]> git.lizzy.rs Git - rust.git/blob - src/shims/foreign_items.rs
0183757cff0ae269e002c8c200bb36c751d54f98
[rust.git] / src / shims / foreign_items.rs
1 mod windows;
2 mod posix;
3
4 use std::{convert::TryInto, iter};
5
6 use rustc_hir::def_id::DefId;
7 use rustc::mir;
8 use rustc::ty;
9 use rustc::ty::layout::{Align, Size};
10 use rustc_apfloat::Float;
11 use rustc_span::symbol::sym;
12 use rustc_ast::attr;
13
14 use crate::*;
15
16 impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
17 pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
18     /// Returns the minimum alignment for the target architecture for allocations of the given size.
19     fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
20         let this = self.eval_context_ref();
21         // List taken from `libstd/sys_common/alloc.rs`.
22         let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
23             "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
24             "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
25             arch => bug!("Unsupported target architecture: {}", arch),
26         };
27         // Windows always aligns, even small allocations.
28         // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
29         // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
30         if kind == MiriMemoryKind::WinHeap || size >= min_align {
31             return Align::from_bytes(min_align).unwrap();
32         }
33         // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
34         fn prev_power_of_two(x: u64) -> u64 {
35             let next_pow2 = x.next_power_of_two();
36             if next_pow2 == x {
37                 // x *is* a power of two, just use that.
38                 x
39             } else {
40                 // x is between two powers, so next = 2*prev.
41                 next_pow2 / 2
42             }
43         }
44         Align::from_bytes(prev_power_of_two(size)).unwrap()
45     }
46
47     fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
48         let this = self.eval_context_mut();
49         if size == 0 {
50             Scalar::from_int(0, this.pointer_size())
51         } else {
52             let align = this.min_align(size, kind);
53             let ptr = this.memory.allocate(Size::from_bytes(size), align, kind.into());
54             if zero_init {
55                 // We just allocated this, the access is definitely in-bounds.
56                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
57             }
58             Scalar::Ptr(ptr)
59         }
60     }
61
62     fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
63         let this = self.eval_context_mut();
64         if !this.is_null(ptr)? {
65             let ptr = this.force_ptr(ptr)?;
66             this.memory.deallocate(ptr, None, kind.into())?;
67         }
68         Ok(())
69     }
70
71     fn realloc(
72         &mut self,
73         old_ptr: Scalar<Tag>,
74         new_size: u64,
75         kind: MiriMemoryKind,
76     ) -> InterpResult<'tcx, Scalar<Tag>> {
77         let this = self.eval_context_mut();
78         let new_align = this.min_align(new_size, kind);
79         if this.is_null(old_ptr)? {
80             if new_size == 0 {
81                 Ok(Scalar::from_int(0, this.pointer_size()))
82             } else {
83                 let new_ptr =
84                     this.memory.allocate(Size::from_bytes(new_size), new_align, kind.into());
85                 Ok(Scalar::Ptr(new_ptr))
86             }
87         } else {
88             let old_ptr = this.force_ptr(old_ptr)?;
89             if new_size == 0 {
90                 this.memory.deallocate(old_ptr, None, kind.into())?;
91                 Ok(Scalar::from_int(0, this.pointer_size()))
92             } else {
93                 let new_ptr = this.memory.reallocate(
94                     old_ptr,
95                     None,
96                     Size::from_bytes(new_size),
97                     new_align,
98                     kind.into(),
99                 )?;
100                 Ok(Scalar::Ptr(new_ptr))
101             }
102         }
103     }
104
105     /// Emulates calling a foreign item, failing if the item is not supported.
106     /// This function will handle `goto_block` if needed.
107     /// Returns Ok(None) if the foreign item was completely handled
108     /// by this function.
109     /// Returns Ok(Some(body)) if processing the foreign item
110     /// is delegated to another function.
