]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
add6bd5bbefd6620e897c28a687a97e2fb475760
[rust.git] / src / shims / foreign_items.rs
1 use std::convert::TryInto;
2
3 use rustc_apfloat::Float;
4 use rustc::ty::layout::{Align, LayoutOf, Size};
5 use rustc::hir::def_id::DefId;
6 use rustc::mir;
7 use syntax::attr;
8 use syntax::symbol::sym;
9
10 use crate::*;
11
12 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
13 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
14     /// Returns the minimum alignment for the target architecture for allocations of the given size.
15     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
16         let this = self.eval_context_ref();
17         // List taken from `libstd/sys_common/alloc.rs`.
18         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
19             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
20             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
21             arch => bug!("Unsupported target architecture: {}", arch),
22         };
23         // Windows always aligns, even small allocations.
24         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
25         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
26         if kind == MiriMemoryKind::WinHeap || size >= min_align {
27             return Align::from_bytes(min_align).unwrap();
28         }
29         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
30         fn prev_power_of_two(x: u64) -> u64 {
31             let next_pow2 = x.next_power_of_two();
32             if next_pow2 == x {
33                 // x *is* a power of two, just use that.
34                 x
35             } else {
36                 // x is between two powers, so next = 2*prev.
37                 next_pow2 / 2
38             }
39         }
40         Align::from_bytes(prev_power_of_two(size)).unwrap()
41     }
42
43     fn malloc(
44         &mut self,
45         size: u64,
46         zero_init: bool,
47         kind: MiriMemoryKind,
48     ) -> Scalar<Tag> {
49         let this = self.eval_context_mut();
50         let tcx = &{this.tcx.tcx};
51         if size == 0 {
52             Scalar::from_int(0, this.pointer_size())
53         } else {
54             let align = this.min_align(size, kind);
55             let ptr = this.memory_mut().allocate(Size::from_bytes(size), align, kind.into());
56             if zero_init {
57                 // We just allocated this, the access cannot fail
58                 this.memory_mut()
59                     .get_mut(ptr.alloc_id).unwrap()
60                     .write_repeat(tcx, ptr, 0, Size::from_bytes(size)).unwrap();
61             }
62             Scalar::Ptr(ptr)
63         }
64     }
65
66     fn free(
67         &mut self,
68         ptr: Scalar<Tag>,
69         kind: MiriMemoryKind,
70     ) -> InterpResult<'tcx> {
71         let this = self.eval_context_mut();
72         if !this.is_null(ptr)? {
73             let ptr = this.force_ptr(ptr)?;
74             this.memory_mut().deallocate(
75                 ptr,
76                 None,
77                 kind.into(),
78             )?;
79         }
80         Ok(())
81     }
82
83     fn realloc(
84         &mut self,
85         old_ptr: Scalar<Tag>,
86         new_size: u64,
87         kind: MiriMemoryKind,
88     ) -> InterpResult<'tcx, Scalar<Tag>> {
89         let this = self.eval_context_mut();
90         let new_align = this.min_align(new_size, kind);
91         if this.is_null(old_ptr)? {
92             if new_size == 0 {
93                 Ok(Scalar::from_int(0, this.pointer_size()))
94             } else {
95                 let new_ptr = this.memory_mut().allocate(
96                     Size::from_bytes(new_size),
97                     new_align,
98                     kind.into()
99                 );
100                 Ok(Scalar::Ptr(new_ptr))
101             }
102         } else {
103             let old_ptr = this.force_ptr(old_ptr)?;
104             let memory = this.memory_mut();
105             if new_size == 0 {
106                 memory.deallocate(
107                     old_ptr,
108                     None,
109                     kind.into(),
110                 )?;
111                 Ok(Scalar::from_int(0, this.pointer_size()))
112             } else {
113                 let new_ptr = memory.reallocate(
114                     old_ptr,
115                     None,
116                     Size::from_bytes(new_size),
117                     new_align,
118                     kind.into(),
119                 )?;
120                 Ok(Scalar::Ptr(new_ptr))
121             }
122         }
123     }
124
125     /// Emulates calling a foreign item, failing if the item is not supported.
126     /// This function will handle `goto_block` if needed.
127     fn emulate_foreign_item(
128         &mut self,
129         def_id: DefId,
130         args: &[OpTy<'tcx, Tag>],
131         dest: Option<PlaceTy<'tcx, Tag>>,
132         ret: Option<mir::BasicBlock>,
133     ) -> InterpResult<'tcx> {
134         let this = self.eval_context_mut();
135         let attrs = this.tcx.get_attrs(def_id);
136         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
137             Some(name) => name.as_str(),
138             None => this.tcx.item_name(def_id).as_str(),
139         };
140         // Strip linker suffixes (seen on 32-bit macOS).
