]> git.lizzy.rs Git - rust.git/blob - src/sync.rs
move rwlock dequeuing to shared code, and use that code for Windows rwlocks
[rust.git] / src / sync.rs
1 use std::collections::{hash_map::Entry, HashMap, VecDeque};
2 use std::convert::TryFrom;
3 use std::num::NonZeroU32;
4 use std::ops::Not;
5
6 use log::trace;
7
8 use rustc_index::vec::{Idx, IndexVec};
9
10 use crate::*;
11
12 /// We cannot use the `newtype_index!` macro because we have to use 0 as a
13 /// sentinel value meaning that the identifier is not assigned. This is because
14 /// the pthreads static initializers initialize memory with zeros (see the
15 /// `src/shims/sync.rs` file).
16 macro_rules! declare_id {
17     ($name: ident) => {
18         /// 0 is used to indicate that the id was not yet assigned and,
19         /// therefore, is not a valid identifier.
20         #[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
21         pub struct $name(NonZeroU32);
22
23         impl $name {
24             // Panics if `id == 0`.
25             pub fn from_u32(id: u32) -> Self {
26                 Self(NonZeroU32::new(id).unwrap())
27             }
28         }
29
30         impl Idx for $name {
31             fn new(idx: usize) -> Self {
32                 // We use 0 as a sentinel value (see the comment above) and,
33                 // therefore, need to shift by one when converting from an index
34                 // into a vector.
35                 let shifted_idx = u32::try_from(idx).unwrap().checked_add(1).unwrap();
36                 $name(NonZeroU32::new(shifted_idx).unwrap())
37             }
38             fn index(self) -> usize {
39                 // See the comment in `Self::new`.
40                 // (This cannot underflow because self is NonZeroU32.)
41                 usize::try_from(self.0.get() - 1).unwrap()
42             }
43         }
44
45         impl $name {
46             pub fn to_u32_scalar<'tcx>(&self) -> Scalar<Tag> {
47                 Scalar::from_u32(self.0.get())
48             }
49         }
50     };
51 }
52
53 declare_id!(MutexId);
54
55 /// The mutex state.
56 #[derive(Default, Debug)]
57 struct Mutex {
58     /// The thread that currently owns the lock.
59     owner: Option<ThreadId>,
60     /// How many times the mutex was locked by the owner.
61     lock_count: usize,
62     /// The queue of threads waiting for this mutex.
63     queue: VecDeque<ThreadId>,
64 }
65
66 declare_id!(RwLockId);
67
68 /// The read-write lock state.
69 #[derive(Default, Debug)]
70 struct RwLock {
71     /// The writer thread that currently owns the lock.
72     writer: Option<ThreadId>,
73     /// The readers that currently own the lock and how many times they acquired
74     /// the lock.
75     readers: HashMap<ThreadId, usize>,
76     /// The queue of writer threads waiting for this lock.
77     writer_queue: VecDeque<ThreadId>,
78     /// The queue of reader threads waiting for this lock.
79     reader_queue: VecDeque<ThreadId>,
80 }
81
82 declare_id!(CondvarId);
83
84 /// A thread waiting on a conditional variable.
85 #[derive(Debug)]
86 struct CondvarWaiter {
87     /// The thread that is waiting on this variable.
88     thread: ThreadId,
89     /// The mutex on which the thread is waiting.
90     mutex: MutexId,
91 }
92
93 /// The conditional variable state.
94 #[derive(Default, Debug)]
95 struct Condvar {
96     waiters: VecDeque<CondvarWaiter>,
97 }
98
99 /// The state of all synchronization variables.
100 #[derive(Default, Debug)]
101 pub(super) struct SynchronizationState {
102     mutexes: IndexVec<MutexId, Mutex>,
103     rwlocks: IndexVec<RwLockId, RwLock>,
104     condvars: IndexVec<CondvarId, Condvar>,
105 }
106
107 // Private extension trait for local helper methods
108 impl<'mir, 'tcx: 'mir> EvalContextExtPriv<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
109 trait EvalContextExtPriv<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
110     /// Take a reader out of the queue waiting for the lock.
