]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
Fix merge conflicts
[rust.git] / src / shims / foreign_items.rs
1 use std::convert::TryInto;
2
3 use rustc::hir::def_id::DefId;
4 use rustc::mir;
5 use rustc::ty::layout::{Align, LayoutOf, Size};
6 use rustc_apfloat::Float;
7 use syntax::attr;
8 use syntax::symbol::sym;
9
10 use crate::*;
11
12 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
13 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
14     /// Returns the minimum alignment for the target architecture for allocations of the given size.
15     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
16         let this = self.eval_context_ref();
17         // List taken from `libstd/sys_common/alloc.rs`.
18         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
19             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
20             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
21             arch => bug!("Unsupported target architecture: {}", arch),
22         };
23         // Windows always aligns, even small allocations.
24         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
25         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
26         if kind == MiriMemoryKind::WinHeap || size >= min_align {
27             return Align::from_bytes(min_align).unwrap();
28         }
29         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
30         fn prev_power_of_two(x: u64) -> u64 {
31             let next_pow2 = x.next_power_of_two();
32             if next_pow2 == x {
33                 // x *is* a power of two, just use that.
34                 x
35             } else {
36                 // x is between two powers, so next = 2*prev.
37                 next_pow2 / 2
38             }
39         }
40         Align::from_bytes(prev_power_of_two(size)).unwrap()
41     }
42
43     fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
44         let this = self.eval_context_mut();
45         if size == 0 {
46             Scalar::from_int(0, this.pointer_size())
47         } else {
48             let align = this.min_align(size, kind);
49             let ptr = this
50                 .memory
51                 .allocate(Size::from_bytes(size), align, kind.into());
52             if zero_init {
53                 // We just allocated this, the access is definitely in-bounds.
54                 this.memory
55                     .get_mut(ptr.alloc_id)
56                     .unwrap()
57                     .write_repeat(&*this.tcx, ptr, 0, Size::from_bytes(size))
58                     .unwrap();
59             }
60             Scalar::Ptr(ptr)
61         }
62     }
63
64     fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
65         let this = self.eval_context_mut();
66         if !this.is_null(ptr)? {
67             let ptr = this.force_ptr(ptr)?;
68             this.memory.deallocate(ptr, None, kind.into())?;
69         }
70         Ok(())
71     }
72
73     fn realloc(
74         &mut self,
75         old_ptr: Scalar<Tag>,
76         new_size: u64,
77         kind: MiriMemoryKind,
78     ) -> InterpResult<'tcx, Scalar<Tag>> {
79         let this = self.eval_context_mut();
80         let new_align = this.min_align(new_size, kind);
81         if this.is_null(old_ptr)? {
82             if new_size == 0 {
83                 Ok(Scalar::from_int(0, this.pointer_size()))
84             } else {
85                 let new_ptr =
86                     this.memory
87                         .allocate(Size::from_bytes(new_size), new_align, kind.into());
88                 Ok(Scalar::Ptr(new_ptr))
89             }
90         } else {
91             let old_ptr = this.force_ptr(old_ptr)?;
92             if new_size == 0 {
93                 this.memory.deallocate(old_ptr, None, kind.into())?;
94                 Ok(Scalar::from_int(0, this.pointer_size()))
95             } else {
96                 let new_ptr = this.memory.reallocate(
97                     old_ptr,
98                     None,
99                     Size::from_bytes(new_size),
100                     new_align,
101                     kind.into(),
102                 )?;
103                 Ok(Scalar::Ptr(new_ptr))
104             }
105         }
106     }
107
108     /// Emulates calling a foreign item, failing if the item is not supported.
109     /// This function will handle `goto_block` if needed.
110     fn emulate_foreign_item(
111         &mut self,
112         def_id: DefId,
113         args: &[OpTy<'tcx, Tag>],
114         dest: Option<PlaceTy<'tcx, Tag>>,
115         ret: Option<mir::BasicBlock>,
116     ) -> InterpResult<'tcx> {
117         let this = self.eval_context_mut();
118         let attrs = this.tcx.get_attrs(def_id);
119         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
120             Some(name) => name.as_str(),
121             None => this.tcx.item_name(def_id).as_str(),
122         };
123         // Strip linker suffixes (seen on 32-bit macOS).
124         let link_name = link_name.trim_end_matches("$UNIX2003");
125         let tcx = &{ this.tcx.tcx };
126
127         // First: functions that diverge.
