]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
Add `chdir` shim
[rust.git] / src / shims / foreign_items.rs
1 use std::convert::TryInto;
2
3 use rustc_apfloat::Float;
4 use rustc::ty::layout::{Align, LayoutOf, Size};
5 use rustc::hir::def_id::DefId;
6 use rustc::mir;
7 use syntax::attr;
8 use syntax::symbol::sym;
9
10 use crate::*;
11
12 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
13 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
14     /// Returns the minimum alignment for the target architecture for allocations of the given size.
15     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
16         let this = self.eval_context_ref();
17         // List taken from `libstd/sys_common/alloc.rs`.
18         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
19             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
20             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
21             arch => bug!("Unsupported target architecture: {}", arch),
22         };
23         // Windows always aligns, even small allocations.
24         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
25         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
26         if kind == MiriMemoryKind::WinHeap || size >= min_align {
27             return Align::from_bytes(min_align).unwrap();
28         }
29         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
30         fn prev_power_of_two(x: u64) -> u64 {
31             let next_pow2 = x.next_power_of_two();
32             if next_pow2 == x {
33                 // x *is* a power of two, just use that.
34                 x
35             } else {
36                 // x is between two powers, so next = 2*prev.
37                 next_pow2 / 2
38             }
39         }
40         Align::from_bytes(prev_power_of_two(size)).unwrap()
41     }
42
43     fn malloc(
44         &mut self,
45         size: u64,
46         zero_init: bool,
47         kind: MiriMemoryKind,
48     ) -> Scalar<Tag> {
49         let this = self.eval_context_mut();
50         let tcx = &{this.tcx.tcx};
51         if size == 0 {
52             Scalar::from_int(0, this.pointer_size())
53         } else {
54             let align = this.min_align(size, kind);
55             let ptr = this.memory_mut().allocate(Size::from_bytes(size), align, kind.into());
56             if zero_init {
57                 // We just allocated this, the access cannot fail
58                 this.memory_mut()
59                     .get_mut(ptr.alloc_id).unwrap()
60                     .write_repeat(tcx, ptr, 0, Size::from_bytes(size)).unwrap();
61             }
62             Scalar::Ptr(ptr)
63         }
64     }
65
66     fn free(
67         &mut self,
68         ptr: Scalar<Tag>,
69         kind: MiriMemoryKind,
70     ) -> InterpResult<'tcx> {
71         let this = self.eval_context_mut();
72         if !this.is_null(ptr)? {
73             let ptr = this.force_ptr(ptr)?;
74             this.memory_mut().deallocate(
75                 ptr,
76                 None,
77                 kind.into(),
78             )?;
79         }
80         Ok(())
81     }
82
83     fn realloc(
84         &mut self,
85         old_ptr: Scalar<Tag>,
86         new_size: u64,
87         kind: MiriMemoryKind,
88     ) -> InterpResult<'tcx, Scalar<Tag>> {
89         let this = self.eval_context_mut();
90         let new_align = this.min_align(new_size, kind);
91         if this.is_null(old_ptr)? {
92             if new_size == 0 {
93                 Ok(Scalar::from_int(0, this.pointer_size()))
94             } else {
95                 let new_ptr = this.memory_mut().allocate(
96                     Size::from_bytes(new_size),
97                     new_align,
98                     kind.into()
99                 );
100                 Ok(Scalar::Ptr(new_ptr))
101             }
102         } else {
103             let old_ptr = this.force_ptr(old_ptr)?;
104             let memory = this.memory_mut();
105             if new_size == 0 {
106                 memory.deallocate(
107                     old_ptr,
108                     None,
109                     kind.into(),
110                 )?;
111                 Ok(Scalar::from_int(0, this.pointer_size()))
112             } else {
113                 let new_ptr = memory.reallocate(
114                     old_ptr,
115                     None,
116                     Size::from_bytes(new_size),
117                     new_align,
118                     kind.into(),
119                 )?;
120                 Ok(Scalar::Ptr(new_ptr))
121             }
122         }
123     }
124
125     /// Emulates calling a foreign item, failing if the item is not supported.
126     /// This function will handle `goto_block` if needed.
127     fn emulate_foreign_item(
128         &mut self,
129         def_id: DefId,
130         args: &[OpTy<'tcx, Tag>],
131         dest: Option<PlaceTy<'tcx, Tag>>,
132         ret: Option<mir::BasicBlock>,
133     ) -> InterpResult<'tcx> {
134         let this = self.eval_context_mut();
135         let attrs = this.tcx.get_attrs(def_id);
136         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
137             Some(name) => name.as_str(),
138             None => this.tcx.item_name(def_id).as_str(),
139         };
140         // Strip linker suffixes (seen on 32-bit macOS).
