]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
remove hack for panics
[rust.git] / src / shims / foreign_items.rs
1 mod windows;
2 mod posix;
3
4 use std::{convert::TryInto, iter};
5
6 use rustc_hir::def_id::DefId;
7 use rustc::mir;
8 use rustc::ty;
9 use rustc::ty::layout::{Align, Size};
10 use rustc_apfloat::Float;
11 use rustc_span::symbol::sym;
12 use syntax::attr;
13
14 use crate::*;
15
16 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
17 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
18     /// Returns the minimum alignment for the target architecture for allocations of the given size.
19     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
20         let this = self.eval_context_ref();
21         // List taken from `libstd/sys_common/alloc.rs`.
22         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
23             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
24             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
25             arch => bug!("Unsupported target architecture: {}", arch),
26         };
27         // Windows always aligns, even small allocations.
28         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
29         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
30         if kind == MiriMemoryKind::WinHeap || size >= min_align {
31             return Align::from_bytes(min_align).unwrap();
32         }
33         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
34         fn prev_power_of_two(x: u64) -> u64 {
35             let next_pow2 = x.next_power_of_two();
36             if next_pow2 == x {
37                 // x *is* a power of two, just use that.
38                 x
39             } else {
40                 // x is between two powers, so next = 2*prev.
41                 next_pow2 / 2
42             }
43         }
44         Align::from_bytes(prev_power_of_two(size)).unwrap()
45     }
46
47     fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
48         let this = self.eval_context_mut();
49         if size == 0 {
50             Scalar::from_int(0, this.pointer_size())
51         } else {
52             let align = this.min_align(size, kind);
53             let ptr = this.memory.allocate(Size::from_bytes(size), align, kind.into());
54             if zero_init {
55                 // We just allocated this, the access is definitely in-bounds.
56                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
57             }
58             Scalar::Ptr(ptr)
59         }
60     }
61
62     fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
63         let this = self.eval_context_mut();
64         if !this.is_null(ptr)? {
65             let ptr = this.force_ptr(ptr)?;
66             this.memory.deallocate(ptr, None, kind.into())?;
67         }
68         Ok(())
69     }
70
71     fn realloc(
72         &mut self,
73         old_ptr: Scalar<Tag>,
74         new_size: u64,
75         kind: MiriMemoryKind,
76     ) -> InterpResult<'tcx, Scalar<Tag>> {
77         let this = self.eval_context_mut();
78         let new_align = this.min_align(new_size, kind);
79         if this.is_null(old_ptr)? {
80             if new_size == 0 {
81                 Ok(Scalar::from_int(0, this.pointer_size()))
82             } else {
83                 let new_ptr =
84                     this.memory.allocate(Size::from_bytes(new_size), new_align, kind.into());
85                 Ok(Scalar::Ptr(new_ptr))
86             }
87         } else {
88             let old_ptr = this.force_ptr(old_ptr)?;
89             if new_size == 0 {
90                 this.memory.deallocate(old_ptr, None, kind.into())?;
91                 Ok(Scalar::from_int(0, this.pointer_size()))
92             } else {
93                 let new_ptr = this.memory.reallocate(
94                     old_ptr,
95                     None,
96                     Size::from_bytes(new_size),
97                     new_align,
98                     kind.into(),
99                 )?;
100                 Ok(Scalar::Ptr(new_ptr))
101             }
102         }
103     }
104
105     /// Emulates calling a foreign item, failing if the item is not supported.
106     /// This function will handle `goto_block` if needed.
107     /// Returns Ok(None) if the foreign item was completely handled
108     /// by this function.
109     /// Returns Ok(Some(body)) if processing the foreign item
110     /// is delegated to another function.
111     #[rustfmt::skip]
112     fn emulate_foreign_item(
113         &mut self,
114         def_id: DefId,
115         args: &[OpTy<'tcx, Tag>],
116         ret: Option<(PlaceTy<'tcx, Tag>, mir::BasicBlock)>,
117         _unwind: Option<mir::BasicBlock>,
118     ) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
119         let this = self.eval_context_mut();
120         let attrs = this.tcx.get_attrs(def_id);
121         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
122             Some(name) => name.as_str(),
123             None => this.tcx.item_name(def_id).as_str(),
124         };
125         // Strip linker suffixes (seen on 32-bit macOS).
126         let link_name = link_name.trim_end_matches("$UNIX2003");
127         let tcx = &{ this.tcx.tcx };
128
129         // First: functions that diverge.
130         let (dest, ret) = match link_name {
131             // Note that this matches calls to the *foreign* item `__rust_start_panic* -
132             // that is, calls to `extern "Rust" { fn __rust_start_panic(...) }`.
133             // We forward this to the underlying *implementation* in the panic runtime crate.
134             // Normally, this will be either `libpanic_unwind` or `libpanic_abort`, but it could
135             // also be a custom user-provided implementation via `#![feature(panic_runtime)]`
136             "__rust_start_panic" => {
137                 // FIXME we might want to cache this... but it's not really performance-critical.