141         let link_name = link_name.get().trim_end_matches("$UNIX2003");
142         let tcx = &{this.tcx.tcx};
143
144         // First: functions that diverge.
145         match link_name {
146             "__rust_start_panic" | "panic_impl" => {
147                 throw_unsup_format!("the evaluated program panicked");
148             }
149             "exit" | "ExitProcess" => {
150                 // it's really u32 for ExitProcess, but we have to put it into the `Exit` error variant anyway
151                 let code = this.read_scalar(args[0])?.to_i32()?;
152                 return Err(InterpError::Exit(code).into());
153             }
154             _ => if dest.is_none() {
155                 throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
156             }
157         }
158
159         // Next: functions that assume a ret and dest.
160         let dest = dest.expect("we already checked for a dest");
161         let ret = ret.expect("dest is `Some` but ret is `None`");
162         match link_name {
163             "malloc" => {
164                 let size = this.read_scalar(args[0])?.to_usize(this)?;
165                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
166                 this.write_scalar(res, dest)?;
167             }
168             "calloc" => {
169                 let items = this.read_scalar(args[0])?.to_usize(this)?;
170                 let len = this.read_scalar(args[1])?.to_usize(this)?;
171                 let size = items.checked_mul(len).ok_or_else(|| err_panic!(Overflow(mir::BinOp::Mul)))?;
172                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
173                 this.write_scalar(res, dest)?;
174             }
175             "posix_memalign" => {
176                 let ret = this.deref_operand(args[0])?;
177                 let align = this.read_scalar(args[1])?.to_usize(this)?;
178                 let size = this.read_scalar(args[2])?.to_usize(this)?;
179                 // Align must be power of 2, and also at least ptr-sized (POSIX rules).
180                 if !align.is_power_of_two() {
181                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
182                 }
183                 if align < this.pointer_size().bytes() {
184                     throw_ub_format!(
185                         "posix_memalign: alignment must be at least the size of a pointer, but is {}",
186                         align,
187                     );
188                 }
189
190                 if size == 0 {
191                     this.write_null(ret.into())?;
192                 } else {
193                     let ptr = this.memory_mut().allocate(
194                         Size::from_bytes(size),
195                         Align::from_bytes(align).unwrap(),
196                         MiriMemoryKind::C.into()
197                     );
198                     this.write_scalar(Scalar::Ptr(ptr), ret.into())?;
199                 }
200                 this.write_null(dest)?;
201             }
202             "free" => {
203                 let ptr = this.read_scalar(args[0])?.not_undef()?;
204                 this.free(ptr, MiriMemoryKind::C)?;
205             }
206             "realloc" => {
207                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
208                 let new_size = this.read_scalar(args[1])?.to_usize(this)?;
209                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
210                 this.write_scalar(res, dest)?;
211             }
212
213             "__rust_alloc" => {
214                 let size = this.read_scalar(args[0])?.to_usize(this)?;
215                 let align = this.read_scalar(args[1])?.to_usize(this)?;
216                 if size == 0 {
217                     throw_unsup!(HeapAllocZeroBytes);
218                 }
219                 if !align.is_power_of_two() {
220                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
221                 }
222                 let ptr = this.memory_mut()
223                     .allocate(
224                         Size::from_bytes(size),
225                         Align::from_bytes(align).unwrap(),
226                         MiriMemoryKind::Rust.into()
227                     );
228                 this.write_scalar(Scalar::Ptr(ptr), dest)?;
229             }
230             "__rust_alloc_zeroed" => {
231                 let size = this.read_scalar(args[0])?.to_usize(this)?;
232                 let align = this.read_scalar(args[1])?.to_usize(this)?;
233                 if size == 0 {
234                     throw_unsup!(HeapAllocZeroBytes);
235                 }
236                 if !align.is_power_of_two() {
237                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
238                 }
239                 let ptr = this.memory_mut()
240                     .allocate(
241                         Size::from_bytes(size),
242                         Align::from_bytes(align).unwrap(),
243                         MiriMemoryKind::Rust.into()
244                     );
245                 // We just allocated this, the access cannot fail
246                 this.memory_mut()
247                     .get_mut(ptr.alloc_id).unwrap()
248                     .write_repeat(tcx, ptr, 0, Size::from_bytes(size)).unwrap();
249                 this.write_scalar(Scalar::Ptr(ptr), dest)?;
250             }
251             "__rust_dealloc" => {
252                 let ptr = this.read_scalar(args[0])?.not_undef()?;
253                 let old_size = this.read_scalar(args[1])?.to_usize(this)?;
254                 let align = this.read_scalar(args[2])?.to_usize(this)?;
255                 if old_size == 0 {
256                     throw_unsup!(HeapAllocZeroBytes);
257                 }
258                 if !align.is_power_of_two() {
259                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
260                 }
261                 let ptr = this.force_ptr(ptr)?;
262                 this.memory_mut().deallocate(
263                     ptr,
264                     Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
265                     MiriMemoryKind::Rust.into(),
266                 )?;
267             }
268             "__rust_realloc" => {
269                 let ptr = this.read_scalar(args[0])?.to_ptr()?;
270                 let old_size = this.read_scalar(args[1])?.to_usize(this)?;
271                 let align = this.read_scalar(args[2])?.to_usize(this)?;
272                 let new_size = this.read_scalar(args[3])?.to_usize(this)?;
273                 if old_size == 0 || new_size == 0 {
274                     throw_unsup!(HeapAllocZeroBytes);
275                 }
276                 if !align.is_power_of_two() {
277                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
278                 }
279                 let align = Align::from_bytes(align).unwrap();
280                 let new_ptr = this.memory_mut().reallocate(
281                     ptr,
282                     Some((Size::from_bytes(old_size), align)),
283                     Size::from_bytes(new_size),
284                     align,
285                     MiriMemoryKind::Rust.into(),
286                 )?;
287                 this.write_scalar(Scalar::Ptr(new_ptr), dest)?;
288             }
289
290             "syscall" => {
291                 let sys_getrandom = this.eval_path_scalar(&["libc", "SYS_getrandom"])?