128         match link_name {
129             "__rust_start_panic" | "panic_impl" => {
130                 throw_unsup_format!("the evaluated program panicked");
131             }
132             "exit" | "ExitProcess" => {
133                 // it's really u32 for ExitProcess, but we have to put it into the `Exit` error variant anyway
134                 let code = this.read_scalar(args[0])?.to_i32()?;
135                 return Err(InterpError::Exit(code).into());
136             }
137             _ => {
138                 if dest.is_none() {
139                     throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
140                 }
141             }
142         }
143
144         // Next: functions that assume a ret and dest.
145         let dest = dest.expect("we already checked for a dest");
146         let ret = ret.expect("dest is `Some` but ret is `None`");
147         match link_name {
148             "malloc" => {
149                 let size = this.read_scalar(args[0])?.to_usize(this)?;
150                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
151                 this.write_scalar(res, dest)?;
152             }
153             "calloc" => {
154                 let items = this.read_scalar(args[0])?.to_usize(this)?;
155                 let len = this.read_scalar(args[1])?.to_usize(this)?;
156                 let size = items
157                     .checked_mul(len)
158                     .ok_or_else(|| err_panic!(Overflow(mir::BinOp::Mul)))?;
159                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
160                 this.write_scalar(res, dest)?;
161             }
162             "posix_memalign" => {
163                 let ret = this.deref_operand(args[0])?;
164                 let align = this.read_scalar(args[1])?.to_usize(this)?;
165                 let size = this.read_scalar(args[2])?.to_usize(this)?;
166                 // Align must be power of 2, and also at least ptr-sized (POSIX rules).
167                 if !align.is_power_of_two() {
168                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
169                 }
170                 if align < this.pointer_size().bytes() {
171                     throw_ub_format!(
172                         "posix_memalign: alignment must be at least the size of a pointer, but is {}",
173                         align,
174                     );
175                 }
176
177                 if size == 0 {
178                     this.write_null(ret.into())?;
179                 } else {
180                     let ptr = this.memory.allocate(
181                         Size::from_bytes(size),
182                         Align::from_bytes(align).unwrap(),
183                         MiriMemoryKind::C.into(),
184                     );
185                     this.write_scalar(Scalar::Ptr(ptr), ret.into())?;
186                 }
187                 this.write_null(dest)?;
188             }
189             "free" => {
190                 let ptr = this.read_scalar(args[0])?.not_undef()?;
191                 this.free(ptr, MiriMemoryKind::C)?;
192             }
193             "realloc" => {
194                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
195                 let new_size = this.read_scalar(args[1])?.to_usize(this)?;
196                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
197                 this.write_scalar(res, dest)?;
198             }
199
200             "__rust_alloc" => {
201                 let size = this.read_scalar(args[0])?.to_usize(this)?;
202                 let align = this.read_scalar(args[1])?.to_usize(this)?;
203                 if size == 0 {
204                     throw_unsup!(HeapAllocZeroBytes);
205                 }
206                 if !align.is_power_of_two() {
207                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
208                 }
209                 let ptr = this.memory.allocate(
210                     Size::from_bytes(size),
211                     Align::from_bytes(align).unwrap(),
212                     MiriMemoryKind::Rust.into(),
213                 );
214                 this.write_scalar(Scalar::Ptr(ptr), dest)?;
215             }
216             "__rust_alloc_zeroed" => {
217                 let size = this.read_scalar(args[0])?.to_usize(this)?;
218                 let align = this.read_scalar(args[1])?.to_usize(this)?;
219                 if size == 0 {
220                     throw_unsup!(HeapAllocZeroBytes);
221                 }
222                 if !align.is_power_of_two() {
223                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
224                 }
225                 let ptr = this.memory.allocate(
226                     Size::from_bytes(size),
227                     Align::from_bytes(align).unwrap(),
228                     MiriMemoryKind::Rust.into(),
229                 );
230                 // We just allocated this, the access is definitely in-bounds.
