]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
Add getpid shim
[rust.git] / src / shims / foreign_items.rs
1 use std::{collections::hash_map::Entry, iter};
2
3 use log::trace;
4
5 use rustc_apfloat::Float;
6 use rustc_ast::expand::allocator::AllocatorKind;
7 use rustc_hir::{
8     def::DefKind,
9     def_id::{CrateNum, DefId, LOCAL_CRATE},
10 };
11 use rustc_middle::middle::{
12     codegen_fn_attrs::CodegenFnAttrFlags, dependency_format::Linkage,
13     exported_symbols::ExportedSymbol,
14 };
15 use rustc_middle::mir;
16 use rustc_middle::ty;
17 use rustc_session::config::CrateType;
18 use rustc_span::Symbol;
19 use rustc_target::{
20     abi::{Align, Size},
21     spec::abi::Abi,
22 };
23
24 use super::backtrace::EvalContextExt as _;
25 use crate::helpers::convert::Truncate;
26 use crate::*;
27
28 /// Returned by `emulate_foreign_item_by_name`.
29 pub enum EmulateByNameResult<'mir, 'tcx> {
30     /// The caller is expected to jump to the return block.
31     NeedsJumping,
32     /// Jumping has already been taken care of.
33     AlreadyJumped,
34     /// A MIR body has been found for the function
35     MirBody(&'mir mir::Body<'tcx>, ty::Instance<'tcx>),
36     /// The item is not supported.
37     NotSupported,
38 }
39
40 impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
41 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
42     /// Returns the minimum alignment for the target architecture for allocations of the given size.
43     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
44         let this = self.eval_context_ref();
45         // List taken from `library/std/src/sys/common/alloc.rs`.
46         // This list should be kept in sync with the one from libstd.
47         let min_align = match this.tcx.sess.target.arch.as_ref() {
48             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
49             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
50             arch => bug!("Unsupported target architecture: {}", arch),
51         };
52         // Windows always aligns, even small allocations.
53         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
54         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
55         if kind == MiriMemoryKind::WinHeap || size >= min_align {
56             return Align::from_bytes(min_align).unwrap();
57         }
58         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
59         fn prev_power_of_two(x: u64) -> u64 {
60             let next_pow2 = x.next_power_of_two();
61             if next_pow2 == x {
62                 // x *is* a power of two, just use that.
63                 x
64             } else {
65                 // x is between two powers, so next = 2*prev.
66                 next_pow2 / 2
67             }
68         }
69         Align::from_bytes(prev_power_of_two(size)).unwrap()
70     }
71
72     fn malloc(
73         &mut self,
74         size: u64,
75         zero_init: bool,
76         kind: MiriMemoryKind,
77     ) -> InterpResult<'tcx, Pointer<Option<Tag>>> {
78         let this = self.eval_context_mut();
79         if size == 0 {
80             Ok(Pointer::null())
81         } else {
82             let align = this.min_align(size, kind);
83             let ptr = this.allocate_ptr(Size::from_bytes(size), align, kind.into())?;
84             if zero_init {
85                 // We just allocated this, the access is definitely in-bounds.
86                 this.write_bytes_ptr(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
87             }
88             Ok(ptr.into())
89         }
90     }
91
92     fn free(&mut self, ptr: Pointer<Option<Tag>>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
93         let this = self.eval_context_mut();
94         if !this.ptr_is_null(ptr)? {
95             this.deallocate_ptr(ptr, None, kind.into())?;
96         }
97         Ok(())
98     }
99
100     fn realloc(
101         &mut self,
102         old_ptr: Pointer<Option<Tag>>,
103         new_size: u64,
104         kind: MiriMemoryKind,
105     ) -> InterpResult<'tcx, Pointer<Option<Tag>>> {
106         let this = self.eval_context_mut();
107         let new_align = this.min_align(new_size, kind);
108         if this.ptr_is_null(old_ptr)? {
109             if new_size == 0 {
110                 Ok(Pointer::null())
111             } else {
112                 let new_ptr =
113                     this.allocate_ptr(Size::from_bytes(new_size), new_align, kind.into())?;
114                 Ok(new_ptr.into())
115             }
116         } else {
117             if new_size == 0 {
118                 this.deallocate_ptr(old_ptr, None, kind.into())?;
119                 Ok(Pointer::null())
120             } else {
121                 let new_ptr = this.reallocate_ptr(
122                     old_ptr,
123                     None,
124                     Size::from_bytes(new_size),
125                     new_align,
126                     kind.into(),
127                 )?;
128                 Ok(new_ptr.into())
129             }
130         }
131     }
132
133     /// Lookup the body of a function that has `link_name` as the symbol name.
