]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
migrate more functions
[rust.git] / src / shims / foreign_items.rs
1 mod windows;
2 mod posix;
3
4 use std::{convert::TryInto, iter};
5
6 use rustc_hir::def_id::DefId;
7 use rustc::mir;
8 use rustc::ty;
9 use rustc::ty::layout::{Align, LayoutOf, Size};
10 use rustc_apfloat::Float;
11 use rustc_span::symbol::sym;
12 use syntax::attr;
13
14 use crate::*;
15
16 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
17 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
18     /// Returns the minimum alignment for the target architecture for allocations of the given size.
19     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
20         let this = self.eval_context_ref();
21         // List taken from `libstd/sys_common/alloc.rs`.
22         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
23             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
24             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
25             arch => bug!("Unsupported target architecture: {}", arch),
26         };
27         // Windows always aligns, even small allocations.
28         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
29         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
30         if kind == MiriMemoryKind::WinHeap || size >= min_align {
31             return Align::from_bytes(min_align).unwrap();
32         }
33         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
34         fn prev_power_of_two(x: u64) -> u64 {
35             let next_pow2 = x.next_power_of_two();
36             if next_pow2 == x {
37                 // x *is* a power of two, just use that.
38                 x
39             } else {
40                 // x is between two powers, so next = 2*prev.
41                 next_pow2 / 2
42             }
43         }
44         Align::from_bytes(prev_power_of_two(size)).unwrap()
45     }
46
47     fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
48         let this = self.eval_context_mut();
49         if size == 0 {
50             Scalar::from_int(0, this.pointer_size())
51         } else {
52             let align = this.min_align(size, kind);
53             let ptr = this.memory.allocate(Size::from_bytes(size), align, kind.into());
54             if zero_init {
55                 // We just allocated this, the access is definitely in-bounds.
56                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
57             }
58             Scalar::Ptr(ptr)
59         }
60     }
61
62     fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
63         let this = self.eval_context_mut();
64         if !this.is_null(ptr)? {
65             let ptr = this.force_ptr(ptr)?;
66             this.memory.deallocate(ptr, None, kind.into())?;
67         }
68         Ok(())
69     }
70
71     fn realloc(
72         &mut self,
73         old_ptr: Scalar<Tag>,
74         new_size: u64,
75         kind: MiriMemoryKind,
76     ) -> InterpResult<'tcx, Scalar<Tag>> {
77         let this = self.eval_context_mut();
78         let new_align = this.min_align(new_size, kind);
79         if this.is_null(old_ptr)? {
80             if new_size == 0 {
81                 Ok(Scalar::from_int(0, this.pointer_size()))
82             } else {
83                 let new_ptr =
84                     this.memory.allocate(Size::from_bytes(new_size), new_align, kind.into());
85                 Ok(Scalar::Ptr(new_ptr))
86             }
87         } else {
88             let old_ptr = this.force_ptr(old_ptr)?;
89             if new_size == 0 {
90                 this.memory.deallocate(old_ptr, None, kind.into())?;
91                 Ok(Scalar::from_int(0, this.pointer_size()))
92             } else {
93                 let new_ptr = this.memory.reallocate(
94                     old_ptr,
95                     None,
96                     Size::from_bytes(new_size),
97                     new_align,
98                     kind.into(),
99                 )?;
100                 Ok(Scalar::Ptr(new_ptr))
101             }
102         }
103     }
104
105     /// Emulates calling a foreign item, failing if the item is not supported.
106     /// This function will handle `goto_block` if needed.
107     /// Returns Ok(None) if the foreign item was completely handled
108     /// by this function.
109     /// Returns Ok(Some(body)) if processing the foreign item
110     /// is delegated to another function.
111     #[rustfmt::skip]
112     fn emulate_foreign_item(
113         &mut self,
114         def_id: DefId,
115         args: &[OpTy<'tcx, Tag>],
116         ret: Option<(PlaceTy<'tcx, Tag>, mir::BasicBlock)>,
117         _unwind: Option<mir::BasicBlock>,
118     ) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
119         let this = self.eval_context_mut();
120         let attrs = this.tcx.get_attrs(def_id);
121         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
122             Some(name) => name.as_str(),
123             None => this.tcx.item_name(def_id).as_str(),
124         };
125         // Strip linker suffixes (seen on 32-bit macOS).
