]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
Rustfmt
[rust.git] / src / shims / foreign_items.rs
1 use std::convert::TryInto;
2
3 use rustc::hir::def_id::DefId;
4 use rustc::mir;
5 use rustc::ty::layout::{Align, LayoutOf, Size};
6 use rustc_apfloat::Float;
7 use syntax::attr;
8 use syntax::symbol::sym;
9
10 use crate::*;
11
12 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
13 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
14     /// Returns the minimum alignment for the target architecture for allocations of the given size.
15     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
16         let this = self.eval_context_ref();
17         // List taken from `libstd/sys_common/alloc.rs`.
18         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
19             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
20             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
21             arch => bug!("Unsupported target architecture: {}", arch),
22         };
23         // Windows always aligns, even small allocations.
24         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
25         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
26         if kind == MiriMemoryKind::WinHeap || size >= min_align {
27             return Align::from_bytes(min_align).unwrap();
28         }
29         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
30         fn prev_power_of_two(x: u64) -> u64 {
31             let next_pow2 = x.next_power_of_two();
32             if next_pow2 == x {
33                 // x *is* a power of two, just use that.
34                 x
35             } else {
36                 // x is between two powers, so next = 2*prev.
37                 next_pow2 / 2
38             }
39         }
40         Align::from_bytes(prev_power_of_two(size)).unwrap()
41     }
42
43     fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
44         let this = self.eval_context_mut();
45         let tcx = &{ this.tcx.tcx };
46         if size == 0 {
47             Scalar::from_int(0, this.pointer_size())
48         } else {
49             let align = this.min_align(size, kind);
50             let ptr = this
51                 .memory_mut()
52                 .allocate(Size::from_bytes(size), align, kind.into());
53             if zero_init {
54                 // We just allocated this, the access cannot fail
55                 this.memory_mut()
56                     .get_mut(ptr.alloc_id)
57                     .unwrap()
58                     .write_repeat(tcx, ptr, 0, Size::from_bytes(size))
59                     .unwrap();
60             }
61             Scalar::Ptr(ptr)
62         }
63     }
64
65     fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
66         let this = self.eval_context_mut();
67         if !this.is_null(ptr)? {
68             let ptr = this.force_ptr(ptr)?;
69             this.memory_mut().deallocate(ptr, None, kind.into())?;
70         }
71         Ok(())
72     }
73
74     fn realloc(
75         &mut self,
76         old_ptr: Scalar<Tag>,
77         new_size: u64,
78         kind: MiriMemoryKind,
79     ) -> InterpResult<'tcx, Scalar<Tag>> {
80         let this = self.eval_context_mut();
81         let new_align = this.min_align(new_size, kind);
82         if this.is_null(old_ptr)? {
83             if new_size == 0 {
84                 Ok(Scalar::from_int(0, this.pointer_size()))
85             } else {
86                 let new_ptr =
87                     this.memory_mut()
88                         .allocate(Size::from_bytes(new_size), new_align, kind.into());
89                 Ok(Scalar::Ptr(new_ptr))
90             }
91         } else {
92             let old_ptr = this.force_ptr(old_ptr)?;
93             let memory = this.memory_mut();
94             if new_size == 0 {
95                 memory.deallocate(old_ptr, None, kind.into())?;
96                 Ok(Scalar::from_int(0, this.pointer_size()))
97             } else {
98                 let new_ptr = memory.reallocate(
99                     old_ptr,
100                     None,
101                     Size::from_bytes(new_size),
102                     new_align,
103                     kind.into(),
104                 )?;
105                 Ok(Scalar::Ptr(new_ptr))
106             }
107         }
108     }
109
110     /// Emulates calling a foreign item, failing if the item is not supported.
111     /// This function will handle `goto_block` if needed.
112     fn emulate_foreign_item(
113         &mut self,
114         def_id: DefId,
115         args: &[OpTy<'tcx, Tag>],
116         dest: Option<PlaceTy<'tcx, Tag>>,
117         ret: Option<mir::BasicBlock>,
118     ) -> InterpResult<'tcx> {
119         let this = self.eval_context_mut();
120         let attrs = this.tcx.get_attrs(def_id);
121         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
122             Some(name) => name.as_str(),
123             None => this.tcx.item_name(def_id).as_str(),
124         };
125         // Strip linker suffixes (seen on 32-bit macOS).
126         let link_name = link_name.trim_end_matches("$UNIX2003");
127         let tcx = &{ this.tcx.tcx };
128
129         // First: functions that diverge.
