;
2098     if let Constant::Int(const_int) = val {
2099         match cx.tables().expr_ty(expr).kind {
2100             ty::Int(ity) => Some(FullInt::S(sext(cx.tcx, const_int, ity))),
2101             ty::Uint(_) => Some(FullInt::U(const_int)),
2102             _ => None,
2103         }
2104     } else {
2105         None
2106     }
2107 }
2108
2109 fn err_upcast_comparison(cx: &LateContext<'_>, span: Span, expr: &Expr<'_>, always: bool) {
2110     if let ExprKind::Cast(ref cast_val, _) = expr.kind {
2111         span_lint(
2112             cx,
2113             INVALID_UPCAST_COMPARISONS,
2114             span,
2115             &format!(
2116                 "because of the numeric bounds on `{}` prior to casting, this expression is always {}",
2117                 snippet(cx, cast_val.span, "the expression"),
2118                 if always { "true" } else { "false" },
2119             ),
2120         );
2121     }
2122 }
2123
2124 fn upcast_comparison_bounds_err<'tcx>(
2125     cx: &LateContext<'tcx>,
2126     span: Span,
2127     rel: comparisons::Rel,
2128     lhs_bounds: Option<(FullInt, FullInt)>,
2129     lhs: &'tcx Expr<'_>,
2130     rhs: &'tcx Expr<'_>,
2131     invert: bool,
2132 ) {
2133     use crate::utils::comparisons::Rel;
2134
2135     if let Some((lb, ub)) = lhs_bounds {
2136         if let Some(norm_rhs_val) = node_as_const_fullint(cx, rhs) {
2137             if rel == Rel::Eq || rel == Rel::Ne {
2138                 if norm_rhs_val < lb || norm_rhs_val > ub {
2139                     err_upcast_comparison(cx, span, lhs, rel == Rel::Ne);
2140                 }
2141             } else if match rel {
2142                 Rel::Lt => {
2143                     if invert {
2144                         norm_rhs_val < lb
2145                     } else {
2146                         ub < norm_rhs_val
2147                     }
2148                 },
2149                 Rel::Le => {
2150                     if invert {
2151                         norm_rhs_val <= lb
2152                     } else {
2153                         ub <= norm_rhs_val
2154                     }
2155                 },
2156                 Rel::Eq | Rel::Ne => unreachable!(),
2157             } {
2158                 err_upcast_comparison(cx, span, lhs, true)
2159             } else if match rel {
2160                 Rel::Lt => {
2161                     if invert {
2162                         norm_rhs_val >= ub
2163                     } else {
2164                         lb >= norm_rhs_val
2165                     }
2166                 },
2167                 Rel::Le => {
2168                     if invert {
2169                         norm_rhs_val > ub
2170                     } else {
2171                         lb > norm_rhs_val
2172                     }
2173                 },
2174                 Rel::Eq | Rel::Ne => unreachable!(),
2175             } {
2176                 err_upcast_comparison(cx, span, lhs, false)
2177             }
2178         }
2179     }
2180 }
2181
2182 impl<'tcx> LateLintPass<'tcx> for InvalidUpcastComparisons {
2183     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
2184         if let ExprKind::Binary(ref cmp, ref lhs, ref rhs) = expr.kind {
2185             let normalized = comparisons::normalize_comparison(cmp.node, lhs, rhs);
2186             let (rel, normalized_lhs, normalized_rhs) = if let Some(val) = normalized {
2187                 val
2188             } else {
2189                 return;
2190             };
2191
2192             let lhs_bounds = numeric_cast_precast_bounds(cx, normalized_lhs);
2193             let rhs_bounds = numeric_cast_precast_bounds(cx, normalized_rhs);
2194
2195             upcast_comparison_bounds_err(cx, expr.span, rel, lhs_bounds, normalized_lhs, normalized_rhs, false);
2196             upcast_comparison_bounds_err(cx, expr.span, rel, rhs_bounds, normalized_rhs, normalized_lhs, true);
2197         }
2198     }
2199 }
2200
2201 declare_clippy_lint! {
2202     /// **What it does:** Checks for public `impl` or `fn` missing generalization
2203     /// over different hashers and implicitly defaulting to the default hashing
2204     /// algorithm (`SipHash`).
