]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
fix for Panic InterpError refactoring
[rust.git] / src / shims / foreign_items.rs
1 use std::{convert::TryInto, iter};
2
3 use rustc_hir::def_id::DefId;
4 use rustc::mir;
5 use rustc::ty;
6 use rustc::ty::layout::{Align, LayoutOf, Size};
7 use rustc_apfloat::Float;
8 use rustc_span::symbol::sym;
9 use syntax::attr;
10
11 use crate::*;
12
13 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
14 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
15     /// Returns the minimum alignment for the target architecture for allocations of the given size.
16     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
17         let this = self.eval_context_ref();
18         // List taken from `libstd/sys_common/alloc.rs`.
19         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
20             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
21             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
22             arch => bug!("Unsupported target architecture: {}", arch),
23         };
24         // Windows always aligns, even small allocations.
25         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
26         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
27         if kind == MiriMemoryKind::WinHeap || size >= min_align {
28             return Align::from_bytes(min_align).unwrap();
29         }
30         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
31         fn prev_power_of_two(x: u64) -> u64 {
32             let next_pow2 = x.next_power_of_two();
33             if next_pow2 == x {
34                 // x *is* a power of two, just use that.
35                 x
36             } else {
37                 // x is between two powers, so next = 2*prev.
38                 next_pow2 / 2
39             }
40         }
41         Align::from_bytes(prev_power_of_two(size)).unwrap()
42     }
43
44     fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
45         let this = self.eval_context_mut();
46         if size == 0 {
47             Scalar::from_int(0, this.pointer_size())
48         } else {
49             let align = this.min_align(size, kind);
50             let ptr = this.memory.allocate(Size::from_bytes(size), align, kind.into());
51             if zero_init {
52                 // We just allocated this, the access is definitely in-bounds.
53                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
54             }
55             Scalar::Ptr(ptr)
56         }
57     }
58
59     fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
60         let this = self.eval_context_mut();
61         if !this.is_null(ptr)? {
62             let ptr = this.force_ptr(ptr)?;
63             this.memory.deallocate(ptr, None, kind.into())?;
64         }
65         Ok(())
66     }
67
68     fn realloc(
69         &mut self,
70         old_ptr: Scalar<Tag>,
71         new_size: u64,
72         kind: MiriMemoryKind,
73     ) -> InterpResult<'tcx, Scalar<Tag>> {
74         let this = self.eval_context_mut();
75         let new_align = this.min_align(new_size, kind);
76         if this.is_null(old_ptr)? {
77             if new_size == 0 {
78                 Ok(Scalar::from_int(0, this.pointer_size()))
79             } else {
80                 let new_ptr =
81                     this.memory.allocate(Size::from_bytes(new_size), new_align, kind.into());
82                 Ok(Scalar::Ptr(new_ptr))
83             }
84         } else {
85             let old_ptr = this.force_ptr(old_ptr)?;
86             if new_size == 0 {
87                 this.memory.deallocate(old_ptr, None, kind.into())?;
88                 Ok(Scalar::from_int(0, this.pointer_size()))
89             } else {
90                 let new_ptr = this.memory.reallocate(
91                     old_ptr,
92                     None,
93                     Size::from_bytes(new_size),
94                     new_align,
95                     kind.into(),
96                 )?;
97                 Ok(Scalar::Ptr(new_ptr))
98             }
99         }
100     }
101
102     /// Emulates calling a foreign item, failing if the item is not supported.
103     /// This function will handle `goto_block` if needed.
104     /// Returns Ok(None) if the foreign item was completely handled
105     /// by this function.
106     /// Returns Ok(Some(body)) if processing the foreign item
107     /// is delegated to another function.
108     #[rustfmt::skip]
109     fn emulate_foreign_item(
110         &mut self,
111         def_id: DefId,
112         args: &[OpTy<'tcx, Tag>],
113         ret: Option<(PlaceTy<'tcx, Tag>, mir::BasicBlock)>,
114         _unwind: Option<mir::BasicBlock>,
115     ) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
116         let this = self.eval_context_mut();
117         let attrs = this.tcx.get_attrs(def_id);
118         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
119             Some(name) => name.as_str(),
120             None => this.tcx.item_name(def_id).as_str(),
121         };
122         // Strip linker suffixes (seen on 32-bit macOS).
123         let link_name = link_name.trim_end_matches("$UNIX2003");
124         let tcx = &{ this.tcx.tcx };
125
126         // First: functions that diverge.
127         let (dest, ret) = match link_name {
128             // Note that this matches calls to the *foreign* item `__rust_start_panic* -
129             // that is, calls to `extern "Rust" { fn __rust_start_panic(...) }`.