130         match link_name {
131             "__rust_start_panic" | "panic_impl" => {
132                 throw_unsup_format!("the evaluated program panicked");
133             }
134             "exit" | "ExitProcess" => {
135                 // it's really u32 for ExitProcess, but we have to put it into the `Exit` error variant anyway
136                 let code = this.read_scalar(args[0])?.to_i32()?;
137                 return Err(InterpError::Exit(code).into());
138             }
139             _ => {
140                 if dest.is_none() {
141                     throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
142                 }
143             }
144         }
145
146         // Next: functions that assume a ret and dest.
147         let dest = dest.expect("we already checked for a dest");
148         let ret = ret.expect("dest is `Some` but ret is `None`");
149         match link_name {
150             "malloc" => {
151                 let size = this.read_scalar(args[0])?.to_usize(this)?;
152                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
153                 this.write_scalar(res, dest)?;
154             }
155             "calloc" => {
156                 let items = this.read_scalar(args[0])?.to_usize(this)?;
157                 let len = this.read_scalar(args[1])?.to_usize(this)?;
158                 let size = items
159                     .checked_mul(len)
160                     .ok_or_else(|| err_panic!(Overflow(mir::BinOp::Mul)))?;
161                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
162                 this.write_scalar(res, dest)?;
163             }
164             "posix_memalign" => {
165                 let ret = this.deref_operand(args[0])?;
166                 let align = this.read_scalar(args[1])?.to_usize(this)?;
167                 let size = this.read_scalar(args[2])?.to_usize(this)?;
168                 // Align must be power of 2, and also at least ptr-sized (POSIX rules).
169                 if !align.is_power_of_two() {
170                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
171                 }
172                 if align < this.pointer_size().bytes() {
173                     throw_ub_format!(
174                         "posix_memalign: alignment must be at least the size of a pointer, but is {}",
175                         align,
176                     );
177                 }
178
179                 if size == 0 {
180                     this.write_null(ret.into())?;
181                 } else {
182                     let ptr = this.memory_mut().allocate(
183                         Size::from_bytes(size),
184                         Align::from_bytes(align).unwrap(),
185                         MiriMemoryKind::C.into(),
186                     );
187                     this.write_scalar(Scalar::Ptr(ptr), ret.into())?;
188                 }
189                 this.write_null(dest)?;
190             }
191             "free" => {
192                 let ptr = this.read_scalar(args[0])?.not_undef()?;
193                 this.free(ptr, MiriMemoryKind::C)?;
194             }
195             "realloc" => {
196                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
197                 let new_size = this.read_scalar(args[1])?.to_usize(this)?;
198                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
199                 this.write_scalar(res, dest)?;
200             }
201
202             "__rust_alloc" => {
203                 let size = this.read_scalar(args[0])?.to_usize(this)?;
204                 let align = this.read_scalar(args[1])?.to_usize(this)?;
205                 if size == 0 {
206                     throw_unsup!(HeapAllocZeroBytes);
207                 }
208                 if !align.is_power_of_two() {
209                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
210                 }
211                 let ptr = this.memory_mut().allocate(
212                     Size::from_bytes(size),
213                     Align::from_bytes(align).unwrap(),
214                     MiriMemoryKind::Rust.into(),
215                 );
216                 this.write_scalar(Scalar::Ptr(ptr), dest)?;
217             }
218             "__rust_alloc_zeroed" => {
219                 let size = this.read_scalar(args[0])?.to_usize(this)?;
220                 let align = this.read_scalar(args[1])?.to_usize(this)?;
221                 if size == 0 {
222                     throw_unsup!(HeapAllocZeroBytes);
223                 }
224                 if !align.is_power_of_two() {
225                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
226                 }
227                 let ptr = this.memory_mut().allocate(
228                     Size::from_bytes(size),
229                     Align::from_bytes(align).unwrap(),
230                     MiriMemoryKind::Rust.into(),
231                 );
232                 // We just allocated this, the access cannot fail
233                 this.memory_mut()
234                     .get_mut(ptr.alloc_id)
235                     .unwrap()
236                     .write_repeat(tcx, ptr, 0, Size::from_bytes(size))
237                     .unwrap();
238                 this.write_scalar(Scalar::Ptr(ptr), dest)?;
239             }
240             "__rust_dealloc" => {
241                 let ptr = this.read_scalar(args[0])?.not_undef()?;
242                 let old_size = this.read_scalar(args[1])?.to_usize(this)?;
243                 let align = this.read_scalar(args[2])?.to_usize(this)?;
244                 if old_size == 0 {
245                     throw_unsup!(HeapAllocZeroBytes);