111     #[rustfmt::skip]
112     fn emulate_foreign_item(
113         &mut self,
114         def_id: DefId,
115         args: &[OpTy<'tcx, Tag>],
116         ret: Option<(PlaceTy<'tcx, Tag>, mir::BasicBlock)>,
117         _unwind: Option<mir::BasicBlock>,
118     ) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
119         let this = self.eval_context_mut();
120         let attrs = this.tcx.get_attrs(def_id);
121         let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
122             Some(name) => name.as_str(),
123             None => this.tcx.item_name(def_id).as_str(),
124         };
125         // Strip linker suffixes (seen on 32-bit macOS).
126         let link_name = link_name.trim_end_matches("$UNIX2003");
127         let tcx = &{ this.tcx.tcx };
128
129         // First: functions that diverge.
130         let (dest, ret) = match ret {
131             None => match link_name {
132                 // This matches calls to the foreign item `panic_impl`.
133                 // The implementation is provided by the function with the `#[panic_handler]` attribute.
134                 "panic_impl" => {
135                     let panic_impl_id = this.tcx.lang_items().panic_impl().unwrap();
136                     let panic_impl_instance = ty::Instance::mono(*this.tcx, panic_impl_id);
137                     return Ok(Some(&*this.load_mir(panic_impl_instance.def, None)?));
138                 }
139                 | "exit"
140                 | "ExitProcess"
141                 => {
142                     // it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
143                     let code = this.read_scalar(args[0])?.to_i32()?;
144                     throw_machine_stop!(TerminationInfo::Exit(code.into()));
145                 }
146                 _ => throw_unsup_format!("can't call (diverging) foreign function: {}", link_name),
147             },
148             Some(p) => p,
149         };
150
151         // Second: some functions that we forward to MIR implementations.
152         match link_name {
153             // This matches calls to the foreign item `__rust_start_panic`, that is,
154             // calls to `extern "Rust" { fn __rust_start_panic(...) }`
155             // (and `__rust_panic_cleanup`, respectively).
156             // We forward this to the underlying *implementation* in the panic runtime crate.
157             // Normally, this will be either `libpanic_unwind` or `libpanic_abort`, but it could
158             // also be a custom user-provided implementation via `#![feature(panic_runtime)]`
159             "__rust_start_panic" | "__rust_panic_cleanup"=> {
160                 // FIXME we might want to cache this... but it's not really performance-critical.
161                 let panic_runtime = tcx
162                     .crates()
163                     .iter()
164                     .find(|cnum| tcx.is_panic_runtime(**cnum))
165                     .expect("No panic runtime found!");
166                 let panic_runtime = tcx.crate_name(*panic_runtime);
167                 let start_panic_instance =
168                     this.resolve_path(&[&*panic_runtime.as_str(), link_name])?;
169                 return Ok(Some(&*this.load_mir(start_panic_instance.def, None)?));
170             }
171             _ => {}
172         }
173
174         // Third: functions that return.
175         if this.emulate_foreign_item_by_name(link_name, args, dest, ret)? {
176             this.dump_place(*dest);
177             this.go_to_block(ret);
178         }
179
180         Ok(None)
181     }
182
183     /// Emulates calling a foreign item using its name, failing if the item is not supported.
184     /// Returns `true` if the caller is expected to jump to the return block, and `false` if
185     /// jumping has already been taken care of.
186     fn emulate_foreign_item_by_name(
187         &mut self,
188         link_name: &str,
189         args: &[OpTy<'tcx, Tag>],
190         dest: PlaceTy<'tcx, Tag>,
191         ret: mir::BasicBlock,
192     ) -> InterpResult<'tcx, bool> {
193         let this = self.eval_context_mut();
194
195         // Here we dispatch all the shims for foreign functions. If you have a platform specific
196         // shim, add it to the corresponding submodule.