130             // We forward this to the underlying *implementation* in the panic runtime crate.
131             // Normally, this will be either `libpanic_unwind` or `libpanic_abort`, but it could
132             // also be a custom user-provided implementation via `#![feature(panic_runtime)]`
133             "__rust_start_panic" => {
134                 // FIXME we might want to cache this... but it's not really performance-critical.
135                 let panic_runtime = tcx
136                     .crates()
137                     .iter()
138                     .find(|cnum| tcx.is_panic_runtime(**cnum))
139                     .expect("No panic runtime found!");
140                 let panic_runtime = tcx.crate_name(*panic_runtime);
141                 let start_panic_instance =
142                     this.resolve_path(&[&*panic_runtime.as_str(), "__rust_start_panic"])?;
143                 return Ok(Some(&*this.load_mir(start_panic_instance.def, None)?));
144             }
145             // Similarly, we forward calls to the `panic_impl` foreign item to its implementation.
146             // The implementation is provided by the function with the `#[panic_handler]` attribute.
147             "panic_impl" => {
148                 let panic_impl_id = this.tcx.lang_items().panic_impl().unwrap();
149                 let panic_impl_instance = ty::Instance::mono(*this.tcx, panic_impl_id);
150                 return Ok(Some(&*this.load_mir(panic_impl_instance.def, None)?));
151             }
152
153             | "exit"
154             | "ExitProcess"
155             => {
156                 // it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
157                 let code = this.read_scalar(args[0])?.to_i32()?;
158                 throw_machine_stop!(TerminationInfo::Exit(code.into()));
159             }
160             _ => {
161                 if let Some(p) = ret {
162                     p
163                 } else {
164                     throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
165                 }
166             }
167         };
168
169         // Next: functions that return.
170         match link_name {
171             "malloc" => {
172                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
173                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
174                 this.write_scalar(res, dest)?;
175             }
176             "calloc" => {
177                 let items = this.read_scalar(args[0])?.to_machine_usize(this)?;
178                 let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
179                 let size =
180                     items.checked_mul(len).ok_or_else(|| err_ub_format!("overflow during calloc size computation"))?;
181                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
182                 this.write_scalar(res, dest)?;
183             }
184             "posix_memalign" => {
185                 let ret = this.deref_operand(args[0])?;
186                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
187                 let size = this.read_scalar(args[2])?.to_machine_usize(this)?;
188                 // Align must be power of 2, and also at least ptr-sized (POSIX rules).
189                 if !align.is_power_of_two() {
190                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
191                 }
192                 if align < this.pointer_size().bytes() {
193                     throw_ub_format!(
194                         "posix_memalign: alignment must be at least the size of a pointer, but is {}",
195                         align,
196                     );
197                 }
198
199                 if size == 0 {
200                     this.write_null(ret.into())?;
201                 } else {
202                     let ptr = this.memory.allocate(
203                         Size::from_bytes(size),
204                         Align::from_bytes(align).unwrap(),
205                         MiriMemoryKind::C.into(),
206                     );
207                     this.write_scalar(ptr, ret.into())?;
208                 }
209                 this.write_null(dest)?;
210             }
211             "free" => {
212                 let ptr = this.read_scalar(args[0])?.not_undef()?;
213                 this.free(ptr, MiriMemoryKind::C)?;
214             }
215             "realloc" => {
216                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
217                 let new_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
218                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
219                 this.write_scalar(res, dest)?;
220             }
221
222             "__rust_alloc" => {
223                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
224                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
225                 if size == 0 {
226                     throw_unsup!(HeapAllocZeroBytes);
227                 }
228                 if !align.is_power_of_two() {
229                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
230                 }
231                 let ptr = this.memory.allocate(
232                     Size::from_bytes(size),
233                     Align::from_bytes(align).unwrap(),
234                     MiriMemoryKind::Rust.into(),
235                 );
236                 this.write_scalar(ptr, dest)?;
237             }
238             "__rust_alloc_zeroed" => {
239                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
240                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
241                 if size == 0 {
242                     throw_unsup!(HeapAllocZeroBytes);
243                 }
244                 if !align.is_power_of_two() {
245                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
246                 }
247                 let ptr = this.memory.allocate(
248                     Size::from_bytes(size),
249                     Align::from_bytes(align).unwrap(),
250                     MiriMemoryKind::Rust.into(),
251                 );
252                 // We just allocated this, the access is definitely in-bounds.