141         let link_name = link_name.trim_end_matches("$UNIX2003");
142         let tcx = &{this.tcx.tcx};
143
144         // First: functions that diverge.
145         match link_name {
146             "__rust_start_panic" | "panic_impl" => {
147                 throw_unsup_format!("the evaluated program panicked");
148             }
149             "exit" | "ExitProcess" => {
150                 // it's really u32 for ExitProcess, but we have to put it into the `Exit` error variant anyway
151                 let code = this.read_scalar(args[0])?.to_i32()?;
152                 return Err(InterpError::Exit(code).into());
153             }
154             _ => if dest.is_none() {
155                 throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
156             }
157         }
158
159         // Next: functions that assume a ret and dest.
160         let dest = dest.expect("we already checked for a dest");
161         let ret = ret.expect("dest is `Some` but ret is `None`");
162         match link_name {
163             "malloc" => {
164                 let size = this.read_scalar(args[0])?.to_usize(this)?;
165                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
166                 this.write_scalar(res, dest)?;
167             }
168             "calloc" => {
169                 let items = this.read_scalar(args[0])?.to_usize(this)?;
170                 let len = this.read_scalar(args[1])?.to_usize(this)?;
171                 let size = items.checked_mul(len).ok_or_else(|| err_panic!(Overflow(mir::BinOp::Mul)))?;
172                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
173                 this.write_scalar(res, dest)?;
174             }
175             "posix_memalign" => {
176                 let ret = this.deref_operand(args[0])?;
177                 let align = this.read_scalar(args[1])?.to_usize(this)?;
178                 let size = this.read_scalar(args[2])?.to_usize(this)?;
179                 // Align must be power of 2, and also at least ptr-sized (POSIX rules).
180                 if !align.is_power_of_two() {
181                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
182                 }
183                 if align < this.pointer_size().bytes() {
184                     throw_ub_format!(
185                         "posix_memalign: alignment must be at least the size of a pointer, but is {}",
186                         align,
187                     );
188                 }
189
190                 if size == 0 {
191                     this.write_null(ret.into())?;
192                 } else {
193                     let ptr = this.memory_mut().allocate(
194                         Size::from_bytes(size),
195                         Align::from_bytes(align).unwrap(),
196                         MiriMemoryKind::C.into()
197                     );
198                     this.write_scalar(Scalar::Ptr(ptr), ret.into())?;
199                 }
200                 this.write_null(dest)?;
201             }
202             "free" => {
203                 let ptr = this.read_scalar(args[0])?.not_undef()?;
204                 this.free(ptr, MiriMemoryKind::C)?;
205             }
206             "realloc" => {
207                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
208                 let new_size = this.read_scalar(args[1])?.to_usize(this)?;
209                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
210                 this.write_scalar(res, dest)?;
211             }
212
213             "__rust_alloc" => {
214                 let size = this.read_scalar(args[0])?.to_usize(this)?;
215                 let align = this.read_scalar(args[1])?.to_usize(this)?;
216                 if size == 0 {
217                     throw_unsup!(HeapAllocZeroBytes);
218                 }
219                 if !align.is_power_of_two() {
220                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
221                 }
222                 let ptr = this.memory_mut()
223                     .allocate(
224                         Size::from_bytes(size),
225                         Align::from_bytes(align).unwrap(),
226                         MiriMemoryKind::Rust.into()
227                     );
228                 this.write_scalar(Scalar::Ptr(ptr), dest)?;
229             }
230             "__rust_alloc_zeroed" => {
231                 let size = this.read_scalar(args[0])?.to_usize(this)?;
232                 let align = this.read_scalar(args[1])?.to_usize(this)?;
233                 if size == 0 {
234                     throw_unsup!(HeapAllocZeroBytes);
235                 }
236                 if !align.is_power_of_two() {
237                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
238                 }
239                 let ptr = this.memory_mut()
240                     .allocate(
241                         Size::from_bytes(size),
242                         Align::from_bytes(align).unwrap(),
243                         MiriMemoryKind::Rust.into()
244                     );
245                 // We just allocated this, the access cannot fail
246                 this.memory_mut()
247                     .get_mut(ptr.alloc_id).unwrap()
