]> git.lizzy.rs Git - rust.git/blob - src/libsyntax/parse/parser.rs
Rollup merge of #28430 - apasel422:issue-14698, r=alexcrichton
[rust.git] / src / libsyntax / parse / parser.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 pub use self::PathParsingMode::*;
12
13 use abi;
14 use ast::BareFnTy;
15 use ast::{RegionTyParamBound, TraitTyParamBound, TraitBoundModifier};
16 use ast::{Public, Unsafety};
17 use ast::{Mod, BiAdd, Arg, Arm, Attribute, BindByRef, BindByValue};
18 use ast::{BiBitAnd, BiBitOr, BiBitXor, BiRem, BiLt, BiGt, Block};
19 use ast::{BlockCheckMode, CaptureByRef, CaptureByValue, CaptureClause};
20 use ast::{Constness, ConstImplItem, ConstTraitItem, Crate, CrateConfig};
21 use ast::{Decl, DeclItem, DeclLocal, DefaultBlock, DefaultReturn};
22 use ast::{UnDeref, BiDiv, EMPTY_CTXT, EnumDef, ExplicitSelf};
23 use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain};
24 use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox};
25 use ast::{ExprBreak, ExprCall, ExprCast};
26 use ast::{ExprField, ExprTupField, ExprClosure, ExprIf, ExprIfLet, ExprIndex};
27 use ast::{ExprLit, ExprLoop, ExprMac, ExprRange};
28 use ast::{ExprMethodCall, ExprParen, ExprPath};
29 use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprUnary};
30 use ast::{ExprVec, ExprWhile, ExprWhileLet, ExprForLoop, Field, FnDecl};
31 use ast::{ForeignItem, ForeignItemStatic, ForeignItemFn, ForeignMod, FunctionRetTy};
32 use ast::{Ident, Inherited, ImplItem, Item, Item_, ItemStatic};
33 use ast::{ItemEnum, ItemFn, ItemForeignMod, ItemImpl, ItemConst};
34 use ast::{ItemMac, ItemMod, ItemStruct, ItemTrait, ItemTy, ItemDefaultImpl};
35 use ast::{ItemExternCrate, ItemUse};
36 use ast::{LifetimeDef, Lit, Lit_};
37 use ast::{LitBool, LitChar, LitByte, LitByteStr};
38 use ast::{LitStr, LitInt, Local};
39 use ast::{MacStmtWithBraces, MacStmtWithSemicolon, MacStmtWithoutBraces};
40 use ast::{MutImmutable, MutMutable, Mac_, MacInvocTT, MatchSource};
41 use ast::{MutTy, BiMul, Mutability};
42 use ast::{MethodImplItem, NamedField, UnNeg, NoReturn, UnNot};
43 use ast::{Pat, PatBox, PatEnum, PatIdent, PatLit, PatQPath, PatMac, PatRange};
44 use ast::{PatRegion, PatStruct, PatTup, PatVec, PatWild, PatWildMulti};
45 use ast::PatWildSingle;
46 use ast::{PolyTraitRef, QSelf};
47 use ast::{Return, BiShl, BiShr, Stmt, StmtDecl};
48 use ast::{StmtExpr, StmtSemi, StmtMac, StructDef, StructField};
49 use ast::{StructVariantKind, BiSub, StrStyle};
50 use ast::{SelfExplicit, SelfRegion, SelfStatic, SelfValue};
51 use ast::{Delimited, SequenceRepetition, TokenTree, TraitItem, TraitRef};
52 use ast::{TtDelimited, TtSequence, TtToken};
53 use ast::{TupleVariantKind, Ty, Ty_, TypeBinding};
54 use ast::{TyMac};
55 use ast::{TyFixedLengthVec, TyBareFn, TyTypeof, TyInfer};
56 use ast::{TyParam, TyParamBound, TyParen, TyPath, TyPolyTraitRef, TyPtr};
57 use ast::{TyRptr, TyTup, TyU32, TyVec, UnUniq};
58 use ast::{TypeImplItem, TypeTraitItem};
59 use ast::{UnnamedField, UnsafeBlock};
60 use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple};
61 use ast::{Visibility, WhereClause};
62 use ast;
63 use ast_util::{self, AS_PREC, ident_to_path, operator_prec};
64 use codemap::{self, Span, BytePos, Spanned, spanned, mk_sp, CodeMap};
65 use diagnostic;
66 use ext::tt::macro_parser;
67 use parse;
68 use parse::attr::ParserAttr;
69 use parse::classify;
70 use parse::common::{SeqSep, seq_sep_none, seq_sep_trailing_allowed};
71 use parse::lexer::{Reader, TokenAndSpan};
72 use parse::obsolete::{ParserObsoleteMethods, ObsoleteSyntax};
73 use parse::token::{self, MatchNt, SubstNt, SpecialVarNt, InternedString};
74 use parse::token::{keywords, special_idents, SpecialMacroVar};
75 use parse::{new_sub_parser_from_file, ParseSess};
76 use print::pprust;
77 use ptr::P;
78 use owned_slice::OwnedSlice;
79 use parse::PResult;
80 use diagnostic::FatalError;
81
82 use std::collections::HashSet;
83 use std::io::prelude::*;
84 use std::mem;
85 use std::path::{Path, PathBuf};
86 use std::rc::Rc;
87 use std::slice;
88
89 bitflags! {
90     flags Restrictions: u8 {
91         const RESTRICTION_STMT_EXPR         = 1 << 0,
92         const RESTRICTION_NO_STRUCT_LITERAL = 1 << 1,
93     }
94 }
95
96 type ItemInfo = (Ident, Item_, Option<Vec<Attribute> >);
97
98 /// How to parse a path. There are four different kinds of paths, all of which
99 /// are parsed somewhat differently.
100 #[derive(Copy, Clone, PartialEq)]
101 pub enum PathParsingMode {
102     /// A path with no type parameters; e.g. `foo::bar::Baz`
103     NoTypesAllowed,
104     /// A path with a lifetime and type parameters, with no double colons
105     /// before the type parameters; e.g. `foo::bar<'a>::Baz<T>`
106     LifetimeAndTypesWithoutColons,
107     /// A path with a lifetime and type parameters with double colons before
108     /// the type parameters; e.g. `foo::bar::<'a>::Baz::<T>`
109     LifetimeAndTypesWithColons,
110 }
111
112 /// How to parse a bound, whether to allow bound modifiers such as `?`.
113 #[derive(Copy, Clone, PartialEq)]
114 pub enum BoundParsingMode {
115     Bare,
116     Modified,
117 }
118
119 /// Possibly accept an `token::Interpolated` expression (a pre-parsed expression
120 /// dropped into the token stream, which happens while parsing the result of
121 /// macro expansion). Placement of these is not as complex as I feared it would
122 /// be. The important thing is to make sure that lookahead doesn't balk at
123 /// `token::Interpolated` tokens.
124 macro_rules! maybe_whole_expr {
125     ($p:expr) => (
126         {
127             let found = match $p.token {
128                 token::Interpolated(token::NtExpr(ref e)) => {
129                     Some((*e).clone())
130                 }
131                 token::Interpolated(token::NtPath(_)) => {
132                     // FIXME: The following avoids an issue with lexical borrowck scopes,
133                     // but the clone is unfortunate.
134                     let pt = match $p.token {
135                         token::Interpolated(token::NtPath(ref pt)) => (**pt).clone(),
136                         _ => unreachable!()
137                     };
138                     let span = $p.span;
139                     Some($p.mk_expr(span.lo, span.hi, ExprPath(None, pt)))
140                 }
141                 token::Interpolated(token::NtBlock(_)) => {
142                     // FIXME: The following avoids an issue with lexical borrowck scopes,
143                     // but the clone is unfortunate.
144                     let b = match $p.token {
145                         token::Interpolated(token::NtBlock(ref b)) => (*b).clone(),
146                         _ => unreachable!()
147                     };
148                     let span = $p.span;
149                     Some($p.mk_expr(span.lo, span.hi, ExprBlock(b)))
150                 }
151                 _ => None
152             };
153             match found {
154                 Some(e) => {
155                     try!($p.bump());
156                     return Ok(e);
157                 }
158                 None => ()
159             }
160         }
161     )
162 }
163
164 /// As maybe_whole_expr, but for things other than expressions
165 macro_rules! maybe_whole {
166     ($p:expr, $constructor:ident) => (
167         {
168             let found = match ($p).token {
169                 token::Interpolated(token::$constructor(_)) => {
170                     Some(try!(($p).bump_and_get()))
171                 }
172                 _ => None
173             };
174             if let Some(token::Interpolated(token::$constructor(x))) = found {
175                 return Ok(x.clone());
176             }
177         }
178     );
179     (no_clone $p:expr, $constructor:ident) => (
180         {
181             let found = match ($p).token {
182                 token::Interpolated(token::$constructor(_)) => {
183                     Some(try!(($p).bump_and_get()))
184                 }
185                 _ => None
186             };
187             if let Some(token::Interpolated(token::$constructor(x))) = found {
188                 return Ok(x);
189             }
190         }
191     );
192     (deref $p:expr, $constructor:ident) => (
193         {
194             let found = match ($p).token {
195                 token::Interpolated(token::$constructor(_)) => {
196                     Some(try!(($p).bump_and_get()))
197                 }
198                 _ => None
199             };
200             if let Some(token::Interpolated(token::$constructor(x))) = found {
201                 return Ok((*x).clone());
202             }
203         }
204     );
205     (Some deref $p:expr, $constructor:ident) => (
206         {
207             let found = match ($p).token {
208                 token::Interpolated(token::$constructor(_)) => {
209                     Some(try!(($p).bump_and_get()))
210                 }
211                 _ => None
212             };
213             if let Some(token::Interpolated(token::$constructor(x))) = found {
214                 return Ok(Some((*x).clone()));
215             }
216         }
217     );
218     (pair_empty $p:expr, $constructor:ident) => (
219         {
220             let found = match ($p).token {
221                 token::Interpolated(token::$constructor(_)) => {
222                     Some(try!(($p).bump_and_get()))
223                 }
224                 _ => None
225             };
226             if let Some(token::Interpolated(token::$constructor(x))) = found {
227                 return Ok((Vec::new(), x));
228             }
229         }
230     )
231 }
232
233
234 fn maybe_append(mut lhs: Vec<Attribute>, rhs: Option<Vec<Attribute>>)
235                 -> Vec<Attribute> {
236     if let Some(ref attrs) = rhs {
237         lhs.extend(attrs.iter().cloned())
238     }
239     lhs
240 }
241
242 /* ident is handled by common.rs */
243
244 pub struct Parser<'a> {
245     pub sess: &'a ParseSess,
246     /// the current token:
247     pub token: token::Token,
248     /// the span of the current token:
249     pub span: Span,
250     /// the span of the prior token:
251     pub last_span: Span,
252     pub cfg: CrateConfig,
253     /// the previous token or None (only stashed sometimes).