231                 this.memory
232                     .get_mut(ptr.alloc_id)
233                     .unwrap()
234                     .write_repeat(tcx, ptr, 0, Size::from_bytes(size))
235                     .unwrap();
236                 this.write_scalar(Scalar::Ptr(ptr), dest)?;
237             }
238             "__rust_dealloc" => {
239                 let ptr = this.read_scalar(args[0])?.not_undef()?;
240                 let old_size = this.read_scalar(args[1])?.to_usize(this)?;
241                 let align = this.read_scalar(args[2])?.to_usize(this)?;
242                 if old_size == 0 {
243                     throw_unsup!(HeapAllocZeroBytes);
244                 }
245                 if !align.is_power_of_two() {
246                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
247                 }
248                 let ptr = this.force_ptr(ptr)?;
249                 this.memory.deallocate(
250                     ptr,
251                     Some((
252                         Size::from_bytes(old_size),
253                         Align::from_bytes(align).unwrap(),
254                     )),
255                     MiriMemoryKind::Rust.into(),
256                 )?;
257             }
258             "__rust_realloc" => {
259                 let ptr = this.read_scalar(args[0])?.to_ptr()?;
260                 let old_size = this.read_scalar(args[1])?.to_usize(this)?;
261                 let align = this.read_scalar(args[2])?.to_usize(this)?;
262                 let new_size = this.read_scalar(args[3])?.to_usize(this)?;
263                 if old_size == 0 || new_size == 0 {
264                     throw_unsup!(HeapAllocZeroBytes);
265                 }
266                 if !align.is_power_of_two() {
267                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
268                 }
269                 let align = Align::from_bytes(align).unwrap();
270                 let new_ptr = this.memory.reallocate(
271                     ptr,
272                     Some((Size::from_bytes(old_size), align)),
273                     Size::from_bytes(new_size),
274                     align,
275                     MiriMemoryKind::Rust.into(),
276                 )?;
277                 this.write_scalar(Scalar::Ptr(new_ptr), dest)?;
278             }
279
280             "syscall" => {
281                 let sys_getrandom = this
282                     .eval_path_scalar(&["libc", "SYS_getrandom"])?
283                     .expect("Failed to get libc::SYS_getrandom")
284                     .to_usize(this)?;
285
286                 // `libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)`
287                 // is called if a `HashMap` is created the regular way (e.g. HashMap<K, V>).
288                 match this.read_scalar(args[0])?.to_usize(this)? {
289                     id if id == sys_getrandom => {
290                         // The first argument is the syscall id,
291                         // so skip over it.
292                         linux_getrandom(this, &args[1..], dest)?;
293                     }
294                     id => throw_unsup_format!("miri does not support syscall ID {}", id),
295                 }
296             }
297
298             "getrandom" => {
299                 linux_getrandom(this, args, dest)?;
300             }
301
302             "dlsym" => {
303                 let _handle = this.read_scalar(args[0])?;
304                 let symbol = this.read_scalar(args[1])?.not_undef()?;
305                 let symbol_name = this.memory.read_c_str(symbol)?;
306                 let err = format!("bad c unicode symbol: {:?}", symbol_name);
307                 let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
308                 if let Some(dlsym) = Dlsym::from_str(symbol_name)? {
309                     let ptr = this.memory.create_fn_alloc(FnVal::Other(dlsym));
310                     this.write_scalar(Scalar::from(ptr), dest)?;
311                 } else {
312                     this.write_null(dest)?;
313                 }
314             }
315
316             "__rust_maybe_catch_panic" => {
317                 // fn __rust_maybe_catch_panic(
318                 //     f: fn(*mut u8),
319                 //     data: *mut u8,
320                 //     data_ptr: *mut usize,
321                 //     vtable_ptr: *mut usize,
322                 // ) -> u32
323                 // We abort on panic, so not much is going on here, but we still have to call the closure.
324                 let f = this.read_scalar(args[0])?.not_undef()?;
325                 let data = this.read_scalar(args[1])?.not_undef()?;
326                 let f_instance = this.memory.get_fn(f)?.as_instance()?;
327                 this.write_null(dest)?;
328                 trace!("__rust_maybe_catch_panic: {:?}", f_instance);
329
330                 // Now we make a function call.
331                 // TODO: consider making this reusable? `InterpCx::step` does something similar
332                 // for the TLS destructors, and of course `eval_main`.
333                 let mir = this.load_mir(f_instance.def, None)?;
334                 let ret_place =
335                     MPlaceTy::dangling(this.layout_of(tcx.mk_unit())?, this).into();
336                 this.push_stack_frame(
337                     f_instance,
338                     mir.span,
339                     mir,
340                     Some(ret_place),
341                     // Directly return to caller.
342                     StackPopCleanup::Goto(Some(ret)),
343                 )?;
344                 let mut args = this.frame().body.args_iter();
345
346                 let arg_local = args
347                     .next()
348                     .expect("Argument to __rust_maybe_catch_panic does not take enough arguments.");
349                 let arg_dest = this.local_place(arg_local)?;
350                 this.write_scalar(data, arg_dest)?;
351
352                 args.next().expect_none("__rust_maybe_catch_panic argument has more arguments than expected");
353
354                 // We ourselves will return `0`, eventually (because we will not return if we paniced).
