]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
Add shim for lseek64
[rust.git] / src / shims / foreign_items.rs
1 use std::{convert::TryInto, iter};
2
3 use rustc_hir::def_id::DefId;
4 use rustc::mir;
5 use rustc::ty;
6 use rustc::ty::layout::{Align, LayoutOf, Size};
7 use rustc_apfloat::Float;
8 use rustc_span::symbol::sym;
9 use syntax::attr;
10
11 use crate::*;
12
13 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
14 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
15     /// Returns the minimum alignment for the target architecture for allocations of the given size.
16     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
17         let this = self.eval_context_ref();
18         // List taken from `libstd/sys_common/alloc.rs`.
19         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
20             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
21             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
22             arch => bug!("Unsupported target architecture: {}", arch),
23         };
24         // Windows always aligns, even small allocations.
25         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
26         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
27         if kind == MiriMemoryKind::WinHeap || size >= min_align {
28             return Align::from_bytes(min_align).unwrap();
29         }
30         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
31         fn prev_power_of_two(x: u64) -> u64 {
32             let next_pow2 = x.next_power_of_two();
33             if next_pow2 == x {
34                 // x *is* a power of two, just use that.
35                 x
36             } else {
37                 // x is between two powers, so next = 2*prev.
38                 next_pow2 / 2
39             }
40         }
41         Align::from_bytes(prev_power_of_two(size)).unwrap()
42     }
43
44     fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
45         let this = self.eval_context_mut();
46         if size == 0 {
47             Scalar::from_int(0, this.pointer_size())
48         } else {
49             let align = this.min_align(size, kind);
50             let ptr = this.memory.allocate(Size::from_bytes(size), align, kind.into());
51             if zero_init {
52                 // We just allocated this, the access is definitely in-bounds.
53                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
54             }
55             Scalar::Ptr(ptr)
56         }
57     }
58
59     fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
60         let this = self.eval_context_mut();
61         if !this.is_null(ptr)? {
62             let ptr = this.force_ptr(ptr)?;
63             this.memory.deallocate(ptr, None, kind.into())?;
64         }
65         Ok(())
66     }
67
68     fn realloc(
69         &mut self,
70         old_ptr: Scalar<Tag>,
71         new_size: u64,
72         kind: MiriMemoryKind,
73     ) -> InterpResult<'tcx, Scalar<Tag>> {
74         let this = self.eval_context_mut();
75         let new_align = this.min_align(new_size, kind);
76         if this.is_null(old_ptr)? {
77             if new_size == 0 {
78                 Ok(Scalar::from_int(0, this.pointer_size()))
79             } else {
80                 let new_ptr =
81                     this.memory.allocate(Size::from_bytes(new_size), new_align, kind.into());
82                 Ok(Scalar::Ptr(new_ptr))
83             }
84         } else {
85             let old_ptr = this.force_ptr(old_ptr)?;
86             if new_size == 0 {
87                 this.memory.deallocate(old_ptr, None, kind.into())?;
88                 Ok(Scalar::from_int(0, this.pointer_size()))
89             } else {
90                 let new_ptr = this.memory.reallocate(
91                     old_ptr,
92                     None,
93                     Size::from_bytes(new_size),
94                     new_align,
95                     kind.into(),
96                 )?;
97                 Ok(Scalar::Ptr(new_ptr))
98             }
99         }
100     }
101
102     /// Emulates calling a foreign item, failing if the item is not supported.
103     /// This function will handle `goto_block` if needed.
104     /// Returns Ok(None) if the foreign item was completely handled
105     /// by this function.
106     /// Returns Ok(Some(body)) if processing the foreign item
107     /// is delegated to another function.
108     #[rustfmt::skip]
109     fn emulate_foreign_item(
110         &mut self,
111         def_id: DefId,
112         args: &[OpTy<'tcx, Tag>],
113         ret: Option<(PlaceTy<'tcx, Tag>, mir::BasicBlock)>,
114         _unwind: Option<mir::BasicBlock>,
115     ) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
116         let this = self.eval_context_mut();
117         let attrs = this.tcx.get_attrs(def_id);
118         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
119             Some(name) => name.as_str(),
120             None => this.tcx.item_name(def_id).as_str(),
121         };
122         // Strip linker suffixes (seen on 32-bit macOS).
123         let link_name = link_name.trim_end_matches("$UNIX2003");
124         let tcx = &{ this.tcx.tcx };
125
126         // First: functions that diverge.
127         let (dest, ret) = match link_name {
128             // Note that this matches calls to the *foreign* item `__rust_start_panic* -
129             // that is, calls to `extern "Rust" { fn __rust_start_panic(...) }`.