254     pub last_token: Option<Box<token::Token>>,
255     pub buffer: [TokenAndSpan; 4],
256     pub buffer_start: isize,
257     pub buffer_end: isize,
258     pub tokens_consumed: usize,
259     pub restrictions: Restrictions,
260     pub quote_depth: usize, // not (yet) related to the quasiquoter
261     pub reader: Box<Reader+'a>,
262     pub interner: Rc<token::IdentInterner>,
263     /// The set of seen errors about obsolete syntax. Used to suppress
264     /// extra detail when the same error is seen twice
265     pub obsolete_set: HashSet<ObsoleteSyntax>,
266     /// Used to determine the path to externally loaded source files
267     pub mod_path_stack: Vec<InternedString>,
268     /// Stack of spans of open delimiters. Used for error message.
269     pub open_braces: Vec<Span>,
270     /// Flag if this parser "owns" the directory that it is currently parsing
271     /// in. This will affect how nested files are looked up.
272     pub owns_directory: bool,
273     /// Name of the root module this parser originated from. If `None`, then the
274     /// name is not known. This does not change while the parser is descending
275     /// into modules, and sub-parsers have new values for this name.
276     pub root_module_name: Option<String>,
277     pub expected_tokens: Vec<TokenType>,
278 }
279
280 #[derive(PartialEq, Eq, Clone)]
281 pub enum TokenType {
282     Token(token::Token),
283     Keyword(keywords::Keyword),
284     Operator,
285 }
286
287 impl TokenType {
288     fn to_string(&self) -> String {
289         match *self {
290             TokenType::Token(ref t) => format!("`{}`", Parser::token_to_string(t)),
291             TokenType::Operator => "an operator".to_string(),
292             TokenType::Keyword(kw) => format!("`{}`", kw.to_name()),
293         }
294     }
295 }
296
297 fn is_plain_ident_or_underscore(t: &token::Token) -> bool {
298     t.is_plain_ident() || *t == token::Underscore
299 }
300
301 /// Information about the path to a module.
302 pub struct ModulePath {
303     pub name: String,
304     pub path_exists: bool,
305     pub result: Result<ModulePathSuccess, ModulePathError>,
306 }
307
308 pub struct ModulePathSuccess {
309     pub path: ::std::path::PathBuf,
310     pub owns_directory: bool,
311 }
312
313 pub struct ModulePathError {
314     pub err_msg: String,
315     pub help_msg: String,
316 }
317
318
319 impl<'a> Parser<'a> {
320     pub fn new(sess: &'a ParseSess,
321                cfg: ast::CrateConfig,
322                mut rdr: Box<Reader+'a>)
323                -> Parser<'a>
324     {
325         let tok0 = rdr.real_token();
326         let span = tok0.sp;
327         let placeholder = TokenAndSpan {
328             tok: token::Underscore,
329             sp: span,
330         };
331
332         Parser {
333             reader: rdr,
334             interner: token::get_ident_interner(),
335             sess: sess,
336             cfg: cfg,
337             token: tok0.tok,
338             span: span,
339             last_span: span,
340             last_token: None,
341             buffer: [
342                 placeholder.clone(),
343                 placeholder.clone(),
344                 placeholder.clone(),
345                 placeholder.clone(),
346             ],
347             buffer_start: 0,
348             buffer_end: 0,
349             tokens_consumed: 0,
350             restrictions: Restrictions::empty(),
351             quote_depth: 0,
352             obsolete_set: HashSet::new(),
353             mod_path_stack: Vec::new(),
354             open_braces: Vec::new(),
355             owns_directory: true,
356             root_module_name: None,
357             expected_tokens: Vec::new(),
358         }
359     }
360
361     // Panicing fns (for now!)
362     // This is so that the quote_*!() syntax extensions
363     pub fn parse_expr(&mut self) -> P<Expr> {
364         panictry!(self.parse_expr_nopanic())
365     }
366
367     pub fn parse_item(&mut self) -> Option<P<Item>> {
368         panictry!(self.parse_item_nopanic())
369     }
370
371     pub fn parse_pat(&mut self) -> P<Pat> {
372         panictry!(self.parse_pat_nopanic())
373     }
374
375     pub fn parse_arm(&mut self) -> Arm {
376         panictry!(self.parse_arm_nopanic())
377     }
378
379     pub fn parse_ty(&mut self) -> P<Ty> {
380         panictry!(self.parse_ty_nopanic())
381     }
382
383     pub fn parse_stmt(&mut self) -> Option<P<Stmt>> {
384         panictry!(self.parse_stmt_nopanic())
385     }
386
387     /// Convert a token to a string using self's reader
388     pub fn token_to_string(token: &token::Token) -> String {
389         pprust::token_to_string(token)
390     }
391
392     /// Convert the current token to a string using self's reader
393     pub fn this_token_to_string(&self) -> String {
394         Parser::token_to_string(&self.token)
395     }
396
397     pub fn unexpected_last(&self, t: &token::Token) -> FatalError {
398         let token_str = Parser::token_to_string(t);
399         let last_span = self.last_span;
400         self.span_fatal(last_span, &format!("unexpected token: `{}`",
401                                                 token_str))
402     }
403
404     pub fn unexpected(&mut self) -> FatalError {
405         match self.expect_one_of(&[], &[]) {
406             Err(e) => e,
407             Ok(_) => unreachable!()
408         }
409     }
410
411     /// Expect and consume the token t. Signal an error if
412     /// the next token is not t.
413     pub fn expect(&mut self, t: &token::Token) -> PResult<()> {
414         if self.expected_tokens.is_empty() {
415             if self.token == *t {
416                 self.bump()
417             } else {
418                 let token_str = Parser::token_to_string(t);
419                 let this_token_str = self.this_token_to_string();
420                 Err(self.fatal(&format!("expected `{}`, found `{}`",
421                                    token_str,
422                                    this_token_str)))
423             }
424         } else {
425             self.expect_one_of(slice::ref_slice(t), &[])
426         }
427     }
428
429     /// Expect next token to be edible or inedible token.  If edible,
430     /// then consume it; if inedible, then return without consuming
431     /// anything.  Signal a fatal error if next token is unexpected.
432     pub fn expect_one_of(&mut self,
433                          edible: &[token::Token],
434                          inedible: &[token::Token]) -> PResult<()>{
435         fn tokens_to_string(tokens: &[TokenType]) -> String {
436             let mut i = tokens.iter();
437             // This might be a sign we need a connect method on Iterator.
438             let b = i.next()
439                      .map_or("".to_string(), |t| t.to_string());
440             i.enumerate().fold(b, |mut b, (i, ref a)| {
441                 if tokens.len() > 2 && i == tokens.len() - 2 {
442                     b.push_str(", or ");
443                 } else if tokens.len() == 2 && i == tokens.len() - 2 {
444                     b.push_str(" or ");
445                 } else {
446                     b.push_str(", ");
447                 }
448                 b.push_str(&*a.to_string());
449                 b
450             })
451         }
452         if edible.contains(&self.token) {
453             self.bump()
454         } else if inedible.contains(&self.token) {
455             // leave it in the input
456             Ok(())
457         } else {
458             let mut expected = edible.iter()
459                 .map(|x| TokenType::Token(x.clone()))
460                 .chain(inedible.iter().map(|x| TokenType::Token(x.clone())))
461                 .chain(self.expected_tokens.iter().cloned())
462                 .collect::<Vec<_>>();
463             expected.sort_by(|a, b| a.to_string().cmp(&b.to_string()));
464             expected.dedup();
465             let expect = tokens_to_string(&expected[..]);
466             let actual = self.this_token_to_string();
467             Err(self.fatal(
468                 &(if expected.len() > 1 {
469                     (format!("expected one of {}, found `{}`",
470                              expect,
471                              actual))
472                 } else if expected.is_empty() {
473                     (format!("unexpected token: `{}`",
474                              actual))
475                 } else {
476                     (format!("expected {}, found `{}`",
477                              expect,
478                              actual))
479                 })[..]
480             ))
481         }
482     }
483
484     /// Check for erroneous `ident { }`; if matches, signal error and
485     /// recover (without consuming any expected input token).  Returns
486     /// true if and only if input was consumed for recovery.
487     pub fn check_for_erroneous_unit_struct_expecting(&mut self,
488                                                      expected: &[token::Token])
489                                                      -> PResult<bool> {
490         if self.token == token::OpenDelim(token::Brace)
491             && expected.iter().all(|t| *t != token::OpenDelim(token::Brace))
492             && self.look_ahead(1, |t| *t == token::CloseDelim(token::Brace)) {
493             // matched; signal non-fatal error and recover.
494             let span = self.span;
495             self.span_err(span,
496                           "unit-like struct construction is written with no trailing `{ }`");
497             try!(self.eat(&token::OpenDelim(token::Brace)));
498             try!(self.eat(&token::CloseDelim(token::Brace)));
499             Ok(true)
500         } else {
501             Ok(false)
502         }
503     }
504
505     /// Commit to parsing a complete expression `e` expected to be
506     /// followed by some token from the set edible + inedible.  Recover
507     /// from anticipated input errors, discarding erroneous characters.
508     pub fn commit_expr(&mut self, e: &Expr, edible: &[token::Token],
509                        inedible: &[token::Token]) -> PResult<()> {
510         debug!("commit_expr {:?}", e);
511         if let ExprPath(..) = e.node {
512             // might be unit-struct construction; check for recoverableinput error.
513             let expected = edible.iter()
514                 .cloned()
515                 .chain(inedible.iter().cloned())
516                 .collect::<Vec<_>>();
517             try!(self.check_for_erroneous_unit_struct_expecting(&expected[..]));
518         }
519         self.expect_one_of(edible, inedible)
520     }
521
522     pub fn commit_expr_expecting(&mut self, e: &Expr, edible: token::Token) -> PResult<()> {
523         self.commit_expr(e, &[edible], &[])
524     }
525
526     /// Commit to parsing a complete statement `s`, which expects to be
527     /// followed by some token from the set edible + inedible.  Check
528     /// for recoverable input errors, discarding erroneous characters.
