]> git.lizzy.rs Git - dragonblocks_alpha.git/blob - src/server/biomes.c
Fix find vulcano algorithm
[dragonblocks_alpha.git] / src / server / biomes.c
1 #include <math.h>
2 #include "server/biomes.h"
3 #include "server/server_terrain.h"
4 #include "server/terrain_gen.h"
5
6 Biome get_biome(v2s32 pos, f64 *factor)
7 {
8         for (Biome i = 0; i < COUNT_BIOME; i++) {
9                 BiomeDef *def = &biomes[i];
10                 f64 f = def->probability == 1.0 ? 1.0
11                         : (smooth2d(U32(pos.x) / def->threshold, U32(pos.y) / def->threshold, 0, seed + def->offset) * 0.5 - 0.5 + def->probability) / def->probability;
12
13                 if (f > 0.0) {
14                         if (factor)
15                                 *factor = f;
16                         return i;
17                 }
18         }
19
20         return COUNT_BIOME;
21 }
22
23 // mountain biome
24
25 static s32 height_mountain(BiomeArgsHeight *args)
26 {
27         return pow((args->height + 96) * pow(((smooth2d(U32(args->pos.x) / 48.0, U32(args->pos.y) / 48.0, 0, seed + SO_MOUNTAIN_HEIGHT) + 1.0) * 256.0 + 128.0), args->factor), 1.0 / (args->factor + 1.0)) - 96;
28 }
29
30 static NodeType generate_mountain(BiomeArgsGenerate *args)
31 {
32         return args->diff <= 0 ? NODE_STONE : NODE_AIR;
33 }
34
35 // ocean biome
36
37 typedef enum {
38         OCEAN_EDGE,
39         OCEAN_BEACH,
40         OCEAN_MAIN,
41         OCEAN_DEEP,
42         COUNT_OCEAN
43 } OceanLevel;
44
45 static f64 ocean_level_start[COUNT_OCEAN] = {
46         0.0,
47         0.1,
48         0.2,
49         0.5,
50 };
51
52 typedef struct {
53         bool has_vulcano;
54         v2s32 vulcano_pos;
55 } OceanChunkData;
56
57 typedef struct {
58         bool vulcano;
59         bool vulcano_crater;
60         s32 vulcano_height;
61         s32 vulcano_crater_top;
62         NodeType vulcano_stone;
63 } OceanRowData;
64
65 static const f64 vulcano_radius = 256.0;
66 static const f64 vulcano_diameter = vulcano_radius * 2.0;
67
68 static OceanLevel get_ocean_level(f64 factor)
69 {
70         if (factor >= ocean_level_start[OCEAN_DEEP])
71                 return OCEAN_DEEP;
72         else if (factor >= ocean_level_start[OCEAN_MAIN])
73                 return OCEAN_MAIN;
74         else if (factor >= ocean_level_start[OCEAN_BEACH])
75                 return OCEAN_BEACH;
76
77         return OCEAN_EDGE;
78 }
79
80 static f64 get_ocean_level_factor(f64 factor, OceanLevel level)
81 {
82         f64 start, end;
83         start = ocean_level_start[level];
84         end = ++level == COUNT_OCEAN ? 1.0 : ocean_level_start[level];
85
86         return (factor - start) / (end - start);
87 }
88
89 static f64 distance(v2s32 a, v2s32 b)
90 {
91         return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
92 }
93
94 static s32 calculate_ocean_floor(f64 factor, s32 height)
95 {
96         switch (get_ocean_level(factor)) {
97                 case OCEAN_EDGE:
98                         return f64_mix(height + 1, 0, pow(get_ocean_level_factor(factor, OCEAN_EDGE), 0.8));
99
100                 case OCEAN_BEACH:
101                         return 0;
102
103                 case OCEAN_MAIN:
104                         return f64_mix(0, -10, pow(get_ocean_level_factor(factor, OCEAN_MAIN), 0.5));
105
106                 case OCEAN_DEEP:
107                         return f64_mix(-10, -50, pow(get_ocean_level_factor(factor, OCEAN_DEEP), 0.5));
108
109                 default:
110                         break;
111         }
112
113         return height;
114 }
115
116 static void chunk_ocean(BiomeArgsChunk *args)
117 {
118         OceanChunkData *chunk_data = args->chunk_data;
119
120         chunk_data->vulcano_pos = (v2s32) {
121                 floor((f64) args->chunk->pos.x * CHUNK_SIZE / vulcano_diameter + 0.5) * vulcano_diameter,
122                 floor((f64) args->chunk->pos.z * CHUNK_SIZE / vulcano_diameter + 0.5) * vulcano_diameter
123         };
124
125         f64 factor;
126         chunk_data->has_vulcano = noise2d(chunk_data->vulcano_pos.x, chunk_data->vulcano_pos.y, 0, seed + SO_VULCANO) > 0.0
127                 && get_biome((v2s32) {chunk_data->vulcano_pos.x, chunk_data->vulcano_pos.y}, &factor) == BIOME_OCEAN
128                 && get_ocean_level(factor) == OCEAN_DEEP;
129 }
130
131 static void row_ocean(BiomeArgsRow *args)
132 {
133         OceanChunkData *chunk_data = args->chunk_data;
134         OceanRowData *row_data = args->row_data;
135
136         row_data->vulcano = false;
137
138         if (chunk_data->has_vulcano) {
139                 f64 dist = distance(args->pos, chunk_data->vulcano_pos);
140
141                 if (dist < vulcano_radius) {
142                         f64 crater_factor = pow(asin(1.0 - dist / vulcano_radius), 2.0);
143                         f64 vulcano_height = (pnoise2d(U32(args->pos.x) / 100.0, U32(args->pos.y) / 100.0, 0.2, 2, seed + SO_VULCANO_HEIGHT) * 0.5 + 0.5) * 128.0 * crater_factor + 1.0 - 30.0;