130             // We forward this to the underlying *implementation* in the panic runtime crate.
131             // Normally, this will be either `libpanic_unwind` or `libpanic_abort`, but it could
132             // also be a custom user-provided implementation via `#![feature(panic_runtime)]`
133             "__rust_start_panic" => {
134                 // FIXME we might want to cache this... but it's not really performance-critical.
135                 let panic_runtime = tcx
136                     .crates()
137                     .iter()
138                     .find(|cnum| tcx.is_panic_runtime(**cnum))
139                     .expect("No panic runtime found!");
140                 let panic_runtime = tcx.crate_name(*panic_runtime);
141                 let start_panic_instance =
142                     this.resolve_path(&[&*panic_runtime.as_str(), "__rust_start_panic"])?;
143                 return Ok(Some(&*this.load_mir(start_panic_instance.def, None)?));
144             }
145             // Similarly, we forward calls to the `panic_impl` foreign item to its implementation.
146             // The implementation is provided by the function with the `#[panic_handler]` attribute.
147             "panic_impl" => {
148                 let panic_impl_id = this.tcx.lang_items().panic_impl().unwrap();
149                 let panic_impl_instance = ty::Instance::mono(*this.tcx, panic_impl_id);
150                 return Ok(Some(&*this.load_mir(panic_impl_instance.def, None)?));
151             }
152
153             | "exit"
154             | "ExitProcess"
155             => {
156                 // it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
157                 let code = this.read_scalar(args[0])?.to_i32()?;
158                 throw_machine_stop!(TerminationInfo::Exit(code.into()));
159             }
160             _ => {
161                 if let Some(p) = ret {
162                     p
163                 } else {
164                     throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
165                 }
166             }
167         };
168
169         // Next: functions that return.
170         match link_name {
171             "malloc" => {
172                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
173                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
174                 this.write_scalar(res, dest)?;
175             }
176             "calloc" => {
177                 let items = this.read_scalar(args[0])?.to_machine_usize(this)?;
178                 let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
179                 let size =
180                     items.checked_mul(len).ok_or_else(|| err_panic!(Overflow(mir::BinOp::Mul)))?;
181                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
182                 this.write_scalar(res, dest)?;
183             }
184             "posix_memalign" => {
185                 let ret = this.deref_operand(args[0])?;
186                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
187                 let size = this.read_scalar(args[2])?.to_machine_usize(this)?;
188                 // Align must be power of 2, and also at least ptr-sized (POSIX rules).
189                 if !align.is_power_of_two() {
190                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
191                 }
192                 if align < this.pointer_size().bytes() {
193                     throw_ub_format!(
194                         "posix_memalign: alignment must be at least the size of a pointer, but is {}",
195                         align,
196                     );
197                 }
198
199                 if size == 0 {
200                     this.write_null(ret.into())?;
201                 } else {
202                     let ptr = this.memory.allocate(
203                         Size::from_bytes(size),
204                         Align::from_bytes(align).unwrap(),
205                         MiriMemoryKind::C.into(),
206                     );
207                     this.write_scalar(ptr, ret.into())?;
208                 }
209                 this.write_null(dest)?;
210             }
211             "free" => {
212                 let ptr = this.read_scalar(args[0])?.not_undef()?;
213                 this.free(ptr, MiriMemoryKind::C)?;
214             }
215             "realloc" => {
216                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
217                 let new_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
218                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
219                 this.write_scalar(res, dest)?;
220             }
221
222             "__rust_alloc" => {
223                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
224                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
225                 if size == 0 {
226                     throw_unsup!(HeapAllocZeroBytes);
227                 }
228                 if !align.is_power_of_two() {
229                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
230                 }
231                 let ptr = this.memory.allocate(
232                     Size::from_bytes(size),
233                     Align::from_bytes(align).unwrap(),
234                     MiriMemoryKind::Rust.into(),
235                 );
236                 this.write_scalar(ptr, dest)?;
237             }
238             "__rust_alloc_zeroed" => {
239                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
240                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
241                 if size == 0 {
242                     throw_unsup!(HeapAllocZeroBytes);
243                 }
244                 if !align.is_power_of_two() {
245                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
246                 }
247                 let ptr = this.memory.allocate(
248                     Size::from_bytes(size),
249                     Align::from_bytes(align).unwrap(),
250                     MiriMemoryKind::Rust.into(),
251                 );
252                 // We just allocated this, the access is definitely in-bounds.