355                 this.write_null(dest)?;
356
357                 // Don't fall through, we do *not* want to `goto_block`!
358                 return Ok(());
359             }
360
361             "memcmp" => {
362                 let left = this.read_scalar(args[0])?.not_undef()?;
363                 let right = this.read_scalar(args[1])?.not_undef()?;
364                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_usize(this)?);
365
366                 let result = {
367                     let left_bytes = this.memory.read_bytes(left, n)?;
368                     let right_bytes = this.memory.read_bytes(right, n)?;
369
370                     use std::cmp::Ordering::*;
371                     match left_bytes.cmp(right_bytes) {
372                         Less => -1i32,
373                         Equal => 0,
374                         Greater => 1,
375                     }
376                 };
377
378                 this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
379             }
380
381             "memrchr" => {
382                 let ptr = this.read_scalar(args[0])?.not_undef()?;
383                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
384                 let num = this.read_scalar(args[2])?.to_usize(this)?;
385                 if let Some(idx) = this
386                     .memory
387                     .read_bytes(ptr, Size::from_bytes(num))?
388                     .iter()
389                     .rev()
390                     .position(|&c| c == val)
391                 {
392                     let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
393                     this.write_scalar(new_ptr, dest)?;
394                 } else {
395                     this.write_null(dest)?;
396                 }
397             }
398
399             "memchr" => {
400                 let ptr = this.read_scalar(args[0])?.not_undef()?;
401                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
402                 let num = this.read_scalar(args[2])?.to_usize(this)?;
403                 let idx = this
404                     .memory
405                     .read_bytes(ptr, Size::from_bytes(num))?
406                     .iter()
407                     .position(|&c| c == val);
408                 if let Some(idx) = idx {
409                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
410                     this.write_scalar(new_ptr, dest)?;
411                 } else {
412                     this.write_null(dest)?;
413                 }
414             }
415
416             "__errno_location" | "__error" => {
417                 let errno_place = this.machine.last_error.unwrap();
418                 this.write_scalar(errno_place.to_ref().to_scalar()?, dest)?;
419             }
420
421             "getenv" => {
422                 let result = this.getenv(args[0])?;
423                 this.write_scalar(result, dest)?;
424             }
425
426             "unsetenv" => {
427                 let result = this.unsetenv(args[0])?;
428                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
429             }
430
431             "setenv" => {
432                 let result = this.setenv(args[0], args[1])?;
433                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
434             }
435
436             "getcwd" => {
437                 let result = this.getcwd(args[0], args[1])?;
438                 this.write_scalar(result, dest)?;
439             }
440
441             "chdir" => {
442                 let result = this.chdir(args[0])?;
443                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
444             }
445
446             "open" | "open64" => {
447                 let result = this.open(args[0], args[1])?;
448                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
449             }
450
451             "fcntl" => {
452                 let result = this.fcntl(args[0], args[1], args.get(2).cloned())?;
453                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
454             }
455
456             "close" | "close$NOCANCEL" => {
457                 let result = this.close(args[0])?;
458                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
459             }
460
461             "read" => {
462                 let result = this.read(args[0], args[1], args[2])?;
463                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
464             }
465
466             "write" => {
467                 let fd = this.read_scalar(args[0])?.to_i32()?;
468                 let buf = this.read_scalar(args[1])?.not_undef()?;
469                 let n = this.read_scalar(args[2])?.to_usize(tcx)?;
470                 trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
471                 let result = if fd == 1 || fd == 2 {
472                     // stdout/stderr
473                     use std::io::{self, Write};
474
475                     let buf_cont = this.memory.read_bytes(buf, Size::from_bytes(n))?;
476                     // We need to flush to make sure this actually appears on the screen
477                     let res = if fd == 1 {
478                         // Stdout is buffered, flush to make sure it appears on the screen.
479                         // This is the write() syscall of the interpreted program, we want it
480                         // to correspond to a write() syscall on the host -- there is no good
481                         // in adding extra buffering here.
482                         let res = io::stdout().write(buf_cont);
483                         io::stdout().flush().unwrap();
484                         res
485                     } else {
486                         // No need to flush, stderr is not buffered.
487                         io::stderr().write(buf_cont)
488                     };
489                     match res {
490                         Ok(n) => n as i64,
491                         Err(_) => -1,
492                     }
493                 } else {
494                     this.write(args[0], args[1], args[2])?
495                 };
496                 // Now, `result` is the value we return back to the program.