248                     .write_repeat(tcx, ptr, 0, Size::from_bytes(size)).unwrap();
249                 this.write_scalar(Scalar::Ptr(ptr), dest)?;
250             }
251             "__rust_dealloc" => {
252                 let ptr = this.read_scalar(args[0])?.not_undef()?;
253                 let old_size = this.read_scalar(args[1])?.to_usize(this)?;
254                 let align = this.read_scalar(args[2])?.to_usize(this)?;
255                 if old_size == 0 {
256                     throw_unsup!(HeapAllocZeroBytes);
257                 }
258                 if !align.is_power_of_two() {
259                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
260                 }
261                 let ptr = this.force_ptr(ptr)?;
262                 this.memory_mut().deallocate(
263                     ptr,
264                     Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
265                     MiriMemoryKind::Rust.into(),
266                 )?;
267             }
268             "__rust_realloc" => {
269                 let ptr = this.read_scalar(args[0])?.to_ptr()?;
270                 let old_size = this.read_scalar(args[1])?.to_usize(this)?;
271                 let align = this.read_scalar(args[2])?.to_usize(this)?;
272                 let new_size = this.read_scalar(args[3])?.to_usize(this)?;
273                 if old_size == 0 || new_size == 0 {
274                     throw_unsup!(HeapAllocZeroBytes);
275                 }
276                 if !align.is_power_of_two() {
277                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
278                 }
279                 let align = Align::from_bytes(align).unwrap();
280                 let new_ptr = this.memory_mut().reallocate(
281                     ptr,
282                     Some((Size::from_bytes(old_size), align)),
283                     Size::from_bytes(new_size),
284                     align,
285                     MiriMemoryKind::Rust.into(),
286                 )?;
287                 this.write_scalar(Scalar::Ptr(new_ptr), dest)?;
288             }
289
290             "syscall" => {
291                 let sys_getrandom = this.eval_path_scalar(&["libc", "SYS_getrandom"])?
292                     .expect("Failed to get libc::SYS_getrandom")
293                     .to_usize(this)?;
294
295                 // `libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)`
296                 // is called if a `HashMap` is created the regular way (e.g. HashMap<K, V>).
297                 match this.read_scalar(args[0])?.to_usize(this)? {
298                     id if id == sys_getrandom => {
299                         // The first argument is the syscall id,
300                         // so skip over it.
301                         linux_getrandom(this, &args[1..], dest)?;
302                     }
303                     id => {
304                         throw_unsup_format!("miri does not support syscall ID {}", id)
305                     }
306                 }
307             }
308
309             "getrandom" => {
310                 linux_getrandom(this, args, dest)?;
311             }
312
313             "dlsym" => {
314                 let _handle = this.read_scalar(args[0])?;
315                 let symbol = this.read_scalar(args[1])?.not_undef()?;
316                 let symbol_name = this.memory().read_c_str(symbol)?;
317                 let err = format!("bad c unicode symbol: {:?}", symbol_name);
318                 let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
319                 if let Some(dlsym) = Dlsym::from_str(symbol_name)? {
320                     let ptr = this.memory_mut().create_fn_alloc(FnVal::Other(dlsym));
321                     this.write_scalar(Scalar::from(ptr), dest)?;
322                 } else {
323                     this.write_null(dest)?;
324                 }
325             }
326
327             "__rust_maybe_catch_panic" => {
328                 // fn __rust_maybe_catch_panic(
329                 //     f: fn(*mut u8),
330                 //     data: *mut u8,
331                 //     data_ptr: *mut usize,
332                 //     vtable_ptr: *mut usize,
333                 // ) -> u32
334                 // We abort on panic, so not much is going on here, but we still have to call the closure.
335                 let f = this.read_scalar(args[0])?.not_undef()?;
336                 let data = this.read_scalar(args[1])?.not_undef()?;
337                 let f_instance = this.memory().get_fn(f)?.as_instance()?;
338                 this.write_null(dest)?;
339                 trace!("__rust_maybe_catch_panic: {:?}", f_instance);
340
341                 // Now we make a function call.
342                 // TODO: consider making this reusable? `InterpCx::step` does something similar
343                 // for the TLS destructors, and of course `eval_main`.
344                 let mir = this.load_mir(f_instance.def, None)?;
345                 let ret_place = MPlaceTy::dangling(this.layout_of(this.tcx.mk_unit())?, this).into();
346                 this.push_stack_frame(
347                     f_instance,
348                     mir.span,
349                     mir,
350                     Some(ret_place),
351                     // Directly return to caller.