253                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
254                 this.write_scalar(ptr, dest)?;
255             }
256             "__rust_dealloc" => {
257                 let ptr = this.read_scalar(args[0])?.not_undef()?;
258                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
259                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
260                 if old_size == 0 {
261                     throw_unsup!(HeapAllocZeroBytes);
262                 }
263                 if !align.is_power_of_two() {
264                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
265                 }
266                 let ptr = this.force_ptr(ptr)?;
267                 this.memory.deallocate(
268                     ptr,
269                     Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
270                     MiriMemoryKind::Rust.into(),
271                 )?;
272             }
273             "__rust_realloc" => {
274                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
275                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
276                 let new_size = this.read_scalar(args[3])?.to_machine_usize(this)?;
277                 if old_size == 0 || new_size == 0 {
278                     throw_unsup!(HeapAllocZeroBytes);
279                 }
280                 if !align.is_power_of_two() {
281                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
282                 }
283                 let ptr = this.force_ptr(this.read_scalar(args[0])?.not_undef()?)?;
284                 let align = Align::from_bytes(align).unwrap();
285                 let new_ptr = this.memory.reallocate(
286                     ptr,
287                     Some((Size::from_bytes(old_size), align)),
288                     Size::from_bytes(new_size),
289                     align,
290                     MiriMemoryKind::Rust.into(),
291                 )?;
292                 this.write_scalar(new_ptr, dest)?;
293             }
294
295             "syscall" => {
296                 let sys_getrandom = this
297                     .eval_path_scalar(&["libc", "SYS_getrandom"])?
298                     .expect("Failed to get libc::SYS_getrandom")
299                     .to_machine_usize(this)?;
300
301                 let sys_statx = this
302                     .eval_path_scalar(&["libc", "SYS_statx"])?
303                     .expect("Failed to get libc::SYS_statx")
304                     .to_machine_usize(this)?;
305
306                 match this.read_scalar(args[0])?.to_machine_usize(this)? {
307                     // `libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)`
308                     // is called if a `HashMap` is created the regular way (e.g. HashMap<K, V>).
309                     id if id == sys_getrandom => {
310                         // The first argument is the syscall id,
311                         // so skip over it.
312                         linux_getrandom(this, &args[1..], dest)?;
313                     }
314                     id if id == sys_statx => {
315                         // The first argument is the syscall id,
316                         // so skip over it.
317                         let result = this.statx(args[1], args[2], args[3], args[4], args[5])?;
318                         this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
319                     }
320                     id => throw_unsup_format!("miri does not support syscall ID {}", id),
321                 }
322             }
323
324             "getrandom" => {
325                 linux_getrandom(this, args, dest)?;
326             }
327
328             "dlsym" => {
329                 let _handle = this.read_scalar(args[0])?;
330                 let symbol = this.read_scalar(args[1])?.not_undef()?;
331                 let symbol_name = this.memory.read_c_str(symbol)?;
332                 let err = format!("bad c unicode symbol: {:?}", symbol_name);
333                 let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
334                 if let Some(dlsym) = Dlsym::from_str(symbol_name)? {
335                     let ptr = this.memory.create_fn_alloc(FnVal::Other(dlsym));
336                     this.write_scalar(Scalar::from(ptr), dest)?;
337                 } else {
338                     this.write_null(dest)?;
339                 }
340             }
341
342             "__rust_maybe_catch_panic" => {
343                 this.handle_catch_panic(args, dest, ret)?;
344                 return Ok(None);
345             }
346
347             "memcmp" => {
348                 let left = this.read_scalar(args[0])?.not_undef()?;
349                 let right = this.read_scalar(args[1])?.not_undef()?;
350                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_machine_usize(this)?);
351
352                 let result = {
353                     let left_bytes = this.memory.read_bytes(left, n)?;
354                     let right_bytes = this.memory.read_bytes(right, n)?;
355
356                     use std::cmp::Ordering::*;
357                     match left_bytes.cmp(right_bytes) {
358                         Less => -1i32,
359                         Equal => 0,
360                         Greater => 1,
361                     }
362                 };
363
364                 this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
365             }
366
367             "memrchr" => {
368                 let ptr = this.read_scalar(args[0])?.not_undef()?;
369                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
370                 let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
371                 if let Some(idx) = this
372                     .memory
373                     .read_bytes(ptr, Size::from_bytes(num))?
374                     .iter()
375                     .rev()
376                     .position(|&c| c == val)
377                 {
378                     let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
379                     this.write_scalar(new_ptr, dest)?;
380                 } else {
381                     this.write_null(dest)?;
382                 }
383             }
384
385             "memchr" => {
386                 let ptr = this.read_scalar(args[0])?.not_undef()?;
387                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
388                 let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
389                 let idx = this
390                     .memory
391                     .read_bytes(ptr, Size::from_bytes(num))?