529     pub fn commit_stmt(&mut self, edible: &[token::Token],
530                        inedible: &[token::Token]) -> PResult<()> {
531         if self.last_token
532                .as_ref()
533                .map_or(false, |t| t.is_ident() || t.is_path()) {
534             let expected = edible.iter()
535                 .cloned()
536                 .chain(inedible.iter().cloned())
537                 .collect::<Vec<_>>();
538             try!(self.check_for_erroneous_unit_struct_expecting(&expected));
539         }
540         self.expect_one_of(edible, inedible)
541     }
542
543     pub fn commit_stmt_expecting(&mut self, edible: token::Token) -> PResult<()> {
544         self.commit_stmt(&[edible], &[])
545     }
546
547     pub fn parse_ident(&mut self) -> PResult<ast::Ident> {
548         self.check_strict_keywords();
549         try!(self.check_reserved_keywords());
550         match self.token {
551             token::Ident(i, _) => {
552                 try!(self.bump());
553                 Ok(i)
554             }
555             token::Interpolated(token::NtIdent(..)) => {
556                 self.bug("ident interpolation not converted to real token");
557             }
558             _ => {
559                 let token_str = self.this_token_to_string();
560                 Err(self.fatal(&format!("expected ident, found `{}`",
561                                     token_str)))
562             }
563         }
564     }
565
566     pub fn parse_ident_or_self_type(&mut self) -> PResult<ast::Ident> {
567         if self.is_self_type_ident() {
568             self.expect_self_type_ident()
569         } else {
570             self.parse_ident()
571         }
572     }
573
574     pub fn parse_path_list_item(&mut self) -> PResult<ast::PathListItem> {
575         let lo = self.span.lo;
576         let node = if try!(self.eat_keyword(keywords::SelfValue)) {
577             let rename = try!(self.parse_rename());
578             ast::PathListMod { id: ast::DUMMY_NODE_ID, rename: rename }
579         } else {
580             let ident = try!(self.parse_ident());
581             let rename = try!(self.parse_rename());
582             ast::PathListIdent { name: ident, rename: rename, id: ast::DUMMY_NODE_ID }
583         };
584         let hi = self.last_span.hi;
585         Ok(spanned(lo, hi, node))
586     }
587
588     /// Check if the next token is `tok`, and return `true` if so.
589     ///
590     /// This method is will automatically add `tok` to `expected_tokens` if `tok` is not
591     /// encountered.
592     pub fn check(&mut self, tok: &token::Token) -> bool {
593         let is_present = self.token == *tok;
594         if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); }
595         is_present
596     }
597
598     /// Consume token 'tok' if it exists. Returns true if the given
599     /// token was present, false otherwise.
600     pub fn eat(&mut self, tok: &token::Token) -> PResult<bool> {
601         let is_present = self.check(tok);
602         if is_present { try!(self.bump())}
603         Ok(is_present)
604     }
605
606     pub fn check_keyword(&mut self, kw: keywords::Keyword) -> bool {
607         self.expected_tokens.push(TokenType::Keyword(kw));
608         self.token.is_keyword(kw)
609     }
610
611     /// If the next token is the given keyword, eat it and return
612     /// true. Otherwise, return false.
613     pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> PResult<bool> {
614         if self.check_keyword(kw) {
615             try!(self.bump());
616             Ok(true)
617         } else {
618             Ok(false)
619         }
620     }
621
622     pub fn eat_keyword_noexpect(&mut self, kw: keywords::Keyword) -> PResult<bool> {
623         if self.token.is_keyword(kw) {
624             try!(self.bump());
625             Ok(true)
626         } else {
627             Ok(false)
628         }
629     }
630
631     /// If the given word is not a keyword, signal an error.
632     /// If the next token is not the given word, signal an error.
633     /// Otherwise, eat it.
634     pub fn expect_keyword(&mut self, kw: keywords::Keyword) -> PResult<()> {
635         if !try!(self.eat_keyword(kw) ){
636             self.expect_one_of(&[], &[])
637         } else {
638             Ok(())
639         }
640     }
641
642     /// Signal an error if the given string is a strict keyword
643     pub fn check_strict_keywords(&mut self) {
644         if self.token.is_strict_keyword() {
645             let token_str = self.this_token_to_string();
646             let span = self.span;
647             self.span_err(span,
648                           &format!("expected identifier, found keyword `{}`",
649                                   token_str));
650         }
651     }
652
653     /// Signal an error if the current token is a reserved keyword
654     pub fn check_reserved_keywords(&mut self) -> PResult<()>{
655         if self.token.is_reserved_keyword() {
656             let token_str = self.this_token_to_string();
657             Err(self.fatal(&format!("`{}` is a reserved keyword",
658                                token_str)))
659         } else {
660             Ok(())
661         }
662     }
663
664     /// Expect and consume an `&`. If `&&` is seen, replace it with a single
665     /// `&` and continue. If an `&` is not seen, signal an error.
666     fn expect_and(&mut self) -> PResult<()> {
667         self.expected_tokens.push(TokenType::Token(token::BinOp(token::And)));
668         match self.token {
669             token::BinOp(token::And) => self.bump(),
670             token::AndAnd => {
671                 let span = self.span;
672                 let lo = span.lo + BytePos(1);
673                 Ok(self.replace_token(token::BinOp(token::And), lo, span.hi))
674             }
675             _ => self.expect_one_of(&[], &[])
676         }
677     }
678
679     pub fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) {
680         match suffix {
681             None => {/* everything ok */}
682             Some(suf) => {
683                 let text = suf.as_str();
684                 if text.is_empty() {
685                     self.span_bug(sp, "found empty literal suffix in Some")
686                 }
687                 self.span_err(sp, &*format!("{} with a suffix is invalid", kind));
688             }
689         }
690     }
691
692
693     /// Attempt to consume a `<`. If `<<` is seen, replace it with a single
694     /// `<` and continue. If a `<` is not seen, return false.
695     ///
696     /// This is meant to be used when parsing generics on a path to get the
697     /// starting token.
698     fn eat_lt(&mut self) -> PResult<bool> {
699         self.expected_tokens.push(TokenType::Token(token::Lt));
700         match self.token {
701             token::Lt => { try!(self.bump()); Ok(true)}
702             token::BinOp(token::Shl) => {
703                 let span = self.span;
704                 let lo = span.lo + BytePos(1);
705                 self.replace_token(token::Lt, lo, span.hi);
706                 Ok(true)
707             }
708             _ => Ok(false),
709         }
710     }
711
712     fn expect_lt(&mut self) -> PResult<()> {
713         if !try!(self.eat_lt()) {
714             self.expect_one_of(&[], &[])
715         } else {
716             Ok(())
717         }
718     }
719
720     /// Expect and consume a GT. if a >> is seen, replace it
721     /// with a single > and continue. If a GT is not seen,
722     /// signal an error.
723     pub fn expect_gt(&mut self) -> PResult<()> {
724         self.expected_tokens.push(TokenType::Token(token::Gt));
725         match self.token {
726             token::Gt => self.bump(),
727             token::BinOp(token::Shr) => {
728                 let span = self.span;
729                 let lo = span.lo + BytePos(1);
730                 Ok(self.replace_token(token::Gt, lo, span.hi))
731             }
732             token::BinOpEq(token::Shr) => {
733                 let span = self.span;
734                 let lo = span.lo + BytePos(1);
735                 Ok(self.replace_token(token::Ge, lo, span.hi))
736             }
737             token::Ge => {
738                 let span = self.span;
739                 let lo = span.lo + BytePos(1);
740                 Ok(self.replace_token(token::Eq, lo, span.hi))
741             }
742             _ => {
743                 let gt_str = Parser::token_to_string(&token::Gt);
744                 let this_token_str = self.this_token_to_string();
745                 Err(self.fatal(&format!("expected `{}`, found `{}`",
746                                    gt_str,
747                                    this_token_str)))
748             }
749         }
750     }
751
752     pub fn parse_seq_to_before_gt_or_return<T, F>(&mut self,
753                                                   sep: Option<token::Token>,
754                                                   mut f: F)
755                                                   -> PResult<(OwnedSlice<T>, bool)> where
756         F: FnMut(&mut Parser) -> PResult<Option<T>>,
757     {
758         let mut v = Vec::new();
759         // This loop works by alternating back and forth between parsing types
760         // and commas.  For example, given a string `A, B,>`, the parser would
761         // first parse `A`, then a comma, then `B`, then a comma. After that it
762         // would encounter a `>` and stop. This lets the parser handle trailing
763         // commas in generic parameters, because it can stop either after
764         // parsing a type or after parsing a comma.
765         for i in 0.. {
766             if self.check(&token::Gt)
767                 || self.token == token::BinOp(token::Shr)
768                 || self.token == token::Ge
769                 || self.token == token::BinOpEq(token::Shr) {
770                 break;
771             }
772
773             if i % 2 == 0 {
774                 match try!(f(self)) {
775                     Some(result) => v.push(result),
776                     None => return Ok((OwnedSlice::from_vec(v), true))
777                 }
778             } else {
779                 if let Some(t) = sep.as_ref() {
780                     try!(self.expect(t));
781                 }
782
783             }
784         }
785         return Ok((OwnedSlice::from_vec(v), false));
786     }
787
788     /// Parse a sequence bracketed by '<' and '>', stopping
789     /// before the '>'.
790     pub fn parse_seq_to_before_gt<T, F>(&mut self,
791                                         sep: Option<token::Token>,
792                                         mut f: F)
793                                         -> PResult<OwnedSlice<T>> where
794         F: FnMut(&mut Parser) -> PResult<T>,
795     {
796         let (result, returned) = try!(self.parse_seq_to_before_gt_or_return(sep,
797                                                     |p| Ok(Some(try!(f(p))))));
798         assert!(!returned);
799         return Ok(result);
800     }
801
802     pub fn parse_seq_to_gt<T, F>(&mut self,
803                                  sep: Option<token::Token>,
804                                  f: F)
805                                  -> PResult<OwnedSlice<T>> where
806         F: FnMut(&mut Parser) -> PResult<T>,
807     {
808         let v = try!(self.parse_seq_to_before_gt(sep, f));
809         try!(self.expect_gt());
810         return Ok(v);
811     }
812
813     pub fn parse_seq_to_gt_or_return<T, F>(&mut self,
814                                            sep: Option<token::Token>,
815                                            f: F)
816                                            -> PResult<(OwnedSlice<T>, bool)> where
817         F: FnMut(&mut Parser) -> PResult<Option<T>>,
818     {
819         let (v, returned) = try!(self.parse_seq_to_before_gt_or_return(sep, f));
820         if !returned {
821             try!(self.expect_gt());
822         }
823         return Ok((v, returned));
824     }
825
826     /// Parse a sequence, including the closing delimiter. The function
827     /// f must consume tokens until reaching the next separator or
828     /// closing bracket.
829     pub fn parse_seq_to_end<T, F>(&mut self,
830                                   ket: &token::Token,
831                                   sep: SeqSep,
832                                   f: F)
833                                   -> PResult<Vec<T>> where
834         F: FnMut(&mut Parser) -> PResult<T>,
835     {
836         let val = try!(self.parse_seq_to_before_end(ket, sep, f));
837         try!(self.bump());
838         Ok(val)
839     }
840
841     /// Parse a sequence, not including the closing delimiter. The function
842     /// f must consume tokens until reaching the next separator or
843     /// closing bracket.