111     /// Returns `true` if some thread got the rwlock.
112     #[inline]
113     fn rwlock_dequeue_and_lock_reader(&mut self, id: RwLockId) -> bool {
114         let this = self.eval_context_mut();
115         if let Some(reader) = this.machine.threads.sync.rwlocks[id].reader_queue.pop_front() {
116             this.unblock_thread(reader);
117             this.rwlock_reader_lock(id, reader);
118             true
119         } else {
120             false
121         }
122     }
123
124     /// Take the writer out of the queue waiting for the lock.
125     /// Returns `true` if some thread got the rwlock.
126     #[inline]
127     fn rwlock_dequeue_and_lock_writer(&mut self, id: RwLockId) -> bool {
128         let this = self.eval_context_mut();
129         if let Some(writer) = this.machine.threads.sync.rwlocks[id].writer_queue.pop_front() {
130             this.unblock_thread(writer);
131             this.rwlock_writer_lock(id, writer);
132             true
133         } else {
134             false
135         }
136     }
137
138     /// Take a thread out of the queue waiting for the mutex, and lock
139     /// the mutex for it. Returns `true` if some thread has the mutex now.
140     #[inline]
141     fn mutex_dequeue_and_lock(&mut self, id: MutexId) -> bool {
142         let this = self.eval_context_mut();
143         if let Some(thread) = this.machine.threads.sync.mutexes[id].queue.pop_front() {
144             this.unblock_thread(thread);
145             this.mutex_lock(id, thread);
146             true
147         } else {
148             false
149         }
150     }
151 }
152
153 // Public interface to synchronization primitives. Please note that in most
154 // cases, the function calls are infallible and it is the client's (shim
155 // implementation's) responsibility to detect and deal with erroneous
156 // situations.
157 impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
158 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
159     #[inline]
160     /// Create state for a new mutex.
161     fn mutex_create(&mut self) -> MutexId {
162         let this = self.eval_context_mut();
163         this.machine.threads.sync.mutexes.push(Default::default())
164     }
165
166     #[inline]
167     /// Get the id of the thread that currently owns this lock.
168     fn mutex_get_owner(&mut self, id: MutexId) -> ThreadId {
169         let this = self.eval_context_ref();
170         this.machine.threads.sync.mutexes[id].owner.unwrap()
171     }
172
173     #[inline]
174     /// Check if locked.
175     fn mutex_is_locked(&self, id: MutexId) -> bool {
176         let this = self.eval_context_ref();
177         this.machine.threads.sync.mutexes[id].owner.is_some()
178     }
179
180     /// Lock by setting the mutex owner and increasing the lock count.
181     fn mutex_lock(&mut self, id: MutexId, thread: ThreadId) {
182         let this = self.eval_context_mut();
183         let mutex = &mut this.machine.threads.sync.mutexes[id];
184         if let Some(current_owner) = mutex.owner {
185             assert_eq!(thread, current_owner, "mutex already locked by another thread");
186             assert!(
187                 mutex.lock_count > 0,
188                 "invariant violation: lock_count == 0 iff the thread is unlocked"
189             );
190         } else {
191             mutex.owner = Some(thread);
192         }
193         mutex.lock_count = mutex.lock_count.checked_add(1).unwrap();
194     }
195
196     /// Try unlocking by decreasing the lock count and returning the old lock
197     /// count. If the lock count reaches 0, release the lock and potentially
198     /// give to a new owner. If the lock was not locked by `expected_owner`,
199     /// return `None`.
200     fn mutex_unlock(
201         &mut self,
202         id: MutexId,
203         expected_owner: ThreadId,
204     ) -> Option<usize> {
205         let this = self.eval_context_mut();
206         let mutex = &mut this.machine.threads.sync.mutexes[id];
207         if let Some(current_owner) = mutex.owner {
208             // Mutex is locked.
209             if current_owner != expected_owner {
210                 // Only the owner can unlock the mutex.