392                     .iter()
393                     .position(|&c| c == val);
394                 if let Some(idx) = idx {
395                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
396                     this.write_scalar(new_ptr, dest)?;
397                 } else {
398                     this.write_null(dest)?;
399                 }
400             }
401
402             | "__errno_location"
403             | "__error"
404             => {
405                 let errno_place = this.machine.last_error.unwrap();
406                 this.write_scalar(errno_place.to_ref().to_scalar()?, dest)?;
407             }
408
409             "getenv" => {
410                 let result = this.getenv(args[0])?;
411                 this.write_scalar(result, dest)?;
412             }
413
414             "unsetenv" => {
415                 let result = this.unsetenv(args[0])?;
416                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
417             }
418
419             "setenv" => {
420                 let result = this.setenv(args[0], args[1])?;
421                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
422             }
423
424             "getcwd" => {
425                 let result = this.getcwd(args[0], args[1])?;
426                 this.write_scalar(result, dest)?;
427             }
428
429             "chdir" => {
430                 let result = this.chdir(args[0])?;
431                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
432             }
433
434             | "open"
435             | "open64"
436             => {
437                 let result = this.open(args[0], args[1])?;
438                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
439             }
440
441             "fcntl" => {
442                 let result = this.fcntl(args[0], args[1], args.get(2).cloned())?;
443                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
444             }
445
446             | "close"
447             | "close$NOCANCEL"
448             => {
449                 let result = this.close(args[0])?;
450                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
451             }
452
453             "read" => {
454                 let result = this.read(args[0], args[1], args[2])?;
455                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
456             }
457
458             "write" => {
459                 let fd = this.read_scalar(args[0])?.to_i32()?;
460                 let buf = this.read_scalar(args[1])?.not_undef()?;
461                 let n = this.read_scalar(args[2])?.to_machine_usize(tcx)?;
462                 trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
463                 let result = if fd == 1 || fd == 2 {
464                     // stdout/stderr
465                     use std::io::{self, Write};
466
467                     let buf_cont = this.memory.read_bytes(buf, Size::from_bytes(n))?;
468                     // We need to flush to make sure this actually appears on the screen
469                     let res = if fd == 1 {
470                         // Stdout is buffered, flush to make sure it appears on the screen.
471                         // This is the write() syscall of the interpreted program, we want it
472                         // to correspond to a write() syscall on the host -- there is no good
473                         // in adding extra buffering here.
474                         let res = io::stdout().write(buf_cont);
475                         io::stdout().flush().unwrap();
476                         res
477                     } else {
478                         // No need to flush, stderr is not buffered.
479                         io::stderr().write(buf_cont)
480                     };
481                     match res {
482                         Ok(n) => n as i64,
483                         Err(_) => -1,
484                     }
485                 } else {
486                     this.write(args[0], args[1], args[2])?
487                 };
488                 // Now, `result` is the value we return back to the program.
489                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
490             }
491
492             "lseek64" => {
493                 let result = this.lseek64(args[0], args[1], args[2])?;
494                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
495             }
496
497             "unlink" => {
498                 let result = this.unlink(args[0])?;
499                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
500             }
501
502             "symlink" => {
503                 let result = this.symlink(args[0], args[1])?;
504                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
505             }
506
507             "stat$INODE64" => {
508                 let result = this.stat(args[0], args[1])?;
509                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
510             }
511
512             "lstat$INODE64" => {
513                 let result = this.lstat(args[0], args[1])?;
514                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
515             }
516
517             "clock_gettime" => {
518                 let result = this.clock_gettime(args[0], args[1])?;
519                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
520             }
521
522             "gettimeofday" => {
523                 let result = this.gettimeofday(args[0], args[1])?;
524                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
525             }
526
527             "strlen" => {
528                 let ptr = this.read_scalar(args[0])?.not_undef()?;
529                 let n = this.memory.read_c_str(ptr)?.len();
530                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
531             }
532
533             // math functions
534             | "cbrtf"
535             | "coshf"
536             | "sinhf"
537             | "tanf"
538             | "acosf"
539             | "asinf"
540             | "atanf"
541             => {
542                 // FIXME: Using host floats.
543                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
544                 let f = match link_name {
545                     "cbrtf" => f.cbrt(),
546                     "coshf" => f.cosh(),
547                     "sinhf" => f.sinh(),
548                     "tanf" => f.tan(),
549                     "acosf" => f.acos(),
550                     "asinf" => f.asin(),
551                     "atanf" => f.atan(),
552                     _ => bug!(),
553                 };
554                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
555             }
556             // underscore case for windows
557             | "_hypotf"
558             | "hypotf"
559             | "atan2f"
560             => {
561                 // FIXME: Using host floats.