126         let link_name = link_name.trim_end_matches("$UNIX2003");
127         let tcx = &{ this.tcx.tcx };
128
129         // First: functions that diverge.
130         let (dest, ret) = match link_name {
131             // Note that this matches calls to the *foreign* item `__rust_start_panic* -
132             // that is, calls to `extern "Rust" { fn __rust_start_panic(...) }`.
133             // We forward this to the underlying *implementation* in the panic runtime crate.
134             // Normally, this will be either `libpanic_unwind` or `libpanic_abort`, but it could
135             // also be a custom user-provided implementation via `#![feature(panic_runtime)]`
136             "__rust_start_panic" => {
137                 // FIXME we might want to cache this... but it's not really performance-critical.
138                 let panic_runtime = tcx
139                     .crates()
140                     .iter()
141                     .find(|cnum| tcx.is_panic_runtime(**cnum))
142                     .expect("No panic runtime found!");
143                 let panic_runtime = tcx.crate_name(*panic_runtime);
144                 let start_panic_instance =
145                     this.resolve_path(&[&*panic_runtime.as_str(), "__rust_start_panic"])?;
146                 return Ok(Some(&*this.load_mir(start_panic_instance.def, None)?));
147             }
148             // Similarly, we forward calls to the `panic_impl` foreign item to its implementation.
149             // The implementation is provided by the function with the `#[panic_handler]` attribute.
150             "panic_impl" => {
151                 let panic_impl_id = this.tcx.lang_items().panic_impl().unwrap();
152                 let panic_impl_instance = ty::Instance::mono(*this.tcx, panic_impl_id);
153                 return Ok(Some(&*this.load_mir(panic_impl_instance.def, None)?));
154             }
155
156             | "exit"
157             | "ExitProcess"
158             => {
159                 // it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
160                 let code = this.read_scalar(args[0])?.to_i32()?;
161                 throw_machine_stop!(TerminationInfo::Exit(code.into()));
162             }
163             _ => {
164                 if let Some(p) = ret {
165                     p
166                 } else {
167                     throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
168                 }
169             }
170         };
171
172         // Next: functions that return.
173         match link_name {
174             "__rust_maybe_catch_panic" => {
175                 this.handle_catch_panic(args, dest, ret)?;
176                 return Ok(None);
177             }
178
179             _ => this.emulate_foreign_item_by_name(link_name, args, dest)?,
180         };
181
182         this.dump_place(*dest);
183         this.go_to_block(ret);
184
185         Ok(None)
186     }
187
188     fn emulate_foreign_item_by_name(
189         &mut self,
190         link_name: &str,
191         args: &[OpTy<'tcx, Tag>],
192         dest: PlaceTy<'tcx, Tag>,
193     ) -> InterpResult<'tcx> {
194         let this = self.eval_context_mut();
195         let tcx = &{ this.tcx.tcx };
196
197         match link_name {
198             "malloc" => {
199                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
200                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
201                 this.write_scalar(res, dest)?;
202             }
203             "calloc" => {
204                 let items = this.read_scalar(args[0])?.to_machine_usize(this)?;
205                 let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
206                 let size =
207                     items.checked_mul(len).ok_or_else(|| err_ub_format!("overflow during calloc size computation"))?;
208                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
209                 this.write_scalar(res, dest)?;
210             }
211             "free" => {
212                 let ptr = this.read_scalar(args[0])?.not_undef()?;
213                 this.free(ptr, MiriMemoryKind::C)?;
214             }
215             "realloc" => {
216                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
217                 let new_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
218                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
219                 this.write_scalar(res, dest)?;
220             }
221
222             "__rust_alloc" => {
223                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
224                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
225                 if size == 0 {
226                     throw_unsup!(HeapAllocZeroBytes);
227                 }
228                 if !align.is_power_of_two() {
229                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
230                 }
231                 let ptr = this.memory.allocate(
232                     Size::from_bytes(size),
233                     Align::from_bytes(align).unwrap(),
234                     MiriMemoryKind::Rust.into(),
235                 );
236                 this.write_scalar(ptr, dest)?;
237             }
238             "__rust_alloc_zeroed" => {
239                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
240                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
241                 if size == 0 {
242                     throw_unsup!(HeapAllocZeroBytes);
243                 }
244                 if !align.is_power_of_two() {
245                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
246                 }
247                 let ptr = this.memory.allocate(
248                     Size::from_bytes(size),
249                     Align::from_bytes(align).unwrap(),
250                     MiriMemoryKind::Rust.into(),
251                 );
252                 // We just allocated this, the access is definitely in-bounds.