292                     .expect("Failed to get libc::SYS_getrandom")
293                     .to_usize(this)?;
294
295                 // `libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)`
296                 // is called if a `HashMap` is created the regular way (e.g. HashMap<K, V>).
297                 match this.read_scalar(args[0])?.to_usize(this)? {
298                     id if id == sys_getrandom => {
299                         // The first argument is the syscall id,
300                         // so skip over it.
301                         linux_getrandom(this, &args[1..], dest)?;
302                     }
303                     id => {
304                         throw_unsup_format!("miri does not support syscall ID {}", id)
305                     }
306                 }
307             }
308
309             "getrandom" => {
310                 linux_getrandom(this, args, dest)?;
311             }
312
313             "dlsym" => {
314                 let _handle = this.read_scalar(args[0])?;
315                 let symbol = this.read_scalar(args[1])?.not_undef()?;
316                 let symbol_name = this.memory().read_c_str(symbol)?;
317                 let err = format!("bad c unicode symbol: {:?}", symbol_name);
318                 let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
319                 if let Some(dlsym) = Dlsym::from_str(symbol_name)? {
320                     let ptr = this.memory_mut().create_fn_alloc(FnVal::Other(dlsym));
321                     this.write_scalar(Scalar::from(ptr), dest)?;
322                 } else {
323                     this.write_null(dest)?;
324                 }
325             }
326
327             "__rust_maybe_catch_panic" => {
328                 // fn __rust_maybe_catch_panic(
329                 //     f: fn(*mut u8),
330                 //     data: *mut u8,
331                 //     data_ptr: *mut usize,
332                 //     vtable_ptr: *mut usize,
333                 // ) -> u32
334                 // We abort on panic, so not much is going on here, but we still have to call the closure.
335                 let f = this.read_scalar(args[0])?.not_undef()?;
336                 let data = this.read_scalar(args[1])?.not_undef()?;
337                 let f_instance = this.memory().get_fn(f)?.as_instance()?;
338                 this.write_null(dest)?;
339                 trace!("__rust_maybe_catch_panic: {:?}", f_instance);
340
341                 // Now we make a function call.
342                 // TODO: consider making this reusable? `InterpCx::step` does something similar
343                 // for the TLS destructors, and of course `eval_main`.
344                 let mir = this.load_mir(f_instance.def)?;
345                 let ret_place = MPlaceTy::dangling(this.layout_of(this.tcx.mk_unit())?, this).into();
346                 this.push_stack_frame(
347                     f_instance,
348                     mir.span,
349                     mir,
350                     Some(ret_place),
351                     // Directly return to caller.
352                     StackPopCleanup::Goto(Some(ret)),
353                 )?;
354                 let mut args = this.frame().body.args_iter();
355
356                 let arg_local = args.next()
357                     .expect("Argument to __rust_maybe_catch_panic does not take enough arguments.");
358                 let arg_dest = this.local_place(arg_local)?;
359                 this.write_scalar(data, arg_dest)?;
360
361                 assert!(args.next().is_none(), "__rust_maybe_catch_panic argument has more arguments than expected");
362
363                 // We ourselves will return `0`, eventually (because we will not return if we paniced).
364                 this.write_null(dest)?;
365
366                 // Don't fall through, we do *not* want to `goto_block`!