134     fn lookup_exported_symbol(
135         &mut self,
136         link_name: Symbol,
137     ) -> InterpResult<'tcx, Option<(&'mir mir::Body<'tcx>, ty::Instance<'tcx>)>> {
138         let this = self.eval_context_mut();
139         let tcx = this.tcx.tcx;
140
141         // If the result was cached, just return it.
142         // (Cannot use `or_insert` since the code below might have to throw an error.)
143         let entry = this.machine.exported_symbols_cache.entry(link_name);
144         let instance = *match entry {
145             Entry::Occupied(e) => e.into_mut(),
146             Entry::Vacant(e) => {
147                 // Find it if it was not cached.
148                 let mut instance_and_crate: Option<(ty::Instance<'_>, CrateNum)> = None;
149                 // `dependency_formats` includes all the transitive informations needed to link a crate,
150                 // which is what we need here since we need to dig out `exported_symbols` from all transitive
151                 // dependencies.
152                 let dependency_formats = tcx.dependency_formats(());
153                 let dependency_format = dependency_formats
154                     .iter()
155                     .find(|(crate_type, _)| *crate_type == CrateType::Executable)
156                     .expect("interpreting a non-executable crate");
157                 for cnum in iter::once(LOCAL_CRATE).chain(
158                     dependency_format.1.iter().enumerate().filter_map(|(num, &linkage)| {
159                         (linkage != Linkage::NotLinked).then_some(CrateNum::new(num + 1))
160                     }),
161                 ) {
162                     // We can ignore `_export_info` here: we are a Rust crate, and everything is exported
163                     // from a Rust crate.
164                     for &(symbol, _export_info) in tcx.exported_symbols(cnum) {
165                         if let ExportedSymbol::NonGeneric(def_id) = symbol {
166                             let attrs = tcx.codegen_fn_attrs(def_id);
167                             let symbol_name = if let Some(export_name) = attrs.export_name {
168                                 export_name
169                             } else if attrs.flags.contains(CodegenFnAttrFlags::NO_MANGLE) {
170                                 tcx.item_name(def_id)
171                             } else {
172                                 // Skip over items without an explicitly defined symbol name.
173                                 continue;
174                             };
175                             if symbol_name == link_name {
176                                 if let Some((original_instance, original_cnum)) = instance_and_crate
177                                 {
178                                     // Make sure we are consistent wrt what is 'first' and 'second'.
179                                     let original_span =
180                                         tcx.def_span(original_instance.def_id()).data();
181                                     let span = tcx.def_span(def_id).data();
182                                     if original_span < span {
183                                         throw_machine_stop!(
184                                             TerminationInfo::MultipleSymbolDefinitions {
185                                                 link_name,
186                                                 first: original_span,
187                                                 first_crate: tcx.crate_name(original_cnum),
188                                                 second: span,
189                                                 second_crate: tcx.crate_name(cnum),
190                                             }
191                                         );
192                                     } else {
193                                         throw_machine_stop!(
194                                             TerminationInfo::MultipleSymbolDefinitions {
195                                                 link_name,
196                                                 first: span,
197                                                 first_crate: tcx.crate_name(cnum),
198                                                 second: original_span,
199                                                 second_crate: tcx.crate_name(original_cnum),
200                                             }
201                                         );
202                                     }
203                                 }
204                                 if !matches!(tcx.def_kind(def_id), DefKind::Fn | DefKind::AssocFn) {
205                                     throw_ub_format!(
206                                         "attempt to call an exported symbol that is not defined as a function"
207                                     );
208                                 }
209                                 instance_and_crate = Some((ty::Instance::mono(tcx, def_id), cnum));
210                             }
211                         }
212                     }
213                 }
214
215                 e.insert(instance_and_crate.map(|ic| ic.0))
216             }
217         };
218         match instance {
219             None => Ok(None), // no symbol with this name
220             Some(instance) => Ok(Some((this.load_mir(instance.def, None)?, instance))),
221         }
222     }
223
224     /// Emulates calling a foreign item, failing if the item is not supported.