2205     ///
2206     /// **Why is this bad?** `HashMap` or `HashSet` with custom hashers cannot be
2207     /// used with them.
2208     ///
2209     /// **Known problems:** Suggestions for replacing constructors can contain
2210     /// false-positives. Also applying suggestions can require modification of other
2211     /// pieces of code, possibly including external crates.
2212     ///
2213     /// **Example:**
2214     /// ```rust
2215     /// # use std::collections::HashMap;
2216     /// # use std::hash::{Hash, BuildHasher};
2217     /// # trait Serialize {};
2218     /// impl<K: Hash + Eq, V> Serialize for HashMap<K, V> { }
2219     ///
2220     /// pub fn foo(map: &mut HashMap<i32, i32>) { }
2221     /// ```
2222     /// could be rewritten as
2223     /// ```rust
2224     /// # use std::collections::HashMap;
2225     /// # use std::hash::{Hash, BuildHasher};
2226     /// # trait Serialize {};
2227     /// impl<K: Hash + Eq, V, S: BuildHasher> Serialize for HashMap<K, V, S> { }
2228     ///
2229     /// pub fn foo<S: BuildHasher>(map: &mut HashMap<i32, i32, S>) { }
2230     /// ```
2231     pub IMPLICIT_HASHER,
2232     pedantic,
2233     "missing generalization over different hashers"
2234 }
2235
2236 declare_lint_pass!(ImplicitHasher => [IMPLICIT_HASHER]);
2237
2238 impl<'tcx> LateLintPass<'tcx> for ImplicitHasher {
2239     #[allow(clippy::cast_possible_truncation, clippy::too_many_lines)]
2240     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) {
2241         use rustc_span::BytePos;
2242
2243         fn suggestion<'tcx>(
2244             cx: &LateContext<'tcx>,
2245             diag: &mut DiagnosticBuilder<'_>,
2246             generics_span: Span,
2247             generics_suggestion_span: Span,
2248             target: &ImplicitHasherType<'_>,
2249             vis: ImplicitHasherConstructorVisitor<'_, '_, '_>,
2250         ) {
2251             let generics_snip = snippet(cx, generics_span, "");
2252             // trim `<` `>`
2253             let generics_snip = if generics_snip.is_empty() {
2254                 ""
2255             } else {
2256                 &generics_snip[1..generics_snip.len() - 1]
2257             };
2258
2259             multispan_sugg(
2260                 diag,
2261                 "consider adding a type parameter",
2262                 vec![
2263                     (
2264                         generics_suggestion_span,
2265                         format!(
2266                             "<{}{}S: ::std::hash::BuildHasher{}>",
2267                             generics_snip,
2268                             if generics_snip.is_empty() { "" } else { ", " },
2269                             if vis.suggestions.is_empty() {
2270                                 ""
2271                             } else {
2272                                 // request users to add `Default` bound so that generic constructors can be used
2273                                 " + Default"
2274                             },
2275                         ),
2276                     ),
2277                     (
2278                         target.span(),
2279                         format!("{}<{}, S>", target.type_name(), target.type_arguments(),),
2280                     ),
2281                 ],
2282             );
2283
2284             if !vis.suggestions.is_empty() {
2285                 multispan_sugg(diag, "...and use generic constructor", vis.suggestions);
2286             }
2287         }
2288
2289         if !cx.access_levels.is_exported(item.hir_id) {
2290             return;
2291         }
2292
2293         match item.kind {
2294             ItemKind::Impl {
2295                 ref generics,
2296                 self_ty: ref ty,
2297                 ref items,
2298                 ..