367                 return Ok(());
368             }
369
370             "memcmp" => {
371                 let left = this.read_scalar(args[0])?.not_undef()?;
372                 let right = this.read_scalar(args[1])?.not_undef()?;
373                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_usize(this)?);
374
375                 let result = {
376                     let left_bytes = this.memory().read_bytes(left, n)?;
377                     let right_bytes = this.memory().read_bytes(right, n)?;
378
379                     use std::cmp::Ordering::*;
380                     match left_bytes.cmp(right_bytes) {
381                         Less => -1i32,
382                         Equal => 0,
383                         Greater => 1,
384                     }
385                 };
386
387                 this.write_scalar(
388                     Scalar::from_int(result, Size::from_bits(32)),
389                     dest,
390                 )?;
391             }
392
393             "memrchr" => {
394                 let ptr = this.read_scalar(args[0])?.not_undef()?;
395                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
396                 let num = this.read_scalar(args[2])?.to_usize(this)?;
397                 if let Some(idx) = this.memory().read_bytes(ptr, Size::from_bytes(num))?
398                     .iter().rev().position(|&c| c == val)
399                 {
400                     let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
401                     this.write_scalar(new_ptr, dest)?;
402                 } else {
403                     this.write_null(dest)?;
404                 }
405             }
406
407             "memchr" => {
408                 let ptr = this.read_scalar(args[0])?.not_undef()?;
409                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
410                 let num = this.read_scalar(args[2])?.to_usize(this)?;
411                 let idx = this
412                     .memory()
413                     .read_bytes(ptr, Size::from_bytes(num))?
414                     .iter()
415                     .position(|&c| c == val);
416                 if let Some(idx) = idx {
417                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
418                     this.write_scalar(new_ptr, dest)?;
419                 } else {
420                     this.write_null(dest)?;
421                 }
422             }
423
424             "getenv" => {
425                 let result = {
426                     let name_ptr = this.read_scalar(args[0])?.not_undef()?;
427                     let name = this.memory().read_c_str(name_ptr)?;
428                     match this.machine.env_vars.get(name) {
429                         Some(&var) => Scalar::Ptr(var),
430                         None => Scalar::ptr_null(&*this.tcx),
431                     }
432                 };
433                 this.write_scalar(result, dest)?;
434             }
435
436             "unsetenv" => {
437                 let mut success = None;
438                 {
439                     let name_ptr = this.read_scalar(args[0])?.not_undef()?;
440                     if !this.is_null(name_ptr)? {
441                         let name = this.memory().read_c_str(name_ptr)?.to_owned();
442                         if !name.is_empty() && !name.contains(&b'=') {
443                             success = Some(this.machine.env_vars.remove(&name));
444                         }
445                     }
446                 }
447                 if let Some(old) = success {
448                     if let Some(var) = old {
449                         this.memory_mut().deallocate(var, None, MiriMemoryKind::Env.into())?;
450                     }
451                     this.write_null(dest)?;
452                 } else {
453                     this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
454                 }
455             }
456
457             "setenv" => {
458                 let mut new = None;
459                 {
460                     let name_ptr = this.read_scalar(args[0])?.not_undef()?;
461                     let value_ptr = this.read_scalar(args[1])?.not_undef()?;
462                     let value = this.memory().read_c_str(value_ptr)?;
463                     if !this.is_null(name_ptr)? {
464                         let name = this.memory().read_c_str(name_ptr)?;
465                         if !name.is_empty() && !name.contains(&b'=') {
466                             new = Some((name.to_owned(), value.to_owned()));
467                         }
468                     }
469                 }
470                 if let Some((name, value)) = new {
471                     // `+1` for the null terminator.
472                     let value_copy = this.memory_mut().allocate(
473                         Size::from_bytes((value.len() + 1) as u64),
474                         Align::from_bytes(1).unwrap(),
475                         MiriMemoryKind::Env.into(),
476                     );
477                     // We just allocated these, so the write cannot fail.
478                     let alloc = this.memory_mut().get_mut(value_copy.alloc_id).unwrap();
479                     alloc.write_bytes(tcx, value_copy, &value).unwrap();
480                     let trailing_zero_ptr = value_copy.offset(
481                         Size::from_bytes(value.len() as u64),
482                         tcx,
483                     ).unwrap();
484                     alloc.write_bytes(tcx, trailing_zero_ptr, &[0]).unwrap();
485
486                     if let Some(var) = this.machine.env_vars.insert(
487                         name.to_owned(),
488                         value_copy,
489                     )
490                     {
491                         this.memory_mut().deallocate(var, None, MiriMemoryKind::Env.into())?;
492                     }
493                     this.write_null(dest)?;
494                 } else {
495                     this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
496                 }
497             }
498
499             "write" => {
500                 let fd = this.read_scalar(args[0])?.to_i32()?;
501                 let buf = this.read_scalar(args[1])?.not_undef()?;
502                 let n = this.read_scalar(args[2])?.to_usize(&*this.tcx)?;
503                 trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
504                 let result = if fd == 1 || fd == 2 {
505                     // stdout/stderr
506                     use std::io::{self, Write};
507
508                     let buf_cont = this.memory().read_bytes(buf, Size::from_bytes(n))?;
509                     // We need to flush to make sure this actually appears on the screen
510                     let res = if fd == 1 {
511                         // Stdout is buffered, flush to make sure it appears on the screen.