497                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
498             }
499
500             "unlink" => {
501                 let result = this.unlink(args[0])?;
502                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
503             }
504
505             "clock_gettime" => {
506                 let result = this.clock_gettime(args[0], args[1])?;
507                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
508             }
509
510             "gettimeofday" => {
511                 let result = this.gettimeofday(args[0], args[1])?;
512                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
513             }
514
515             "strlen" => {
516                 let ptr = this.read_scalar(args[0])?.not_undef()?;
517                 let n = this.memory.read_c_str(ptr)?.len();
518                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
519             }
520
521             // math functions
522             "cbrtf" | "coshf" | "sinhf" | "tanf" => {
523                 // FIXME: Using host floats.
524                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
525                 let f = match link_name {
526                     "cbrtf" => f.cbrt(),
527                     "coshf" => f.cosh(),
528                     "sinhf" => f.sinh(),
529                     "tanf" => f.tan(),
530                     _ => bug!(),
531                 };
532                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
533             }
534             // underscore case for windows
535             "_hypotf" | "hypotf" | "atan2f" => {
536                 // FIXME: Using host floats.
537                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
538                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
539                 let n = match link_name {
540                     "_hypotf" | "hypotf" => f1.hypot(f2),
541                     "atan2f" => f1.atan2(f2),
542                     _ => bug!(),
543                 };
544                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
545             }
546
547             "cbrt" | "cosh" | "sinh" | "tan" => {
548                 // FIXME: Using host floats.
549                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
550                 let f = match link_name {
551                     "cbrt" => f.cbrt(),
552                     "cosh" => f.cosh(),
553                     "sinh" => f.sinh(),
554                     "tan" => f.tan(),
555                     _ => bug!(),
556                 };
557                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
558             }
559             // underscore case for windows, here and below
560             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
561             "_hypot" | "hypot" | "atan2" => {
562                 // FIXME: Using host floats.
563                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
564                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
565                 let n = match link_name {
566                     "_hypot" | "hypot" => f1.hypot(f2),
567                     "atan2" => f1.atan2(f2),
568                     _ => bug!(),
569                 };
570                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
571             }
572             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
573             "_ldexp" | "ldexp" | "scalbn" => {
574                 let x = this.read_scalar(args[0])?.to_f64()?;
575                 let exp = this.read_scalar(args[1])?.to_i32()?;
576
577                 // Saturating cast to i16. Even those are outside the valid exponent range to
578                 // `scalbn` below will do its over/underflow handling.
579                 let exp = if exp > i16::max_value() as i32 {
580                     i16::max_value()
581                 } else if exp < i16::min_value() as i32 {
582                     i16::min_value()
583                 } else {
584                     exp.try_into().unwrap()
585                 };
586
587                 let res = x.scalbn(exp);
588                 this.write_scalar(Scalar::from_f64(res), dest)?;
589             }
590
591             // Some things needed for `sys::thread` initialization to go through.
592             "signal" | "sigaction" | "sigaltstack" => {
593                 this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
594             }
595
596             "sysconf" => {
597                 let name = this.read_scalar(args[0])?.to_i32()?;
598
599                 trace!("sysconf() called with name {}", name);
600                 // TODO: Cache the sysconf integers via Miri's global cache.
601                 let paths = &[
602                     (
603                         &["libc", "_SC_PAGESIZE"],
604                         Scalar::from_int(PAGE_SIZE, dest.layout.size),
605                     ),
606                     (
607                         &["libc", "_SC_GETPW_R_SIZE_MAX"],
608                         Scalar::from_int(-1, dest.layout.size),
609                     ),
610                     (
611                         &["libc", "_SC_NPROCESSORS_ONLN"],
612                         Scalar::from_int(NUM_CPUS, dest.layout.size),
613                     ),
614                 ];
615                 let mut result = None;
616                 for &(path, path_value) in paths {
617                     if let Some(val) = this.eval_path_scalar(path)? {
618                         let val = val.to_i32()?;
619                         if val == name {
620                             result = Some(path_value);
621                             break;
622                         }
623                     }
624                 }
625                 if let Some(result) = result {
626                     this.write_scalar(result, dest)?;
627                 } else {
628                     throw_unsup_format!("Unimplemented sysconf name: {}", name)
629                 }
630             }
631
632             "sched_getaffinity" => {
633                 // Return an error; `num_cpus` then falls back to `sysconf`.
634                 this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
635             }
636
637             "isatty" => {
638                 this.write_null(dest)?;
639             }
640
641             // Hook pthread calls that go to the thread-local storage memory subsystem.
642             "pthread_key_create" => {
643                 let key_place = this.deref_operand(args[0])?;
644
645                 // Extract the function type out of the signature (that seems easier than constructing it ourselves).