225     /// This function will handle `goto_block` if needed.
226     /// Returns Ok(None) if the foreign item was completely handled
227     /// by this function.
228     /// Returns Ok(Some(body)) if processing the foreign item
229     /// is delegated to another function.
230     fn emulate_foreign_item(
231         &mut self,
232         def_id: DefId,
233         abi: Abi,
234         args: &[OpTy<'tcx, Tag>],
235         dest: &PlaceTy<'tcx, Tag>,
236         ret: Option<mir::BasicBlock>,
237         unwind: StackPopUnwind,
238     ) -> InterpResult<'tcx, Option<(&'mir mir::Body<'tcx>, ty::Instance<'tcx>)>> {
239         let this = self.eval_context_mut();
240         let link_name = this.item_link_name(def_id);
241         let tcx = this.tcx.tcx;
242
243         // First: functions that diverge.
244         let ret = match ret {
245             None =>
246                 match &*link_name.as_str() {
247                     "miri_start_panic" => {
248                         // `check_shim` happens inside `handle_miri_start_panic`.
249                         this.handle_miri_start_panic(abi, link_name, args, unwind)?;
250                         return Ok(None);
251                     }
252                     // This matches calls to the foreign item `panic_impl`.
253                     // The implementation is provided by the function with the `#[panic_handler]` attribute.
254                     "panic_impl" => {
255                         // We don't use `check_shim` here because we are just forwarding to the lang
256                         // item. Argument count checking will be performed when the returned `Body` is
257                         // called.
258                         this.check_abi_and_shim_symbol_clash(abi, Abi::Rust, link_name)?;
259                         let panic_impl_id = tcx.lang_items().panic_impl().unwrap();
260                         let panic_impl_instance = ty::Instance::mono(tcx, panic_impl_id);
261                         return Ok(Some((
262                             &*this.load_mir(panic_impl_instance.def, None)?,
263                             panic_impl_instance,
264                         )));
265                     }
266                     #[rustfmt::skip]
267                     | "exit"
268                     | "ExitProcess"
269                     => {
270                         let exp_abi = if link_name.as_str() == "exit" {
271                             Abi::C { unwind: false }
272                         } else {
273                             Abi::System { unwind: false }
274                         };
275                         let [code] = this.check_shim(abi, exp_abi, link_name, args)?;
276                         // it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
277                         let code = this.read_scalar(code)?.to_i32()?;
278                         throw_machine_stop!(TerminationInfo::Exit(code.into()));
279                     }
280                     "abort" => {
281                         let [] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
282                         throw_machine_stop!(TerminationInfo::Abort(
283                             "the program aborted execution".to_owned()
284                         ))
285                     }
286                     _ => {
287                         if let Some(body) = this.lookup_exported_symbol(link_name)? {
288                             return Ok(Some(body));
289                         }
290                         this.handle_unsupported(format!(
291                             "can't call (diverging) foreign function: {}",
292                             link_name
293                         ))?;
294                         return Ok(None);
295                     }
296                 },
297             Some(p) => p,
298         };
299
300         // Second: functions that return.
