]> git.lizzy.rs Git - rust.git/blob - src/tools/clippy/clippy_lints/src/cognitive_complexity.rs
Auto merge of #100848 - xfix:use-metadata-for-slice-len, r=thomcc
[rust.git] / src / tools / clippy / clippy_lints / src / cognitive_complexity.rs
1 //! calculate cognitive complexity and warn about overly complex functions
2
3 use clippy_utils::diagnostics::span_lint_and_help;
4 use clippy_utils::source::snippet_opt;
5 use clippy_utils::ty::is_type_diagnostic_item;
6 use clippy_utils::visitors::for_each_expr;
7 use clippy_utils::LimitStack;
8 use core::ops::ControlFlow;
9 use rustc_ast::ast::Attribute;
10 use rustc_hir::intravisit::FnKind;
11 use rustc_hir::{Body, ExprKind, FnDecl, HirId};
12 use rustc_lint::{LateContext, LateLintPass, LintContext};
13 use rustc_session::{declare_tool_lint, impl_lint_pass};
14 use rustc_span::source_map::Span;
15 use rustc_span::{sym, BytePos};
16
17 declare_clippy_lint! {
18     /// ### What it does
19     /// Checks for methods with high cognitive complexity.
20     ///
21     /// ### Why is this bad?
22     /// Methods of high cognitive complexity tend to be hard to
23     /// both read and maintain. Also LLVM will tend to optimize small methods better.
24     ///
25     /// ### Known problems
26     /// Sometimes it's hard to find a way to reduce the
27     /// complexity.
28     ///
29     /// ### Example
30     /// You'll see it when you get the warning.
31     #[clippy::version = "1.35.0"]
32     pub COGNITIVE_COMPLEXITY,
33     nursery,
34     "functions that should be split up into multiple functions"
35 }
36
37 pub struct CognitiveComplexity {
38     limit: LimitStack,
39 }
40
41 impl CognitiveComplexity {
42     #[must_use]
43     pub fn new(limit: u64) -> Self {
44         Self {
45             limit: LimitStack::new(limit),
46         }
47     }
48 }
49
50 impl_lint_pass!(CognitiveComplexity => [COGNITIVE_COMPLEXITY]);
51
52 impl CognitiveComplexity {
53     #[expect(clippy::cast_possible_truncation)]
54     fn check<'tcx>(
55         &mut self,
56         cx: &LateContext<'tcx>,
57         kind: FnKind<'tcx>,
58         decl: &'tcx FnDecl<'_>,
59         body: &'tcx Body<'_>,
60         body_span: Span,
61     ) {
62         if body_span.from_expansion() {
63             return;
64         }
65
66         let expr = body.value;
67
68         let mut cc = 1u64;
69         let mut returns = 0u64;
70         let _: Option<!> = for_each_expr(expr, |e| {
71             match e.kind {
72                 ExprKind::If(_, _, _) => {
73                     cc += 1;
74                 },
75                 ExprKind::Match(_, arms, _) => {
76                     if arms.len() > 1 {
77                         cc += 1;
78                     }
79                     cc += arms.iter().filter(|arm| arm.guard.is_some()).count() as u64;
80                 },
81                 ExprKind::Ret(_) => returns += 1,
82                 _ => {},
83             }
84             ControlFlow::Continue(())
85         });
86
87         let ret_ty = cx.typeck_results().node_type(expr.hir_id);
88         let ret_adjust = if is_type_diagnostic_item(cx, ret_ty, sym::Result) {
89             returns
90         } else {
91             #[expect(clippy::integer_division)]
92             (returns / 2)
93         };
94
95         // prevent degenerate cases where unreachable code contains `return` statements
96         if cc >= ret_adjust {
97             cc -= ret_adjust;
98         }
99
100         if cc > self.limit.limit() {
101             let fn_span = match kind {
102                 FnKind::ItemFn(ident, _, _) | FnKind::Method(ident, _) => ident.span,
103                 FnKind::Closure => {
104                     let header_span = body_span.with_hi(decl.output.span().lo());
105                     let pos = snippet_opt(cx, header_span).and_then(|snip| {
106                         let low_offset = snip.find('|')?;
107                         let high_offset = 1 + snip.get(low_offset + 1..)?.find('|')?;
108                         let low = header_span.lo() + BytePos(low_offset as u32);
109                         let high = low + BytePos(high_offset as u32 + 1);
110
111                         Some((low, high))
112                     });
113
114                     if let Some((low, high)) = pos {
115                         Span::new(low, high, header_span.ctxt(), header_span.parent())
116                     } else {
117                         return;
118                     }
119                 },
120             };
121
122             span_lint_and_help(
123                 cx,
124                 COGNITIVE_COMPLEXITY,
125                 fn_span,
126                 &format!(
127                     "the function has a cognitive complexity of ({cc}/{})",
128                     self.limit.limit()
129                 ),
130                 None,
131                 "you could split it up into multiple smaller functions",
132             );
133         }
134     }
135 }
136
137 impl<'tcx> LateLintPass<'tcx> for CognitiveComplexity {
138     fn check_fn(
139         &mut self,
140         cx: &LateContext<'tcx>,
141         kind: FnKind<'tcx>,
142         decl: &'tcx FnDecl<'_>,
143         body: &'tcx Body<'_>,
144         span: Span,
145         hir_id: HirId,
146     ) {
147         let def_id = cx.tcx.hir().local_def_id(hir_id);
148         if !cx.tcx.has_attr(def_id.to_def_id(), sym::test) {
149             self.check(cx, kind, decl, body, span);
150         }
151     }
152
153     fn enter_lint_attrs(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) {
154         self.limit.push_attrs(cx.sess(), attrs, "cognitive_complexity");
155     }
156     fn exit_lint_attrs(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) {
157         self.limit.pop_attrs(cx.sess(), attrs, "cognitive_complexity");
158     }
159 }