646                 let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
647                     Some(dtor_ptr) => Some(this.memory.get_fn(dtor_ptr)?.as_instance()?),
648                     None => None,
649                 };
650
651                 // Figure out how large a pthread TLS key actually is.
652                 // This is `libc::pthread_key_t`.
653                 let key_type = args[0].layout.ty
654                     .builtin_deref(true)
655                     .ok_or_else(|| err_ub_format!(
656                         "wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
657                     ))?
658                     .ty;
659                 let key_layout = this.layout_of(key_type)?;
660
661                 // Create key and write it into the memory where `key_ptr` wants it.
662                 let key = this.machine.tls.create_tls_key(dtor) as u128;
663                 if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128)
664                 {
665                     throw_unsup!(OutOfTls);
666                 }
667
668                 this.write_scalar(Scalar::from_uint(key, key_layout.size), key_place.into())?;
669
670                 // Return success (`0`).
671                 this.write_null(dest)?;
672             }
673             "pthread_key_delete" => {
674                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
675                 this.machine.tls.delete_tls_key(key)?;
676                 // Return success (0)
677                 this.write_null(dest)?;
678             }
679             "pthread_getspecific" => {
680                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
681                 let ptr = this.machine.tls.load_tls(key, tcx)?;
682                 this.write_scalar(ptr, dest)?;
683             }
684             "pthread_setspecific" => {
685                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
686                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
687                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
688
689                 // Return success (`0`).
690                 this.write_null(dest)?;
691             }
692
693             // Stack size/address stuff.
694             "pthread_attr_init"
695             | "pthread_attr_destroy"
696             | "pthread_self"
697             | "pthread_attr_setstacksize" => {
698                 this.write_null(dest)?;
699             }
700             "pthread_attr_getstack" => {
701                 let addr_place = this.deref_operand(args[1])?;
702                 let size_place = this.deref_operand(args[2])?;
703
704                 this.write_scalar(
705                     Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
706                     addr_place.into(),
707                 )?;
708                 this.write_scalar(
709                     Scalar::from_uint(STACK_SIZE, size_place.layout.size),
710                     size_place.into(),
711                 )?;
712
713                 // Return success (`0`).
714                 this.write_null(dest)?;
715             }
716
717             // We don't support threading. (Also for Windows.)
718             "pthread_create" | "CreateThread" => {
719                 throw_unsup_format!("Miri does not support threading");
720             }
721
722             // Stub out calls for condvar, mutex and rwlock, to just return `0`.
723             "pthread_mutexattr_init"
724             | "pthread_mutexattr_settype"
725             | "pthread_mutex_init"
726             | "pthread_mutexattr_destroy"
727             | "pthread_mutex_lock"
728             | "pthread_mutex_unlock"
729             | "pthread_mutex_destroy"
730             | "pthread_rwlock_rdlock"
731             | "pthread_rwlock_unlock"
732             | "pthread_rwlock_wrlock"
733             | "pthread_rwlock_destroy"
734             | "pthread_condattr_init"
735             | "pthread_condattr_setclock"
736             | "pthread_cond_init"
737             | "pthread_condattr_destroy"
738             | "pthread_cond_destroy" => {
739                 this.write_null(dest)?;
740             }
741
742             // We don't support fork so we don't have to do anything for atfork.
743             "pthread_atfork" => {
744                 this.write_null(dest)?;
745             }
746
747             "mmap" => {
748                 // This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
749                 let addr = this.read_scalar(args[0])?.not_undef()?;
750                 this.write_scalar(addr, dest)?;
751             }
752             "mprotect" => {
753                 this.write_null(dest)?;
754             }
755
756             // macOS API stubs.
757             "pthread_attr_get_np" | "pthread_getattr_np" => {
758                 this.write_null(dest)?;
759             }
760             "pthread_get_stackaddr_np" => {
761                 let stack_addr = Scalar::from_uint(STACK_ADDR, dest.layout.size);
762                 this.write_scalar(stack_addr, dest)?;
763             }
764             "pthread_get_stacksize_np" => {
765                 let stack_size = Scalar::from_uint(STACK_SIZE, dest.layout.size);
766                 this.write_scalar(stack_size, dest)?;
767             }
768             "_tlv_atexit" => {
769                 // FIXME: register the destructor.