211                 return None;
212             }
213             let old_lock_count = mutex.lock_count;
214             mutex.lock_count = old_lock_count
215                 .checked_sub(1)
216                 .expect("invariant violation: lock_count == 0 iff the thread is unlocked");
217             if mutex.lock_count == 0 {
218                 mutex.owner = None;
219                 // The mutex is completely unlocked. Try transfering ownership
220                 // to another thread.
221                 this.mutex_dequeue_and_lock(id);
222             }
223             Some(old_lock_count)
224         } else {
225             // Mutex is not locked.
226             None
227         }
228     }
229
230     #[inline]
231     /// Put the thread into the queue waiting for the mutex.
232     fn mutex_enqueue_and_block(&mut self, id: MutexId, thread: ThreadId) {
233         let this = self.eval_context_mut();
234         assert!(this.mutex_is_locked(id), "queing on unlocked mutex");
235         this.machine.threads.sync.mutexes[id].queue.push_back(thread);
236         this.block_thread(thread);
237     }
238
239     #[inline]
240     /// Create state for a new read write lock.
241     fn rwlock_create(&mut self) -> RwLockId {
242         let this = self.eval_context_mut();
243         this.machine.threads.sync.rwlocks.push(Default::default())
244     }
245
246     #[inline]
247     /// Check if locked.
248     fn rwlock_is_locked(&self, id: RwLockId) -> bool {
249         let this = self.eval_context_ref();
250         let rwlock = &this.machine.threads.sync.rwlocks[id];
251         trace!(
252             "rwlock_is_locked: {:?} writer is {:?} and there are {} reader threads (some of which could hold multiple read locks)",
253             id, rwlock.writer, rwlock.readers.len(),
254         );
255         rwlock.writer.is_some()|| rwlock.readers.is_empty().not()
256     }
257
258     #[inline]
259     /// Check if write locked.
260     fn rwlock_is_write_locked(&self, id: RwLockId) -> bool {
261         let this = self.eval_context_ref();
262         let rwlock = &this.machine.threads.sync.rwlocks[id];
263         trace!("rwlock_is_write_locked: {:?} writer is {:?}", id, rwlock.writer);
264         rwlock.writer.is_some()
265     }
266
267     /// Read-lock the lock by adding the `reader` the list of threads that own
268     /// this lock.
269     fn rwlock_reader_lock(&mut self, id: RwLockId, reader: ThreadId) {
270         let this = self.eval_context_mut();
271         assert!(!this.rwlock_is_write_locked(id), "the lock is write locked");
272         trace!("rwlock_reader_lock: {:?} now also held (one more time) by {:?}", id, reader);
273         let count = this.machine.threads.sync.rwlocks[id].readers.entry(reader).or_insert(0);
274         *count = count.checked_add(1).expect("the reader counter overflowed");
275     }
276
277     /// Try read-unlock the lock for `reader` and potentially give the lock to a new owner.
278     /// Returns `true` if succeeded, `false` if this `reader` did not hold the lock.
279     fn rwlock_reader_unlock(&mut self, id: RwLockId, reader: ThreadId) -> bool {
280         let this = self.eval_context_mut();
281         match this.machine.threads.sync.rwlocks[id].readers.entry(reader) {
282             Entry::Occupied(mut entry) => {
283                 let count = entry.get_mut();
284                 assert!(*count > 0, "rwlock locked with count == 0");
285                 *count -= 1;
286                 if *count == 0 {
287                     trace!("rwlock_reader_unlock: {:?} no longer held by {:?}", id, reader);
288                     entry.remove();
289                 } else {
290                     trace!("rwlock_reader_unlock: {:?} held one less time by {:?}", id, reader);
291                 }
292             }
293             Entry::Vacant(_) => return false, // we did not even own this lock
294         }
295         // The thread was a reader. If the lock is not held any more, give it to a writer.
296         if this.rwlock_is_locked(id).not() {
297             this.rwlock_dequeue_and_lock_writer(id);
298         }
299         true
300     }
301
302     #[inline]
303     /// Put the reader in the queue waiting for the lock and block it.