253                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
254                 this.write_scalar(ptr, dest)?;
255             }
256             "__rust_dealloc" => {
257                 let ptr = this.read_scalar(args[0])?.not_undef()?;
258                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
259                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
260                 if old_size == 0 {
261                     throw_unsup!(HeapAllocZeroBytes);
262                 }
263                 if !align.is_power_of_two() {
264                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
265                 }
266                 let ptr = this.force_ptr(ptr)?;
267                 this.memory.deallocate(
268                     ptr,
269                     Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
270                     MiriMemoryKind::Rust.into(),
271                 )?;
272             }
273             "__rust_realloc" => {
274                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
275                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
276                 let new_size = this.read_scalar(args[3])?.to_machine_usize(this)?;
277                 if old_size == 0 || new_size == 0 {
278                     throw_unsup!(HeapAllocZeroBytes);
279                 }
280                 if !align.is_power_of_two() {
281                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
282                 }
283                 let ptr = this.force_ptr(this.read_scalar(args[0])?.not_undef()?)?;
284                 let align = Align::from_bytes(align).unwrap();
285                 let new_ptr = this.memory.reallocate(
286                     ptr,
287                     Some((Size::from_bytes(old_size), align)),
288                     Size::from_bytes(new_size),
289                     align,
290                     MiriMemoryKind::Rust.into(),
291                 )?;
292                 this.write_scalar(new_ptr, dest)?;
293             }
294
295             "syscall" => {
296                 let sys_getrandom = this
297                     .eval_path_scalar(&["libc", "SYS_getrandom"])?
298                     .expect("Failed to get libc::SYS_getrandom")
299                     .to_machine_usize(this)?;
300
301                 let sys_statx = this
302                     .eval_path_scalar(&["libc", "SYS_statx"])?
303                     .expect("Failed to get libc::SYS_statx")
304                     .to_machine_usize(this)?;
305
306                 match this.read_scalar(args[0])?.to_machine_usize(this)? {
307                     // `libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)`
308                     // is called if a `HashMap` is created the regular way (e.g. HashMap<K, V>).
309                     id if id == sys_getrandom => {
310                         // The first argument is the syscall id,
311                         // so skip over it.
312                         linux_getrandom(this, &args[1..], dest)?;
313                     }
314                     id if id == sys_statx => {
315                         // The first argument is the syscall id,
316                         // so skip over it.
317                         let result = this.statx(args[1], args[2], args[3], args[4], args[5])?;
318                         this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
319                     }
320                     id => throw_unsup_format!("miri does not support syscall ID {}", id),
321                 }
322             }
323
324             "getrandom" => {
325                 linux_getrandom(this, args, dest)?;
326             }
327
328             "dlsym" => {
329                 let _handle = this.read_scalar(args[0])?;
330                 let symbol = this.read_scalar(args[1])?.not_undef()?;
331                 let symbol_name = this.memory.read_c_str(symbol)?;
332                 let err = format!("bad c unicode symbol: {:?}", symbol_name);
333                 let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
334                 if let Some(dlsym) = Dlsym::from_str(symbol_name)? {
335                     let ptr = this.memory.create_fn_alloc(FnVal::Other(dlsym));
336                     this.write_scalar(Scalar::from(ptr), dest)?;
337                 } else {
338                     this.write_null(dest)?;
339                 }
340             }
341
342             "__rust_maybe_catch_panic" => {
343                 this.handle_catch_panic(args, dest, ret)?;
344                 return Ok(None);
345             }
346
347             "memcmp" => {
348                 let left = this.read_scalar(args[0])?.not_undef()?;
349                 let right = this.read_scalar(args[1])?.not_undef()?;
350                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_machine_usize(this)?);
351
352                 let result = {
353                     let left_bytes = this.memory.read_bytes(left, n)?;
354                     let right_bytes = this.memory.read_bytes(right, n)?;
355
356                     use std::cmp::Ordering::*;
357                     match left_bytes.cmp(right_bytes) {
358                         Less => -1i32,
359                         Equal => 0,
360                         Greater => 1,
361                     }
362                 };
363
364                 this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
365             }
366
367             "memrchr" => {
368                 let ptr = this.read_scalar(args[0])?.not_undef()?;
369                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
370                 let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
371                 if let Some(idx) = this
372                     .memory
373                     .read_bytes(ptr, Size::from_bytes(num))?
374                     .iter()
375                     .rev()
376                     .position(|&c| c == val)
377                 {
378                     let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
379                     this.write_scalar(new_ptr, dest)?;
380                 } else {
381                     this.write_null(dest)?;
382                 }
383             }
384
385             "memchr" => {
386                 let ptr = this.read_scalar(args[0])?.not_undef()?;
387                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
388                 let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
389                 let idx = this
390                     .memory
391                     .read_bytes(ptr, Size::from_bytes(num))?