562                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
563                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
564                 let n = match link_name {
565                     "_hypotf" | "hypotf" => f1.hypot(f2),
566                     "atan2f" => f1.atan2(f2),
567                     _ => bug!(),
568                 };
569                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
570             }
571
572             | "cbrt"
573             | "cosh"
574             | "sinh"
575             | "tan"
576             | "acos"
577             | "asin"
578             | "atan"
579             => {
580                 // FIXME: Using host floats.
581                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
582                 let f = match link_name {
583                     "cbrt" => f.cbrt(),
584                     "cosh" => f.cosh(),
585                     "sinh" => f.sinh(),
586                     "tan" => f.tan(),
587                     "acos" => f.acos(),
588                     "asin" => f.asin(),
589                     "atan" => f.atan(),
590                     _ => bug!(),
591                 };
592                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
593             }
594             // underscore case for windows, here and below
595             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
596             | "_hypot"
597             | "hypot"
598             | "atan2"
599             => {
600                 // FIXME: Using host floats.
601                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
602                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
603                 let n = match link_name {
604                     "_hypot" | "hypot" => f1.hypot(f2),
605                     "atan2" => f1.atan2(f2),
606                     _ => bug!(),
607                 };
608                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
609             }
610             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
611             | "_ldexp"
612             | "ldexp"
613             | "scalbn"
614             => {
615                 let x = this.read_scalar(args[0])?.to_f64()?;
616                 let exp = this.read_scalar(args[1])?.to_i32()?;
617
618                 // Saturating cast to i16. Even those are outside the valid exponent range to
619                 // `scalbn` below will do its over/underflow handling.
620                 let exp = if exp > i16::max_value() as i32 {
621                     i16::max_value()
622                 } else if exp < i16::min_value() as i32 {
623                     i16::min_value()
624                 } else {
625                     exp.try_into().unwrap()
626                 };
627
628                 let res = x.scalbn(exp);
629                 this.write_scalar(Scalar::from_f64(res), dest)?;
630             }
631
632             // Some things needed for `sys::thread` initialization to go through.
633             | "signal"
634             | "sigaction"
635             | "sigaltstack"
636             => {
637                 this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
638             }
639
640             "sysconf" => {
641                 let name = this.read_scalar(args[0])?.to_i32()?;
642
643                 trace!("sysconf() called with name {}", name);
644                 // TODO: Cache the sysconf integers via Miri's global cache.
645                 let paths = &[
646                     (&["libc", "_SC_PAGESIZE"], Scalar::from_int(PAGE_SIZE, dest.layout.size)),
647                     (&["libc", "_SC_GETPW_R_SIZE_MAX"], Scalar::from_int(-1, dest.layout.size)),
648                     (
649                         &["libc", "_SC_NPROCESSORS_ONLN"],
650                         Scalar::from_int(NUM_CPUS, dest.layout.size),
651                     ),
652                 ];
653                 let mut result = None;
654                 for &(path, path_value) in paths {
655                     if let Some(val) = this.eval_path_scalar(path)? {
656                         let val = val.to_i32()?;
657                         if val == name {
658                             result = Some(path_value);
659                             break;
660                         }
661                     }
662                 }
663                 if let Some(result) = result {
664                     this.write_scalar(result, dest)?;
665                 } else {
666                     throw_unsup_format!("Unimplemented sysconf name: {}", name)
667                 }
668             }
669
670             "sched_getaffinity" => {
671                 // Return an error; `num_cpus` then falls back to `sysconf`.
672                 this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
673             }
674
675             "isatty" => {
676                 this.write_null(dest)?;
677             }
678
679             // Hook pthread calls that go to the thread-local storage memory subsystem.
680             "pthread_key_create" => {
681                 let key_place = this.deref_operand(args[0])?;
682
683                 // Extract the function type out of the signature (that seems easier than constructing it ourselves).
684                 let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
685                     Some(dtor_ptr) => Some(this.memory.get_fn(dtor_ptr)?.as_instance()?),
686                     None => None,
687                 };
688
689                 // Figure out how large a pthread TLS key actually is.
690                 // This is `libc::pthread_key_t`.
691                 let key_type = args[0].layout.ty
692                     .builtin_deref(true)
693                     .ok_or_else(|| err_ub_format!(
694                         "wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
695                     ))?
696                     .ty;
697                 let key_layout = this.layout_of(key_type)?;
698
699                 // Create key and write it into the memory where `key_ptr` wants it.