2299             } => {
2300                 let mut vis = ImplicitHasherTypeVisitor::new(cx);
2301                 vis.visit_ty(ty);
2302
2303                 for target in &vis.found {
2304                     if differing_macro_contexts(item.span, target.span()) {
2305                         return;
2306                     }
2307
2308                     let generics_suggestion_span = generics.span.substitute_dummy({
2309                         let pos = snippet_opt(cx, item.span.until(target.span()))
2310                             .and_then(|snip| Some(item.span.lo() + BytePos(snip.find("impl")? as u32 + 4)));
2311                         if let Some(pos) = pos {
2312                             Span::new(pos, pos, item.span.data().ctxt)
2313                         } else {
2314                             return;
2315                         }
2316                     });
2317
2318                     let mut ctr_vis = ImplicitHasherConstructorVisitor::new(cx, target);
2319                     for item in items.iter().map(|item| cx.tcx.hir().impl_item(item.id)) {
2320                         ctr_vis.visit_impl_item(item);
2321                     }
2322
2323                     span_lint_and_then(
2324                         cx,
2325                         IMPLICIT_HASHER,
2326                         target.span(),
2327                         &format!(
2328                             "impl for `{}` should be generalized over different hashers",
2329                             target.type_name()
2330                         ),
2331                         move |diag| {
2332                             suggestion(cx, diag, generics.span, generics_suggestion_span, target, ctr_vis);
2333                         },
2334                     );
2335                 }
2336             },
2337             ItemKind::Fn(ref sig, ref generics, body_id) => {
2338                 let body = cx.tcx.hir().body(body_id);
2339
2340                 for ty in sig.decl.inputs {
2341                     let mut vis = ImplicitHasherTypeVisitor::new(cx);
2342                     vis.visit_ty(ty);
2343
2344                     for target in &vis.found {
2345                         if in_external_macro(cx.sess(), generics.span) {
2346                             continue;
2347                         }
2348                         let generics_suggestion_span = generics.span.substitute_dummy({
2349                             let pos = snippet_opt(cx, item.span.until(body.params[0].pat.span))
2350                                 .and_then(|snip| {
2351                                     let i = snip.find("fn")?;
2352                                     Some(item.span.lo() + BytePos((i + (&snip[i..]).find('(')?) as u32))
2353                                 })
2354                                 .expect("failed to create span for type parameters");
2355                             Span::new(pos, pos, item.span.data().ctxt)
2356                         });
2357
2358                         let mut ctr_vis = ImplicitHasherConstructorVisitor::new(cx, target);
2359                         ctr_vis.visit_body(body);
2360
2361                         span_lint_and_then(
2362                             cx,
2363                             IMPLICIT_HASHER,
2364                             target.span(),
2365                             &format!(
2366                                 "parameter of type `{}` should be generalized over different hashers",
2367                                 target.type_name()
2368                             ),
2369                             move |diag| {
2370                                 suggestion(cx, diag, generics.span, generics_suggestion_span, target, ctr_vis);
2371                             },
2372                         );
2373                     }
2374                 }
2375             },
2376             _ => {},
2377         }
2378     }
2379 }
2380
2381 enum ImplicitHasherType<'tcx> {
2382     HashMap(Span, Ty<'tcx>, Cow<'static, str>, Cow<'static, str>),
2383     HashSet(Span, Ty<'tcx>, Cow<'static, str>),
2384 }
2385
2386 impl<'tcx> ImplicitHasherType<'tcx> {
2387     /// Checks that `ty` is a target type without a `BuildHasher`.
2388     fn new(cx: &LateContext<'tcx>, hir_ty: &hir::Ty<'_>) -> Option<Self> {
2389         if let TyKind::Path(QPath::Resolved(None, ref path)) = hir_ty.kind {
2390             let params: Vec<_> = path
2391                 .segments
2392                 .last()
2393                 .as_ref()?
2394                 .args
2395                 .as_ref()?