352                     StackPopCleanup::Goto(Some(ret)),
353                 )?;
354                 let mut args = this.frame().body.args_iter();
355
356                 let arg_local = args.next()
357                     .expect("Argument to __rust_maybe_catch_panic does not take enough arguments.");
358                 let arg_dest = this.local_place(arg_local)?;
359                 this.write_scalar(data, arg_dest)?;
360
361                 assert!(args.next().is_none(), "__rust_maybe_catch_panic argument has more arguments than expected");
362
363                 // We ourselves will return `0`, eventually (because we will not return if we paniced).
364                 this.write_null(dest)?;
365
366                 // Don't fall through, we do *not* want to `goto_block`!
367                 return Ok(());
368             }
369
370             "memcmp" => {
371                 let left = this.read_scalar(args[0])?.not_undef()?;
372                 let right = this.read_scalar(args[1])?.not_undef()?;
373                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_usize(this)?);
374
375                 let result = {
376                     let left_bytes = this.memory().read_bytes(left, n)?;
377                     let right_bytes = this.memory().read_bytes(right, n)?;
378
379                     use std::cmp::Ordering::*;
380                     match left_bytes.cmp(right_bytes) {
381                         Less => -1i32,
382                         Equal => 0,
383                         Greater => 1,
384                     }
385                 };
386
387                 this.write_scalar(
388                     Scalar::from_int(result, Size::from_bits(32)),
389                     dest,
390                 )?;
391             }
392
393             "memrchr" => {
394                 let ptr = this.read_scalar(args[0])?.not_undef()?;
395                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
396                 let num = this.read_scalar(args[2])?.to_usize(this)?;
397                 if let Some(idx) = this.memory().read_bytes(ptr, Size::from_bytes(num))?
398                     .iter().rev().position(|&c| c == val)
399                 {
400                     let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
401                     this.write_scalar(new_ptr, dest)?;
402                 } else {
403                     this.write_null(dest)?;
404                 }
405             }
406
407             "memchr" => {
408                 let ptr = this.read_scalar(args[0])?.not_undef()?;
409                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
410                 let num = this.read_scalar(args[2])?.to_usize(this)?;
411                 let idx = this
412                     .memory()
413                     .read_bytes(ptr, Size::from_bytes(num))?
414                     .iter()
415                     .position(|&c| c == val);
416                 if let Some(idx) = idx {
417                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
418                     this.write_scalar(new_ptr, dest)?;
419                 } else {
420                     this.write_null(dest)?;
421                 }
422             }
423
424             "getenv" => {
425                 let result = this.getenv(args[0])?;
426                 this.write_scalar(result, dest)?;
427             }
428
429             "unsetenv" => {
430                 let result = this.unsetenv(args[0])?;
431                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
432             }
433
434             "setenv" => {
435                 let result = this.setenv(args[0], args[1])?;
436                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
437             }
438
439             "getcwd" => {
440                 let result = this.getcwd(args[0], args[1])?;
441                 this.write_scalar(result, dest)?;
442             }
443
444             "chdir" => {
445                 let result = this.chdir(args[0])?;
446                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
447             }
448
449             "write" => {
450                 let fd = this.read_scalar(args[0])?.to_i32()?;
451                 let buf = this.read_scalar(args[1])?.not_undef()?;
452                 let n = this.read_scalar(args[2])?.to_usize(&*this.tcx)?;
453                 trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
454                 let result = if fd == 1 || fd == 2 {
455                     // stdout/stderr
456                     use std::io::{self, Write};
457
458                     let buf_cont = this.memory().read_bytes(buf, Size::from_bytes(n))?;
459                     // We need to flush to make sure this actually appears on the screen
460                     let res = if fd == 1 {
461                         // Stdout is buffered, flush to make sure it appears on the screen.
462                         // This is the write() syscall of the interpreted program, we want it
463                         // to correspond to a write() syscall on the host -- there is no good
464                         // in adding extra buffering here.
465                         let res = io::stdout().write(buf_cont);
466                         io::stdout().flush().unwrap();
467                         res
468                     } else {
469                         // No need to flush, stderr is not buffered.
470                         io::stderr().write(buf_cont)
471                     };
472                     match res {
473                         Ok(n) => n as i64,
474                         Err(_) => -1,
475                     }
476                 } else {
477                     eprintln!("Miri: Ignored output to FD {}", fd);
478                     // Pretend it all went well.
479                     n as i64
480                 };
481                 // Now, `result` is the value we return back to the program.