246                 }
247                 if !align.is_power_of_two() {
248                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
249                 }
250                 let ptr = this.force_ptr(ptr)?;
251                 this.memory_mut().deallocate(
252                     ptr,
253                     Some((
254                         Size::from_bytes(old_size),
255                         Align::from_bytes(align).unwrap(),
256                     )),
257                     MiriMemoryKind::Rust.into(),
258                 )?;
259             }
260             "__rust_realloc" => {
261                 let ptr = this.read_scalar(args[0])?.to_ptr()?;
262                 let old_size = this.read_scalar(args[1])?.to_usize(this)?;
263                 let align = this.read_scalar(args[2])?.to_usize(this)?;
264                 let new_size = this.read_scalar(args[3])?.to_usize(this)?;
265                 if old_size == 0 || new_size == 0 {
266                     throw_unsup!(HeapAllocZeroBytes);
267                 }
268                 if !align.is_power_of_two() {
269                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
270                 }
271                 let align = Align::from_bytes(align).unwrap();
272                 let new_ptr = this.memory_mut().reallocate(
273                     ptr,
274                     Some((Size::from_bytes(old_size), align)),
275                     Size::from_bytes(new_size),
276                     align,
277                     MiriMemoryKind::Rust.into(),
278                 )?;
279                 this.write_scalar(Scalar::Ptr(new_ptr), dest)?;
280             }
281
282             "syscall" => {
283                 let sys_getrandom = this
284                     .eval_path_scalar(&["libc", "SYS_getrandom"])?
285                     .expect("Failed to get libc::SYS_getrandom")
286                     .to_usize(this)?;
287
288                 // `libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)`
289                 // is called if a `HashMap` is created the regular way (e.g. HashMap<K, V>).
290                 match this.read_scalar(args[0])?.to_usize(this)? {
291                     id if id == sys_getrandom => {
292                         // The first argument is the syscall id,
293                         // so skip over it.
294                         linux_getrandom(this, &args[1..], dest)?;
295                     }
296                     id => throw_unsup_format!("miri does not support syscall ID {}", id),
297                 }
298             }
299
300             "getrandom" => {
301                 linux_getrandom(this, args, dest)?;
302             }
303
304             "dlsym" => {
305                 let _handle = this.read_scalar(args[0])?;
306                 let symbol = this.read_scalar(args[1])?.not_undef()?;
307                 let symbol_name = this.memory().read_c_str(symbol)?;
308                 let err = format!("bad c unicode symbol: {:?}", symbol_name);
309                 let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
310                 if let Some(dlsym) = Dlsym::from_str(symbol_name)? {
311                     let ptr = this.memory_mut().create_fn_alloc(FnVal::Other(dlsym));
312                     this.write_scalar(Scalar::from(ptr), dest)?;
313                 } else {
314                     this.write_null(dest)?;
315                 }
316             }
317
318             "__rust_maybe_catch_panic" => {
319                 // fn __rust_maybe_catch_panic(
320                 //     f: fn(*mut u8),
321                 //     data: *mut u8,
322                 //     data_ptr: *mut usize,
323                 //     vtable_ptr: *mut usize,
324                 // ) -> u32
325                 // We abort on panic, so not much is going on here, but we still have to call the closure.
326                 let f = this.read_scalar(args[0])?.not_undef()?;
327                 let data = this.read_scalar(args[1])?.not_undef()?;
328                 let f_instance = this.memory().get_fn(f)?.as_instance()?;
329                 this.write_null(dest)?;
330                 trace!("__rust_maybe_catch_panic: {:?}", f_instance);
331
332                 // Now we make a function call.
333                 // TODO: consider making this reusable? `InterpCx::step` does something similar
334                 // for the TLS destructors, and of course `eval_main`.
335                 let mir = this.load_mir(f_instance.def, None)?;
336                 let ret_place =
337                     MPlaceTy::dangling(this.layout_of(this.tcx.mk_unit())?, this).into();
338                 this.push_stack_frame(
339                     f_instance,
340                     mir.span,
341                     mir,
342                     Some(ret_place),
343                     // Directly return to caller.
344                     StackPopCleanup::Goto(Some(ret)),
345                 )?;
346                 let mut args = this.frame().body.args_iter();
347
348                 let arg_local = args
349                     .next()
350                     .expect("Argument to __rust_maybe_catch_panic does not take enough arguments.");
351                 let arg_dest = this.local_place(arg_local)?;
352                 this.write_scalar(data, arg_dest)?;
353
354                 assert!(
355                     args.next().is_none(),
356                     "__rust_maybe_catch_panic argument has more arguments than expected"
357                 );
358
359                 // We ourselves will return `0`, eventually (because we will not return if we paniced).