844     pub fn parse_seq_to_before_end<T, F>(&mut self,
845                                          ket: &token::Token,
846                                          sep: SeqSep,
847                                          mut f: F)
848                                          -> PResult<Vec<T>> where
849         F: FnMut(&mut Parser) -> PResult<T>,
850     {
851         let mut first: bool = true;
852         let mut v = vec!();
853         while self.token != *ket {
854             match sep.sep {
855               Some(ref t) => {
856                 if first { first = false; }
857                 else { try!(self.expect(t)); }
858               }
859               _ => ()
860             }
861             if sep.trailing_sep_allowed && self.check(ket) { break; }
862             v.push(try!(f(self)));
863         }
864         return Ok(v);
865     }
866
867     /// Parse a sequence, including the closing delimiter. The function
868     /// f must consume tokens until reaching the next separator or
869     /// closing bracket.
870     pub fn parse_unspanned_seq<T, F>(&mut self,
871                                      bra: &token::Token,
872                                      ket: &token::Token,
873                                      sep: SeqSep,
874                                      f: F)
875                                      -> PResult<Vec<T>> where
876         F: FnMut(&mut Parser) -> PResult<T>,
877     {
878         try!(self.expect(bra));
879         let result = try!(self.parse_seq_to_before_end(ket, sep, f));
880         try!(self.bump());
881         Ok(result)
882     }
883
884     /// Parse a sequence parameter of enum variant. For consistency purposes,
885     /// these should not be empty.
886     pub fn parse_enum_variant_seq<T, F>(&mut self,
887                                         bra: &token::Token,
888                                         ket: &token::Token,
889                                         sep: SeqSep,
890                                         f: F)
891                                         -> PResult<Vec<T>> where
892         F: FnMut(&mut Parser) -> PResult<T>,
893     {
894         let result = try!(self.parse_unspanned_seq(bra, ket, sep, f));
895         if result.is_empty() {
896             let last_span = self.last_span;
897             self.span_err(last_span,
898             "nullary enum variants are written with no trailing `( )`");
899         }
900         Ok(result)
901     }
902
903     // NB: Do not use this function unless you actually plan to place the
904     // spanned list in the AST.
905     pub fn parse_seq<T, F>(&mut self,
906                            bra: &token::Token,
907                            ket: &token::Token,
908                            sep: SeqSep,
909                            f: F)
910                            -> PResult<Spanned<Vec<T>>> where
911         F: FnMut(&mut Parser) -> PResult<T>,
912     {
913         let lo = self.span.lo;
914         try!(self.expect(bra));
915         let result = try!(self.parse_seq_to_before_end(ket, sep, f));
916         let hi = self.span.hi;
917         try!(self.bump());
918         Ok(spanned(lo, hi, result))
919     }
920
921     /// Advance the parser by one token
922     pub fn bump(&mut self) -> PResult<()> {
923         self.last_span = self.span;
924         // Stash token for error recovery (sometimes; clone is not necessarily cheap).
925         self.last_token = if self.token.is_ident() ||
926                           self.token.is_path() ||
927                           self.token == token::Comma {
928             Some(Box::new(self.token.clone()))
929         } else {
930             None
931         };
932         let next = if self.buffer_start == self.buffer_end {
933             self.reader.real_token()
934         } else {
935             // Avoid token copies with `replace`.
936             let buffer_start = self.buffer_start as usize;
937             let next_index = (buffer_start + 1) & 3;
938             self.buffer_start = next_index as isize;
939
940             let placeholder = TokenAndSpan {
941                 tok: token::Underscore,
942                 sp: self.span,
943             };
944             mem::replace(&mut self.buffer[buffer_start], placeholder)
945         };
946         self.span = next.sp;
947         self.token = next.tok;
948         self.tokens_consumed += 1;
949         self.expected_tokens.clear();
950         // check after each token
951         self.check_unknown_macro_variable()
952     }
953
954     /// Advance the parser by one token and return the bumped token.
955     pub fn bump_and_get(&mut self) -> PResult<token::Token> {
956         let old_token = mem::replace(&mut self.token, token::Underscore);
957         try!(self.bump());
958         Ok(old_token)
959     }
960
961     /// EFFECT: replace the current token and span with the given one
962     pub fn replace_token(&mut self,
963                          next: token::Token,
964                          lo: BytePos,
965                          hi: BytePos) {
966         self.last_span = mk_sp(self.span.lo, lo);
967         self.token = next;
968         self.span = mk_sp(lo, hi);
969     }
970     pub fn buffer_length(&mut self) -> isize {
971         if self.buffer_start <= self.buffer_end {
972             return self.buffer_end - self.buffer_start;
973         }
974         return (4 - self.buffer_start) + self.buffer_end;
975     }
976     pub fn look_ahead<R, F>(&mut self, distance: usize, f: F) -> R where
977         F: FnOnce(&token::Token) -> R,
978     {
979         let dist = distance as isize;
980         while self.buffer_length() < dist {
981             self.buffer[self.buffer_end as usize] = self.reader.real_token();
982             self.buffer_end = (self.buffer_end + 1) & 3;
983         }
984         f(&self.buffer[((self.buffer_start + dist - 1) & 3) as usize].tok)
985     }
986     pub fn fatal(&self, m: &str) -> diagnostic::FatalError {
987         self.sess.span_diagnostic.span_fatal(self.span, m)
988     }
989     pub fn span_fatal(&self, sp: Span, m: &str) -> diagnostic::FatalError {
990         self.sess.span_diagnostic.span_fatal(sp, m)
991     }
992     pub fn span_fatal_help(&self, sp: Span, m: &str, help: &str) -> diagnostic::FatalError {
993         self.span_err(sp, m);
994         self.fileline_help(sp, help);
995         diagnostic::FatalError
996     }
997     pub fn span_note(&self, sp: Span, m: &str) {
998         self.sess.span_diagnostic.span_note(sp, m)
999     }
1000     pub fn span_help(&self, sp: Span, m: &str) {
1001         self.sess.span_diagnostic.span_help(sp, m)
1002     }
1003     pub fn span_suggestion(&self, sp: Span, m: &str, n: String) {
1004         self.sess.span_diagnostic.span_suggestion(sp, m, n)
1005     }
1006     pub fn fileline_help(&self, sp: Span, m: &str) {
1007         self.sess.span_diagnostic.fileline_help(sp, m)
1008     }
1009     pub fn bug(&self, m: &str) -> ! {
1010         self.sess.span_diagnostic.span_bug(self.span, m)
1011     }
1012     pub fn warn(&self, m: &str) {
1013         self.sess.span_diagnostic.span_warn(self.span, m)
1014     }
1015     pub fn span_warn(&self, sp: Span, m: &str) {
1016         self.sess.span_diagnostic.span_warn(sp, m)
1017     }
1018     pub fn span_err(&self, sp: Span, m: &str) {
1019         self.sess.span_diagnostic.span_err(sp, m)
1020     }
1021     pub fn span_bug(&self, sp: Span, m: &str) -> ! {
1022         self.sess.span_diagnostic.span_bug(sp, m)
1023     }
1024     pub fn abort_if_errors(&self) {
1025         self.sess.span_diagnostic.handler().abort_if_errors();
1026     }
1027
1028     pub fn id_to_interned_str(&mut self, id: Ident) -> InternedString {
1029         id.name.as_str()
1030     }
1031
1032     /// Is the current token one of the keywords that signals a bare function
1033     /// type?
1034     pub fn token_is_bare_fn_keyword(&mut self) -> bool {
1035         self.check_keyword(keywords::Fn) ||
1036             self.check_keyword(keywords::Unsafe) ||
1037             self.check_keyword(keywords::Extern)
1038     }
1039
1040     pub fn get_lifetime(&mut self) -> ast::Ident {
1041         match self.token {
1042             token::Lifetime(ref ident) => *ident,
1043             _ => self.bug("not a lifetime"),
1044         }
1045     }
1046
1047     pub fn parse_for_in_type(&mut self) -> PResult<Ty_> {
1048         /*
1049         Parses whatever can come after a `for` keyword in a type.
1050         The `for` has already been consumed.
1051
1052         Deprecated:
1053
1054         - for <'lt> |S| -> T
1055
1056         Eventually:
1057
1058         - for <'lt> [unsafe] [extern "ABI"] fn (S) -> T
1059         - for <'lt> path::foo(a, b)
1060
1061         */
1062
1063         // parse <'lt>
1064         let lo = self.span.lo;
1065
1066         let lifetime_defs = try!(self.parse_late_bound_lifetime_defs());
1067
1068         // examine next token to decide to do
1069         if self.token_is_bare_fn_keyword() {
1070             self.parse_ty_bare_fn(lifetime_defs)
1071         } else {
1072             let hi = self.span.hi;
1073             let trait_ref = try!(self.parse_trait_ref());
1074             let poly_trait_ref = ast::PolyTraitRef { bound_lifetimes: lifetime_defs,
1075                                                      trait_ref: trait_ref,
1076                                                      span: mk_sp(lo, hi)};
1077             let other_bounds = if try!(self.eat(&token::BinOp(token::Plus)) ){
1078                 try!(self.parse_ty_param_bounds(BoundParsingMode::Bare))
1079             } else {
1080                 OwnedSlice::empty()
1081             };
1082             let all_bounds =
1083                 Some(TraitTyParamBound(poly_trait_ref, TraitBoundModifier::None)).into_iter()
1084                 .chain(other_bounds.into_vec())
1085                 .collect();
1086             Ok(ast::TyPolyTraitRef(all_bounds))
1087         }
1088     }
1089
1090     pub fn parse_ty_path(&mut self) -> PResult<Ty_> {
1091         Ok(TyPath(None, try!(self.parse_path(LifetimeAndTypesWithoutColons))))
1092     }
1093
1094     /// parse a TyBareFn type:
1095     pub fn parse_ty_bare_fn(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> PResult<Ty_> {
1096         /*
1097
1098         [unsafe] [extern "ABI"] fn <'lt> (S) -> T
1099          ^~~~^           ^~~~^     ^~~~^ ^~^    ^
1100            |               |         |    |     |
1101            |               |         |    |   Return type
1102            |               |         |  Argument types
1103            |               |     Lifetimes
1104            |              ABI
1105         Function Style
1106         */
1107
1108         let unsafety = try!(self.parse_unsafety());
1109         let abi = if try!(self.eat_keyword(keywords::Extern) ){
1110             try!(self.parse_opt_abi()).unwrap_or(abi::C)
1111         } else {
1112             abi::Rust
1113         };
1114
1115         try!(self.expect_keyword(keywords::Fn));
1116         let (inputs, variadic) = try!(self.parse_fn_args(false, true));
1117         let ret_ty = try!(self.parse_ret_ty());
1118         let decl = P(FnDecl {
1119             inputs: inputs,
1120             output: ret_ty,
1121             variadic: variadic
1122         });
1123         Ok(TyBareFn(P(BareFnTy {
1124             abi: abi,
1125             unsafety: unsafety,
1126             lifetimes: lifetime_defs,
1127             decl: decl
1128         })))
1129     }
1130
1131     /// Parses an obsolete closure kind (`&:`, `&mut:`, or `:`).