301         match this.emulate_foreign_item_by_name(link_name, abi, args, dest, ret)? {
302             EmulateByNameResult::NeedsJumping => {
303                 trace!("{:?}", this.dump_place(**dest));
304                 this.go_to_block(ret);
305             }
306             EmulateByNameResult::AlreadyJumped => (),
307             EmulateByNameResult::MirBody(mir, instance) => return Ok(Some((mir, instance))),
308             EmulateByNameResult::NotSupported => {
309                 if let Some(body) = this.lookup_exported_symbol(link_name)? {
310                     return Ok(Some(body));
311                 }
312
313                 this.handle_unsupported(format!("can't call foreign function: {}", link_name))?;
314                 return Ok(None);
315             }
316         }
317
318         Ok(None)
319     }
320
321     /// Emulates calling the internal __rust_* allocator functions
322     fn emulate_allocator(
323         &mut self,
324         symbol: Symbol,
325         default: impl FnOnce(&mut MiriEvalContext<'mir, 'tcx>) -> InterpResult<'tcx>,
326     ) -> InterpResult<'tcx, EmulateByNameResult<'mir, 'tcx>> {
327         let this = self.eval_context_mut();
328
329         let allocator_kind = if let Some(allocator_kind) = this.tcx.allocator_kind(()) {
330             allocator_kind
331         } else {
332             // in real code, this symbol does not exist without an allocator
333             return Ok(EmulateByNameResult::NotSupported);
334         };
335
336         match allocator_kind {
337             AllocatorKind::Global => {
338                 let (body, instance) = this
339                     .lookup_exported_symbol(symbol)?
340                     .expect("symbol should be present if there is a global allocator");
341
342                 Ok(EmulateByNameResult::MirBody(body, instance))
343             }
344             AllocatorKind::Default => {
345                 default(this)?;
346                 Ok(EmulateByNameResult::NeedsJumping)
347             }
348         }
349     }
350
351     /// Emulates calling a foreign item using its name.
352     fn emulate_foreign_item_by_name(
353         &mut self,
354         link_name: Symbol,
355         abi: Abi,
356         args: &[OpTy<'tcx, Tag>],
357         dest: &PlaceTy<'tcx, Tag>,
358         ret: mir::BasicBlock,
359     ) -> InterpResult<'tcx, EmulateByNameResult<'mir, 'tcx>> {
360         let this = self.eval_context_mut();
361
362         // Here we dispatch all the shims for foreign functions. If you have a platform specific
363         // shim, add it to the corresponding submodule.
364         match &*link_name.as_str() {
365             // Miri-specific extern functions
366             "miri_static_root" => {
367                 let [ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?;
368                 let ptr = this.read_pointer(ptr)?;
369                 let (alloc_id, offset, _) = this.ptr_get_alloc_id(ptr)?;
370                 if offset != Size::ZERO {
371                     throw_unsup_format!("pointer passed to miri_static_root must point to beginning of an allocated block");
372                 }
373                 this.machine.static_roots.push(alloc_id);
374             }
375
376             // Obtains the size of a Miri backtrace. See the README for details.
377             "miri_backtrace_size" => {
378                 this.handle_miri_backtrace_size(abi, link_name, args, dest)?;
379             }
380
381             // Obtains a Miri backtrace. See the README for details.
382             "miri_get_backtrace" => {
383                 // `check_shim` happens inside `handle_miri_get_backtrace`.
384                 this.handle_miri_get_backtrace(abi, link_name, args, dest)?;
385             }
386
387             // Resolves a Miri backtrace frame. See the README for details.
388             "miri_resolve_frame" => {
389                 // `check_shim` happens inside `handle_miri_resolve_frame`.
390                 this.handle_miri_resolve_frame(abi, link_name, args, dest)?;
391             }
392
393             // Writes the function and file names of a Miri backtrace frame into a user provided buffer. See the README for details.