360                 this.write_null(dest)?;
361
362                 // Don't fall through, we do *not* want to `goto_block`!
363                 return Ok(());
364             }
365
366             "memcmp" => {
367                 let left = this.read_scalar(args[0])?.not_undef()?;
368                 let right = this.read_scalar(args[1])?.not_undef()?;
369                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_usize(this)?);
370
371                 let result = {
372                     let left_bytes = this.memory().read_bytes(left, n)?;
373                     let right_bytes = this.memory().read_bytes(right, n)?;
374
375                     use std::cmp::Ordering::*;
376                     match left_bytes.cmp(right_bytes) {
377                         Less => -1i32,
378                         Equal => 0,
379                         Greater => 1,
380                     }
381                 };
382
383                 this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
384             }
385
386             "memrchr" => {
387                 let ptr = this.read_scalar(args[0])?.not_undef()?;
388                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
389                 let num = this.read_scalar(args[2])?.to_usize(this)?;
390                 if let Some(idx) = this
391                     .memory()
392                     .read_bytes(ptr, Size::from_bytes(num))?
393                     .iter()
394                     .rev()
395                     .position(|&c| c == val)
396                 {
397                     let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
398                     this.write_scalar(new_ptr, dest)?;
399                 } else {
400                     this.write_null(dest)?;
401                 }
402             }
403
404             "memchr" => {
405                 let ptr = this.read_scalar(args[0])?.not_undef()?;
406                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
407                 let num = this.read_scalar(args[2])?.to_usize(this)?;
408                 let idx = this
409                     .memory()
410                     .read_bytes(ptr, Size::from_bytes(num))?
411                     .iter()
412                     .position(|&c| c == val);
413                 if let Some(idx) = idx {
414                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
415                     this.write_scalar(new_ptr, dest)?;
416                 } else {
417                     this.write_null(dest)?;
418                 }
419             }
420
421             "getenv" => {
422                 let result = this.getenv(args[0])?;
423                 this.write_scalar(result, dest)?;
424             }
425
426             "unsetenv" => {
427                 let result = this.unsetenv(args[0])?;
428                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
429             }
430
431             "setenv" => {
432                 let result = this.setenv(args[0], args[1])?;
433                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
434             }
435
436             "getcwd" => {
437                 let result = this.getcwd(args[0], args[1])?;
438                 this.write_scalar(result, dest)?;
439             }
440
441             "chdir" => {
442                 let result = this.chdir(args[0])?;
443                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
444             }
445
446             "open" | "open64" => {
447                 let result = this.open(args[0], args[1])?;
448                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
449             }
450
451             "fcntl" => {
452                 let result = this.fcntl(args[0], args[1], args.get(2).cloned())?;
453                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
454             }
455
456             "close" | "close$NOCANCEL" => {
457                 let result = this.close(args[0])?;
458                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
459             }
460
461             "read" => {
462                 let result = this.read(args[0], args[1], args[2])?;
463                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
464             }
465
466             "write" => {
467                 let fd = this.read_scalar(args[0])?.to_i32()?;
468                 let buf = this.read_scalar(args[1])?.not_undef()?;
469                 let n = this.read_scalar(args[2])?.to_usize(&*this.tcx)?;
470                 trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
471                 let result = if fd == 1 || fd == 2 {
472                     // stdout/stderr
473                     use std::io::{self, Write};
474
475                     let buf_cont = this.memory().read_bytes(buf, Size::from_bytes(n))?;
476                     // We need to flush to make sure this actually appears on the screen
477                     let res = if fd == 1 {
478                         // Stdout is buffered, flush to make sure it appears on the screen.
479                         // This is the write() syscall of the interpreted program, we want it
480                         // to correspond to a write() syscall on the host -- there is no good
481                         // in adding extra buffering here.
482                         let res = io::stdout().write(buf_cont);
483                         io::stdout().flush().unwrap();
484                         res
485                     } else {
486                         // No need to flush, stderr is not buffered.
487                         io::stderr().write(buf_cont)
488                     };
489                     match res {
490                         Ok(n) => n as i64,
491                         Err(_) => -1,
492                     }
493                 } else {
494                     this.write(args[0], args[1], args[2])?
495                 };
496                 // Now, `result` is the value we return back to the program.
497                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
498             }
499
500             "strlen" => {
501                 let ptr = this.read_scalar(args[0])?.not_undef()?;
502                 let n = this.memory().read_c_str(ptr)?.len();
503                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
504             }
505
506             // math functions
507             "cbrtf" | "coshf" | "sinhf" | "tanf" => {
508                 // FIXME: Using host floats.