1132     pub fn parse_obsolete_closure_kind(&mut self) -> PResult<()> {
1133          let lo = self.span.lo;
1134         if
1135             self.check(&token::BinOp(token::And)) &&
1136             self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) &&
1137             self.look_ahead(2, |t| *t == token::Colon)
1138         {
1139             try!(self.bump());
1140             try!(self.bump());
1141             try!(self.bump());
1142         } else if
1143             self.token == token::BinOp(token::And) &&
1144             self.look_ahead(1, |t| *t == token::Colon)
1145         {
1146             try!(self.bump());
1147             try!(self.bump());
1148         } else if
1149             try!(self.eat(&token::Colon))
1150         {
1151             /* nothing */
1152         } else {
1153             return Ok(());
1154         }
1155
1156         let span = mk_sp(lo, self.span.hi);
1157         self.obsolete(span, ObsoleteSyntax::ClosureKind);
1158         Ok(())
1159     }
1160
1161     pub fn parse_unsafety(&mut self) -> PResult<Unsafety> {
1162         if try!(self.eat_keyword(keywords::Unsafe)) {
1163             return Ok(Unsafety::Unsafe);
1164         } else {
1165             return Ok(Unsafety::Normal);
1166         }
1167     }
1168
1169     /// Parse the items in a trait declaration
1170     pub fn parse_trait_items(&mut self) -> PResult<Vec<P<TraitItem>>> {
1171         self.parse_unspanned_seq(
1172             &token::OpenDelim(token::Brace),
1173             &token::CloseDelim(token::Brace),
1174             seq_sep_none(),
1175             |p| -> PResult<P<TraitItem>> {
1176             maybe_whole!(no_clone p, NtTraitItem);
1177             let mut attrs = p.parse_outer_attributes();
1178             let lo = p.span.lo;
1179
1180             let (name, node) = if try!(p.eat_keyword(keywords::Type)) {
1181                 let TyParam {ident, bounds, default, ..} = try!(p.parse_ty_param());
1182                 try!(p.expect(&token::Semi));
1183                 (ident, TypeTraitItem(bounds, default))
1184             } else if p.is_const_item() {
1185                 try!(p.expect_keyword(keywords::Const));
1186                 let ident = try!(p.parse_ident());
1187                 try!(p.expect(&token::Colon));
1188                 let ty = try!(p.parse_ty_sum());
1189                 let default = if p.check(&token::Eq) {
1190                     try!(p.bump());
1191                     let expr = try!(p.parse_expr_nopanic());
1192                     try!(p.commit_expr_expecting(&expr, token::Semi));
1193                     Some(expr)
1194                 } else {
1195                     try!(p.expect(&token::Semi));
1196                     None
1197                 };
1198                 (ident, ConstTraitItem(ty, default))
1199             } else {
1200                 let (constness, unsafety, abi) = try!(p.parse_fn_front_matter());
1201
1202                 let ident = try!(p.parse_ident());
1203                 let mut generics = try!(p.parse_generics());
1204
1205                 let (explicit_self, d) = try!(p.parse_fn_decl_with_self(|p|{
1206                     // This is somewhat dubious; We don't want to allow
1207                     // argument names to be left off if there is a
1208                     // definition...
1209                     p.parse_arg_general(false)
1210                 }));
1211
1212                 generics.where_clause = try!(p.parse_where_clause());
1213                 let sig = ast::MethodSig {
1214                     unsafety: unsafety,
1215                     constness: constness,
1216                     decl: d,
1217                     generics: generics,
1218                     abi: abi,
1219                     explicit_self: explicit_self,
1220                 };
1221
1222                 let body = match p.token {
1223                   token::Semi => {
1224                     try!(p.bump());
1225                     debug!("parse_trait_methods(): parsing required method");
1226                     None
1227                   }
1228                   token::OpenDelim(token::Brace) => {
1229                     debug!("parse_trait_methods(): parsing provided method");
1230                     let (inner_attrs, body) =
1231                         try!(p.parse_inner_attrs_and_block());
1232                     attrs.extend(inner_attrs.iter().cloned());
1233                     Some(body)
1234                   }
1235
1236                   _ => {
1237                       let token_str = p.this_token_to_string();
1238                       return Err(p.fatal(&format!("expected `;` or `{{`, found `{}`",
1239                                        token_str)[..]))
1240                   }
1241                 };
1242                 (ident, ast::MethodTraitItem(sig, body))
1243             };
1244
1245             Ok(P(TraitItem {
1246                 id: ast::DUMMY_NODE_ID,
1247                 ident: name,
1248                 attrs: attrs,
1249                 node: node,
1250                 span: mk_sp(lo, p.last_span.hi),
1251             }))
1252         })
1253     }
1254
1255     /// Parse a possibly mutable type
1256     pub fn parse_mt(&mut self) -> PResult<MutTy> {
1257         let mutbl = try!(self.parse_mutability());
1258         let t = try!(self.parse_ty_nopanic());
1259         Ok(MutTy { ty: t, mutbl: mutbl })
1260     }
1261
1262     /// Parse optional return type [ -> TY ] in function decl
1263     pub fn parse_ret_ty(&mut self) -> PResult<FunctionRetTy> {
1264         if try!(self.eat(&token::RArrow) ){
1265             if try!(self.eat(&token::Not) ){
1266                 Ok(NoReturn(self.last_span))
1267             } else {
1268                 Ok(Return(try!(self.parse_ty_nopanic())))
1269             }
1270         } else {
1271             let pos = self.span.lo;
1272             Ok(DefaultReturn(mk_sp(pos, pos)))
1273         }
1274     }
1275
1276     /// Parse a type in a context where `T1+T2` is allowed.
1277     pub fn parse_ty_sum(&mut self) -> PResult<P<Ty>> {
1278         let lo = self.span.lo;
1279         let lhs = try!(self.parse_ty_nopanic());
1280
1281         if !try!(self.eat(&token::BinOp(token::Plus)) ){
1282             return Ok(lhs);
1283         }
1284
1285         let bounds = try!(self.parse_ty_param_bounds(BoundParsingMode::Bare));
1286
1287         // In type grammar, `+` is treated like a binary operator,
1288         // and hence both L and R side are required.
1289         if bounds.is_empty() {
1290             let last_span = self.last_span;
1291             self.span_err(last_span,
1292                           "at least one type parameter bound \
1293                           must be specified");
1294         }
1295
1296         let sp = mk_sp(lo, self.last_span.hi);
1297         let sum = ast::TyObjectSum(lhs, bounds);
1298         Ok(P(Ty {id: ast::DUMMY_NODE_ID, node: sum, span: sp}))
1299     }
1300
1301     /// Parse a type.
1302     pub fn parse_ty_nopanic(&mut self) -> PResult<P<Ty>> {
1303         maybe_whole!(no_clone self, NtTy);
1304
1305         let lo = self.span.lo;
1306
1307         let t = if self.check(&token::OpenDelim(token::Paren)) {
1308             try!(self.bump());
1309
1310             // (t) is a parenthesized ty
1311             // (t,) is the type of a tuple with only one field,
1312             // of type t
1313             let mut ts = vec![];
1314             let mut last_comma = false;
1315             while self.token != token::CloseDelim(token::Paren) {
1316                 ts.push(try!(self.parse_ty_sum()));
1317                 if self.check(&token::Comma) {
1318                     last_comma = true;
1319                     try!(self.bump());
1320                 } else {
1321                     last_comma = false;
1322                     break;
1323                 }
1324             }
1325
1326             try!(self.expect(&token::CloseDelim(token::Paren)));
1327             if ts.len() == 1 && !last_comma {
1328                 TyParen(ts.into_iter().nth(0).unwrap())
1329             } else {
1330                 TyTup(ts)
1331             }
1332         } else if self.check(&token::BinOp(token::Star)) {
1333             // STAR POINTER (bare pointer?)
1334             try!(self.bump());
1335             TyPtr(try!(self.parse_ptr()))
1336         } else if self.check(&token::OpenDelim(token::Bracket)) {
1337             // VECTOR
1338             try!(self.expect(&token::OpenDelim(token::Bracket)));
1339             let t = try!(self.parse_ty_sum());
1340
1341             // Parse the `; e` in `[ i32; e ]`
1342             // where `e` is a const expression
1343             let t = match try!(self.maybe_parse_fixed_length_of_vec()) {
1344                 None => TyVec(t),
1345                 Some(suffix) => TyFixedLengthVec(t, suffix)
1346             };
1347             try!(self.expect(&token::CloseDelim(token::Bracket)));
1348             t
1349         } else if self.check(&token::BinOp(token::And)) ||
1350                   self.token == token::AndAnd {
1351             // BORROWED POINTER
1352             try!(self.expect_and());
1353             try!(self.parse_borrowed_pointee())
1354         } else if self.check_keyword(keywords::For) {
1355             try!(self.parse_for_in_type())
1356         } else if self.token_is_bare_fn_keyword() {
1357             // BARE FUNCTION
1358             try!(self.parse_ty_bare_fn(Vec::new()))
1359         } else if try!(self.eat_keyword_noexpect(keywords::Typeof)) {
1360             // TYPEOF
1361             // In order to not be ambiguous, the type must be surrounded by parens.