138                 let panic_runtime = tcx
139                     .crates()
140                     .iter()
141                     .find(|cnum| tcx.is_panic_runtime(**cnum))
142                     .expect("No panic runtime found!");
143                 let panic_runtime = tcx.crate_name(*panic_runtime);
144                 let start_panic_instance =
145                     this.resolve_path(&[&*panic_runtime.as_str(), "__rust_start_panic"])?;
146                 return Ok(Some(&*this.load_mir(start_panic_instance.def, None)?));
147             }
148             // Similarly, we forward calls to the `panic_impl` foreign item to its implementation.
149             // The implementation is provided by the function with the `#[panic_handler]` attribute.
150             "panic_impl" => {
151                 let panic_impl_id = this.tcx.lang_items().panic_impl().unwrap();
152                 let panic_impl_instance = ty::Instance::mono(*this.tcx, panic_impl_id);
153                 return Ok(Some(&*this.load_mir(panic_impl_instance.def, None)?));
154             }
155
156             | "exit"
157             | "ExitProcess"
158             => {
159                 // it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
160                 let code = this.read_scalar(args[0])?.to_i32()?;
161                 throw_machine_stop!(TerminationInfo::Exit(code.into()));
162             }
163             _ => {
164                 if let Some(p) = ret {
165                     p
166                 } else {
167                     throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
168                 }
169             }
170         };
171
172         // Next: functions that return.
173         if this.emulate_foreign_item_by_name(link_name, args, dest, ret)? {
174             this.dump_place(*dest);
175             this.go_to_block(ret);
176         }
177
178         Ok(None)
179     }
180
181     fn emulate_foreign_item_by_name(
182         &mut self,
183         link_name: &str,
184         args: &[OpTy<'tcx, Tag>],
185         dest: PlaceTy<'tcx, Tag>,
186         ret: mir::BasicBlock,
187     ) -> InterpResult<'tcx, bool> {
188         let this = self.eval_context_mut();
189
190         // Here we dispatch all the shims for foreign functions. If you have a platform specific
191         // shim, add it to the corresponding submodule.
192         match link_name {
193             "malloc" => {
194                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
195                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
196                 this.write_scalar(res, dest)?;
197             }
198             "calloc" => {
199                 let items = this.read_scalar(args[0])?.to_machine_usize(this)?;
200                 let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
201                 let size =
202                     items.checked_mul(len).ok_or_else(|| err_ub_format!("overflow during calloc size computation"))?;
203                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
204                 this.write_scalar(res, dest)?;
205             }
206             "free" => {
207                 let ptr = this.read_scalar(args[0])?.not_undef()?;
208                 this.free(ptr, MiriMemoryKind::C)?;
209             }
210             "realloc" => {
211                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
212                 let new_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
213                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
214                 this.write_scalar(res, dest)?;
215             }
216
217             "__rust_alloc" => {
218                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
219                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
220                 if size == 0 {
221                     throw_unsup!(HeapAllocZeroBytes);
222                 }
223                 if !align.is_power_of_two() {
224                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
225                 }
226                 let ptr = this.memory.allocate(
227                     Size::from_bytes(size),
228                     Align::from_bytes(align).unwrap(),
229                     MiriMemoryKind::Rust.into(),
230                 );
231                 this.write_scalar(ptr, dest)?;
232             }
233             "__rust_alloc_zeroed" => {
234                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
235                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
236                 if size == 0 {
237                     throw_unsup!(HeapAllocZeroBytes);
238                 }
239                 if !align.is_power_of_two() {
240                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
241                 }
242                 let ptr = this.memory.allocate(
243                     Size::from_bytes(size),
244                     Align::from_bytes(align).unwrap(),
245                     MiriMemoryKind::Rust.into(),
246                 );
247                 // We just allocated this, the access is definitely in-bounds.
248                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
249                 this.write_scalar(ptr, dest)?;
250             }
251             "__rust_dealloc" => {
252                 let ptr = this.read_scalar(args[0])?.not_undef()?;
253                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
254                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
255                 if old_size == 0 {
256                     throw_unsup!(HeapAllocZeroBytes);
257                 }
258                 if !align.is_power_of_two() {
259                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
260                 }
261                 let ptr = this.force_ptr(ptr)?;
262                 this.memory.deallocate(
263                     ptr,
264                     Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
265                     MiriMemoryKind::Rust.into(),
266                 )?;
267             }
268             "__rust_realloc" => {
269                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
270                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
271                 let new_size = this.read_scalar(args[3])?.to_machine_usize(this)?;
272                 if old_size == 0 || new_size == 0 {
273                     throw_unsup!(HeapAllocZeroBytes);
274                 }
275                 if !align.is_power_of_two() {
276                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
277                 }
278                 let ptr = this.force_ptr(this.read_scalar(args[0])?.not_undef()?)?;
279                 let align = Align::from_bytes(align).unwrap();
280                 let new_ptr = this.memory.reallocate(
281                     ptr,
282                     Some((Size::from_bytes(old_size), align)),
283                     Size::from_bytes(new_size),
284                     align,
285                     MiriMemoryKind::Rust.into(),
286                 )?;
287                 this.write_scalar(new_ptr, dest)?;
288             }
289
290             "__rust_maybe_catch_panic" => {
291                 this.handle_catch_panic(args, dest, ret)?;
292                 return Ok(false);
293             }
294
295             "memcmp" => {
296                 let left = this.read_scalar(args[0])?.not_undef()?;
297                 let right = this.read_scalar(args[1])?.not_undef()?;
298                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_machine_usize(this)?);
299
300                 let result = {
301                     let left_bytes = this.memory.read_bytes(left, n)?;
302                     let right_bytes = this.memory.read_bytes(right, n)?;
303
304                     use std::cmp::Ordering::*;
305                     match left_bytes.cmp(right_bytes) {
306                         Less => -1i32,
307                         Equal => 0,
308                         Greater => 1,
309                     }
310                 };
311
312                 this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
313             }
314
315             "memchr" => {
316                 let ptr = this.read_scalar(args[0])?.not_undef()?;
317                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
318                 let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
319                 let idx = this
320                     .memory
321                     .read_bytes(ptr, Size::from_bytes(num))?