197         match link_name {
198             "malloc" => {
199                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
200                 let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
201                 this.write_scalar(res, dest)?;
202             }
203             "calloc" => {
204                 let items = this.read_scalar(args[0])?.to_machine_usize(this)?;
205                 let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
206                 let size =
207                     items.checked_mul(len).ok_or_else(|| err_ub_format!("overflow during calloc size computation"))?;
208                 let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
209                 this.write_scalar(res, dest)?;
210             }
211             "free" => {
212                 let ptr = this.read_scalar(args[0])?.not_undef()?;
213                 this.free(ptr, MiriMemoryKind::C)?;
214             }
215             "realloc" => {
216                 let old_ptr = this.read_scalar(args[0])?.not_undef()?;
217                 let new_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
218                 let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
219                 this.write_scalar(res, dest)?;
220             }
221
222             "__rust_alloc" => {
223                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
224                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
225                 if size == 0 {
226                     throw_unsup!(HeapAllocZeroBytes);
227                 }
228                 if !align.is_power_of_two() {
229                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
230                 }
231                 let ptr = this.memory.allocate(
232                     Size::from_bytes(size),
233                     Align::from_bytes(align).unwrap(),
234                     MiriMemoryKind::Rust.into(),
235                 );
236                 this.write_scalar(ptr, dest)?;
237             }
238             "__rust_alloc_zeroed" => {
239                 let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
240                 let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
241                 if size == 0 {
242                     throw_unsup!(HeapAllocZeroBytes);
243                 }
244                 if !align.is_power_of_two() {
245                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
246                 }
247                 let ptr = this.memory.allocate(
248                     Size::from_bytes(size),
249                     Align::from_bytes(align).unwrap(),
250                     MiriMemoryKind::Rust.into(),
251                 );
252                 // We just allocated this, the access is definitely in-bounds.
253                 this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
254                 this.write_scalar(ptr, dest)?;
255             }
256             "__rust_dealloc" => {
257                 let ptr = this.read_scalar(args[0])?.not_undef()?;
258                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
259                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
260                 if old_size == 0 {
261                     throw_unsup!(HeapAllocZeroBytes);
262                 }
263                 if !align.is_power_of_two() {
264                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
265                 }
266                 let ptr = this.force_ptr(ptr)?;
267                 this.memory.deallocate(
268                     ptr,
269                     Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
270                     MiriMemoryKind::Rust.into(),
271                 )?;
272             }
273             "__rust_realloc" => {
274                 let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
275                 let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
276                 let new_size = this.read_scalar(args[3])?.to_machine_usize(this)?;
277                 if old_size == 0 || new_size == 0 {
278                     throw_unsup!(HeapAllocZeroBytes);
279                 }
280                 if !align.is_power_of_two() {
281                     throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
282                 }
283                 let ptr = this.force_ptr(this.read_scalar(args[0])?.not_undef()?)?;
284                 let align = Align::from_bytes(align).unwrap();
285                 let new_ptr = this.memory.reallocate(
286                     ptr,
287                     Some((Size::from_bytes(old_size), align)),
288                     Size::from_bytes(new_size),
289                     align,
290                     MiriMemoryKind::Rust.into(),
291                 )?;
292                 this.write_scalar(new_ptr, dest)?;
293             }
294
295             "memcmp" => {
296                 let left = this.read_scalar(args[0])?.not_undef()?;
297                 let right = this.read_scalar(args[1])?.not_undef()?;
298                 let n = Size::from_bytes(this.read_scalar(args[2])?.to_machine_usize(this)?);
299
300                 let result = {
301                     let left_bytes = this.memory.read_bytes(left, n)?;
302                     let right_bytes = this.memory.read_bytes(right, n)?;
303
304                     use std::cmp::Ordering::*;
305                     match left_bytes.cmp(right_bytes) {
306                         Less => -1i32,
307                         Equal => 0,
308                         Greater => 1,
309                     }
310                 };
311
312                 this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
313             }
314
315             "memrchr" => {
316                 let ptr = this.read_scalar(args[0])?.not_undef()?;
317                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
318                 let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
319                 if let Some(idx) = this
320                     .memory
321                     .read_bytes(ptr, Size::from_bytes(num))?
322                     .iter()
323                     .rev()
324                     .position(|&c| c == val)
325                 {
326                     let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
327                     this.write_scalar(new_ptr, dest)?;
328                 } else {
329                     this.write_null(dest)?;
330                 }
331             }
332
333             "memchr" => {
334                 let ptr = this.read_scalar(args[0])?.not_undef()?;
335                 let val = this.read_scalar(args[1])?.to_i32()? as u8;
336                 let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
337                 let idx = this
338                     .memory
339                     .read_bytes(ptr, Size::from_bytes(num))?