509                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
510                 let f = match link_name {
511                     "cbrtf" => f.cbrt(),
512                     "coshf" => f.cosh(),
513                     "sinhf" => f.sinh(),
514                     "tanf" => f.tan(),
515                     _ => bug!(),
516                 };
517                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
518             }
519             // underscore case for windows
520             "_hypotf" | "hypotf" | "atan2f" => {
521                 // FIXME: Using host floats.
522                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
523                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
524                 let n = match link_name {
525                     "_hypotf" | "hypotf" => f1.hypot(f2),
526                     "atan2f" => f1.atan2(f2),
527                     _ => bug!(),
528                 };
529                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
530             }
531
532             "cbrt" | "cosh" | "sinh" | "tan" => {
533                 // FIXME: Using host floats.
534                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
535                 let f = match link_name {
536                     "cbrt" => f.cbrt(),
537                     "cosh" => f.cosh(),
538                     "sinh" => f.sinh(),
539                     "tan" => f.tan(),
540                     _ => bug!(),
541                 };
542                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
543             }
544             // underscore case for windows, here and below
545             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
546             "_hypot" | "hypot" | "atan2" => {
547                 // FIXME: Using host floats.
548                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
549                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
550                 let n = match link_name {
551                     "_hypot" | "hypot" => f1.hypot(f2),
552                     "atan2" => f1.atan2(f2),
553                     _ => bug!(),
554                 };
555                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
556             }
557             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
558             "_ldexp" | "ldexp" | "scalbn" => {
559                 let x = this.read_scalar(args[0])?.to_f64()?;
560                 let exp = this.read_scalar(args[1])?.to_i32()?;
561
562                 // Saturating cast to i16. Even those are outside the valid exponent range to
563                 // `scalbn` below will do its over/underflow handling.
564                 let exp = if exp > i16::max_value() as i32 {
565                     i16::max_value()
566                 } else if exp < i16::min_value() as i32 {
567                     i16::min_value()
568                 } else {
569                     exp.try_into().unwrap()
570                 };
571
572                 let res = x.scalbn(exp);
573                 this.write_scalar(Scalar::from_f64(res), dest)?;
574             }
575
576             // Some things needed for `sys::thread` initialization to go through.
577             "signal" | "sigaction" | "sigaltstack" => {
578                 this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
579             }
580
581             "sysconf" => {
582                 let name = this.read_scalar(args[0])?.to_i32()?;
583
584                 trace!("sysconf() called with name {}", name);
585                 // TODO: Cache the sysconf integers via Miri's global cache.
586                 let paths = &[
587                     (
588                         &["libc", "_SC_PAGESIZE"],
589                         Scalar::from_int(PAGE_SIZE, dest.layout.size),
590                     ),
591                     (
592                         &["libc", "_SC_GETPW_R_SIZE_MAX"],
593                         Scalar::from_int(-1, dest.layout.size),
594                     ),
595                     (
596                         &["libc", "_SC_NPROCESSORS_ONLN"],
597                         Scalar::from_int(NUM_CPUS, dest.layout.size),
598                     ),
599                 ];
600                 let mut result = None;
601                 for &(path, path_value) in paths {
602                     if let Some(val) = this.eval_path_scalar(path)? {
603                         let val = val.to_i32()?;
604                         if val == name {
605                             result = Some(path_value);
606                             break;
607                         }
608                     }
609                 }
610                 if let Some(result) = result {
611                     this.write_scalar(result, dest)?;
612                 } else {
613                     throw_unsup_format!("Unimplemented sysconf name: {}", name)
614                 }
615             }
616
617             "sched_getaffinity" => {
618                 // Return an error; `num_cpus` then falls back to `sysconf`.
619                 this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
620             }
621
622             "isatty" => {
623                 this.write_null(dest)?;
624             }
625
626             // Hook pthread calls that go to the thread-local storage memory subsystem.
627             "pthread_key_create" => {
628                 let key_ptr = this.read_scalar(args[0])?.not_undef()?;
629
630                 // Extract the function type out of the signature (that seems easier than constructing it ourselves).
631                 let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
632                     Some(dtor_ptr) => Some(this.memory().get_fn(dtor_ptr)?.as_instance()?),
633                     None => None,
634                 };
635
636                 // Figure out how large a pthread TLS key actually is.
637                 // This is `libc::pthread_key_t`.
638                 let key_type = args[0].layout.ty
639                     .builtin_deref(true)
640                     .ok_or_else(|| err_ub_format!(
641                         "wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
642                     ))?