482                 this.write_scalar(
483                     Scalar::from_int(result, dest.layout.size),
484                     dest,
485                 )?;
486             }
487
488             "strlen" => {
489                 let ptr = this.read_scalar(args[0])?.not_undef()?;
490                 let n = this.memory().read_c_str(ptr)?.len();
491                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
492             }
493
494             // math functions
495
496             "cbrtf" | "coshf" | "sinhf" |"tanf" => {
497                 // FIXME: Using host floats.
498                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
499                 let f = match link_name {
500                     "cbrtf" => f.cbrt(),
501                     "coshf" => f.cosh(),
502                     "sinhf" => f.sinh(),
503                     "tanf" => f.tan(),
504                     _ => bug!(),
505                 };
506                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
507             }
508             // underscore case for windows
509             "_hypotf" | "hypotf" | "atan2f" => {
510                 // FIXME: Using host floats.
511                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
512                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
513                 let n = match link_name {
514                     "_hypotf" | "hypotf" => f1.hypot(f2),
515                     "atan2f" => f1.atan2(f2),
516                     _ => bug!(),
517                 };
518                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
519             }
520
521             "cbrt" | "cosh" | "sinh" | "tan" => {
522                 // FIXME: Using host floats.
523                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
524                 let f = match link_name {
525                     "cbrt" => f.cbrt(),
526                     "cosh" => f.cosh(),
527                     "sinh" => f.sinh(),
528                     "tan" => f.tan(),
529                     _ => bug!(),
530                 };
531                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
532             }
533             // underscore case for windows, here and below
534             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
535             "_hypot" | "hypot" | "atan2" => {
536                 // FIXME: Using host floats.
537                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
538                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
539                 let n = match link_name {
540                     "_hypot" | "hypot" => f1.hypot(f2),
541                     "atan2" => f1.atan2(f2),
542                     _ => bug!(),
543                 };
544                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
545             }
546             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
547             "_ldexp" | "ldexp" | "scalbn" => {
548                 let x = this.read_scalar(args[0])?.to_f64()?;
549                 let exp = this.read_scalar(args[1])?.to_i32()?;
550
551                 // Saturating cast to i16. Even those are outside the valid exponent range to
552                 // `scalbn` below will do its over/underflow handling.
553                 let exp = if exp > i16::max_value() as i32 {
554                     i16::max_value()
555                 } else if exp < i16::min_value() as i32 {
556                     i16::min_value()
557                 } else {
558                     exp.try_into().unwrap()
559                 };
560
561                 let res = x.scalbn(exp);
562                 this.write_scalar(Scalar::from_f64(res), dest)?;
563             }
564
565             // Some things needed for `sys::thread` initialization to go through.
566             "signal" | "sigaction" | "sigaltstack" => {
567                 this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
568             }
569
570             "sysconf" => {
571                 let name = this.read_scalar(args[0])?.to_i32()?;
572
573                 trace!("sysconf() called with name {}", name);
574                 // TODO: Cache the sysconf integers via Miri's global cache.
575                 let paths = &[
576                     (&["libc", "_SC_PAGESIZE"], Scalar::from_int(PAGE_SIZE, dest.layout.size)),
577                     (&["libc", "_SC_GETPW_R_SIZE_MAX"], Scalar::from_int(-1, dest.layout.size)),
578                     (&["libc", "_SC_NPROCESSORS_ONLN"], Scalar::from_int(NUM_CPUS, dest.layout.size)),
579                 ];
580                 let mut result = None;
581                 for &(path, path_value) in paths {
582                     if let Some(val) = this.eval_path_scalar(path)? {
583                         let val = val.to_i32()?;
584                         if val == name {
585                             result = Some(path_value);
586                             break;
587                         }
588
589                     }
590                 }
591                 if let Some(result) = result {
592                     this.write_scalar(result, dest)?;
593                 } else {
594                     throw_unsup_format!("Unimplemented sysconf name: {}", name)
595                 }
596             }
597
598             "sched_getaffinity" => {
599                 // Return an error; `num_cpus` then falls back to `sysconf`.
600                 this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
601             }
602
603             "isatty" => {
604                 this.write_null(dest)?;
605             }
606
607             // Hook pthread calls that go to the thread-local storage memory subsystem.
608             "pthread_key_create" => {
609                 let key_ptr = this.read_scalar(args[0])?.not_undef()?;
610
611                 // Extract the function type out of the signature (that seems easier than constructing it ourselves).
612                 let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
613                     Some(dtor_ptr) => Some(this.memory().get_fn(dtor_ptr)?.as_instance()?),
614                     None => None,
615                 };
616
617                 // Figure out how large a pthread TLS key actually is.