392                     .iter()
393                     .position(|&c| c == val);
394                 if let Some(idx) = idx {
395                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
396                     this.write_scalar(new_ptr, dest)?;
397                 } else {
398                     this.write_null(dest)?;
399                 }
400             }
401
402             | "__errno_location"
403             | "__error"
404             => {
405                 let errno_place = this.machine.last_error.unwrap();
406                 this.write_scalar(errno_place.to_ref().to_scalar()?, dest)?;
407             }
408
409             "getenv" => {
410                 let result = this.getenv(args[0])?;
411                 this.write_scalar(result, dest)?;
412             }
413
414             "unsetenv" => {
415                 let result = this.unsetenv(args[0])?;
416                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
417             }
418
419             "setenv" => {
420                 let result = this.setenv(args[0], args[1])?;
421                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
422             }
423
424             "getcwd" => {
425                 let result = this.getcwd(args[0], args[1])?;
426                 this.write_scalar(result, dest)?;
427             }
428
429             "chdir" => {
430                 let result = this.chdir(args[0])?;
431                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
432             }
433
434             | "open"
435             | "open64"
436             => {
437                 let result = this.open(args[0], args[1])?;
438                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
439             }
440
441             "fcntl" => {
442                 let result = this.fcntl(args[0], args[1], args.get(2).cloned())?;
443                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
444             }
445
446             | "close"
447             | "close$NOCANCEL"
448             => {
449                 let result = this.close(args[0])?;
450                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
451             }
452
453             "read" => {
454                 let result = this.read(args[0], args[1], args[2])?;
455                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
456             }
457
458             "write" => {
459                 let fd = this.read_scalar(args[0])?.to_i32()?;
460                 let buf = this.read_scalar(args[1])?.not_undef()?;
461                 let n = this.read_scalar(args[2])?.to_machine_usize(tcx)?;
462                 trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
463                 let result = if fd == 1 || fd == 2 {
464                     // stdout/stderr
465                     use std::io::{self, Write};
466
467                     let buf_cont = this.memory.read_bytes(buf, Size::from_bytes(n))?;
468                     // We need to flush to make sure this actually appears on the screen
469                     let res = if fd == 1 {
470                         // Stdout is buffered, flush to make sure it appears on the screen.
471                         // This is the write() syscall of the interpreted program, we want it
472                         // to correspond to a write() syscall on the host -- there is no good
473                         // in adding extra buffering here.
474                         let res = io::stdout().write(buf_cont);
475                         io::stdout().flush().unwrap();
476                         res
477                     } else {
478                         // No need to flush, stderr is not buffered.
479                         io::stderr().write(buf_cont)
480                     };
481                     match res {
482                         Ok(n) => n as i64,
483                         Err(_) => -1,
484                     }
485                 } else {
486                     this.write(args[0], args[1], args[2])?
487                 };
488                 // Now, `result` is the value we return back to the program.
489                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
490             }
491
492             | "lseek64"
493             | "lseek"
494             => {
495                 let result = this.lseek64(args[0], args[1], args[2])?;
496                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
497             }
498
499             "unlink" => {
500                 let result = this.unlink(args[0])?;
501                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
502             }
503
504             "symlink" => {
505                 let result = this.symlink(args[0], args[1])?;
506                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
507             }
508
509             "stat$INODE64" => {
510                 let result = this.stat(args[0], args[1])?;
511                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
512             }
513
514             "lstat$INODE64" => {
515                 let result = this.lstat(args[0], args[1])?;
516                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
517             }
518
519             "fstat$INODE64" => {
520                 let result = this.fstat(args[0], args[1])?;
521                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
522             }
523
524             "clock_gettime" => {
525                 let result = this.clock_gettime(args[0], args[1])?;
526                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
527             }
528
529             "gettimeofday" => {
530                 let result = this.gettimeofday(args[0], args[1])?;
531                 this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
532             }
533
534             "strlen" => {
535                 let ptr = this.read_scalar(args[0])?.not_undef()?;
536                 let n = this.memory.read_c_str(ptr)?.len();
537                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
538             }
539
540             // math functions
541             | "cbrtf"
542             | "coshf"
543             | "sinhf"
544             | "tanf"
545             | "acosf"
546             | "asinf"
547             | "atanf"
548             => {
549                 // FIXME: Using host floats.
550                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
551                 let f = match link_name {
552                     "cbrtf" => f.cbrt(),
553                     "coshf" => f.cosh(),
554                     "sinhf" => f.sinh(),
555                     "tanf" => f.tan(),
556                     "acosf" => f.acos(),
557                     "asinf" => f.asin(),
558                     "atanf" => f.atan(),
559                     _ => bug!(),
560                 };
561                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
562             }
563             // underscore case for windows
564             | "_hypotf"
565             | "hypotf"
566             | "atan2f"
567             => {
568                 // FIXME: Using host floats.