394             "miri_resolve_frame_names" => {
395                 this.handle_miri_resolve_frame_names(abi, link_name, args)?;
396             }
397
398             // Standard C allocation
399             "malloc" => {
400                 let [size] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
401                 let size = this.read_scalar(size)?.to_machine_usize(this)?;
402                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C)?;
403                 this.write_pointer(res, dest)?;
404             }
405             "calloc" => {
406                 let [items, len] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
407                 let items = this.read_scalar(items)?.to_machine_usize(this)?;
408                 let len = this.read_scalar(len)?.to_machine_usize(this)?;
409                 let size =
410                     items.checked_mul(len).ok_or_else(|| err_ub_format!("overflow during calloc size computation"))?;
411                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C)?;
412                 this.write_pointer(res, dest)?;
413             }
414             "free" => {
415                 let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
416                 let ptr = this.read_pointer(ptr)?;
417                 this.free(ptr, MiriMemoryKind::C)?;
418             }
419             "realloc" => {
420                 let [old_ptr, new_size] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
421                 let old_ptr = this.read_pointer(old_ptr)?;
422                 let new_size = this.read_scalar(new_size)?.to_machine_usize(this)?;
423                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
424                 this.write_pointer(res, dest)?;
425             }
426
427             // Rust allocation
428             "__rust_alloc" => {
429                 let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
430                 let size = this.read_scalar(size)?.to_machine_usize(this)?;
431                 let align = this.read_scalar(align)?.to_machine_usize(this)?;
432
433                 return this.emulate_allocator(Symbol::intern("__rg_alloc"), |this| {
434                     Self::check_alloc_request(size, align)?;
435
436                     let ptr = this.allocate_ptr(
437                         Size::from_bytes(size),
438                         Align::from_bytes(align).unwrap(),
439                         MiriMemoryKind::Rust.into(),
440                     )?;
441
442                     this.write_pointer(ptr, dest)
443                 });
444             }
445             "__rust_alloc_zeroed" => {
446                 let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
447                 let size = this.read_scalar(size)?.to_machine_usize(this)?;
448                 let align = this.read_scalar(align)?.to_machine_usize(this)?;
449
450                 return this.emulate_allocator(Symbol::intern("__rg_alloc_zeroed"), |this| {
451                     Self::check_alloc_request(size, align)?;
452
453                     let ptr = this.allocate_ptr(
454                         Size::from_bytes(size),
455                         Align::from_bytes(align).unwrap(),
456                         MiriMemoryKind::Rust.into(),
457                     )?;
458
459                     // We just allocated this, the access is definitely in-bounds.
460                     this.write_bytes_ptr(ptr.into(), iter::repeat(0u8).take(usize::try_from(size).unwrap())).unwrap();
461                     this.write_pointer(ptr, dest)
462                 });
463             }
464             "__rust_dealloc" => {
465                 let [ptr, old_size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
466                 let ptr = this.read_pointer(ptr)?;
467                 let old_size = this.read_scalar(old_size)?.to_machine_usize(this)?;
468                 let align = this.read_scalar(align)?.to_machine_usize(this)?;
469
470                 return this.emulate_allocator(Symbol::intern("__rg_dealloc"), |this| {
471                     // No need to check old_size/align; we anyway check that they match the allocation.
472                     this.deallocate_ptr(
473                         ptr,
474                         Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
475                         MiriMemoryKind::Rust.into(),
476                     )
477                 });
478             }
479             "__rust_realloc" => {
480                 let [ptr, old_size, align, new_size] = this.check_shim(abi, Abi::Rust, link_name, args)?;
481                 let ptr = this.read_pointer(ptr)?;
482                 let old_size = this.read_scalar(old_size)?.to_machine_usize(this)?;
483                 let align = this.read_scalar(align)?.to_machine_usize(this)?;
484                 let new_size = this.read_scalar(new_size)?.to_machine_usize(this)?;
485                 // No need to check old_size; we anyway check that they match the allocation.
486
487                 return this.emulate_allocator(Symbol::intern("__rg_realloc"), |this| {
488                     Self::check_alloc_request(new_size, align)?;
489
490                     let align = Align::from_bytes(align).unwrap();
491                     let new_ptr = this.reallocate_ptr(
492                         ptr,
493                         Some((Size::from_bytes(old_size), align)),
494                         Size::from_bytes(new_size),
495                         align,
496                         MiriMemoryKind::Rust.into(),
497                     )?;
498                     this.write_pointer(new_ptr, dest)
499                 });
500             }
501
502             // C memory handling functions
503             "memcmp" => {
504                 let [left, right, n] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
505                 let left = this.read_pointer(left)?;
506                 let right = this.read_pointer(right)?;
507                 let n = Size::from_bytes(this.read_scalar(n)?.to_machine_usize(this)?);
508
509                 let result = {
510                     let left_bytes = this.read_bytes_ptr(left, n)?;
511                     let right_bytes = this.read_bytes_ptr(right, n)?;
512
513                     use std::cmp::Ordering::*;
514                     match left_bytes.cmp(right_bytes) {
515                         Less => -1i32,
516                         Equal => 0,
517                         Greater => 1,
518                     }
519                 };
520
521                 this.write_scalar(Scalar::from_i32(result), dest)?;
522             }
523             "memrchr" => {
524                 let [ptr, val, num] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
525                 let ptr = this.read_pointer(ptr)?;
526                 let val = this.read_scalar(val)?.to_i32()? as u8;
527                 let num = this.read_scalar(num)?.to_machine_usize(this)?;
528                 if let Some(idx) = this
529                     .read_bytes_ptr(ptr, Size::from_bytes(num))?