643                     .ty;
644                 let key_layout = this.layout_of(key_type)?;
645
646                 // Create key and write it into the memory where `key_ptr` wants it.
647                 let key = this.machine.tls.create_tls_key(dtor) as u128;
648                 if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128)
649                 {
650                     throw_unsup!(OutOfTls);
651                 }
652
653                 let key_ptr = this
654                     .memory()
655                     .check_ptr_access(key_ptr, key_layout.size, key_layout.align.abi)?
656                     .expect("cannot be a ZST");
657                 this.memory_mut().get_mut(key_ptr.alloc_id)?.write_scalar(
658                     tcx,
659                     key_ptr,
660                     Scalar::from_uint(key, key_layout.size).into(),
661                     key_layout.size,
662                 )?;
663
664                 // Return success (`0`).
665                 this.write_null(dest)?;
666             }
667             "pthread_key_delete" => {
668                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
669                 this.machine.tls.delete_tls_key(key)?;
670                 // Return success (0)
671                 this.write_null(dest)?;
672             }
673             "pthread_getspecific" => {
674                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
675                 let ptr = this.machine.tls.load_tls(key, tcx)?;
676                 this.write_scalar(ptr, dest)?;
677             }
678             "pthread_setspecific" => {
679                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
680                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
681                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
682
683                 // Return success (`0`).
684                 this.write_null(dest)?;
685             }
686
687             // Stack size/address stuff.
688             "pthread_attr_init"
689             | "pthread_attr_destroy"
690             | "pthread_self"
691             | "pthread_attr_setstacksize" => {
692                 this.write_null(dest)?;
693             }
694             "pthread_attr_getstack" => {
695                 let addr_place = this.deref_operand(args[1])?;
696                 let size_place = this.deref_operand(args[2])?;
697
698                 this.write_scalar(
699                     Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
700                     addr_place.into(),
701                 )?;
702                 this.write_scalar(
703                     Scalar::from_uint(STACK_SIZE, size_place.layout.size),
704                     size_place.into(),
705                 )?;
706
707                 // Return success (`0`).
708                 this.write_null(dest)?;
709             }
710
711             // We don't support threading. (Also for Windows.)
712             "pthread_create" | "CreateThread" => {
713                 throw_unsup_format!("Miri does not support threading");
714             }
715
716             // Stub out calls for condvar, mutex and rwlock, to just return `0`.
717             "pthread_mutexattr_init"
718             | "pthread_mutexattr_settype"
719             | "pthread_mutex_init"
720             | "pthread_mutexattr_destroy"
721             | "pthread_mutex_lock"
722             | "pthread_mutex_unlock"
723             | "pthread_mutex_destroy"
724             | "pthread_rwlock_rdlock"
725             | "pthread_rwlock_unlock"
726             | "pthread_rwlock_wrlock"
727             | "pthread_rwlock_destroy"
728             | "pthread_condattr_init"
729             | "pthread_condattr_setclock"
730             | "pthread_cond_init"
731             | "pthread_condattr_destroy"
732             | "pthread_cond_destroy" => {
733                 this.write_null(dest)?;
734             }
735
736             // We don't support fork so we don't have to do anything for atfork.
737             "pthread_atfork" => {
738                 this.write_null(dest)?;
739             }
740
741             "mmap" => {
742                 // This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
743                 let addr = this.read_scalar(args[0])?.not_undef()?;
744                 this.write_scalar(addr, dest)?;
745             }
746             "mprotect" => {
747                 this.write_null(dest)?;
748             }
749
750             // macOS API stubs.
751             "pthread_attr_get_np" | "pthread_getattr_np" => {
752                 this.write_null(dest)?;
753             }
754             "pthread_get_stackaddr_np" => {
755                 let stack_addr = Scalar::from_uint(STACK_ADDR, dest.layout.size);
756                 this.write_scalar(stack_addr, dest)?;
757             }
758             "pthread_get_stacksize_np" => {
759                 let stack_size = Scalar::from_uint(STACK_SIZE, dest.layout.size);
760                 this.write_scalar(stack_size, dest)?;
761             }
762             "_tlv_atexit" => {
763                 // FIXME: register the destructor.
764             }
765             "_NSGetArgc" => {
766                 this.write_scalar(Scalar::Ptr(this.machine.argc.unwrap()), dest)?;
767             }
768             "_NSGetArgv" => {
769                 this.write_scalar(Scalar::Ptr(this.machine.argv.unwrap()), dest)?;
770             }
771             "SecRandomCopyBytes" => {
772                 let len = this.read_scalar(args[1])?.to_usize(this)?;
773                 let ptr = this.read_scalar(args[2])?.not_undef()?;
774                 this.gen_random(ptr, len as usize)?;
775                 this.write_null(dest)?;
776             }
777
778             // Windows API stubs.