253                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
254                 this.write_scalar(ptr, dest)?;
255             }
256             "__rust_dealloc" => {
257                 let ptr = this.read_scalar(args[0])?.not_undef()?;
258                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
259                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
260                 if old_size == 0 {
261                     throw_unsup!(HeapAllocZeroBytes);
262                 }
263                 if !align.is_power_of_two() {
264                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
265                 }
266                 let ptr = this.force_ptr(ptr)?;
267                 this.memory.deallocate(
268                     ptr,
269                     Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
270                     MiriMemoryKind::Rust.into(),
271                 )?;
272             }
273             "__rust_realloc" => {
274                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
275                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
276                 let new_size = this.read_scalar(args[3])?.to_machine_usize(this)?;
277                 if old_size == 0 || new_size == 0 {
278                     throw_unsup!(HeapAllocZeroBytes);
279                 }
280                 if !align.is_power_of_two() {
281                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
282                 }
283                 let ptr = this.force_ptr(this.read_scalar(args[0])?.not_undef()?)?;
284                 let align = Align::from_bytes(align).unwrap();
285                 let new_ptr = this.memory.reallocate(
286                     ptr,
287                     Some((Size::from_bytes(old_size), align)),
288                     Size::from_bytes(new_size),
289                     align,
290                     MiriMemoryKind::Rust.into(),
291                 )?;
292                 this.write_scalar(new_ptr, dest)?;
293             }
294
295             "memcmp" => {
296                 let left = this.read_scalar(args[0])?.not_undef()?;
297                 let right = this.read_scalar(args[1])?.not_undef()?;
298                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_machine_usize(this)?);
299
300                 let result = {
301                     let left_bytes = this.memory.read_bytes(left, n)?;
302                     let right_bytes = this.memory.read_bytes(right, n)?;
303
304                     use std::cmp::Ordering::*;
305                     match left_bytes.cmp(right_bytes) {
306                         Less => -1i32,
307                         Equal => 0,
308                         Greater => 1,
309                     }
310                 };
311
312                 this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
313             }
314
315             "memchr" => {
316                 let ptr = this.read_scalar(args[0])?.not_undef()?;
317                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
318                 let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
319                 let idx = this
320                     .memory
321                     .read_bytes(ptr, Size::from_bytes(num))?
322                     .iter()
323                     .position(|&c| c == val);
324                 if let Some(idx) = idx {
325                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
326                     this.write_scalar(new_ptr, dest)?;
327                 } else {
328                     this.write_null(dest)?;
329                 }
330             }
331
332
333             "rename" => {
334                 let result = this.rename(args[0], args[1])?;
335                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
336             }
337
338             "strlen" => {
339                 let ptr = this.read_scalar(args[0])?.not_undef()?;
340                 let n = this.memory.read_c_str(ptr)?.len();
341                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
342             }
343
344             // math functions
345             | "cbrtf"
346             | "coshf"
347             | "sinhf"
348             | "tanf"
349             | "acosf"
350             | "asinf"
351             | "atanf"
352             => {
353                 // FIXME: Using host floats.
354                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
355                 let f = match link_name {
356                     "cbrtf" => f.cbrt(),
357                     "coshf" => f.cosh(),
358                     "sinhf" => f.sinh(),
359                     "tanf" => f.tan(),
360                     "acosf" => f.acos(),
361                     "asinf" => f.asin(),
362                     "atanf" => f.atan(),
363                     _ => bug!(),
364                 };
365                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
366             }
367             // underscore case for windows
368             | "_hypotf"
369             | "hypotf"
370             | "atan2f"
371             => {
372                 // FIXME: Using host floats.