569                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
570                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
571                 let n = match link_name {
572                     "_hypotf" | "hypotf" => f1.hypot(f2),
573                     "atan2f" => f1.atan2(f2),
574                     _ => bug!(),
575                 };
576                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
577             }
578
579             | "cbrt"
580             | "cosh"
581             | "sinh"
582             | "tan"
583             | "acos"
584             | "asin"
585             | "atan"
586             => {
587                 // FIXME: Using host floats.
588                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
589                 let f = match link_name {
590                     "cbrt" => f.cbrt(),
591                     "cosh" => f.cosh(),
592                     "sinh" => f.sinh(),
593                     "tan" => f.tan(),
594                     "acos" => f.acos(),
595                     "asin" => f.asin(),
596                     "atan" => f.atan(),
597                     _ => bug!(),
598                 };
599                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
600             }
601             // underscore case for windows, here and below
602             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
603             | "_hypot"
604             | "hypot"
605             | "atan2"
606             => {
607                 // FIXME: Using host floats.
608                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
609                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
610                 let n = match link_name {
611                     "_hypot" | "hypot" => f1.hypot(f2),
612                     "atan2" => f1.atan2(f2),
613                     _ => bug!(),
614                 };
615                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
616             }
617             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
618             | "_ldexp"
619             | "ldexp"
620             | "scalbn"
621             => {
622                 let x = this.read_scalar(args[0])?.to_f64()?;
623                 let exp = this.read_scalar(args[1])?.to_i32()?;
624
625                 // Saturating cast to i16. Even those are outside the valid exponent range to
626                 // `scalbn` below will do its over/underflow handling.
627                 let exp = if exp > i16::max_value() as i32 {
628                     i16::max_value()
629                 } else if exp < i16::min_value() as i32 {
630                     i16::min_value()
631                 } else {
632                     exp.try_into().unwrap()
633                 };
634
635                 let res = x.scalbn(exp);
636                 this.write_scalar(Scalar::from_f64(res), dest)?;
637             }
638
639             // Some things needed for `sys::thread` initialization to go through.
640             | "signal"
641             | "sigaction"
642             | "sigaltstack"
643             => {
644                 this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
645             }
646
647             "sysconf" => {
648                 let name = this.read_scalar(args[0])?.to_i32()?;
649
650                 trace!("sysconf() called with name {}", name);
651                 // TODO: Cache the sysconf integers via Miri's global cache.
652                 let paths = &[
653                     (&["libc", "_SC_PAGESIZE"], Scalar::from_int(PAGE_SIZE, dest.layout.size)),
654                     (&["libc", "_SC_GETPW_R_SIZE_MAX"], Scalar::from_int(-1, dest.layout.size)),
655                     (
656                         &["libc", "_SC_NPROCESSORS_ONLN"],
657                         Scalar::from_int(NUM_CPUS, dest.layout.size),
658                     ),
659                 ];
660                 let mut result = None;
661                 for &(path, path_value) in paths {
662                     if let Some(val) = this.eval_path_scalar(path)? {
663                         let val = val.to_i32()?;
664                         if val == name {
665                             result = Some(path_value);
666                             break;
667                         }
668                     }
669                 }
670                 if let Some(result) = result {
671                     this.write_scalar(result, dest)?;
672                 } else {
673                     throw_unsup_format!("Unimplemented sysconf name: {}", name)
674                 }
675             }
676
677             "sched_getaffinity" => {
678                 // Return an error; `num_cpus` then falls back to `sysconf`.
679                 this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
680             }
681
682             "isatty" => {
683                 this.write_null(dest)?;
684             }
685
686             // Hook pthread calls that go to the thread-local storage memory subsystem.
687             "pthread_key_create" => {
688                 let key_place = this.deref_operand(args[0])?;
689
690                 // Extract the function type out of the signature (that seems easier than constructing it ourselves).
691                 let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
692                     Some(dtor_ptr) => Some(this.memory.get_fn(dtor_ptr)?.as_instance()?),
693                     None => None,
694                 };
695
696                 // Figure out how large a pthread TLS key actually is.
697                 // This is `libc::pthread_key_t`.
698                 let key_type = args[0].layout.ty
699                     .builtin_deref(true)
700                     .ok_or_else(|| err_ub_format!(
701                         "wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
702                     ))?
703                     .ty;
704                 let key_layout = this.layout_of(key_type)?;
705
706                 // Create key and write it into the memory where `key_ptr` wants it.