530                     .iter()
531                     .rev()
532                     .position(|&c| c == val)
533                 {
534                     let new_ptr = ptr.offset(Size::from_bytes(num - idx as u64 - 1), this)?;
535                     this.write_pointer(new_ptr, dest)?;
536                 } else {
537                     this.write_null(dest)?;
538                 }
539             }
540             "memchr" => {
541                 let [ptr, val, num] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
542                 let ptr = this.read_pointer(ptr)?;
543                 let val = this.read_scalar(val)?.to_i32()? as u8;
544                 let num = this.read_scalar(num)?.to_machine_usize(this)?;
545                 let idx = this
546                     .read_bytes_ptr(ptr, Size::from_bytes(num))?
547                     .iter()
548                     .position(|&c| c == val);
549                 if let Some(idx) = idx {
550                     let new_ptr = ptr.offset(Size::from_bytes(idx as u64), this)?;
551                     this.write_pointer(new_ptr, dest)?;
552                 } else {
553                     this.write_null(dest)?;
554                 }
555             }
556             "strlen" => {
557                 let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
558                 let ptr = this.read_pointer(ptr)?;
559                 let n = this.read_c_str(ptr)?.len();
560                 this.write_scalar(Scalar::from_machine_usize(u64::try_from(n).unwrap(), this), dest)?;
561             }
562
563             // math functions
564             #[rustfmt::skip]
565             | "cbrtf"
566             | "coshf"
567             | "sinhf"
568             | "tanf"
569             | "acosf"
570             | "asinf"
571             | "atanf"
572             => {
573                 let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
574                 // FIXME: Using host floats.
575                 let f = f32::from_bits(this.read_scalar(f)?.to_u32()?);
576                 let f = match &*link_name.as_str() {
577                     "cbrtf" => f.cbrt(),
578                     "coshf" => f.cosh(),
579                     "sinhf" => f.sinh(),
580                     "tanf" => f.tan(),
581                     "acosf" => f.acos(),
582                     "asinf" => f.asin(),
583                     "atanf" => f.atan(),
584                     _ => bug!(),
585                 };
586                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
587             }
588             #[rustfmt::skip]
589             | "_hypotf"
590             | "hypotf"
591             | "atan2f"
592             => {
593                 let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
594                 // underscore case for windows, here and below
595                 // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
596                 // FIXME: Using host floats.
597                 let f1 = f32::from_bits(this.read_scalar(f1)?.to_u32()?);
598                 let f2 = f32::from_bits(this.read_scalar(f2)?.to_u32()?);
599                 let n = match &*link_name.as_str() {
600                     "_hypotf" | "hypotf" => f1.hypot(f2),
601                     "atan2f" => f1.atan2(f2),
602                     _ => bug!(),
603                 };
604                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
605             }
606             #[rustfmt::skip]
607             | "cbrt"
608             | "cosh"
609             | "sinh"
610             | "tan"
611             | "acos"
612             | "asin"
613             | "atan"
614             => {
615                 let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
616                 // FIXME: Using host floats.
617                 let f = f64::from_bits(this.read_scalar(f)?.to_u64()?);
618                 let f = match &*link_name.as_str() {
619                     "cbrt" => f.cbrt(),
620                     "cosh" => f.cosh(),
621                     "sinh" => f.sinh(),
622                     "tan" => f.tan(),
623                     "acos" => f.acos(),
624                     "asin" => f.asin(),
625                     "atan" => f.atan(),
626                     _ => bug!(),
627                 };
628                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
629             }
630             #[rustfmt::skip]
631             | "_hypot"
632             | "hypot"
633             | "atan2"
634             => {
635                 let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
636                 // FIXME: Using host floats.