340                     .iter()
341                     .position(|&c| c == val);
342                 if let Some(idx) = idx {
343                     let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
344                     this.write_scalar(new_ptr, dest)?;
345                 } else {
346                     this.write_null(dest)?;
347                 }
348             }
349
350             "strlen" => {
351                 let ptr = this.read_scalar(args[0])?.not_undef()?;
352                 let n = this.memory.read_c_str(ptr)?.len();
353                 this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
354             }
355
356             // math functions
357             | "cbrtf"
358             | "coshf"
359             | "sinhf"
360             | "tanf"
361             | "acosf"
362             | "asinf"
363             | "atanf"
364             => {
365                 // FIXME: Using host floats.
366                 let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
367                 let f = match link_name {
368                     "cbrtf" => f.cbrt(),
369                     "coshf" => f.cosh(),
370                     "sinhf" => f.sinh(),
371                     "tanf" => f.tan(),
372                     "acosf" => f.acos(),
373                     "asinf" => f.asin(),
374                     "atanf" => f.atan(),
375                     _ => bug!(),
376                 };
377                 this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
378             }
379             // underscore case for windows
380             | "_hypotf"
381             | "hypotf"
382             | "atan2f"
383             => {
384                 // FIXME: Using host floats.
385                 let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
386                 let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
387                 let n = match link_name {
388                     "_hypotf" | "hypotf" => f1.hypot(f2),
389                     "atan2f" => f1.atan2(f2),
390                     _ => bug!(),
391                 };
392                 this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
393             }
394
395             | "cbrt"
396             | "cosh"
397             | "sinh"
398             | "tan"
399             | "acos"
400             | "asin"
401             | "atan"
402             => {
403                 // FIXME: Using host floats.
404                 let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
405                 let f = match link_name {
406                     "cbrt" => f.cbrt(),
407                     "cosh" => f.cosh(),
408                     "sinh" => f.sinh(),
409                     "tan" => f.tan(),
410                     "acos" => f.acos(),
411                     "asin" => f.asin(),
412                     "atan" => f.atan(),
413                     _ => bug!(),
414                 };
415                 this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
416             }
417             // underscore case for windows, here and below
418             // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
419             | "_hypot"
420             | "hypot"
421             | "atan2"
422             => {
423                 // FIXME: Using host floats.
424                 let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
425                 let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
426                 let n = match link_name {
427                     "_hypot" | "hypot" => f1.hypot(f2),
428                     "atan2" => f1.atan2(f2),
429                     _ => bug!(),
430                 };
431                 this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
432             }
433             // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
434             | "_ldexp"
435             | "ldexp"
436             | "scalbn"
437             => {
438                 let x = this.read_scalar(args[0])?.to_f64()?;
439                 let exp = this.read_scalar(args[1])?.to_i32()?;
440
441                 // Saturating cast to i16. Even those are outside the valid exponent range to
442                 // `scalbn` below will do its over/underflow handling.
443                 let exp = if exp > i16::MAX as i32 {
444                     i16::MAX
445                 } else if exp < i16::MIN as i32 {
446                     i16::MIN
447                 } else {
448                     exp.try_into().unwrap()
449                 };
450
451                 let res = x.scalbn(exp);
452                 this.write_scalar(Scalar::from_f64(res), dest)?;
453             }
454
455             _ => match this.tcx.sess.target.target.target_os.as_str() {
456                 "linux" | "macos" => return posix::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest, ret),
457                 "windows" => return windows::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest, ret),
458                 target => throw_unsup_format!("The {} target platform is not supported", target),
459             }
460         };
461
462         Ok(true)
463     }
464
465     /// Evaluates the scalar at the specified path. Returns Some(val)
466     /// if the path could be resolved, and None otherwise
467     fn eval_path_scalar(
468         &mut self,
469         path: &[&str],
470     ) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
471         let this = self.eval_context_mut();
472         if let Ok(instance) = this.resolve_path(path) {
473             let cid = GlobalId { instance, promoted: None };
474             let const_val = this.const_eval_raw(cid)?;
475             let const_val = this.read_scalar(const_val.into())?;
476             return Ok(Some(const_val));
477         }
478         return Ok(None);
479     }
480 }