373                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
374                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
375                 let n = match link_name {
376                     "_hypotf" | "hypotf" => f1.hypot(f2),
377                     "atan2f" => f1.atan2(f2),
378                     _ => bug!(),
379                 };
380                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
381             }
382
383             | "cbrt"
384             | "cosh"
385             | "sinh"
386             | "tan"
387             | "acos"
388             | "asin"
389             | "atan"
390             => {
391                 // FIXME: Using host floats.
392                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
393                 let f = match link_name {
394                     "cbrt" => f.cbrt(),
395                     "cosh" => f.cosh(),
396                     "sinh" => f.sinh(),
397                     "tan" => f.tan(),
398                     "acos" => f.acos(),
399                     "asin" => f.asin(),
400                     "atan" => f.atan(),
401                     _ => bug!(),
402                 };
403                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
404             }
405             // underscore case for windows, here and below
406             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
407             | "_hypot"
408             | "hypot"
409             | "atan2"
410             => {
411                 // FIXME: Using host floats.
412                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
413                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
414                 let n = match link_name {
415                     "_hypot" | "hypot" => f1.hypot(f2),
416                     "atan2" => f1.atan2(f2),
417                     _ => bug!(),
418                 };
419                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
420             }
421             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
422             | "_ldexp"
423             | "ldexp"
424             | "scalbn"
425             => {
426                 let x = this.read_scalar(args[0])?.to_f64()?;
427                 let exp = this.read_scalar(args[1])?.to_i32()?;
428
429                 // Saturating cast to i16. Even those are outside the valid exponent range to
430                 // `scalbn` below will do its over/underflow handling.
431                 let exp = if exp > i16::max_value() as i32 {
432                     i16::max_value()
433                 } else if exp < i16::min_value() as i32 {
434                     i16::min_value()
435                 } else {
436                     exp.try_into().unwrap()
437                 };
438
439                 let res = x.scalbn(exp);
440                 this.write_scalar(Scalar::from_f64(res), dest)?;
441             }
442
443             // Some things needed for `sys::thread` initialization to go through.
444             | "signal"
445             | "sigaction"
446             | "sigaltstack"
447             => {
448                 this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
449             }
450
451             "sysconf" => {
452                 let name = this.read_scalar(args[0])?.to_i32()?;
453
454                 trace!("sysconf() called with name {}", name);
455                 // TODO: Cache the sysconf integers via Miri's global cache.
456                 let paths = &[
457                     (&["libc", "_SC_PAGESIZE"], Scalar::from_int(PAGE_SIZE, dest.layout.size)),
458                     (&["libc", "_SC_GETPW_R_SIZE_MAX"], Scalar::from_int(-1, dest.layout.size)),
459                     (
460                         &["libc", "_SC_NPROCESSORS_ONLN"],
461                         Scalar::from_int(NUM_CPUS, dest.layout.size),
462                     ),
463                 ];
464                 let mut result = None;
465                 for &(path, path_value) in paths {
466                     if let Some(val) = this.eval_path_scalar(path)? {
467                         let val = val.to_i32()?;
468                         if val == name {
469                             result = Some(path_value);
470                             break;
471                         }
472                     }
473                 }
474                 if let Some(result) = result {
475                     this.write_scalar(result, dest)?;
476                 } else {
477                     throw_unsup_format!("Unimplemented sysconf name: {}", name)
478                 }
479             }
480
481             "sched_getaffinity" => {
482                 // Return an error; `num_cpus` then falls back to `sysconf`.
483                 this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
484             }
485
486             "isatty" => {
487                 this.write_null(dest)?;
488             }
489
490             // Hook pthread calls that go to the thread-local storage memory subsystem.
491             "pthread_key_create" => {
492                 let key_place = this.deref_operand(args[0])?;
493
494                 // Extract the function type out of the signature (that seems easier than constructing it ourselves).
495                 let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
496                     Some(dtor_ptr) => Some(this.memory.get_fn(dtor_ptr)?.as_instance()?),
497                     None => None,
498                 };
499
500                 // Figure out how large a pthread TLS key actually is.
501                 // This is `libc::pthread_key_t`.
502                 let key_type = args[0].layout.ty
503                     .builtin_deref(true)
504                     .ok_or_else(|| err_ub_format!(
505                         "wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
506                     ))?