618                 // This is `libc::pthread_key_t`.
619                 let key_type = args[0].layout.ty
620                     .builtin_deref(true)
621                     .ok_or_else(|| err_ub_format!(
622                         "wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
623                     ))?
624                     .ty;
625                 let key_layout = this.layout_of(key_type)?;
626
627                 // Create key and write it into the memory where `key_ptr` wants it.
628                 let key = this.machine.tls.create_tls_key(dtor) as u128;
629                 if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128) {
630                     throw_unsup!(OutOfTls);
631                 }
632
633                 let key_ptr = this.memory().check_ptr_access(key_ptr, key_layout.size, key_layout.align.abi)?
634                     .expect("cannot be a ZST");
635                 this.memory_mut().get_mut(key_ptr.alloc_id)?.write_scalar(
636                     tcx,
637                     key_ptr,
638                     Scalar::from_uint(key, key_layout.size).into(),
639                     key_layout.size,
640                 )?;
641
642                 // Return success (`0`).
643                 this.write_null(dest)?;
644             }
645             "pthread_key_delete" => {
646                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
647                 this.machine.tls.delete_tls_key(key)?;
648                 // Return success (0)
649                 this.write_null(dest)?;
650             }
651             "pthread_getspecific" => {
652                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
653                 let ptr = this.machine.tls.load_tls(key, tcx)?;
654                 this.write_scalar(ptr, dest)?;
655             }
656             "pthread_setspecific" => {
657                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
658                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
659                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
660
661                 // Return success (`0`).
662                 this.write_null(dest)?;
663             }
664
665             // Stack size/address stuff.
666             "pthread_attr_init" | "pthread_attr_destroy" | "pthread_self" |
667             "pthread_attr_setstacksize" => {
668                 this.write_null(dest)?;
669             }
670             "pthread_attr_getstack" => {
671                 let addr_place = this.deref_operand(args[1])?;
672                 let size_place = this.deref_operand(args[2])?;
673
674                 this.write_scalar(
675                     Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
676                     addr_place.into(),
677                 )?;
678                 this.write_scalar(
679                     Scalar::from_uint(STACK_SIZE, size_place.layout.size),
680                     size_place.into(),
681                 )?;
682
683                 // Return success (`0`).
684                 this.write_null(dest)?;
685             }
686
687             // We don't support threading. (Also for Windows.)
688             "pthread_create" | "CreateThread" => {
689                 throw_unsup_format!("Miri does not support threading");
690             }
691
692             // Stub out calls for condvar, mutex and rwlock, to just return `0`.
693             "pthread_mutexattr_init" | "pthread_mutexattr_settype" | "pthread_mutex_init" |
694             "pthread_mutexattr_destroy" | "pthread_mutex_lock" | "pthread_mutex_unlock" |
695             "pthread_mutex_destroy" | "pthread_rwlock_rdlock" | "pthread_rwlock_unlock" |
696             "pthread_rwlock_wrlock" | "pthread_rwlock_destroy" | "pthread_condattr_init" |
697             "pthread_condattr_setclock" | "pthread_cond_init" | "pthread_condattr_destroy" |
698             "pthread_cond_destroy" => {
699                 this.write_null(dest)?;
700             }
701
702             // We don't support fork so we don't have to do anything for atfork.
703             "pthread_atfork" => {
704                 this.write_null(dest)?;
705             }
706
707             "mmap" => {
708                 // This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
709                 let addr = this.read_scalar(args[0])?.not_undef()?;
710                 this.write_scalar(addr, dest)?;
711             }
712             "mprotect" => {
713                 this.write_null(dest)?;
714             }
715
716             // macOS API stubs.
717             "pthread_attr_get_np" | "pthread_getattr_np" => {
718                 this.write_null(dest)?;
719             }
720             "pthread_get_stackaddr_np" => {
721                 let stack_addr = Scalar::from_uint(STACK_ADDR, dest.layout.size);
722                 this.write_scalar(stack_addr, dest)?;
723             }
724             "pthread_get_stacksize_np" => {
725                 let stack_size = Scalar::from_uint(STACK_SIZE, dest.layout.size);
726                 this.write_scalar(stack_size, dest)?;
727             }
728             "_tlv_atexit" => {
729                 // FIXME: register the destructor.