779             // HANDLE = isize
780             // DWORD = ULONG = u32
781             // BOOL = i32
782             "GetProcessHeap" => {
783                 // Just fake a HANDLE
784                 this.write_scalar(Scalar::from_int(1, this.pointer_size()), dest)?;
785             }
786             "HeapAlloc" => {
787                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
788                 let flags = this.read_scalar(args[1])?.to_u32()?;
789                 let size = this.read_scalar(args[2])?.to_usize(this)?;
790                 let zero_init = (flags & 0x00000008) != 0; // HEAP_ZERO_MEMORY
791                 let res = this.malloc(size, zero_init, MiriMemoryKind::WinHeap);
792                 this.write_scalar(res, dest)?;
793             }
794             "HeapFree" => {
795                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
796                 let _flags = this.read_scalar(args[1])?.to_u32()?;
797                 let ptr = this.read_scalar(args[2])?.not_undef()?;
798                 this.free(ptr, MiriMemoryKind::WinHeap)?;
799                 this.write_scalar(Scalar::from_int(1, Size::from_bytes(4)), dest)?;
800             }
801             "HeapReAlloc" => {
802                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
803                 let _flags = this.read_scalar(args[1])?.to_u32()?;
804                 let ptr = this.read_scalar(args[2])?.not_undef()?;
805                 let size = this.read_scalar(args[3])?.to_usize(this)?;
806                 let res = this.realloc(ptr, size, MiriMemoryKind::WinHeap)?;
807                 this.write_scalar(res, dest)?;
808             }
809
810             "SetLastError" => {
811                 let err = this.read_scalar(args[0])?.to_u32()?;
812                 this.machine.last_error = err;
813             }
814             "GetLastError" => {
815                 this.write_scalar(Scalar::from_u32(this.machine.last_error), dest)?;
816             }
817
818             "AddVectoredExceptionHandler" => {
819                 // Any non zero value works for the stdlib. This is just used for stack overflows anyway.
820                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
821             }
822             "InitializeCriticalSection"
823             | "EnterCriticalSection"
824             | "LeaveCriticalSection"
825             | "DeleteCriticalSection" => {
826                 // Nothing to do, not even a return value.
827             }
828             "GetModuleHandleW"
829             | "GetProcAddress"
830             | "TryEnterCriticalSection"
831             | "GetConsoleScreenBufferInfo"
832             | "SetConsoleTextAttribute" => {
833                 // Pretend these do not exist / nothing happened, by returning zero.
834                 this.write_null(dest)?;
835             }
836             "GetSystemInfo" => {
837                 let system_info = this.deref_operand(args[0])?;
838                 let system_info_ptr = this
839                     .check_mplace_access(system_info, None)?
840                     .expect("cannot be a ZST");
841                 // Initialize with `0`.
842                 this.memory_mut()
843                     .get_mut(system_info_ptr.alloc_id)?
844                     .write_repeat(tcx, system_info_ptr, 0, system_info.layout.size)?;
845                 // Set number of processors.
846                 let dword_size = Size::from_bytes(4);
847                 let offset = 2 * dword_size + 3 * tcx.pointer_size();
848                 this.memory_mut()
849                     .get_mut(system_info_ptr.alloc_id)?
850                     .write_scalar(
851                         tcx,
852                         system_info_ptr.offset(offset, tcx)?,
853                         Scalar::from_int(NUM_CPUS, dword_size).into(),
854                         dword_size,
855                     )?;
856             }
857
858             "TlsAlloc" => {
859                 // This just creates a key; Windows does not natively support TLS destructors.
860
861                 // Create key and return it.
862                 let key = this.machine.tls.create_tls_key(None) as u128;
863
864                 // Figure out how large a TLS key actually is. This is `c::DWORD`.
865                 if dest.layout.size.bits() < 128
866                     && key >= (1u128 << dest.layout.size.bits() as u128)
867                 {
868                     throw_unsup!(OutOfTls);
869                 }
870                 this.write_scalar(Scalar::from_uint(key, dest.layout.size), dest)?;
871             }
872             "TlsGetValue" => {
873                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
874                 let ptr = this.machine.tls.load_tls(key, tcx)?;
875                 this.write_scalar(ptr, dest)?;
876             }
877             "TlsSetValue" => {
878                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
879                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
880                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
881
882                 // Return success (`1`).