512                         // This is the write() syscall of the interpreted program, we want it
513                         // to correspond to a write() syscall on the host -- there is no good
514                         // in adding extra buffering here.
515                         let res = io::stdout().write(buf_cont);
516                         io::stdout().flush().unwrap();
517                         res
518                     } else {
519                         // No need to flush, stderr is not buffered.
520                         io::stderr().write(buf_cont)
521                     };
522                     match res {
523                         Ok(n) => n as i64,
524                         Err(_) => -1,
525                     }
526                 } else {
527                     eprintln!("Miri: Ignored output to FD {}", fd);
528                     // Pretend it all went well.
529                     n as i64
530                 };
531                 // Now, `result` is the value we return back to the program.
532                 this.write_scalar(
533                     Scalar::from_int(result, dest.layout.size),
534                     dest,
535                 )?;
536             }
537
538             "strlen" => {
539                 let ptr = this.read_scalar(args[0])?.not_undef()?;
540                 let n = this.memory().read_c_str(ptr)?.len();
541                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
542             }
543
544             // math functions
545
546             "cbrtf" | "coshf" | "sinhf" |"tanf" => {
547                 // FIXME: Using host floats.
548                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
549                 let f = match link_name {
550                     "cbrtf" => f.cbrt(),
551                     "coshf" => f.cosh(),
552                     "sinhf" => f.sinh(),
553                     "tanf" => f.tan(),
554                     _ => bug!(),
555                 };
556                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
557             }
558             // underscore case for windows
559             "_hypotf" | "hypotf" | "atan2f" => {
560                 // FIXME: Using host floats.
561                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
562                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
563                 let n = match link_name {
564                     "_hypotf" | "hypotf" => f1.hypot(f2),
565                     "atan2f" => f1.atan2(f2),
566                     _ => bug!(),
567                 };
568                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
569             }
570
571             "cbrt" | "cosh" | "sinh" | "tan" => {
572                 // FIXME: Using host floats.
573                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
574                 let f = match link_name {
575                     "cbrt" => f.cbrt(),
576                     "cosh" => f.cosh(),
577                     "sinh" => f.sinh(),
578                     "tan" => f.tan(),
579                     _ => bug!(),
580                 };
581                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
582             }
583             // underscore case for windows, here and below
584             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
585             "_hypot" | "hypot" | "atan2" => {
586                 // FIXME: Using host floats.
587                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
588                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
589                 let n = match link_name {
590                     "_hypot" | "hypot" => f1.hypot(f2),
591                     "atan2" => f1.atan2(f2),
592                     _ => bug!(),
593                 };
594                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
595             }
596             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
597             "_ldexp" | "ldexp" | "scalbn" => {
598                 let x = this.read_scalar(args[0])?.to_f64()?;
599                 let exp = this.read_scalar(args[1])?.to_i32()?;
600                 let res = x.scalbn(exp.try_into().unwrap());
601                 this.write_scalar(Scalar::from_f64(res), dest)?;
602             }
603
604             // Some things needed for `sys::thread` initialization to go through.
605             "signal" | "sigaction" | "sigaltstack" => {
606                 this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
607             }
608
609             "sysconf" => {
610                 let name = this.read_scalar(args[0])?.to_i32()?;
611
612                 trace!("sysconf() called with name {}", name);
613                 // TODO: Cache the sysconf integers via Miri's global cache.
614                 let paths = &[
615                     (&["libc", "_SC_PAGESIZE"], Scalar::from_int(PAGE_SIZE, dest.layout.size)),
616                     (&["libc", "_SC_GETPW_R_SIZE_MAX"], Scalar::from_int(-1, dest.layout.size)),
617                     (&["libc", "_SC_NPROCESSORS_ONLN"], Scalar::from_int(NUM_CPUS, dest.layout.size)),
618                 ];
619                 let mut result = None;
620                 for &(path, path_value) in paths {
621                     if let Some(val) = this.eval_path_scalar(path)? {
622                         let val = val.to_i32()?;
623                         if val == name {
624                             result = Some(path_value);
625                             break;
626                         }
627
628                     }
629                 }
630                 if let Some(result) = result {
631                     this.write_scalar(result, dest)?;
632                 } else {
633                     throw_unsup_format!("Unimplemented sysconf name: {}", name)
634                 }
635             }
636
637             "sched_getaffinity" => {
638                 // Return an error; `num_cpus` then falls back to `sysconf`.