730             },
731             "_NSGetArgc" => {
732                 this.write_scalar(Scalar::Ptr(this.machine.argc.unwrap()), dest)?;
733             },
734             "_NSGetArgv" => {
735                 this.write_scalar(Scalar::Ptr(this.machine.argv.unwrap()), dest)?;
736             },
737             "SecRandomCopyBytes" => {
738                 let len = this.read_scalar(args[1])?.to_usize(this)?;
739                 let ptr = this.read_scalar(args[2])?.not_undef()?;
740                 this.gen_random(ptr, len as usize)?;
741                 this.write_null(dest)?;
742             }
743
744             // Windows API stubs.
745             // HANDLE = isize
746             // DWORD = ULONG = u32
747             // BOOL = i32
748             "GetProcessHeap" => {
749                 // Just fake a HANDLE
750                 this.write_scalar(Scalar::from_int(1, this.pointer_size()), dest)?;
751             }
752             "HeapAlloc" => {
753                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
754                 let flags = this.read_scalar(args[1])?.to_u32()?;
755                 let size = this.read_scalar(args[2])?.to_usize(this)?;
756                 let zero_init = (flags & 0x00000008) != 0; // HEAP_ZERO_MEMORY
757                 let res = this.malloc(size, zero_init, MiriMemoryKind::WinHeap);
758                 this.write_scalar(res, dest)?;
759             }
760             "HeapFree" => {
761                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
762                 let _flags = this.read_scalar(args[1])?.to_u32()?;
763                 let ptr = this.read_scalar(args[2])?.not_undef()?;
764                 this.free(ptr, MiriMemoryKind::WinHeap)?;
765                 this.write_scalar(Scalar::from_int(1, Size::from_bytes(4)), dest)?;
766             }
767             "HeapReAlloc" => {
768                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
769                 let _flags = this.read_scalar(args[1])?.to_u32()?;
770                 let ptr = this.read_scalar(args[2])?.not_undef()?;
771                 let size = this.read_scalar(args[3])?.to_usize(this)?;
772                 let res = this.realloc(ptr, size, MiriMemoryKind::WinHeap)?;
773                 this.write_scalar(res, dest)?;
774             }
775
776             "SetLastError" => {
777                 let err = this.read_scalar(args[0])?.to_u32()?;
778                 this.machine.last_error = err;
779             }
780             "GetLastError" => {
781                 this.write_scalar(Scalar::from_u32(this.machine.last_error), dest)?;
782             }
783
784             "AddVectoredExceptionHandler" => {
785                 // Any non zero value works for the stdlib. This is just used for stack overflows anyway.
786                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
787             },
788             "InitializeCriticalSection" |
789             "EnterCriticalSection" |
790             "LeaveCriticalSection" |
791             "DeleteCriticalSection" => {
792                 // Nothing to do, not even a return value.
793             },
794             "GetModuleHandleW" |
795             "GetProcAddress" |
796             "TryEnterCriticalSection" |
797             "GetConsoleScreenBufferInfo" |
798             "SetConsoleTextAttribute" => {
799                 // Pretend these do not exist / nothing happened, by returning zero.
800                 this.write_null(dest)?;
801             },
802             "GetSystemInfo" => {
803                 let system_info = this.deref_operand(args[0])?;
804                 let system_info_ptr = this.check_mplace_access(system_info, None)?
805                     .expect("cannot be a ZST");
806                 // Initialize with `0`.
807                 this.memory_mut().get_mut(system_info_ptr.alloc_id)?
808                     .write_repeat(tcx, system_info_ptr, 0, system_info.layout.size)?;
809                 // Set number of processors.
810                 let dword_size = Size::from_bytes(4);
811                 let offset = 2*dword_size + 3*tcx.pointer_size();
812                 this.memory_mut().get_mut(system_info_ptr.alloc_id)?
813                     .write_scalar(
814                         tcx,
815                         system_info_ptr.offset(offset, tcx)?,
816                         Scalar::from_int(NUM_CPUS, dword_size).into(),
817                         dword_size,
818                     )?;
819             }
820
821             "TlsAlloc" => {
822                 // This just creates a key; Windows does not natively support TLS destructors.
823
824                 // Create key and return it.
825                 let key = this.machine.tls.create_tls_key(None) as u128;
826
827                 // Figure out how large a TLS key actually is. This is `c::DWORD`.
828                 if dest.layout.size.bits() < 128
829                         && key >= (1u128 << dest.layout.size.bits() as u128) {
830                     throw_unsup!(OutOfTls);
831                 }
832                 this.write_scalar(Scalar::from_uint(key, dest.layout.size), dest)?;
833             }
834             "TlsGetValue" => {
835                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
836                 let ptr = this.machine.tls.load_tls(key, tcx)?;
837                 this.write_scalar(ptr, dest)?;
838             }
839             "TlsSetValue" => {
840                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
841                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
842                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
843
844                 // Return success (`1`).