707                 let key = this.machine.tls.create_tls_key(dtor) as u128;
708                 if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128)
709                 {
710                     throw_unsup!(OutOfTls);
711                 }
712
713                 this.write_scalar(Scalar::from_uint(key, key_layout.size), key_place.into())?;
714
715                 // Return success (`0`).
716                 this.write_null(dest)?;
717             }
718             "pthread_key_delete" => {
719                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
720                 this.machine.tls.delete_tls_key(key)?;
721                 // Return success (0)
722                 this.write_null(dest)?;
723             }
724             "pthread_getspecific" => {
725                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
726                 let ptr = this.machine.tls.load_tls(key, tcx)?;
727                 this.write_scalar(ptr, dest)?;
728             }
729             "pthread_setspecific" => {
730                 let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
731                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
732                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
733
734                 // Return success (`0`).
735                 this.write_null(dest)?;
736             }
737
738             // Stack size/address stuff.
739             | "pthread_attr_init"
740             | "pthread_attr_destroy"
741             | "pthread_self"
742             | "pthread_attr_setstacksize" => {
743                 this.write_null(dest)?;
744             }
745             "pthread_attr_getstack" => {
746                 let addr_place = this.deref_operand(args[1])?;
747                 let size_place = this.deref_operand(args[2])?;
748
749                 this.write_scalar(
750                     Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
751                     addr_place.into(),
752                 )?;
753                 this.write_scalar(
754                     Scalar::from_uint(STACK_SIZE, size_place.layout.size),
755                     size_place.into(),
756                 )?;
757
758                 // Return success (`0`).
759                 this.write_null(dest)?;
760             }
761
762             // We don't support threading. (Also for Windows.)
763             | "pthread_create"
764             | "CreateThread"
765             => {
766                 throw_unsup_format!("Miri does not support threading");
767             }
768
769             // Stub out calls for condvar, mutex and rwlock, to just return `0`.
770             | "pthread_mutexattr_init"
771             | "pthread_mutexattr_settype"
772             | "pthread_mutex_init"
773             | "pthread_mutexattr_destroy"
774             | "pthread_mutex_lock"
775             | "pthread_mutex_unlock"
776             | "pthread_mutex_destroy"
777             | "pthread_rwlock_rdlock"
778             | "pthread_rwlock_unlock"
779             | "pthread_rwlock_wrlock"
780             | "pthread_rwlock_destroy"
781             | "pthread_condattr_init"
782             | "pthread_condattr_setclock"
783             | "pthread_cond_init"
784             | "pthread_condattr_destroy"
785             | "pthread_cond_destroy"
786             => {
787                 this.write_null(dest)?;
788             }
789
790             // We don't support fork so we don't have to do anything for atfork.
791             "pthread_atfork" => {
792                 this.write_null(dest)?;
793             }
794
795             "posix_fadvise" => {
796                 // fadvise is only informational, we can ignore it.
797                 this.write_null(dest)?;
798             }
799
800             "mmap" => {
801                 // This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
802                 let addr = this.read_scalar(args[0])?.not_undef()?;
803                 this.write_scalar(addr, dest)?;
804             }
805             "mprotect" => {
806                 this.write_null(dest)?;
807             }
808
809             // macOS API stubs.
810             | "pthread_attr_get_np"
811             | "pthread_getattr_np"
812             => {
813                 this.write_null(dest)?;
814             }
815             "pthread_get_stackaddr_np" => {
816                 let stack_addr = Scalar::from_uint(STACK_ADDR, dest.layout.size);
817                 this.write_scalar(stack_addr, dest)?;
818             }
819             "pthread_get_stacksize_np" => {
820                 let stack_size = Scalar::from_uint(STACK_SIZE, dest.layout.size);
821                 this.write_scalar(stack_size, dest)?;
822             }
823             "_tlv_atexit" => {
824                 // FIXME: register the destructor.
825             }
826             "_NSGetArgc" => {
827                 this.write_scalar(this.machine.argc.expect("machine must be initialized"), dest)?;
828             }
829             "_NSGetArgv" => {
830                 this.write_scalar(this.machine.argv.expect("machine must be initialized"), dest)?;
831             }
832             "SecRandomCopyBytes" => {
833                 let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
834                 let ptr = this.read_scalar(args[2])?.not_undef()?;
835                 this.gen_random(ptr, len as usize)?;
836                 this.write_null(dest)?;
837             }
838
839             // Windows API stubs.