639                 this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
640             }
641
642             "isatty" => {
643                 this.write_null(dest)?;
644             }
645
646             // Hook pthread calls that go to the thread-local storage memory subsystem.
647             "pthread_key_create" => {
648                 let key_ptr = this.read_scalar(args[0])?.not_undef()?;
649
650                 // Extract the function type out of the signature (that seems easier than constructing it ourselves).
651                 let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
652                     Some(dtor_ptr) => Some(this.memory().get_fn(dtor_ptr)?.as_instance()?),
653                     None => None,
654                 };
655
656                 // Figure out how large a pthread TLS key actually is.
657                 // This is `libc::pthread_key_t`.
658                 let key_type = args[0].layout.ty
659                     .builtin_deref(true)
660                     .ok_or_else(|| err_ub_format!(
661                         "wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
662                     ))?
663                     .ty;
664                 let key_layout = this.layout_of(key_type)?;
665
666                 // Create key and write it into the memory where `key_ptr` wants it.
667                 let key = this.machine.tls.create_tls_key(dtor) as u128;
668                 if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128) {
669                     throw_unsup!(OutOfTls);
670                 }
671
672                 let key_ptr = this.memory().check_ptr_access(key_ptr, key_layout.size, key_layout.align.abi)?
673                     .expect("cannot be a ZST");
674                 this.memory_mut().get_mut(key_ptr.alloc_id)?.write_scalar(
675                     tcx,
676                     key_ptr,
677                     Scalar::from_uint(key, key_layout.size).into(),
678                     key_layout.size,
679                 )?;
680
681                 // Return success (`0`).
682                 this.write_null(dest)?;
683             }
684             "pthread_key_delete" => {
685                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
686                 this.machine.tls.delete_tls_key(key)?;
687                 // Return success (0)
688                 this.write_null(dest)?;
689             }
690             "pthread_getspecific" => {
691                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
692                 let ptr = this.machine.tls.load_tls(key, tcx)?;
693                 this.write_scalar(ptr, dest)?;
694             }
695             "pthread_setspecific" => {
696                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
697                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
698                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
699
700                 // Return success (`0`).
701                 this.write_null(dest)?;
702             }
703
704             // Stack size/address stuff.
705             "pthread_attr_init" | "pthread_attr_destroy" | "pthread_self" |
706             "pthread_attr_setstacksize" => {
707                 this.write_null(dest)?;
708             }
709             "pthread_attr_getstack" => {
710                 let addr_place = this.deref_operand(args[1])?;
711                 let size_place = this.deref_operand(args[2])?;
712
713                 this.write_scalar(
714                     Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
715                     addr_place.into(),
716                 )?;
717                 this.write_scalar(
718                     Scalar::from_uint(STACK_SIZE, size_place.layout.size),
719                     size_place.into(),
720                 )?;
721
722                 // Return success (`0`).
723                 this.write_null(dest)?;
724             }
725
726             // We don't support threading. (Also for Windows.)
727             "pthread_create" | "CreateThread" => {
728                 throw_unsup_format!("Miri does not support threading");
729             }
730
731             // Stub out calls for condvar, mutex and rwlock, to just return `0`.
732             "pthread_mutexattr_init" | "pthread_mutexattr_settype" | "pthread_mutex_init" |
733             "pthread_mutexattr_destroy" | "pthread_mutex_lock" | "pthread_mutex_unlock" |
734             "pthread_mutex_destroy" | "pthread_rwlock_rdlock" | "pthread_rwlock_unlock" |
735             "pthread_rwlock_wrlock" | "pthread_rwlock_destroy" | "pthread_condattr_init" |
736             "pthread_condattr_setclock" | "pthread_cond_init" | "pthread_condattr_destroy" |
737             "pthread_cond_destroy" => {
738                 this.write_null(dest)?;
739             }
740
741             // We don't support fork so we don't have to do anything for atfork.
742             "pthread_atfork" => {
743                 this.write_null(dest)?;
744             }
745
746             "mmap" => {
747                 // This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
748                 let addr = this.read_scalar(args[0])?.not_undef()?;
749                 this.write_scalar(addr, dest)?;
750             }
751             "mprotect" => {
752                 this.write_null(dest)?;
753             }
754
755             // macOS API stubs.
756             "pthread_attr_get_np" | "pthread_getattr_np" => {
757                 this.write_null(dest)?;
758             }
759             "pthread_get_stackaddr_np" => {
760                 let stack_addr = Scalar::from_uint(STACK_ADDR, dest.layout.size);
761                 this.write_scalar(stack_addr, dest)?;
762             }
763             "pthread_get_stacksize_np" => {
764                 let stack_size = Scalar::from_uint(STACK_SIZE, dest.layout.size);
765                 this.write_scalar(stack_size, dest)?;
766             }
767             "_tlv_atexit" => {
768                 // FIXME: register the destructor.