322                     .iter()
323                     .position(|&c| c == val);
324                 if let Some(idx) = idx {
325                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
326                     this.write_scalar(new_ptr, dest)?;
327                 } else {
328                     this.write_null(dest)?;
329                 }
330             }
331
332             "strlen" => {
333                 let ptr = this.read_scalar(args[0])?.not_undef()?;
334                 let n = this.memory.read_c_str(ptr)?.len();
335                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
336             }
337
338             // math functions
339             | "cbrtf"
340             | "coshf"
341             | "sinhf"
342             | "tanf"
343             | "acosf"
344             | "asinf"
345             | "atanf"
346             => {
347                 // FIXME: Using host floats.
348                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
349                 let f = match link_name {
350                     "cbrtf" => f.cbrt(),
351                     "coshf" => f.cosh(),
352                     "sinhf" => f.sinh(),
353                     "tanf" => f.tan(),
354                     "acosf" => f.acos(),
355                     "asinf" => f.asin(),
356                     "atanf" => f.atan(),
357                     _ => bug!(),
358                 };
359                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
360             }
361             // underscore case for windows
362             | "_hypotf"
363             | "hypotf"
364             | "atan2f"
365             => {
366                 // FIXME: Using host floats.
367                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
368                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
369                 let n = match link_name {
370                     "_hypotf" | "hypotf" => f1.hypot(f2),
371                     "atan2f" => f1.atan2(f2),
372                     _ => bug!(),
373                 };
374                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
375             }
376
377             | "cbrt"
378             | "cosh"
379             | "sinh"
380             | "tan"
381             | "acos"
382             | "asin"
383             | "atan"
384             => {
385                 // FIXME: Using host floats.
386                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
387                 let f = match link_name {
388                     "cbrt" => f.cbrt(),
389                     "cosh" => f.cosh(),
390                     "sinh" => f.sinh(),
391                     "tan" => f.tan(),
392                     "acos" => f.acos(),
393                     "asin" => f.asin(),
394                     "atan" => f.atan(),
395                     _ => bug!(),
396                 };
397                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
398             }
399             // underscore case for windows, here and below
400             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
401             | "_hypot"
402             | "hypot"
403             | "atan2"
404             => {
405                 // FIXME: Using host floats.
406                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
407                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
408                 let n = match link_name {
409                     "_hypot" | "hypot" => f1.hypot(f2),
410                     "atan2" => f1.atan2(f2),
411                     _ => bug!(),
412                 };
413                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
414             }
415             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
416             | "_ldexp"
417             | "ldexp"
418             | "scalbn"
419             => {
420                 let x = this.read_scalar(args[0])?.to_f64()?;
421                 let exp = this.read_scalar(args[1])?.to_i32()?;
422
423                 // Saturating cast to i16. Even those are outside the valid exponent range to
424                 // `scalbn` below will do its over/underflow handling.
425                 let exp = if exp > i16::max_value() as i32 {
426                     i16::max_value()
427                 } else if exp < i16::min_value() as i32 {
428                     i16::min_value()
429                 } else {
430                     exp.try_into().unwrap()
431                 };
432
433                 let res = x.scalbn(exp);
434                 this.write_scalar(Scalar::from_f64(res), dest)?;
435             }
436
437             _ => match this.tcx.sess.target.target.target_os.to_lowercase().as_str() {
438                 "linux" | "macos" => return posix::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest, ret),
439                 "windows" => return windows::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest, ret),
440                 target => throw_unsup_format!("The {} target platform is not supported", target),
441             }
442         };
443
444         Ok(true)
445     }
446
447     /// Evaluates the scalar at the specified path. Returns Some(val)
448     /// if the path could be resolved, and None otherwise
449     fn eval_path_scalar(
450         &mut self,
451         path: &[&str],
452     ) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
453         let this = self.eval_context_mut();
454         if let Ok(instance) = this.resolve_path(path) {
455             let cid = GlobalId { instance, promoted: None };
456             let const_val = this.const_eval_raw(cid)?;
457             let const_val = this.read_scalar(const_val.into())?;
458             return Ok(Some(const_val));
459         }
460         return Ok(None);
461     }
462 }