840             // HANDLE = isize
841             // DWORD = ULONG = u32
842             // BOOL = i32
843             "GetProcessHeap" => {
844                 // Just fake a HANDLE
845                 this.write_scalar(Scalar::from_int(1, this.pointer_size()), dest)?;
846             }
847             "HeapAlloc" => {
848                 let _handle = this.read_scalar(args[0])?.to_machine_isize(this)?;
849                 let flags = this.read_scalar(args[1])?.to_u32()?;
850                 let size = this.read_scalar(args[2])?.to_machine_usize(this)?;
851                 let zero_init = (flags & 0x00000008) != 0; // HEAP_ZERO_MEMORY
852                 let res = this.malloc(size, zero_init, MiriMemoryKind::WinHeap);
853                 this.write_scalar(res, dest)?;
854             }
855             "HeapFree" => {
856                 let _handle = this.read_scalar(args[0])?.to_machine_isize(this)?;
857                 let _flags = this.read_scalar(args[1])?.to_u32()?;
858                 let ptr = this.read_scalar(args[2])?.not_undef()?;
859                 this.free(ptr, MiriMemoryKind::WinHeap)?;
860                 this.write_scalar(Scalar::from_int(1, Size::from_bytes(4)), dest)?;
861             }
862             "HeapReAlloc" => {
863                 let _handle = this.read_scalar(args[0])?.to_machine_isize(this)?;
864                 let _flags = this.read_scalar(args[1])?.to_u32()?;
865                 let ptr = this.read_scalar(args[2])?.not_undef()?;
866                 let size = this.read_scalar(args[3])?.to_machine_usize(this)?;
867                 let res = this.realloc(ptr, size, MiriMemoryKind::WinHeap)?;
868                 this.write_scalar(res, dest)?;
869             }
870
871             "SetLastError" => {
872                 this.set_last_error(this.read_scalar(args[0])?.not_undef()?)?;
873             }
874             "GetLastError" => {
875                 let last_error = this.get_last_error()?;
876                 this.write_scalar(last_error, dest)?;
877             }
878
879             "AddVectoredExceptionHandler" => {
880                 // Any non zero value works for the stdlib. This is just used for stack overflows anyway.
881                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
882             }
883
884             | "InitializeCriticalSection"
885             | "EnterCriticalSection"
886             | "LeaveCriticalSection"
887             | "DeleteCriticalSection"
888             => {
889                 // Nothing to do, not even a return value.
890             }
891
892             | "GetModuleHandleW"
893             | "GetProcAddress"
894             | "TryEnterCriticalSection"
895             | "GetConsoleScreenBufferInfo"
896             | "SetConsoleTextAttribute"
897             => {
898                 // Pretend these do not exist / nothing happened, by returning zero.
899                 this.write_null(dest)?;
900             }
901
902             "GetSystemInfo" => {
903                 let system_info = this.deref_operand(args[0])?;
904                 // Initialize with `0`.
905                 this.memory.write_bytes(
906                     system_info.ptr,
907                     iter::repeat(0u8).take(system_info.layout.size.bytes() as usize),
908                 )?;
909                 // Set number of processors.
910                 let dword_size = Size::from_bytes(4);
911                 let num_cpus = this.mplace_field(system_info, 6)?;
912                 this.write_scalar(Scalar::from_int(NUM_CPUS, dword_size), num_cpus.into())?;
913             }
914
915             "TlsAlloc" => {
916                 // This just creates a key; Windows does not natively support TLS destructors.
917
918                 // Create key and return it.
919                 let key = this.machine.tls.create_tls_key(None) as u128;
920
921                 // Figure out how large a TLS key actually is. This is `c::DWORD`.
922                 if dest.layout.size.bits() < 128
923                     && key >= (1u128 << dest.layout.size.bits() as u128)
924                 {
925                     throw_unsup!(OutOfTls);
926                 }
927                 this.write_scalar(Scalar::from_uint(key, dest.layout.size), dest)?;
928             }
929             "TlsGetValue" => {
930                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
931                 let ptr = this.machine.tls.load_tls(key, tcx)?;
932                 this.write_scalar(ptr, dest)?;
933             }
934             "TlsSetValue" => {
935                 let key = this.read_scalar(args[0])?.to_u32()? as u128;
936                 let new_ptr = this.read_scalar(args[1])?.not_undef()?;
937                 this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
938
939                 // Return success (`1`).
940                 this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
941             }
942             "GetStdHandle" => {
943                 let which = this.read_scalar(args[0])?.to_i32()?;
944                 // We just make this the identity function, so we know later in `WriteFile`
945                 // which one it is.
946                 this.write_scalar(Scalar::from_int(which, this.pointer_size()), dest)?;
947             }
948             "WriteFile" => {
949                 let handle = this.read_scalar(args[0])?.to_machine_isize(this)?;
950                 let buf = this.read_scalar(args[1])?.not_undef()?;
951                 let n = this.read_scalar(args[2])?.to_u32()?;
952                 let written_place = this.deref_operand(args[3])?;
953                 // Spec says to always write `0` first.