769             },
770             "_NSGetArgc" => {
771                 this.write_scalar(Scalar::Ptr(this.machine.argc.unwrap()), dest)?;
772             },
773             "_NSGetArgv" => {
774                 this.write_scalar(Scalar::Ptr(this.machine.argv.unwrap()), dest)?;
775             },
776             "SecRandomCopyBytes" => {
777                 let len = this.read_scalar(args[1])?.to_usize(this)?;
778                 let ptr = this.read_scalar(args[2])?.not_undef()?;
779                 this.gen_random(ptr, len as usize)?;
780                 this.write_null(dest)?;
781             }
782
783             // Windows API stubs.
784             // HANDLE = isize
785             // DWORD = ULONG = u32
786             // BOOL = i32
787             "GetProcessHeap" => {
788                 // Just fake a HANDLE
789                 this.write_scalar(Scalar::from_int(1, this.pointer_size()), dest)?;
790             }
791             "HeapAlloc" => {
792                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
793                 let flags = this.read_scalar(args[1])?.to_u32()?;
794                 let size = this.read_scalar(args[2])?.to_usize(this)?;
795                 let zero_init = (flags & 0x00000008) != 0; // HEAP_ZERO_MEMORY
796                 let res = this.malloc(size, zero_init, MiriMemoryKind::WinHeap);
797                 this.write_scalar(res, dest)?;
798             }
799             "HeapFree" => {
800                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
801                 let _flags = this.read_scalar(args[1])?.to_u32()?;
802                 let ptr = this.read_scalar(args[2])?.not_undef()?;
803                 this.free(ptr, MiriMemoryKind::WinHeap)?;
804                 this.write_scalar(Scalar::from_int(1, Size::from_bytes(4)), dest)?;
805             }
806             "HeapReAlloc" => {
807                 let _handle = this.read_scalar(args[0])?.to_isize(this)?;
808                 let _flags = this.read_scalar(args[1])?.to_u32()?;
809                 let ptr = this.read_scalar(args[2])?.not_undef()?;
810                 let size = this.read_scalar(args[3])?.to_usize(this)?;
811                 let res = this.realloc(ptr, size, MiriMemoryKind::WinHeap)?;
812                 this.write_scalar(res, dest)?;
813             }
814
815             "SetLastError" => {
816                 let err = this.read_scalar(args[0])?.to_u32()?;
817                 this.machine.last_error = err;
818             }
819             "GetLastError" => {
820                 this.write_scalar(Scalar::from_u32(this.machine.last_error), dest)?;
821             }
822
823             "AddVectoredExceptionHandler" => {
824                 // Any non zero value works for the stdlib. This is just used for stack overflows anyway.
825                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
826             },
827             "InitializeCriticalSection" |
828             "EnterCriticalSection" |
829             "LeaveCriticalSection" |
830             "DeleteCriticalSection" => {
831                 // Nothing to do, not even a return value.
832             },
833             "GetModuleHandleW" |
834             "GetProcAddress" |
835             "TryEnterCriticalSection" |
836             "GetConsoleScreenBufferInfo" |
837             "SetConsoleTextAttribute" => {
838                 // Pretend these do not exist / nothing happened, by returning zero.
839                 this.write_null(dest)?;
840             },
841             "GetSystemInfo" => {
842                 let system_info = this.deref_operand(args[0])?;
843                 let system_info_ptr = this.check_mplace_access(system_info, None)?
844                     .expect("cannot be a ZST");
845                 // Initialize with `0`.
846                 this.memory_mut().get_mut(system_info_ptr.alloc_id)?
847                     .write_repeat(tcx, system_info_ptr, 0, system_info.layout.size)?;
848                 // Set number of processors.
849                 let dword_size = Size::from_bytes(4);
850                 let offset = 2*dword_size + 3*tcx.pointer_size();
851                 this.memory_mut().get_mut(system_info_ptr.alloc_id)?
852                     .write_scalar(
853                         tcx,
854                         system_info_ptr.offset(offset, tcx)?,
855                         Scalar::from_int(NUM_CPUS, dword_size).into(),
856                         dword_size,
857                     )?;
858             }
859
860             "TlsAlloc" => {
861                 // This just creates a key; Windows does not natively support TLS destructors.
862
863                 // Create key and return it.
864                 let key = this.machine.tls.create_tls_key(None) as u128;
865
866                 // Figure out how large a TLS key actually is. This is `c::DWORD`.