1362             try!(self.expect(&token::OpenDelim(token::Paren)));
1363             let e = try!(self.parse_expr_nopanic());
1364             try!(self.expect(&token::CloseDelim(token::Paren)));
1365             TyTypeof(e)
1366         } else if try!(self.eat_lt()) {
1367
1368             let (qself, path) =
1369                  try!(self.parse_qualified_path(NoTypesAllowed));
1370
1371             TyPath(Some(qself), path)
1372         } else if self.check(&token::ModSep) ||
1373                   self.token.is_ident() ||
1374                   self.token.is_path() {
1375             let path = try!(self.parse_path(LifetimeAndTypesWithoutColons));
1376             if self.check(&token::Not) {
1377                 // MACRO INVOCATION
1378                 try!(self.bump());
1379                 let delim = try!(self.expect_open_delim());
1380                 let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
1381                                                      seq_sep_none(),
1382                                                      |p| p.parse_token_tree()));
1383                 let hi = self.span.hi;
1384                 TyMac(spanned(lo, hi, MacInvocTT(path, tts, EMPTY_CTXT)))
1385             } else {
1386                 // NAMED TYPE
1387                 TyPath(None, path)
1388             }
1389         } else if try!(self.eat(&token::Underscore) ){
1390             // TYPE TO BE INFERRED
1391             TyInfer
1392         } else {
1393             let this_token_str = self.this_token_to_string();
1394             let msg = format!("expected type, found `{}`", this_token_str);
1395             return Err(self.fatal(&msg[..]));
1396         };
1397
1398         let sp = mk_sp(lo, self.last_span.hi);
1399         Ok(P(Ty {id: ast::DUMMY_NODE_ID, node: t, span: sp}))
1400     }
1401
1402     pub fn parse_borrowed_pointee(&mut self) -> PResult<Ty_> {
1403         // look for `&'lt` or `&'foo ` and interpret `foo` as the region name:
1404         let opt_lifetime = try!(self.parse_opt_lifetime());
1405
1406         let mt = try!(self.parse_mt());
1407         return Ok(TyRptr(opt_lifetime, mt));
1408     }
1409
1410     pub fn parse_ptr(&mut self) -> PResult<MutTy> {
1411         let mutbl = if try!(self.eat_keyword(keywords::Mut) ){
1412             MutMutable
1413         } else if try!(self.eat_keyword(keywords::Const) ){
1414             MutImmutable
1415         } else {
1416             let span = self.last_span;
1417             self.span_err(span,
1418                           "bare raw pointers are no longer allowed, you should \
1419                            likely use `*mut T`, but otherwise `*T` is now \
1420                            known as `*const T`");
1421             MutImmutable
1422         };
1423         let t = try!(self.parse_ty_nopanic());
1424         Ok(MutTy { ty: t, mutbl: mutbl })
1425     }
1426
1427     pub fn is_named_argument(&mut self) -> bool {
1428         let offset = match self.token {
1429             token::BinOp(token::And) => 1,
1430             token::AndAnd => 1,
1431             _ if self.token.is_keyword(keywords::Mut) => 1,
1432             _ => 0
1433         };
1434
1435         debug!("parser is_named_argument offset:{}", offset);
1436
1437         if offset == 0 {
1438             is_plain_ident_or_underscore(&self.token)
1439                 && self.look_ahead(1, |t| *t == token::Colon)
1440         } else {
1441             self.look_ahead(offset, |t| is_plain_ident_or_underscore(t))
1442                 && self.look_ahead(offset + 1, |t| *t == token::Colon)
1443         }
1444     }
1445
1446     /// This version of parse arg doesn't necessarily require
1447     /// identifier names.
1448     pub fn parse_arg_general(&mut self, require_name: bool) -> PResult<Arg> {
1449         let pat = if require_name || self.is_named_argument() {
1450             debug!("parse_arg_general parse_pat (require_name:{})",
1451                    require_name);
1452             let pat = try!(self.parse_pat_nopanic());
1453
1454             try!(self.expect(&token::Colon));
1455             pat
1456         } else {
1457             debug!("parse_arg_general ident_to_pat");
1458             ast_util::ident_to_pat(ast::DUMMY_NODE_ID,
1459                                    self.last_span,
1460                                    special_idents::invalid)
1461         };
1462
1463         let t = try!(self.parse_ty_sum());
1464
1465         Ok(Arg {
1466             ty: t,
1467             pat: pat,
1468             id: ast::DUMMY_NODE_ID,
1469         })
1470     }
1471
1472     /// Parse a single function argument
1473     pub fn parse_arg(&mut self) -> PResult<Arg> {
1474         self.parse_arg_general(true)
1475     }
1476
1477     /// Parse an argument in a lambda header e.g. |arg, arg|
1478     pub fn parse_fn_block_arg(&mut self) -> PResult<Arg> {
1479         let pat = try!(self.parse_pat_nopanic());
1480         let t = if try!(self.eat(&token::Colon) ){
1481             try!(self.parse_ty_sum())
1482         } else {
1483             P(Ty {
1484                 id: ast::DUMMY_NODE_ID,
1485                 node: TyInfer,
1486                 span: mk_sp(self.span.lo, self.span.hi),
1487             })
1488         };
1489         Ok(Arg {
1490             ty: t,
1491             pat: pat,
1492             id: ast::DUMMY_NODE_ID
1493         })
1494     }
1495
1496     pub fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<Option<P<ast::Expr>>> {
1497         if self.check(&token::Semi) {
1498             try!(self.bump());
1499             Ok(Some(try!(self.parse_expr_nopanic())))
1500         } else {
1501             Ok(None)
1502         }
1503     }
1504
1505     /// Matches token_lit = LIT_INTEGER | ...
1506     pub fn lit_from_token(&self, tok: &token::Token) -> PResult<Lit_> {
1507         match *tok {
1508             token::Interpolated(token::NtExpr(ref v)) => {
1509                 match v.node {
1510                     ExprLit(ref lit) => { Ok(lit.node.clone()) }
1511                     _ => { return Err(self.unexpected_last(tok)); }
1512                 }
1513             }
1514             token::Literal(lit, suf) => {
1515                 let (suffix_illegal, out) = match lit {
1516                     token::Byte(i) => (true, LitByte(parse::byte_lit(&i.as_str()).0)),
1517                     token::Char(i) => (true, LitChar(parse::char_lit(&i.as_str()).0)),
1518
1519                     // there are some valid suffixes for integer and
1520                     // float literals, so all the handling is done
1521                     // internally.
1522                     token::Integer(s) => {
1523                         (false, parse::integer_lit(&s.as_str(),
1524                                                    suf.as_ref().map(|s| s.as_str()),
1525                                                    &self.sess.span_diagnostic,
1526                                                    self.last_span))
1527                     }
1528                     token::Float(s) => {
1529                         (false, parse::float_lit(&s.as_str(),
1530                                                  suf.as_ref().map(|s| s.as_str()),
1531                                                   &self.sess.span_diagnostic,
1532                                                  self.last_span))
1533                     }
1534
1535                     token::Str_(s) => {
1536                         (true,
1537                          LitStr(token::intern_and_get_ident(&parse::str_lit(&s.as_str())),
1538                                 ast::CookedStr))
1539                     }
1540                     token::StrRaw(s, n) => {
1541                         (true,
1542                          LitStr(
1543                             token::intern_and_get_ident(&parse::raw_str_lit(&s.as_str())),
1544                             ast::RawStr(n)))
1545                     }
1546                     token::ByteStr(i) =>
1547                         (true, LitByteStr(parse::byte_str_lit(&i.as_str()))),
1548                     token::ByteStrRaw(i, _) =>
1549                         (true,
1550                          LitByteStr(Rc::new(i.to_string().into_bytes()))),
1551                 };
1552
1553                 if suffix_illegal {
1554                     let sp = self.last_span;
1555                     self.expect_no_suffix(sp, &*format!("{} literal", lit.short_name()), suf)
1556                 }
1557
1558                 Ok(out)
1559             }
1560             _ => { return Err(self.unexpected_last(tok)); }
1561         }
1562     }
1563
1564     /// Matches lit = true | false | token_lit
1565     pub fn parse_lit(&mut self) -> PResult<Lit> {
1566         let lo = self.span.lo;
1567         let lit = if try!(self.eat_keyword(keywords::True) ){
1568             LitBool(true)
1569         } else if try!(self.eat_keyword(keywords::False) ){
1570             LitBool(false)
1571         } else {
1572             let token = try!(self.bump_and_get());
1573             let lit = try!(self.lit_from_token(&token));
1574             lit
1575         };
1576         Ok(codemap::Spanned { node: lit, span: mk_sp(lo, self.last_span.hi) })
1577     }
1578
1579     /// matches '-' lit | lit
1580     pub fn parse_literal_maybe_minus(&mut self) -> PResult<P<Expr>> {
1581         let minus_lo = self.span.lo;
1582         let minus_present = try!(self.eat(&token::BinOp(token::Minus)));
1583
1584         let lo = self.span.lo;
1585         let literal = P(try!(self.parse_lit()));
1586         let hi = self.span.hi;
1587         let expr = self.mk_expr(lo, hi, ExprLit(literal));
1588
1589         if minus_present {
1590             let minus_hi = self.span.hi;
1591             let unary = self.mk_unary(UnNeg, expr);
1592             Ok(self.mk_expr(minus_lo, minus_hi, unary))
1593         } else {
1594             Ok(expr)
1595         }
1596     }
1597
1598     // QUALIFIED PATH `<TYPE [as TRAIT_REF]>::IDENT[::<PARAMS>]`
1599     // Assumes that the leading `<` has been parsed already.
1600     pub fn parse_qualified_path(&mut self, mode: PathParsingMode)
1601                                 -> PResult<(QSelf, ast::Path)> {
1602         let span = self.last_span;
1603         let self_type = try!(self.parse_ty_sum());
1604         let mut path = if try!(self.eat_keyword(keywords::As)) {
1605             try!(self.parse_path(LifetimeAndTypesWithoutColons))
1606         } else {
1607             ast::Path {
1608                 span: span,
1609                 global: false,
1610                 segments: vec![]
1611             }
1612         };
1613
1614         let qself = QSelf {
1615             ty: self_type,
1616             position: path.segments.len()
1617         };
1618
1619         try!(self.expect(&token::Gt));
1620         try!(self.expect(&token::ModSep));
1621
1622         let segments = match mode {
1623             LifetimeAndTypesWithoutColons => {
1624                 try!(self.parse_path_segments_without_colons())
1625             }
1626             LifetimeAndTypesWithColons => {
1627                 try!(self.parse_path_segments_with_colons())
1628             }
1629             NoTypesAllowed => {
1630                 try!(self.parse_path_segments_without_types())
1631             }
1632         };
1633         path.segments.extend(segments);
1634
1635         path.span.hi = self.last_span.hi;
1636
1637         Ok((qself, path))
1638     }
1639
1640     /// Parses a path and optional type parameter bounds, depending on the
1641     /// mode. The `mode` parameter determines whether lifetimes, types, and/or
1642     /// bounds are permitted and whether `::` must precede type parameter
1643     /// groups.
1644     pub fn parse_path(&mut self, mode: PathParsingMode) -> PResult<ast::Path> {
1645         // Check for a whole path...
1646         let found = match self.token {
1647             token::Interpolated(token::NtPath(_)) => Some(try!(self.bump_and_get())),
1648             _ => None,
1649         };
1650         if let Some(token::Interpolated(token::NtPath(path))) = found {
1651             return Ok(*path);
1652         }
1653
1654         let lo = self.span.lo;
1655         let is_global = try!(self.eat(&token::ModSep));
1656
1657         // Parse any number of segments and bound sets. A segment is an
1658         // identifier followed by an optional lifetime and a set of types.
1659         // A bound set is a set of type parameter bounds.
1660         let segments = match mode {
1661             LifetimeAndTypesWithoutColons => {
1662                 try!(self.parse_path_segments_without_colons())
1663             }
1664             LifetimeAndTypesWithColons => {
1665                 try!(self.parse_path_segments_with_colons())
1666             }
1667             NoTypesAllowed => {
1668                 try!(self.parse_path_segments_without_types())
1669             }
1670         };
1671
1672         // Assemble the span.