883                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
884             }
885             "GetStdHandle" => {
886                 let which = this.read_scalar(args[0])?.to_i32()?;
887                 // We just make this the identity function, so we know later in `WriteFile`
888                 // which one it is.
889                 this.write_scalar(Scalar::from_int(which, this.pointer_size()), dest)?;
890             }
891             "WriteFile" => {
892                 let handle = this.read_scalar(args[0])?.to_isize(this)?;
893                 let buf = this.read_scalar(args[1])?.not_undef()?;
894                 let n = this.read_scalar(args[2])?.to_u32()?;
895                 let written_place = this.deref_operand(args[3])?;
896                 // Spec says to always write `0` first.
897                 this.write_null(written_place.into())?;
898                 let written = if handle == -11 || handle == -12 {
899                     // stdout/stderr
900                     use std::io::{self, Write};
901
902                     let buf_cont = this
903                         .memory()
904                         .read_bytes(buf, Size::from_bytes(u64::from(n)))?;
905                     let res = if handle == -11 {
906                         io::stdout().write(buf_cont)
907                     } else {
908                         io::stderr().write(buf_cont)
909                     };
910                     res.ok().map(|n| n as u32)
911                 } else {
912                     eprintln!("Miri: Ignored output to handle {}", handle);
913                     // Pretend it all went well.
914                     Some(n)
915                 };
916                 // If there was no error, write back how much was written.
917                 if let Some(n) = written {
918                     this.write_scalar(Scalar::from_u32(n), written_place.into())?;
919                 }
920                 // Return whether this was a success.
921                 this.write_scalar(
922                     Scalar::from_int(if written.is_some() { 1 } else { 0 }, dest.layout.size),
923                     dest,
924                 )?;
925             }
926             "GetConsoleMode" => {
927                 // Everything is a pipe.
928                 this.write_null(dest)?;
929             }
930             "GetEnvironmentVariableW" => {
931                 // This is not the env var you are looking for.
932                 this.machine.last_error = 203; // ERROR_ENVVAR_NOT_FOUND
933                 this.write_null(dest)?;
934             }
935             "GetCommandLineW" => {
936                 this.write_scalar(Scalar::Ptr(this.machine.cmd_line.unwrap()), dest)?;
937             }
938             // The actual name of 'RtlGenRandom'
939             "SystemFunction036" => {
940                 let ptr = this.read_scalar(args[0])?.not_undef()?;
941                 let len = this.read_scalar(args[1])?.to_u32()?;
942                 this.gen_random(ptr, len as usize)?;
943                 this.write_scalar(Scalar::from_bool(true), dest)?;
944             }
945
946             // We can't execute anything else.
947             _ => throw_unsup_format!("can't call foreign function: {}", link_name),
948         }
949
950         this.goto_block(Some(ret))?;
951         this.dump_place(*dest);
952         Ok(())
953     }
954
955     /// Evaluates the scalar at the specified path. Returns Some(val)
956     /// if the path could be resolved, and None otherwise
957     fn eval_path_scalar(
958         &mut self,
959         path: &[&str],
960     ) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
961         let this = self.eval_context_mut();
962         if let Ok(instance) = this.resolve_path(path) {
963             let cid = GlobalId {
964                 instance,
965                 promoted: None,
966             };
967             let const_val = this.const_eval_raw(cid)?;
968             let const_val = this.read_scalar(const_val.into())?;
969             return Ok(Some(const_val));
970         }
971         return Ok(None);
972     }
973
974     fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> {
975         self.eval_context_mut()
976             .eval_path_scalar(&["libc", name])?
977             .ok_or_else(|| err_unsup_format!("Path libc::{} cannot be resolved.", name).into())
978             .and_then(|scalar| scalar.to_i32())
979     }
980 }
981
982 // Shims the linux 'getrandom()' syscall.
983 fn linux_getrandom<'tcx>(
984     this: &mut MiriEvalContext<'_, 'tcx>,
985     args: &[OpTy<'tcx, Tag>],
986     dest: PlaceTy<'tcx, Tag>,
987 ) -> InterpResult<'tcx> {
988     let ptr = this.read_scalar(args[0])?.not_undef()?;
989     let len = this.read_scalar(args[1])?.to_usize(this)?;
990
991     // The only supported flags are GRND_RANDOM and GRND_NONBLOCK,
992     // neither of which have any effect on our current PRNG.
993     let _flags = this.read_scalar(args[2])?.to_i32()?;
994
995     this.gen_random(ptr, len as usize)?;
996     this.write_scalar(Scalar::from_uint(len, dest.layout.size), dest)?;
997     Ok(())
998 }