637                 let f1 = f64::from_bits(this.read_scalar(f1)?.to_u64()?);
638                 let f2 = f64::from_bits(this.read_scalar(f2)?.to_u64()?);
639                 let n = match &*link_name.as_str() {
640                     "_hypot" | "hypot" => f1.hypot(f2),
641                     "atan2" => f1.atan2(f2),
642                     _ => bug!(),
643                 };
644                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
645             }
646             #[rustfmt::skip]
647             | "_ldexp"
648             | "ldexp"
649             | "scalbn"
650             => {
651                 let [x, exp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
652                 // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
653                 let x = this.read_scalar(x)?.to_f64()?;
654                 let exp = this.read_scalar(exp)?.to_i32()?;
655
656                 // Saturating cast to i16. Even those are outside the valid exponent range to
657                 // `scalbn` below will do its over/underflow handling.
658                 let exp = if exp > i32::from(i16::MAX) {
659                     i16::MAX
660                 } else if exp < i32::from(i16::MIN) {
661                     i16::MIN
662                 } else {
663                     exp.try_into().unwrap()
664                 };
665
666                 let res = x.scalbn(exp);
667                 this.write_scalar(Scalar::from_f64(res), dest)?;
668             }
669
670             // Architecture-specific shims
671             "llvm.x86.addcarry.64" if this.tcx.sess.target.arch == "x86_64" => {
672                 // Computes u8+u64+u64, returning tuple (u8,u64) comprising the output carry and truncated sum.
673                 let [c_in, a, b] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
674                 let c_in = this.read_scalar(c_in)?.to_u8()?;
675                 let a = this.read_scalar(a)?.to_u64()?;
676                 let b = this.read_scalar(b)?.to_u64()?;
677
678                 let wide_sum = u128::from(c_in) + u128::from(a) + u128::from(b);
679                 let (c_out, sum) = ((wide_sum >> 64).truncate::<u8>(), wide_sum.truncate::<u64>());
680
681                 let c_out_field = this.place_field(dest, 0)?;
682                 this.write_scalar(Scalar::from_u8(c_out), &c_out_field)?;
683                 let sum_field = this.place_field(dest, 1)?;
684                 this.write_scalar(Scalar::from_u64(sum), &sum_field)?;
685             }
686             "llvm.x86.sse2.pause" if this.tcx.sess.target.arch == "x86" || this.tcx.sess.target.arch == "x86_64" => {
687                 let [] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
688                 this.yield_active_thread();
689             }
690             "llvm.aarch64.isb" if this.tcx.sess.target.arch == "aarch64" => {
691                 let [arg] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
692                 let arg = this.read_scalar(arg)?.to_i32()?;
693                 match arg {
694                     15 => { // SY ("full system scope")
695                         this.yield_active_thread();
696                     }
697                     _ => {
698                         throw_unsup_format!("unsupported llvm.aarch64.isb argument {}", arg);
699                     }
700                 }
701             }
702
703             // Platform-specific shims
704             _ => match this.tcx.sess.target.os.as_ref() {
705                 "linux" | "macos" => return shims::unix::foreign_items::EvalContextExt::emulate_foreign_item_by_name(this, link_name, abi, args, dest, ret),
706                 "windows" => return shims::windows::foreign_items::EvalContextExt::emulate_foreign_item_by_name(this, link_name, abi, args, dest, ret),
707                 target => throw_unsup_format!("the target `{}` is not supported", target),
708             }
709         };
710
711         // We only fall through to here if we did *not* hit the `_` arm above,
712         // i.e., if we actually emulated the function.
713         Ok(EmulateByNameResult::NeedsJumping)
714     }
715
716     /// Check some basic requirements for this allocation request:
717     /// non-zero size, power-of-two alignment.
718     fn check_alloc_request(size: u64, align: u64) -> InterpResult<'tcx> {
719         if size == 0 {
720             throw_ub_format!("creating allocation with size 0");
721         }
722         if !align.is_power_of_two() {
723             throw_ub_format!("creating allocation with non-power-of-two alignment {}", align);
724         }
725         Ok(())
726     }
727 }