1673         let span = mk_sp(lo, self.last_span.hi);
1674
1675         // Assemble the result.
1676         Ok(ast::Path {
1677             span: span,
1678             global: is_global,
1679             segments: segments,
1680         })
1681     }
1682
1683     /// Examples:
1684     /// - `a::b<T,U>::c<V,W>`
1685     /// - `a::b<T,U>::c(V) -> W`
1686     /// - `a::b<T,U>::c(V)`
1687     pub fn parse_path_segments_without_colons(&mut self) -> PResult<Vec<ast::PathSegment>> {
1688         let mut segments = Vec::new();
1689         loop {
1690             // First, parse an identifier.
1691             let identifier = try!(self.parse_ident_or_self_type());
1692
1693             // Parse types, optionally.
1694             let parameters = if try!(self.eat_lt() ){
1695                 let (lifetimes, types, bindings) = try!(self.parse_generic_values_after_lt());
1696
1697                 ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
1698                     lifetimes: lifetimes,
1699                     types: OwnedSlice::from_vec(types),
1700                     bindings: OwnedSlice::from_vec(bindings),
1701                 })
1702             } else if try!(self.eat(&token::OpenDelim(token::Paren)) ){
1703                 let lo = self.last_span.lo;
1704
1705                 let inputs = try!(self.parse_seq_to_end(
1706                     &token::CloseDelim(token::Paren),
1707                     seq_sep_trailing_allowed(token::Comma),
1708                     |p| p.parse_ty_sum()));
1709
1710                 let output_ty = if try!(self.eat(&token::RArrow) ){
1711                     Some(try!(self.parse_ty_nopanic()))
1712                 } else {
1713                     None
1714                 };
1715
1716                 let hi = self.last_span.hi;
1717
1718                 ast::ParenthesizedParameters(ast::ParenthesizedParameterData {
1719                     span: mk_sp(lo, hi),
1720                     inputs: inputs,
1721                     output: output_ty,
1722                 })
1723             } else {
1724                 ast::PathParameters::none()
1725             };
1726
1727             // Assemble and push the result.
1728             segments.push(ast::PathSegment { identifier: identifier,
1729                                              parameters: parameters });
1730
1731             // Continue only if we see a `::`
1732             if !try!(self.eat(&token::ModSep) ){
1733                 return Ok(segments);
1734             }
1735         }
1736     }
1737
1738     /// Examples:
1739     /// - `a::b::<T,U>::c`
1740     pub fn parse_path_segments_with_colons(&mut self) -> PResult<Vec<ast::PathSegment>> {
1741         let mut segments = Vec::new();
1742         loop {
1743             // First, parse an identifier.
1744             let identifier = try!(self.parse_ident_or_self_type());
1745
1746             // If we do not see a `::`, stop.
1747             if !try!(self.eat(&token::ModSep) ){
1748                 segments.push(ast::PathSegment {
1749                     identifier: identifier,
1750                     parameters: ast::PathParameters::none()
1751                 });
1752                 return Ok(segments);
1753             }
1754
1755             // Check for a type segment.
1756             if try!(self.eat_lt() ){
1757                 // Consumed `a::b::<`, go look for types
1758                 let (lifetimes, types, bindings) = try!(self.parse_generic_values_after_lt());
1759                 segments.push(ast::PathSegment {
1760                     identifier: identifier,
1761                     parameters: ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
1762                         lifetimes: lifetimes,
1763                         types: OwnedSlice::from_vec(types),
1764                         bindings: OwnedSlice::from_vec(bindings),
1765                     }),
1766                 });
1767
1768                 // Consumed `a::b::<T,U>`, check for `::` before proceeding
1769                 if !try!(self.eat(&token::ModSep) ){
1770                     return Ok(segments);
1771                 }
1772             } else {
1773                 // Consumed `a::`, go look for `b`
1774                 segments.push(ast::PathSegment {
1775                     identifier: identifier,
1776                     parameters: ast::PathParameters::none(),
1777                 });
1778             }
1779         }
1780     }
1781
1782
1783     /// Examples:
1784     /// - `a::b::c`
1785     pub fn parse_path_segments_without_types(&mut self) -> PResult<Vec<ast::PathSegment>> {
1786         let mut segments = Vec::new();
1787         loop {
1788             // First, parse an identifier.
1789             let identifier = try!(self.parse_ident_or_self_type());
1790
1791             // Assemble and push the result.
1792             segments.push(ast::PathSegment {
1793                 identifier: identifier,
1794                 parameters: ast::PathParameters::none()
1795             });
1796
1797             // If we do not see a `::`, stop.
1798             if !try!(self.eat(&token::ModSep) ){
1799                 return Ok(segments);
1800             }
1801         }
1802     }
1803
1804     /// parses 0 or 1 lifetime
1805     pub fn parse_opt_lifetime(&mut self) -> PResult<Option<ast::Lifetime>> {
1806         match self.token {
1807             token::Lifetime(..) => {
1808                 Ok(Some(try!(self.parse_lifetime())))
1809             }
1810             _ => {
1811                 Ok(None)
1812             }
1813         }
1814     }
1815
1816     /// Parses a single lifetime
1817     /// Matches lifetime = LIFETIME
1818     pub fn parse_lifetime(&mut self) -> PResult<ast::Lifetime> {
1819         match self.token {
1820             token::Lifetime(i) => {
1821                 let span = self.span;
1822                 try!(self.bump());
1823                 return Ok(ast::Lifetime {
1824                     id: ast::DUMMY_NODE_ID,
1825                     span: span,
1826                     name: i.name
1827                 });
1828             }
1829             _ => {
1830                 return Err(self.fatal(&format!("expected a lifetime name")));
1831             }
1832         }
1833     }
1834
1835     /// Parses `lifetime_defs = [ lifetime_defs { ',' lifetime_defs } ]` where `lifetime_def  =
1836     /// lifetime [':' lifetimes]`
1837     pub fn parse_lifetime_defs(&mut self) -> PResult<Vec<ast::LifetimeDef>> {
1838
1839         let mut res = Vec::new();
1840         loop {
1841             match self.token {
1842                 token::Lifetime(_) => {
1843                     let lifetime = try!(self.parse_lifetime());
1844                     let bounds =
1845                         if try!(self.eat(&token::Colon) ){
1846                             try!(self.parse_lifetimes(token::BinOp(token::Plus)))
1847                         } else {
1848                             Vec::new()
1849                         };
1850                     res.push(ast::LifetimeDef { lifetime: lifetime,
1851                                                 bounds: bounds });
1852                 }
1853
1854                 _ => {
1855                     return Ok(res);
1856                 }
1857             }
1858
1859             match self.token {
1860                 token::Comma => { try!(self.bump());}
1861                 token::Gt => { return Ok(res); }
1862                 token::BinOp(token::Shr) => { return Ok(res); }
1863                 _ => {
1864                     let this_token_str = self.this_token_to_string();
1865                     let msg = format!("expected `,` or `>` after lifetime \
1866                                       name, found `{}`",
1867                                       this_token_str);
1868                     return Err(self.fatal(&msg[..]));
1869                 }
1870             }
1871         }
1872     }
1873
1874     /// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes ) actually, it matches the empty
1875     /// one too, but putting that in there messes up the grammar....
1876     ///
1877     /// Parses zero or more comma separated lifetimes. Expects each lifetime to be followed by
1878     /// either a comma or `>`.  Used when parsing type parameter lists, where we expect something
1879     /// like `<'a, 'b, T>`.
1880     pub fn parse_lifetimes(&mut self, sep: token::Token) -> PResult<Vec<ast::Lifetime>> {
1881
1882         let mut res = Vec::new();
1883         loop {
1884             match self.token {
1885                 token::Lifetime(_) => {
1886                     res.push(try!(self.parse_lifetime()));
1887                 }
1888                 _ => {
1889                     return Ok(res);
1890                 }
1891             }
1892
1893             if self.token != sep {
1894                 return Ok(res);
1895             }
1896
1897             try!(self.bump());
1898         }
1899     }
1900
1901     /// Parse mutability declaration (mut/const/imm)
1902     pub fn parse_mutability(&mut self) -> PResult<Mutability> {
1903         if try!(self.eat_keyword(keywords::Mut) ){
1904             Ok(MutMutable)
1905         } else {
1906             Ok(MutImmutable)
1907         }
1908     }
1909
1910     /// Parse ident COLON expr
1911     pub fn parse_field(&mut self) -> PResult<Field> {
1912         let lo = self.span.lo;
1913         let i = try!(self.parse_ident());
1914         let hi = self.last_span.hi;
1915         try!(self.expect(&token::Colon));
1916         let e = try!(self.parse_expr_nopanic());
1917         Ok(ast::Field {
1918             ident: spanned(lo, hi, i),
1919             span: mk_sp(lo, e.span.hi),
1920             expr: e,
1921         })
1922     }
1923
1924     pub fn mk_expr(&mut self, lo: BytePos, hi: BytePos, node: Expr_) -> P<Expr> {
1925         P(Expr {
1926             id: ast::DUMMY_NODE_ID,
1927             node: node,
1928             span: mk_sp(lo, hi),
1929         })
1930     }
1931
1932     pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::Expr_ {
1933         ExprUnary(unop, expr)
1934     }
1935
1936     pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
1937         ExprBinary(binop, lhs, rhs)
1938     }
1939
1940     pub fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::Expr_ {
1941         ExprCall(f, args)
1942     }
1943
1944     fn mk_method_call(&mut self,
1945                       ident: ast::SpannedIdent,
1946                       tps: Vec<P<Ty>>,
1947                       args: Vec<P<Expr>>)
1948                       -> ast::Expr_ {
1949         ExprMethodCall(ident, tps, args)
1950     }
1951
1952     pub fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::Expr_ {
1953         ExprIndex(expr, idx)
1954     }
1955
1956     pub fn mk_range(&mut self,
1957                     start: Option<P<Expr>>,
1958                     end: Option<P<Expr>>)
1959                     -> ast::Expr_ {
1960         ExprRange(start, end)
1961     }
1962
1963     pub fn mk_field(&mut self, expr: P<Expr>, ident: ast::SpannedIdent) -> ast::Expr_ {
1964         ExprField(expr, ident)
1965     }
1966
1967     pub fn mk_tup_field(&mut self, expr: P<Expr>, idx: codemap::Spanned<usize>) -> ast::Expr_ {
1968         ExprTupField(expr, idx)
1969     }
1970
1971     pub fn mk_assign_op(&mut self, binop: ast::BinOp,
1972                         lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
1973         ExprAssignOp(binop, lhs, rhs)
1974     }
1975
1976     pub fn mk_mac_expr(&mut self, lo: BytePos, hi: BytePos, m: Mac_) -> P<Expr> {
1977         P(Expr {
1978             id: ast::DUMMY_NODE_ID,
1979             node: ExprMac(codemap::Spanned {node: m, span: mk_sp(lo, hi)}),
1980             span: mk_sp(lo, hi),
1981         })
1982     }
1983
1984     pub fn mk_lit_u32(&mut self, i: u32) -> P<Expr> {
1985         let span = &self.span;
1986         let lv_lit = P(codemap::Spanned {
1987             node: LitInt(i as u64, ast::UnsignedIntLit(TyU32)),
1988             span: *span
1989         });
1990
1991         P(Expr {
1992             id: ast::DUMMY_NODE_ID,
1993             node: ExprLit(lv_lit),
1994             span: *span,
1995         })
1996     }
1997
1998     fn expect_open_delim(&mut self) -> PResult<token::DelimToken> {
1999         self.expected_tokens.push(TokenType::Token(token::Gt));
2000         match self.token {
2001             token::OpenDelim(delim) => {
2002                 try!(self.bump());
2003                 Ok(delim)
2004             },
2005             _ => Err(self.fatal("expected open delimiter")),
2006         }
2007     }
2008
2009     /// At the bottom (top?) of the precedence hierarchy,
2010     /// parse things like parenthesized exprs,
2011     /// macros, return, etc.