700                 let key = this.machine.tls.create_tls_key(dtor) as u128;
701                 if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128)
702                 {
703                     throw_unsup!(OutOfTls);
704                 }
705
706                 this.write_scalar(Scalar::from_uint(key, key_layout.size), key_place.into())?;
707
708                 // Return success (`0`).
709                 this.write_null(dest)?;
710             }
711             "pthread_key_delete" => {
712                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
713                 this.machine.tls.delete_tls_key(key)?;
714                 // Return success (0)
715                 this.write_null(dest)?;
716             }
717             "pthread_getspecific" => {
718                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
719                 let ptr = this.machine.tls.load_tls(key, tcx)?;
720                 this.write_scalar(ptr, dest)?;
721             }
722             "pthread_setspecific" => {
723                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
724                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
725                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
726
727                 // Return success (`0`).
728                 this.write_null(dest)?;
729             }
730
731             // Stack size/address stuff.
732             | "pthread_attr_init"
733             | "pthread_attr_destroy"
734             | "pthread_self"
735             | "pthread_attr_setstacksize" => {
736                 this.write_null(dest)?;
737             }
738             "pthread_attr_getstack" => {
739                 let addr_place = this.deref_operand(args[1])?;
740                 let size_place = this.deref_operand(args[2])?;
741
742                 this.write_scalar(
743                     Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
744                     addr_place.into(),
745                 )?;
746                 this.write_scalar(
747                     Scalar::from_uint(STACK_SIZE, size_place.layout.size),
748                     size_place.into(),
749                 )?;
750
751                 // Return success (`0`).
752                 this.write_null(dest)?;
753             }
754
755             // We don't support threading. (Also for Windows.)
756             | "pthread_create"
757             | "CreateThread"
758             => {
759                 throw_unsup_format!("Miri does not support threading");
760             }
761
762             // Stub out calls for condvar, mutex and rwlock, to just return `0`.
763             | "pthread_mutexattr_init"
764             | "pthread_mutexattr_settype"
765             | "pthread_mutex_init"
766             | "pthread_mutexattr_destroy"
767             | "pthread_mutex_lock"
768             | "pthread_mutex_unlock"
769             | "pthread_mutex_destroy"
770             | "pthread_rwlock_rdlock"
771             | "pthread_rwlock_unlock"
772             | "pthread_rwlock_wrlock"
773             | "pthread_rwlock_destroy"
774             | "pthread_condattr_init"
775             | "pthread_condattr_setclock"
776             | "pthread_cond_init"
777             | "pthread_condattr_destroy"
778             | "pthread_cond_destroy"
779             => {
780                 this.write_null(dest)?;
781             }
782
783             // We don't support fork so we don't have to do anything for atfork.
784             "pthread_atfork" => {
785                 this.write_null(dest)?;
786             }
787
788             "mmap" => {
789                 // This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
790                 let addr = this.read_scalar(args[0])?.not_undef()?;
791                 this.write_scalar(addr, dest)?;
792             }
793             "mprotect" => {
794                 this.write_null(dest)?;
795             }
796
797             // macOS API stubs.
798             | "pthread_attr_get_np"
799             | "pthread_getattr_np"
800             => {
801                 this.write_null(dest)?;
802             }
803             "pthread_get_stackaddr_np" => {
804                 let stack_addr = Scalar::from_uint(STACK_ADDR, dest.layout.size);
805                 this.write_scalar(stack_addr, dest)?;
806             }
807             "pthread_get_stacksize_np" => {
808                 let stack_size = Scalar::from_uint(STACK_SIZE, dest.layout.size);
809                 this.write_scalar(stack_size, dest)?;
810             }
811             "_tlv_atexit" => {
812                 // FIXME: register the destructor.
813             }
814             "_NSGetArgc" => {
815                 this.write_scalar(this.machine.argc.expect("machine must be initialized"), dest)?;
816             }
817             "_NSGetArgv" => {
818                 this.write_scalar(this.machine.argv.expect("machine must be initialized"), dest)?;
819             }
820             "SecRandomCopyBytes" => {
821                 let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
822                 let ptr = this.read_scalar(args[2])?.not_undef()?;
823                 this.gen_random(ptr, len as usize)?;
824                 this.write_null(dest)?;
825             }
826
827             // Windows API stubs.