2396                 .args
2397                 .iter()
2398                 .filter_map(|arg| match arg {
2399                     GenericArg::Type(ty) => Some(ty),
2400                     _ => None,
2401                 })
2402                 .collect();
2403             let params_len = params.len();
2404
2405             let ty = hir_ty_to_ty(cx.tcx, hir_ty);
2406
2407             if is_type_diagnostic_item(cx, ty, sym!(hashmap_type)) && params_len == 2 {
2408                 Some(ImplicitHasherType::HashMap(
2409                     hir_ty.span,
2410                     ty,
2411                     snippet(cx, params[0].span, "K"),
2412                     snippet(cx, params[1].span, "V"),
2413                 ))
2414             } else if is_type_diagnostic_item(cx, ty, sym!(hashset_type)) && params_len == 1 {
2415                 Some(ImplicitHasherType::HashSet(
2416                     hir_ty.span,
2417                     ty,
2418                     snippet(cx, params[0].span, "T"),
2419                 ))
2420             } else {
2421                 None
2422             }
2423         } else {
2424             None
2425         }
2426     }
2427
2428     fn type_name(&self) -> &'static str {
2429         match *self {
2430             ImplicitHasherType::HashMap(..) => "HashMap",
2431             ImplicitHasherType::HashSet(..) => "HashSet",
2432         }
2433     }
2434
2435     fn type_arguments(&self) -> String {
2436         match *self {
2437             ImplicitHasherType::HashMap(.., ref k, ref v) => format!("{}, {}", k, v),
2438             ImplicitHasherType::HashSet(.., ref t) => format!("{}", t),
2439         }
2440     }
2441
2442     fn ty(&self) -> Ty<'tcx> {
2443         match *self {
2444             ImplicitHasherType::HashMap(_, ty, ..) | ImplicitHasherType::HashSet(_, ty, ..) => ty,
2445         }
2446     }
2447
2448     fn span(&self) -> Span {
2449         match *self {
2450             ImplicitHasherType::HashMap(span, ..) | ImplicitHasherType::HashSet(span, ..) => span,
2451         }
2452     }
2453 }
2454
2455 struct ImplicitHasherTypeVisitor<'a, 'tcx> {
2456     cx: &'a LateContext<'tcx>,
2457     found: Vec<ImplicitHasherType<'tcx>>,
2458 }
2459
2460 impl<'a, 'tcx> ImplicitHasherTypeVisitor<'a, 'tcx> {
2461     fn new(cx: &'a LateContext<'tcx>) -> Self {
2462         Self { cx, found: vec![] }
2463     }
2464 }
2465
2466 impl<'a, 'tcx> Visitor<'tcx> for ImplicitHasherTypeVisitor<'a, 'tcx> {
2467     type Map = Map<'tcx>;
2468
2469     fn visit_ty(&mut self, t: &'tcx hir::Ty<'_>) {
2470         if let Some(target) = ImplicitHasherType::new(self.cx, t) {
2471             self.found.push(target);
2472         }
2473
2474         walk_ty(self, t);
2475     }
2476
2477     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
2478         NestedVisitorMap::None
2479     }
2480 }
2481
2482 /// Looks for default-hasher-dependent constructors like `HashMap::new`.
2483 struct ImplicitHasherConstructorVisitor<'a, 'b, 'tcx> {
2484     cx: &'a LateContext<'tcx>,
2485     maybe_typeck_tables: Option<&'tcx TypeckTables<'tcx>>,
2486     target: &'b ImplicitHasherType<'tcx>,
2487     suggestions: BTreeMap<Span, String>,
2488 }
2489
2490 impl<'a, 'b, 'tcx> ImplicitHasherConstructorVisitor<'a, 'b, 'tcx> {
2491     fn new(cx: &'a LateContext<'tcx>, target: &'b ImplicitHasherType<'tcx>) -> Self {
2492         Self {
2493             cx,
2494             maybe_typeck_tables: cx.maybe_typeck_tables(),
2495             target,
2496             suggestions: BTreeMap::new(),
2497         }
2498     }
2499 }
2500
2501 impl<'a, 'b, 'tcx> Visitor<'tcx> for ImplicitHasherConstructorVisitor<'a, 'b, 'tcx> {
2502     type Map = Map<'tcx>;
2503
2504     fn visit_body(&mut self, body: &'tcx Body<'_>) {
2505         let old_maybe_typeck_tables = self.maybe_typeck_tables.replace(self.cx.tcx.body_tables(body.id()));
2506         walk_body(self, body);
2507         self.maybe_typeck_tables = old_maybe_typeck_tables;
2508     }
2509
2510     fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
2511         if_chain! {
2512             if let ExprKind::Call(ref fun, ref args) = e.kind;