845                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
846             }
847             "GetStdHandle" => {
848                 let which = this.read_scalar(args[0])?.to_i32()?;
849                 // We just make this the identity function, so we know later in `WriteFile`
850                 // which one it is.
851                 this.write_scalar(Scalar::from_int(which, this.pointer_size()), dest)?;
852             }
853             "WriteFile" => {
854                 let handle = this.read_scalar(args[0])?.to_isize(this)?;
855                 let buf = this.read_scalar(args[1])?.not_undef()?;
856                 let n = this.read_scalar(args[2])?.to_u32()?;
857                 let written_place = this.deref_operand(args[3])?;
858                 // Spec says to always write `0` first.
859                 this.write_null(written_place.into())?;
860                 let written = if handle == -11 || handle == -12 {
861                     // stdout/stderr
862                     use std::io::{self, Write};
863
864                     let buf_cont = this.memory().read_bytes(buf, Size::from_bytes(u64::from(n)))?;
865                     let res = if handle == -11 {
866                         io::stdout().write(buf_cont)
867                     } else {
868                         io::stderr().write(buf_cont)
869                     };
870                     res.ok().map(|n| n as u32)
871                 } else {
872                     eprintln!("Miri: Ignored output to handle {}", handle);
873                     // Pretend it all went well.
874                     Some(n)
875                 };
876                 // If there was no error, write back how much was written.
877                 if let Some(n) = written {
878                     this.write_scalar(Scalar::from_u32(n), written_place.into())?;
879                 }
880                 // Return whether this was a success.
881                 this.write_scalar(
882                     Scalar::from_int(if written.is_some() { 1 } else { 0 }, dest.layout.size),
883                     dest,
884                 )?;
885             }
886             "GetConsoleMode" => {
887                 // Everything is a pipe.
888                 this.write_null(dest)?;
889             }
890             "GetEnvironmentVariableW" => {
891                 // This is not the env var you are looking for.
892                 this.machine.last_error = 203; // ERROR_ENVVAR_NOT_FOUND
893                 this.write_null(dest)?;
894             }
895             "GetCommandLineW" => {
896                 this.write_scalar(Scalar::Ptr(this.machine.cmd_line.unwrap()), dest)?;
897             }
898             // The actual name of 'RtlGenRandom'
899             "SystemFunction036" => {
900                 let ptr = this.read_scalar(args[0])?.not_undef()?;
901                 let len = this.read_scalar(args[1])?.to_u32()?;
902                 this.gen_random(ptr, len as usize)?;
903                 this.write_scalar(Scalar::from_bool(true), dest)?;
904             }
905
906             // We can't execute anything else.
907             _ => {
908                 throw_unsup_format!("can't call foreign function: {}", link_name)
909             }
910         }
911
912         this.goto_block(Some(ret))?;
913         this.dump_place(*dest);
914         Ok(())
915     }
916
917     /// Evaluates the scalar at the specified path. Returns Some(val)
918     /// if the path could be resolved, and None otherwise
919     fn eval_path_scalar(&mut self, path: &[&str]) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
920         let this = self.eval_context_mut();
921         if let Ok(instance) = this.resolve_path(path) {
922             let cid = GlobalId {
923                 instance,
924                 promoted: None,
925             };
926             let const_val = this.const_eval_raw(cid)?;
927             let const_val = this.read_scalar(const_val.into())?;
928             return Ok(Some(const_val));
929         }
930         return Ok(None);
931     }
932 }
933
934 // Shims the linux 'getrandom()' syscall.
935 fn linux_getrandom<'tcx>(
936     this: &mut MiriEvalContext<'_, 'tcx>,
937     args: &[OpTy<'tcx, Tag>],
938     dest: PlaceTy<'tcx, Tag>,
939 ) -> InterpResult<'tcx> {
940     let ptr = this.read_scalar(args[0])?.not_undef()?;
941     let len = this.read_scalar(args[1])?.to_usize(this)?;
942
943     // The only supported flags are GRND_RANDOM and GRND_NONBLOCK,
944     // neither of which have any effect on our current PRNG.
945     let _flags = this.read_scalar(args[2])?.to_i32()?;
946
947     this.gen_random(ptr, len as usize)?;
948     this.write_scalar(Scalar::from_uint(len, dest.layout.size), dest)?;
949     Ok(())
950 }