304     fn rwlock_enqueue_and_block_reader(
305         &mut self,
306         id: RwLockId,
307         reader: ThreadId,
308     ) {
309         let this = self.eval_context_mut();
310         assert!(this.rwlock_is_write_locked(id), "read-queueing on not write locked rwlock");
311         this.machine.threads.sync.rwlocks[id].reader_queue.push_back(reader);
312         this.block_thread(reader);
313     }
314
315     #[inline]
316     /// Lock by setting the writer that owns the lock.
317     fn rwlock_writer_lock(&mut self, id: RwLockId, writer: ThreadId) {
318         let this = self.eval_context_mut();
319         assert!(!this.rwlock_is_locked(id), "the rwlock is already locked");
320         trace!("rwlock_writer_lock: {:?} now held by {:?}", id, writer);
321         this.machine.threads.sync.rwlocks[id].writer = Some(writer);
322     }
323
324     #[inline]
325     /// Try to unlock by removing the writer.
326     fn rwlock_writer_unlock(&mut self, id: RwLockId, expected_writer: ThreadId) -> bool {
327         let this = self.eval_context_mut();
328         let rwlock = &mut this.machine.threads.sync.rwlocks[id];
329         if let Some(current_writer) = rwlock.writer {
330             if current_writer != expected_writer {
331                 // Only the owner can unlock the rwlock.
332                 return false;
333             }
334             rwlock.writer = None;
335             trace!("rwlock_writer_unlock: {:?} unlocked by {:?}", id, expected_writer);
336             // The thread was a writer.
337             //
338             // We are prioritizing writers here against the readers. As a
339             // result, not only readers can starve writers, but also writers can
340             // starve readers.
341             if this.rwlock_dequeue_and_lock_writer(id) {
342                 // Someone got the write lock, nice.
343             } else {
344                 // Give the lock to all readers.
345                 while this.rwlock_dequeue_and_lock_reader(id) {
346                     // Rinse and repeat.
347                 }
348             }
349             true
350         } else {
351             false
352         }
353     }
354
355     #[inline]
356     /// Put the writer in the queue waiting for the lock.
357     fn rwlock_enqueue_and_block_writer(
358         &mut self,
359         id: RwLockId,
360         writer: ThreadId,
361     ) {
362         let this = self.eval_context_mut();
363         assert!(this.rwlock_is_locked(id), "write-queueing on unlocked rwlock");
364         this.machine.threads.sync.rwlocks[id].writer_queue.push_back(writer);
365         this.block_thread(writer);
366     }
367
368     #[inline]
369     /// Create state for a new conditional variable.
370     fn condvar_create(&mut self) -> CondvarId {
371         let this = self.eval_context_mut();
372         this.machine.threads.sync.condvars.push(Default::default())
373     }
374
375     #[inline]
376     /// Is the conditional variable awaited?
377     fn condvar_is_awaited(&mut self, id: CondvarId) -> bool {
378         let this = self.eval_context_mut();
379         !this.machine.threads.sync.condvars[id].waiters.is_empty()
380     }
381
382     /// Mark that the thread is waiting on the conditional variable.
383     fn condvar_wait(&mut self, id: CondvarId, thread: ThreadId, mutex: MutexId) {
384         let this = self.eval_context_mut();
385         let waiters = &mut this.machine.threads.sync.condvars[id].waiters;
386         assert!(waiters.iter().all(|waiter| waiter.thread != thread), "thread is already waiting");
387         waiters.push_back(CondvarWaiter { thread, mutex });
388     }
389
390     /// Wake up some thread (if there is any) sleeping on the conditional
391     /// variable.
392     fn condvar_signal(&mut self, id: CondvarId) -> Option<(ThreadId, MutexId)> {
393         let this = self.eval_context_mut();
394         this.machine.threads.sync.condvars[id]
395             .waiters
396             .pop_front()
397             .map(|waiter| (waiter.thread, waiter.mutex))
398     }
399
400     #[inline]
401     /// Remove the thread from the queue of threads waiting on this conditional variable.
402     fn condvar_remove_waiter(&mut self, id: CondvarId, thread: ThreadId) {
403         let this = self.eval_context_mut();
404         this.machine.threads.sync.condvars[id].waiters.retain(|waiter| waiter.thread != thread);
405     }
406 }