2513             if let ExprKind::Path(QPath::TypeRelative(ref ty, ref method)) = fun.kind;
2514             if let TyKind::Path(QPath::Resolved(None, ty_path)) = ty.kind;
2515             then {
2516                 if !TyS::same_type(self.target.ty(), self.maybe_typeck_tables.unwrap().expr_ty(e)) {
2517                     return;
2518                 }
2519
2520                 if match_path(ty_path, &paths::HASHMAP) {
2521                     if method.ident.name == sym!(new) {
2522                         self.suggestions
2523                             .insert(e.span, "HashMap::default()".to_string());
2524                     } else if method.ident.name == sym!(with_capacity) {
2525                         self.suggestions.insert(
2526                             e.span,
2527                             format!(
2528                                 "HashMap::with_capacity_and_hasher({}, Default::default())",
2529                                 snippet(self.cx, args[0].span, "capacity"),
2530                             ),
2531                         );
2532                     }
2533                 } else if match_path(ty_path, &paths::HASHSET) {
2534                     if method.ident.name == sym!(new) {
2535                         self.suggestions
2536                             .insert(e.span, "HashSet::default()".to_string());
2537                     } else if method.ident.name == sym!(with_capacity) {
2538                         self.suggestions.insert(
2539                             e.span,
2540                             format!(
2541                                 "HashSet::with_capacity_and_hasher({}, Default::default())",
2542                                 snippet(self.cx, args[0].span, "capacity"),
2543                             ),
2544                         );
2545                     }
2546                 }
2547             }
2548         }
2549
2550         walk_expr(self, e);
2551     }
2552
2553     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
2554         NestedVisitorMap::OnlyBodies(self.cx.tcx.hir())
2555     }
2556 }
2557
2558 declare_clippy_lint! {
2559     /// **What it does:** Checks for casts of `&T` to `&mut T` anywhere in the code.
2560     ///
2561     /// **Why is this bad?** It’s basically guaranteed to be undefined behaviour.
2562     /// `UnsafeCell` is the only way to obtain aliasable data that is considered
2563     /// mutable.
2564     ///
2565     /// **Known problems:** None.
2566     ///
2567     /// **Example:**
2568     /// ```rust,ignore
2569     /// fn x(r: &i32) {
2570     ///     unsafe {
2571     ///         *(r as *const _ as *mut _) += 1;
2572     ///     }
2573     /// }
2574     /// ```
2575     ///
2576     /// Instead consider using interior mutability types.
2577     ///
2578     /// ```rust
2579     /// use std::cell::UnsafeCell;
2580     ///
2581     /// fn x(r: &UnsafeCell<i32>) {
2582     ///     unsafe {
2583     ///         *r.get() += 1;
2584     ///     }
2585     /// }
2586     /// ```
2587     pub CAST_REF_TO_MUT,
2588     correctness,
2589     "a cast of reference to a mutable pointer"
2590 }
2591
2592 declare_lint_pass!(RefToMut => [CAST_REF_TO_MUT]);
2593
2594 impl<'tcx> LateLintPass<'tcx> for RefToMut {
2595     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
2596         if_chain! {
2597             if let ExprKind::Unary(UnOp::UnDeref, e) = &expr.kind;
2598             if let ExprKind::Cast(e, t) = &e.kind;
2599             if let TyKind::Ptr(MutTy { mutbl: Mutability::Mut, .. }) = t.kind;
2600             if let ExprKind::Cast(e, t) = &e.kind;
2601             if let TyKind::Ptr(MutTy { mutbl: Mutability::Not, .. }) = t.kind;
2602             if let ty::Ref(..) = cx.tables().node_type(e.hir_id).kind;
2603             then {
2604                 span_lint(
2605                     cx,
2606                     CAST_REF_TO_MUT,
2607                     expr.span,
2608                     "casting `&T` to `&mut T` may cause undefined behavior, consider instead using an `UnsafeCell`",
2609                 );
2610             }
2611         }
2612     }
2613 }