867                 if dest.layout.size.bits() < 128
868                         && key >= (1u128 << dest.layout.size.bits() as u128) {
869                     throw_unsup!(OutOfTls);
870                 }
871                 this.write_scalar(Scalar::from_uint(key, dest.layout.size), dest)?;
872             }
873             "TlsGetValue" => {
874                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
875                 let ptr = this.machine.tls.load_tls(key, tcx)?;
876                 this.write_scalar(ptr, dest)?;
877             }
878             "TlsSetValue" => {
879                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
880                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
881                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
882
883                 // Return success (`1`).
884                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
885             }
886             "GetStdHandle" => {
887                 let which = this.read_scalar(args[0])?.to_i32()?;
888                 // We just make this the identity function, so we know later in `WriteFile`
889                 // which one it is.
890                 this.write_scalar(Scalar::from_int(which, this.pointer_size()), dest)?;
891             }
892             "WriteFile" => {
893                 let handle = this.read_scalar(args[0])?.to_isize(this)?;
894                 let buf = this.read_scalar(args[1])?.not_undef()?;
895                 let n = this.read_scalar(args[2])?.to_u32()?;
896                 let written_place = this.deref_operand(args[3])?;
897                 // Spec says to always write `0` first.
898                 this.write_null(written_place.into())?;
899                 let written = if handle == -11 || handle == -12 {
900                     // stdout/stderr
901                     use std::io::{self, Write};
902
903                     let buf_cont = this.memory().read_bytes(buf, Size::from_bytes(u64::from(n)))?;
904                     let res = if handle == -11 {
905                         io::stdout().write(buf_cont)
906                     } else {
907                         io::stderr().write(buf_cont)
908                     };
909                     res.ok().map(|n| n as u32)
910                 } else {
911                     eprintln!("Miri: Ignored output to handle {}", handle);
912                     // Pretend it all went well.
913                     Some(n)
914                 };
915                 // If there was no error, write back how much was written.
916                 if let Some(n) = written {
917                     this.write_scalar(Scalar::from_u32(n), written_place.into())?;
918                 }
919                 // Return whether this was a success.
920                 this.write_scalar(
921                     Scalar::from_int(if written.is_some() { 1 } else { 0 }, dest.layout.size),
922                     dest,
923                 )?;
924             }
925             "GetConsoleMode" => {
926                 // Everything is a pipe.
927                 this.write_null(dest)?;
928             }
929             "GetEnvironmentVariableW" => {
930                 // This is not the env var you are looking for.
931                 this.machine.last_error = 203; // ERROR_ENVVAR_NOT_FOUND
932                 this.write_null(dest)?;
933             }
934             "GetCommandLineW" => {
935                 this.write_scalar(Scalar::Ptr(this.machine.cmd_line.unwrap()), dest)?;
936             }
937             // The actual name of 'RtlGenRandom'
938             "SystemFunction036" => {
939                 let ptr = this.read_scalar(args[0])?.not_undef()?;
940                 let len = this.read_scalar(args[1])?.to_u32()?;
941                 this.gen_random(ptr, len as usize)?;
942                 this.write_scalar(Scalar::from_bool(true), dest)?;
943             }
944
945             // We can't execute anything else.
946             _ => {
947                 throw_unsup_format!("can't call foreign function: {}", link_name)
948             }
949         }
950
951         this.goto_block(Some(ret))?;
952         this.dump_place(*dest);
953         Ok(())
954     }
955
956     /// Evaluates the scalar at the specified path. Returns Some(val)
957     /// if the path could be resolved, and None otherwise
958     fn eval_path_scalar(&mut self, path: &[&str]) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
959         let this = self.eval_context_mut();
960         if let Ok(instance) = this.resolve_path(path) {
961             let cid = GlobalId {
962                 instance,
963                 promoted: None,
964             };
965             let const_val = this.const_eval_raw(cid)?;
966             let const_val = this.read_scalar(const_val.into())?;
967             return Ok(Some(const_val));
968         }
969         return Ok(None);
970     }
971 }
972
973 // Shims the linux 'getrandom()' syscall.
974 fn linux_getrandom<'tcx>(
975     this: &mut MiriEvalContext<'_, 'tcx>,
976     args: &[OpTy<'tcx, Tag>],
977     dest: PlaceTy<'tcx, Tag>,
978 ) -> InterpResult<'tcx> {
979     let ptr = this.read_scalar(args[0])?.not_undef()?;
980     let len = this.read_scalar(args[1])?.to_usize(this)?;
981
982     // The only supported flags are GRND_RANDOM and GRND_NONBLOCK,
983     // neither of which have any effect on our current PRNG.
984     let _flags = this.read_scalar(args[2])?.to_i32()?;
985
986     this.gen_random(ptr, len as usize)?;
987     this.write_scalar(Scalar::from_uint(len, dest.layout.size), dest)?;
988     Ok(())
989 }