828             // HANDLE = isize
829             // DWORD = ULONG = u32
830             // BOOL = i32
831             "GetProcessHeap" => {
832                 // Just fake a HANDLE
833                 this.write_scalar(Scalar::from_int(1, this.pointer_size()), dest)?;
834             }
835             "HeapAlloc" => {
836                 let _handle = this.read_scalar(args[0])?.to_machine_isize(this)?;
837                 let flags = this.read_scalar(args[1])?.to_u32()?;
838                 let size = this.read_scalar(args[2])?.to_machine_usize(this)?;
839                 let zero_init = (flags & 0x00000008) != 0; // HEAP_ZERO_MEMORY
840                 let res = this.malloc(size, zero_init, MiriMemoryKind::WinHeap);
841                 this.write_scalar(res, dest)?;
842             }
843             "HeapFree" => {
844                 let _handle = this.read_scalar(args[0])?.to_machine_isize(this)?;
845                 let _flags = this.read_scalar(args[1])?.to_u32()?;
846                 let ptr = this.read_scalar(args[2])?.not_undef()?;
847                 this.free(ptr, MiriMemoryKind::WinHeap)?;
848                 this.write_scalar(Scalar::from_int(1, Size::from_bytes(4)), dest)?;
849             }
850             "HeapReAlloc" => {
851                 let _handle = this.read_scalar(args[0])?.to_machine_isize(this)?;
852                 let _flags = this.read_scalar(args[1])?.to_u32()?;
853                 let ptr = this.read_scalar(args[2])?.not_undef()?;
854                 let size = this.read_scalar(args[3])?.to_machine_usize(this)?;
855                 let res = this.realloc(ptr, size, MiriMemoryKind::WinHeap)?;
856                 this.write_scalar(res, dest)?;
857             }
858
859             "SetLastError" => {
860                 this.set_last_error(this.read_scalar(args[0])?.not_undef()?)?;
861             }
862             "GetLastError" => {
863                 let last_error = this.get_last_error()?;
864                 this.write_scalar(last_error, dest)?;
865             }
866
867             "AddVectoredExceptionHandler" => {
868                 // Any non zero value works for the stdlib. This is just used for stack overflows anyway.
869                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
870             }
871
872             | "InitializeCriticalSection"
873             | "EnterCriticalSection"
874             | "LeaveCriticalSection"
875             | "DeleteCriticalSection"
876             => {
877                 // Nothing to do, not even a return value.
878             }
879
880             | "GetModuleHandleW"
881             | "GetProcAddress"
882             | "TryEnterCriticalSection"
883             | "GetConsoleScreenBufferInfo"
884             | "SetConsoleTextAttribute"
885             => {
886                 // Pretend these do not exist / nothing happened, by returning zero.
887                 this.write_null(dest)?;
888             }
889
890             "GetSystemInfo" => {
891                 let system_info = this.deref_operand(args[0])?;
892                 // Initialize with `0`.
893                 this.memory.write_bytes(
894                     system_info.ptr,
895                     iter::repeat(0u8).take(system_info.layout.size.bytes() as usize),
896                 )?;
897                 // Set number of processors.
898                 let dword_size = Size::from_bytes(4);
899                 let num_cpus = this.mplace_field(system_info, 6)?;
900                 this.write_scalar(Scalar::from_int(NUM_CPUS, dword_size), num_cpus.into())?;
901             }
902
903             "TlsAlloc" => {
904                 // This just creates a key; Windows does not natively support TLS destructors.
905
906                 // Create key and return it.
907                 let key = this.machine.tls.create_tls_key(None) as u128;
908
909                 // Figure out how large a TLS key actually is. This is `c::DWORD`.
910                 if dest.layout.size.bits() < 128
911                     && key >= (1u128 << dest.layout.size.bits() as u128)
912                 {
913                     throw_unsup!(OutOfTls);
914                 }
915                 this.write_scalar(Scalar::from_uint(key, dest.layout.size), dest)?;
916             }
917             "TlsGetValue" => {
918                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
919                 let ptr = this.machine.tls.load_tls(key, tcx)?;
920                 this.write_scalar(ptr, dest)?;
921             }
922             "TlsSetValue" => {
923                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
924                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
925                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
926
927                 // Return success (`1`).
928                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
929             }
930             "GetStdHandle" => {
931                 let which = this.read_scalar(args[0])?.to_i32()?;
932                 // We just make this the identity function, so we know later in `WriteFile`
933                 // which one it is.
934                 this.write_scalar(Scalar::from_int(which, this.pointer_size()), dest)?;
935             }
936             "WriteFile" => {
937                 let handle = this.read_scalar(args[0])?.to_machine_isize(this)?;
938                 let buf = this.read_scalar(args[1])?.not_undef()?;
939                 let n = this.read_scalar(args[2])?.to_u32()?;
940                 let written_place = this.deref_operand(args[3])?;
941                 // Spec says to always write `0` first.