507                     .ty;
508                 let key_layout = this.layout_of(key_type)?;
509
510                 // Create key and write it into the memory where `key_ptr` wants it.
511                 let key = this.machine.tls.create_tls_key(dtor) as u128;
512                 if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128)
513                 {
514                     throw_unsup!(OutOfTls);
515                 }
516
517                 this.write_scalar(Scalar::from_uint(key, key_layout.size), key_place.into())?;
518
519                 // Return success (`0`).
520                 this.write_null(dest)?;
521             }
522             "pthread_key_delete" => {
523                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
524                 this.machine.tls.delete_tls_key(key)?;
525                 // Return success (0)
526                 this.write_null(dest)?;
527             }
528             "pthread_getspecific" => {
529                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
530                 let ptr = this.machine.tls.load_tls(key, tcx)?;
531                 this.write_scalar(ptr, dest)?;
532             }
533             "pthread_setspecific" => {
534                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
535                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
536                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
537
538                 // Return success (`0`).
539                 this.write_null(dest)?;
540             }
541
542             // Stack size/address stuff.
543             | "pthread_attr_init"
544             | "pthread_attr_destroy"
545             | "pthread_self"
546             | "pthread_attr_setstacksize" => {
547                 this.write_null(dest)?;
548             }
549             "pthread_attr_getstack" => {
550                 let addr_place = this.deref_operand(args[1])?;
551                 let size_place = this.deref_operand(args[2])?;
552
553                 this.write_scalar(
554                     Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
555                     addr_place.into(),
556                 )?;
557                 this.write_scalar(
558                     Scalar::from_uint(STACK_SIZE, size_place.layout.size),
559                     size_place.into(),
560                 )?;
561
562                 // Return success (`0`).
563                 this.write_null(dest)?;
564             }
565
566             // We don't support threading. (Also for Windows.)
567             | "pthread_create"
568             | "CreateThread"
569             => {
570                 throw_unsup_format!("Miri does not support threading");
571             }
572
573             // Stub out calls for condvar, mutex and rwlock, to just return `0`.
574             | "pthread_mutexattr_init"
575             | "pthread_mutexattr_settype"
576             | "pthread_mutex_init"
577             | "pthread_mutexattr_destroy"
578             | "pthread_mutex_lock"
579             | "pthread_mutex_unlock"
580             | "pthread_mutex_destroy"
581             | "pthread_rwlock_rdlock"
582             | "pthread_rwlock_unlock"
583             | "pthread_rwlock_wrlock"
584             | "pthread_rwlock_destroy"
585             | "pthread_condattr_init"
586             | "pthread_condattr_setclock"
587             | "pthread_cond_init"
588             | "pthread_condattr_destroy"
589             | "pthread_cond_destroy"
590             => {
591                 this.write_null(dest)?;
592             }
593
594             // We don't support fork so we don't have to do anything for atfork.
595             "pthread_atfork" => {
596                 this.write_null(dest)?;
597             }
598
599             "posix_fadvise" => {
600                 // fadvise is only informational, we can ignore it.
601                 this.write_null(dest)?;
602             }
603
604             "mmap" => {
605                 // This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
606                 let addr = this.read_scalar(args[0])?.not_undef()?;
607                 this.write_scalar(addr, dest)?;
608             }
609             "mprotect" => {
610                 this.write_null(dest)?;
611             }
612
613             _ => match this.tcx.sess.target.target.target_os.to_lowercase().as_str() {
614                 "linux" | "macos" => posix::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest)?,
615                 "windows" => windows::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest)?,
616                 target => throw_unsup_format!("The {} target platform is not supported", target),
617             }
618         };
619
620         Ok(())
621     }
622
623     /// Evaluates the scalar at the specified path. Returns Some(val)
624     /// if the path could be resolved, and None otherwise
625     fn eval_path_scalar(
626         &mut self,
627         path: &[&str],
628     ) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
629         let this = self.eval_context_mut();
630         if let Ok(instance) = this.resolve_path(path) {
631             let cid = GlobalId { instance, promoted: None };
632             let const_val = this.const_eval_raw(cid)?;
633             let const_val = this.read_scalar(const_val.into())?;
634             return Ok(Some(const_val));
635         }
636         return Ok(None);
637     }
638 }