954                 this.write_null(written_place.into())?;
955                 let written = if handle == -11 || handle == -12 {
956                     // stdout/stderr
957                     use std::io::{self, Write};
958
959                     let buf_cont = this.memory.read_bytes(buf, Size::from_bytes(u64::from(n)))?;
960                     let res = if handle == -11 {
961                         io::stdout().write(buf_cont)
962                     } else {
963                         io::stderr().write(buf_cont)
964                     };
965                     res.ok().map(|n| n as u32)
966                 } else {
967                     eprintln!("Miri: Ignored output to handle {}", handle);
968                     // Pretend it all went well.
969                     Some(n)
970                 };
971                 // If there was no error, write back how much was written.
972                 if let Some(n) = written {
973                     this.write_scalar(Scalar::from_u32(n), written_place.into())?;
974                 }
975                 // Return whether this was a success.
976                 this.write_scalar(
977                     Scalar::from_int(if written.is_some() { 1 } else { 0 }, dest.layout.size),
978                     dest,
979                 )?;
980             }
981             "GetConsoleMode" => {
982                 // Everything is a pipe.
983                 this.write_null(dest)?;
984             }
985             "GetEnvironmentVariableW" => {
986                 // args[0] : LPCWSTR lpName (32-bit ptr to a const string of 16-bit Unicode chars)
987                 // args[1] : LPWSTR lpBuffer (32-bit pointer to a string of 16-bit Unicode chars)
988                 // lpBuffer : ptr to buffer that receives contents of the env_var as a null-terminated string.
989                 // Return `# of chars` stored in the buffer pointed to by lpBuffer, excluding null-terminator.
990                 // Return 0 upon failure.
991
992                 // This is not the env var you are looking for.
993                 this.set_last_error(Scalar::from_u32(203))?; // ERROR_ENVVAR_NOT_FOUND
994                 this.write_null(dest)?;
995             }
996             "SetEnvironmentVariableW" => {
997                 // args[0] : LPCWSTR lpName (32-bit ptr to a const string of 16-bit Unicode chars)
998                 // args[1] : LPCWSTR lpValue (32-bit ptr to a const string of 16-bit Unicode chars)
999                 // Return nonzero if success, else return 0.
1000                 throw_unsup_format!("can't set environment variable on Windows");
1001             }
1002             "GetCommandLineW" => {
1003                 this.write_scalar(
1004                     this.machine.cmd_line.expect("machine must be initialized"),
1005                     dest,
1006                 )?;
1007             }
1008             // The actual name of 'RtlGenRandom'
1009             "SystemFunction036" => {
1010                 let ptr = this.read_scalar(args[0])?.not_undef()?;
1011                 let len = this.read_scalar(args[1])?.to_u32()?;
1012                 this.gen_random(ptr, len as usize)?;
1013                 this.write_scalar(Scalar::from_bool(true), dest)?;
1014             }
1015
1016             // We can't execute anything else.
1017             _ => throw_unsup_format!("can't call foreign function: {}", link_name),
1018         }
1019
1020         this.dump_place(*dest);
1021         this.go_to_block(ret);
1022         Ok(None)
1023     }
1024
1025     /// Evaluates the scalar at the specified path. Returns Some(val)
1026     /// if the path could be resolved, and None otherwise
1027     fn eval_path_scalar(
1028         &mut self,
1029         path: &[&str],
1030     ) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
1031         let this = self.eval_context_mut();
1032         if let Ok(instance) = this.resolve_path(path) {
1033             let cid = GlobalId { instance, promoted: None };
1034             let const_val = this.const_eval_raw(cid)?;
1035             let const_val = this.read_scalar(const_val.into())?;
1036             return Ok(Some(const_val));
1037         }
1038         return Ok(None);
1039     }
1040 }
1041
1042 // Shims the linux 'getrandom()' syscall.
1043 fn linux_getrandom<'tcx>(
1044     this: &mut MiriEvalContext<'_, 'tcx>,
1045     args: &[OpTy<'tcx, Tag>],
1046     dest: PlaceTy<'tcx, Tag>,
1047 ) -> InterpResult<'tcx> {
1048     let ptr = this.read_scalar(args[0])?.not_undef()?;
1049     let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
1050
1051     // The only supported flags are GRND_RANDOM and GRND_NONBLOCK,
1052     // neither of which have any effect on our current PRNG.
1053     let _flags = this.read_scalar(args[2])?.to_i32()?;
1054
1055     this.gen_random(ptr, len as usize)?;
1056     this.write_scalar(Scalar::from_uint(len, dest.layout.size), dest)?;
1057     Ok(())
1058 }