770             }
771             "_NSGetArgc" => {
772                 this.write_scalar(Scalar::Ptr(this.machine.argc.unwrap()), dest)?;
773             }
774             "_NSGetArgv" => {
775                 this.write_scalar(Scalar::Ptr(this.machine.argv.unwrap()), dest)?;
776             }
777             "SecRandomCopyBytes" => {
778                 let len = this.read_scalar(args[1])?.to_usize(this)?;
779                 let ptr = this.read_scalar(args[2])?.not_undef()?;
780                 this.gen_random(ptr, len as usize)?;
781                 this.write_null(dest)?;
782             }
783
784             // Windows API stubs.
785             // HANDLE = isize
786             // DWORD = ULONG = u32
787             // BOOL = i32
788             "GetProcessHeap" => {
789                 // Just fake a HANDLE
790                 this.write_scalar(Scalar::from_int(1, this.pointer_size()), dest)?;
791             }
792             "HeapAlloc" => {
793                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
794                 let flags = this.read_scalar(args[1])?.to_u32()?;
795                 let size = this.read_scalar(args[2])?.to_usize(this)?;
796                 let zero_init = (flags & 0x00000008) != 0; // HEAP_ZERO_MEMORY
797                 let res = this.malloc(size, zero_init, MiriMemoryKind::WinHeap);
798                 this.write_scalar(res, dest)?;
799             }
800             "HeapFree" => {
801                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
802                 let _flags = this.read_scalar(args[1])?.to_u32()?;
803                 let ptr = this.read_scalar(args[2])?.not_undef()?;
804                 this.free(ptr, MiriMemoryKind::WinHeap)?;
805                 this.write_scalar(Scalar::from_int(1, Size::from_bytes(4)), dest)?;
806             }
807             "HeapReAlloc" => {
808                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
809                 let _flags = this.read_scalar(args[1])?.to_u32()?;
810                 let ptr = this.read_scalar(args[2])?.not_undef()?;
811                 let size = this.read_scalar(args[3])?.to_usize(this)?;
812                 let res = this.realloc(ptr, size, MiriMemoryKind::WinHeap)?;
813                 this.write_scalar(res, dest)?;
814             }
815
816             "SetLastError" => {
817                 this.set_last_error(this.read_scalar(args[0])?.not_undef()?)?;
818             }
819             "GetLastError" => {
820                 let last_error = this.get_last_error()?;
821                 this.write_scalar(last_error, dest)?;
822             }
823
824             "AddVectoredExceptionHandler" => {
825                 // Any non zero value works for the stdlib. This is just used for stack overflows anyway.
826                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
827             }
828             "InitializeCriticalSection"
829             | "EnterCriticalSection"
830             | "LeaveCriticalSection"
831             | "DeleteCriticalSection" => {
832                 // Nothing to do, not even a return value.
833             }
834             "GetModuleHandleW"
835             | "GetProcAddress"
836             | "TryEnterCriticalSection"
837             | "GetConsoleScreenBufferInfo"
838             | "SetConsoleTextAttribute" => {
839                 // Pretend these do not exist / nothing happened, by returning zero.
840                 this.write_null(dest)?;
841             }
842             "GetSystemInfo" => {
843                 let system_info = this.deref_operand(args[0])?;
844                 let system_info_ptr = this
845                     .check_mplace_access(system_info, None)?
846                     .expect("cannot be a ZST");
847                 // We rely on `deref_operand` doing bounds checks for us.
848                 // Initialize with `0`.
849                 this.memory
850                     .get_mut(system_info_ptr.alloc_id)?
851                     .write_repeat(tcx, system_info_ptr, 0, system_info.layout.size)?;
852                 // Set number of processors.
853                 let dword_size = Size::from_bytes(4);
854                 let offset = 2 * dword_size + 3 * tcx.pointer_size();
855                 this.memory
856                     .get_mut(system_info_ptr.alloc_id)?
857                     .write_scalar(
858                         tcx,
859                         system_info_ptr.offset(offset, tcx)?,
860                         Scalar::from_int(NUM_CPUS, dword_size).into(),
861                         dword_size,
862                     )?;
863             }
864
865             "TlsAlloc" => {
866                 // This just creates a key; Windows does not natively support TLS destructors.
867
868                 // Create key and return it.
869                 let key = this.machine.tls.create_tls_key(None) as u128;
870
871                 // Figure out how large a TLS key actually is. This is `c::DWORD`.
872                 if dest.layout.size.bits() < 128
873                     && key >= (1u128 << dest.layout.size.bits() as u128)
874                 {
875                     throw_unsup!(OutOfTls);
876                 }
877                 this.write_scalar(Scalar::from_uint(key, dest.layout.size), dest)?;
878             }
879             "TlsGetValue" => {
880                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
881                 let ptr = this.machine.tls.load_tls(key, tcx)?;
882                 this.write_scalar(ptr, dest)?;
883             }
884             "TlsSetValue" => {
885                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
886                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
887                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
888
889                 // Return success (`1`).