144                         bool is_crater = vulcano_height > 0;
145
146                         if (!is_crater)
147                                 vulcano_height = f64_min(vulcano_height + 5.0, 0.0);
148
149                         if (vulcano_height < 0)
150                                 vulcano_height *= 2.0;
151
152                         row_data->vulcano = true;
153                         row_data->vulcano_crater = is_crater;
154                         row_data->vulcano_height = floor(vulcano_height + 0.5);
155                         row_data->vulcano_crater_top = 50 + floor((pnoise2d(U32(args->pos.x) / 3.0, U32(args->pos.y) / 3.0, 0.0, 1, seed + SO_VULCANO_CRATER_TOP) * 0.5 + 0.5) * 3.0 + 0.5);
156                         row_data->vulcano_stone = is_crater
157                                 ? ((pnoise2d(U32(args->pos.x) / 16.0, U32(args->pos.y) / 16.0, 0.85, 3, seed + SO_VULCANO_STONE) * 0.5 + 0.5) * crater_factor > 0.4
158                                         ? NODE_VULCANO_STONE
159                                         : NODE_STONE)
160                                 : NODE_SAND;
161                 }
162         }
163 }
164
165 static s32 height_ocean(BiomeArgsHeight *args)
166 {
167         OceanRowData *row_data = args->row_data;
168
169         s32 ocean_floor = calculate_ocean_floor(args->factor, args->height);
170         return row_data->vulcano ? f64_max(ocean_floor, row_data->vulcano_height) : ocean_floor;
171 }
172
173 NodeType ocean_get_node_at(v3s32 pos, s32 diff, void *_row_data)
174 {
175         OceanRowData *row_data = _row_data;
176
177         if (row_data->vulcano && row_data->vulcano_crater) {
178                 if (diff <= -5)
179                         return pos.y <= 45 ? NODE_LAVA : NODE_AIR;
180                 else if (diff <= 0)
181                         return pos.y <= row_data->vulcano_crater_top ? row_data->vulcano_stone : NODE_AIR;
182                 else
183                         return NODE_AIR;
184         } else {
185                 if (diff <= -5)
186                         return NODE_STONE;
187                 else if (diff <= 0)
188                         return NODE_SAND;
189                 else if (pos.y <= 0)
190                         return NODE_WATER;
191         }
192
193         return NODE_AIR;
194 }
195
196 static NodeType generate_ocean(BiomeArgsGenerate *args)
197 {
198         return ocean_get_node_at(args->pos, args->diff, args->row_data);
199 }
200
201 // hills biome
202
203 static bool boulder_touching_ground(v3s32 pos, s32 diff)
204 {
205         for (s32 dir = diff > 0 ? -1 : +1; dir > 0 ? diff <= 0 : diff >= 0; pos.y += dir, diff += dir) {
206                 if (smooth3d(U32(pos.x) / 12.0, U32(pos.y) / 6.0, U32(pos.z) / 12.0, 0, seed + SO_BOULDER) < 0.8)
207                         return false;
208         }
209
210         return true;
211 }
212
213 static s32 height_hills(BiomeArgsHeight *args)
214 {
215         return args->height;
216 }
217
218 static NodeType generate_hills(BiomeArgsGenerate *args)
219 {
220         if (boulder_touching_ground(args->pos, args->diff))
221                 return NODE_STONE;
222
223         if (args->diff <= -5)
224                 return NODE_STONE;
225         else if (args->diff <= -1)
226                 return NODE_DIRT;
227         else if (args->diff <= 0)
228                 return NODE_GRASS;
229
230         return NODE_AIR;
231 }
232
233 BiomeDef biomes[COUNT_BIOME] = {
234         {
235                 .probability = 0.2,
236                 .offset = SO_MOUNTAIN,
237                 .threshold = 1024.0,
238                 .snow = true,
239                 .height = &height_mountain,
240                 .generate = &generate_mountain,
241                 .chunk_data_size = 0,
242                 .chunk = NULL,
243                 .row_data_size = 0,
244                 .row = NULL,
245         },
246         {
247                 .probability = 0.2,
248                 .offset = SO_OCEAN,
249                 .threshold = 2048.0,
250                 .snow = false,
251                 .height = &height_ocean,
252                 .generate = &generate_ocean,
253                 .chunk_data_size = sizeof(OceanChunkData),
254                 .chunk = &chunk_ocean,
255                 .row_data_size = sizeof(OceanRowData),
256                 .row = &row_ocean,
257         },
258         {
259                 .probability = 1.0,
260                 .offset = SO_NONE,
261                 .threshold = 0.0,
262                 .snow = true,
263                 .height = &height_hills,
264                 .generate = &generate_hills,
265                 .chunk_data_size = 0,
266                 .chunk = NULL,
267                 .row_data_size = 0,
268                 .row = NULL,
269         },
270 };