942                 this.write_null(written_place.into())?;
943                 let written = if handle == -11 || handle == -12 {
944                     // stdout/stderr
945                     use std::io::{self, Write};
946
947                     let buf_cont = this.memory.read_bytes(buf, Size::from_bytes(u64::from(n)))?;
948                     let res = if handle == -11 {
949                         io::stdout().write(buf_cont)
950                     } else {
951                         io::stderr().write(buf_cont)
952                     };
953                     res.ok().map(|n| n as u32)
954                 } else {
955                     eprintln!("Miri: Ignored output to handle {}", handle);
956                     // Pretend it all went well.
957                     Some(n)
958                 };
959                 // If there was no error, write back how much was written.
960                 if let Some(n) = written {
961                     this.write_scalar(Scalar::from_u32(n), written_place.into())?;
962                 }
963                 // Return whether this was a success.
964                 this.write_scalar(
965                     Scalar::from_int(if written.is_some() { 1 } else { 0 }, dest.layout.size),
966                     dest,
967                 )?;
968             }
969             "GetConsoleMode" => {
970                 // Everything is a pipe.
971                 this.write_null(dest)?;
972             }
973             "GetEnvironmentVariableW" => {
974                 // args[0] : LPCWSTR lpName (32-bit ptr to a const string of 16-bit Unicode chars)
975                 // args[1] : LPWSTR lpBuffer (32-bit pointer to a string of 16-bit Unicode chars)
976                 // lpBuffer : ptr to buffer that receives contents of the env_var as a null-terminated string.
977                 // Return `# of chars` stored in the buffer pointed to by lpBuffer, excluding null-terminator.
978                 // Return 0 upon failure.
979
980                 // This is not the env var you are looking for.
981                 this.set_last_error(Scalar::from_u32(203))?; // ERROR_ENVVAR_NOT_FOUND
982                 this.write_null(dest)?;
983             }
984             "SetEnvironmentVariableW" => {
985                 // args[0] : LPCWSTR lpName (32-bit ptr to a const string of 16-bit Unicode chars)
986                 // args[1] : LPCWSTR lpValue (32-bit ptr to a const string of 16-bit Unicode chars)
987                 // Return nonzero if success, else return 0.
988                 throw_unsup_format!("can't set environment variable on Windows");
989             }
990             "GetCommandLineW" => {
991                 this.write_scalar(
992                     this.machine.cmd_line.expect("machine must be initialized"),
993                     dest,
994                 )?;
995             }
996             // The actual name of 'RtlGenRandom'
997             "SystemFunction036" => {
998                 let ptr = this.read_scalar(args[0])?.not_undef()?;
999                 let len = this.read_scalar(args[1])?.to_u32()?;
1000                 this.gen_random(ptr, len as usize)?;
1001                 this.write_scalar(Scalar::from_bool(true), dest)?;
1002             }
1003
1004             // We can't execute anything else.
1005             _ => throw_unsup_format!("can't call foreign function: {}", link_name),
1006         }
1007
1008         this.dump_place(*dest);
1009         this.go_to_block(ret);
1010         Ok(None)
1011     }
1012
1013     /// Evaluates the scalar at the specified path. Returns Some(val)
1014     /// if the path could be resolved, and None otherwise
1015     fn eval_path_scalar(
1016         &mut self,
1017         path: &[&str],
1018     ) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
1019         let this = self.eval_context_mut();
1020         if let Ok(instance) = this.resolve_path(path) {
1021             let cid = GlobalId { instance, promoted: None };
1022             let const_val = this.const_eval_raw(cid)?;
1023             let const_val = this.read_scalar(const_val.into())?;
1024             return Ok(Some(const_val));
1025         }
1026         return Ok(None);
1027     }
1028 }
1029
1030 // Shims the linux 'getrandom()' syscall.
1031 fn linux_getrandom<'tcx>(
1032     this: &mut MiriEvalContext<'_, 'tcx>,
1033     args: &[OpTy<'tcx, Tag>],
1034     dest: PlaceTy<'tcx, Tag>,
1035 ) -> InterpResult<'tcx> {
1036     let ptr = this.read_scalar(args[0])?.not_undef()?;
1037     let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
1038
1039     // The only supported flags are GRND_RANDOM and GRND_NONBLOCK,
1040     // neither of which have any effect on our current PRNG.
1041     let _flags = this.read_scalar(args[2])?.to_i32()?;
1042
1043     this.gen_random(ptr, len as usize)?;
1044     this.write_scalar(Scalar::from_uint(len, dest.layout.size), dest)?;
1045     Ok(())
1046 }