890                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
891             }
892             "GetStdHandle" => {
893                 let which = this.read_scalar(args[0])?.to_i32()?;
894                 // We just make this the identity function, so we know later in `WriteFile`
895                 // which one it is.
896                 this.write_scalar(Scalar::from_int(which, this.pointer_size()), dest)?;
897             }
898             "WriteFile" => {
899                 let handle = this.read_scalar(args[0])?.to_isize(this)?;
900                 let buf = this.read_scalar(args[1])?.not_undef()?;
901                 let n = this.read_scalar(args[2])?.to_u32()?;
902                 let written_place = this.deref_operand(args[3])?;
903                 // Spec says to always write `0` first.
904                 this.write_null(written_place.into())?;
905                 let written = if handle == -11 || handle == -12 {
906                     // stdout/stderr
907                     use std::io::{self, Write};
908
909                     let buf_cont = this
910                         .memory
911                         .read_bytes(buf, Size::from_bytes(u64::from(n)))?;
912                     let res = if handle == -11 {
913                         io::stdout().write(buf_cont)
914                     } else {
915                         io::stderr().write(buf_cont)
916                     };
917                     res.ok().map(|n| n as u32)
918                 } else {
919                     eprintln!("Miri: Ignored output to handle {}", handle);
920                     // Pretend it all went well.
921                     Some(n)
922                 };
923                 // If there was no error, write back how much was written.
924                 if let Some(n) = written {
925                     this.write_scalar(Scalar::from_u32(n), written_place.into())?;
926                 }
927                 // Return whether this was a success.
928                 this.write_scalar(
929                     Scalar::from_int(if written.is_some() { 1 } else { 0 }, dest.layout.size),
930                     dest,
931                 )?;
932             }
933             "GetConsoleMode" => {
934                 // Everything is a pipe.
935                 this.write_null(dest)?;
936             }
937             "GetEnvironmentVariableW" => {
938                 // This is not the env var you are looking for.
939                 this.set_last_error(Scalar::from_u32(203))?; // ERROR_ENVVAR_NOT_FOUND
940                 this.write_null(dest)?;
941             }
942             "GetCommandLineW" => {
943                 this.write_scalar(Scalar::Ptr(this.machine.cmd_line.unwrap()), dest)?;
944             }
945             // The actual name of 'RtlGenRandom'
946             "SystemFunction036" => {
947                 let ptr = this.read_scalar(args[0])?.not_undef()?;
948                 let len = this.read_scalar(args[1])?.to_u32()?;
949                 this.gen_random(ptr, len as usize)?;
950                 this.write_scalar(Scalar::from_bool(true), dest)?;
951             }
952
953             // We can't execute anything else.
954             _ => throw_unsup_format!("can't call foreign function: {}", link_name),
955         }
956
957         this.goto_block(Some(ret))?;
958         this.dump_place(*dest);
959         Ok(())
960     }
961
962     /// Evaluates the scalar at the specified path. Returns Some(val)
963     /// if the path could be resolved, and None otherwise
964     fn eval_path_scalar(
965         &mut self,
966         path: &[&str],
967     ) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
968         let this = self.eval_context_mut();
969         if let Ok(instance) = this.resolve_path(path) {
970             let cid = GlobalId {
971                 instance,
972                 promoted: None,
973             };
974             let const_val = this.const_eval_raw(cid)?;
975             let const_val = this.read_scalar(const_val.into())?;
976             return Ok(Some(const_val));
977         }
978         return Ok(None);
979     }
980 }
981
982 // Shims the linux 'getrandom()' syscall.
983 fn linux_getrandom<'tcx>(
984     this: &mut MiriEvalContext<'_, 'tcx>,
985     args: &[OpTy<'tcx, Tag>],
986     dest: PlaceTy<'tcx, Tag>,
987 ) -> InterpResult<'tcx> {
988     let ptr = this.read_scalar(args[0])?.not_undef()?;
989     let len = this.read_scalar(args[1])?.to_usize(this)?;
990
991     // The only supported flags are GRND_RANDOM and GRND_NONBLOCK,
992     // neither of which have any effect on our current PRNG.
993     let _flags = this.read_scalar(args[2])?.to_i32()?;
994
995     this.gen_random(ptr, len as usize)?;
996     this.write_scalar(Scalar::from_uint(len, dest.layout.size), dest)?;
997     Ok(())
998 }