2012     pub fn parse_bottom_expr(&mut self) -> PResult<P<Expr>> {
2013         maybe_whole_expr!(self);
2014
2015         let lo = self.span.lo;
2016         let mut hi = self.span.hi;
2017
2018         let ex: Expr_;
2019
2020         // Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr().
2021         match self.token {
2022             token::OpenDelim(token::Paren) => {
2023                 try!(self.bump());
2024
2025                 // (e) is parenthesized e
2026                 // (e,) is a tuple with only one field, e
2027                 let mut es = vec![];
2028                 let mut trailing_comma = false;
2029                 while self.token != token::CloseDelim(token::Paren) {
2030                     es.push(try!(self.parse_expr_nopanic()));
2031                     try!(self.commit_expr(&**es.last().unwrap(), &[],
2032                                      &[token::Comma, token::CloseDelim(token::Paren)]));
2033                     if self.check(&token::Comma) {
2034                         trailing_comma = true;
2035
2036                         try!(self.bump());
2037                     } else {
2038                         trailing_comma = false;
2039                         break;
2040                     }
2041                 }
2042                 try!(self.bump());
2043
2044                 hi = self.last_span.hi;
2045                 return if es.len() == 1 && !trailing_comma {
2046                     Ok(self.mk_expr(lo, hi, ExprParen(es.into_iter().nth(0).unwrap())))
2047                 } else {
2048                     Ok(self.mk_expr(lo, hi, ExprTup(es)))
2049                 }
2050             },
2051             token::OpenDelim(token::Brace) => {
2052                 return self.parse_block_expr(lo, DefaultBlock);
2053             },
2054             token::BinOp(token::Or) |  token::OrOr => {
2055                 let lo = self.span.lo;
2056                 return self.parse_lambda_expr(lo, CaptureByRef);
2057             },
2058             token::Ident(id @ ast::Ident {
2059                             name: token::SELF_KEYWORD_NAME,
2060                             ctxt: _
2061                          }, token::Plain) => {
2062                 try!(self.bump());
2063                 let path = ast_util::ident_to_path(mk_sp(lo, hi), id);
2064                 ex = ExprPath(None, path);
2065                 hi = self.last_span.hi;
2066             }
2067             token::OpenDelim(token::Bracket) => {
2068                 try!(self.bump());
2069
2070                 if self.check(&token::CloseDelim(token::Bracket)) {
2071                     // Empty vector.
2072                     try!(self.bump());
2073                     ex = ExprVec(Vec::new());
2074                 } else {
2075                     // Nonempty vector.
2076                     let first_expr = try!(self.parse_expr_nopanic());
2077                     if self.check(&token::Semi) {
2078                         // Repeating array syntax: [ 0; 512 ]
2079                         try!(self.bump());
2080                         let count = try!(self.parse_expr_nopanic());
2081                         try!(self.expect(&token::CloseDelim(token::Bracket)));
2082                         ex = ExprRepeat(first_expr, count);
2083                     } else if self.check(&token::Comma) {
2084                         // Vector with two or more elements.
2085                         try!(self.bump());
2086                         let remaining_exprs = try!(self.parse_seq_to_end(
2087                             &token::CloseDelim(token::Bracket),
2088                             seq_sep_trailing_allowed(token::Comma),
2089                             |p| Ok(try!(p.parse_expr_nopanic()))
2090                                 ));
2091                         let mut exprs = vec!(first_expr);
2092                         exprs.extend(remaining_exprs);
2093                         ex = ExprVec(exprs);
2094                     } else {
2095                         // Vector with one element.
2096                         try!(self.expect(&token::CloseDelim(token::Bracket)));
2097                         ex = ExprVec(vec!(first_expr));
2098                     }
2099                 }
2100                 hi = self.last_span.hi;
2101             }
2102             _ => {
2103                 if try!(self.eat_lt()){
2104                     let (qself, path) =
2105                         try!(self.parse_qualified_path(LifetimeAndTypesWithColons));
2106                     hi = path.span.hi;
2107                     return Ok(self.mk_expr(lo, hi, ExprPath(Some(qself), path)));
2108                 }
2109                 if try!(self.eat_keyword(keywords::Move) ){
2110                     let lo = self.last_span.lo;
2111                     return self.parse_lambda_expr(lo, CaptureByValue);
2112                 }
2113                 if try!(self.eat_keyword(keywords::If)) {
2114                     return self.parse_if_expr();
2115                 }
2116                 if try!(self.eat_keyword(keywords::For) ){
2117                     let lo = self.last_span.lo;
2118                     return self.parse_for_expr(None, lo);
2119                 }
2120                 if try!(self.eat_keyword(keywords::While) ){
2121                     let lo = self.last_span.lo;
2122                     return self.parse_while_expr(None, lo);
2123                 }
2124                 if self.token.is_lifetime() {
2125                     let lifetime = self.get_lifetime();
2126                     let lo = self.span.lo;
2127                     try!(self.bump());
2128                     try!(self.expect(&token::Colon));
2129                     if try!(self.eat_keyword(keywords::While) ){
2130                         return self.parse_while_expr(Some(lifetime), lo)
2131                     }
2132                     if try!(self.eat_keyword(keywords::For) ){
2133                         return self.parse_for_expr(Some(lifetime), lo)
2134                     }
2135                     if try!(self.eat_keyword(keywords::Loop) ){
2136                         return self.parse_loop_expr(Some(lifetime), lo)
2137                     }
2138                     return Err(self.fatal("expected `while`, `for`, or `loop` after a label"))
2139                 }
2140                 if try!(self.eat_keyword(keywords::Loop) ){
2141                     let lo = self.last_span.lo;
2142                     return self.parse_loop_expr(None, lo);
2143                 }
2144                 if try!(self.eat_keyword(keywords::Continue) ){
2145                     let ex = if self.token.is_lifetime() {
2146                         let ex = ExprAgain(Some(Spanned{
2147                             node: self.get_lifetime(),
2148                             span: self.span
2149                         }));
2150                         try!(self.bump());
2151                         ex
2152                     } else {
2153                         ExprAgain(None)
2154                     };
2155                     let hi = self.last_span.hi;
2156                     return Ok(self.mk_expr(lo, hi, ex));
2157                 }
2158                 if try!(self.eat_keyword(keywords::Match) ){
2159                     return self.parse_match_expr();
2160                 }
2161                 if try!(self.eat_keyword(keywords::Unsafe) ){
2162                     return self.parse_block_expr(
2163                         lo,
2164                         UnsafeBlock(ast::UserProvided));
2165                 }
2166                 if try!(self.eat_keyword(keywords::Return) ){
2167                     if self.token.can_begin_expr() {
2168                         let e = try!(self.parse_expr_nopanic());
2169                         hi = e.span.hi;
2170                         ex = ExprRet(Some(e));
2171                     } else {
2172                         ex = ExprRet(None);
2173                     }
2174                 } else if try!(self.eat_keyword(keywords::Break) ){
2175                     if self.token.is_lifetime() {
2176                         ex = ExprBreak(Some(Spanned {
2177                             node: self.get_lifetime(),
2178                             span: self.span
2179                         }));
2180                         try!(self.bump());
2181                     } else {
2182                         ex = ExprBreak(None);
2183                     }
2184                     hi = self.last_span.hi;
2185                 } else if self.check(&token::ModSep) ||
2186                         self.token.is_ident() &&
2187                         !self.check_keyword(keywords::True) &&
2188                         !self.check_keyword(keywords::False) {
2189                     let pth =
2190                         try!(self.parse_path(LifetimeAndTypesWithColons));
2191
2192                     // `!`, as an operator, is prefix, so we know this isn't that
2193                     if self.check(&token::Not) {
2194                         // MACRO INVOCATION expression
2195                         try!(self.bump());
2196
2197                         let delim = try!(self.expect_open_delim());
2198                         let tts = try!(self.parse_seq_to_end(
2199                             &token::CloseDelim(delim),
2200                             seq_sep_none(),
2201                             |p| p.parse_token_tree()));
2202                         let hi = self.last_span.hi;
2203
2204                         return Ok(self.mk_mac_expr(lo,
2205                                                    hi,
2206                                                    MacInvocTT(pth,
2207                                                               tts,
2208                                                               EMPTY_CTXT)));
2209                     }
2210                     if self.check(&token::OpenDelim(token::Brace)) {
2211                         // This is a struct literal, unless we're prohibited
2212                         // from parsing struct literals here.
2213                         let prohibited = self.restrictions.contains(
2214                             Restrictions::RESTRICTION_NO_STRUCT_LITERAL
2215                         );
2216                         if !prohibited {
2217                             // It's a struct literal.
2218                             try!(self.bump());
2219                             let mut fields = Vec::new();
2220                             let mut base = None;
2221
2222                             while self.token != token::CloseDelim(token::Brace) {
2223                                 if try!(self.eat(&token::DotDot) ){
2224                                     base = Some(try!(self.parse_expr_nopanic()));
2225                                     break;
2226                                 }
2227
2228                                 fields.push(try!(self.parse_field()));
2229                                 try!(self.commit_expr(&*fields.last().unwrap().expr,
2230                                                  &[token::Comma],
2231                                                  &[token::CloseDelim(token::Brace)]));
2232                             }
2233
2234                             hi = self.span.hi;
2235                             try!(self.expect(&token::CloseDelim(token::Brace)));
2236                             ex = ExprStruct(pth, fields, base);
2237                             return Ok(self.mk_expr(lo, hi, ex));
2238                         }
2239                     }
2240
2241                     hi = pth.span.hi;
2242                     ex = ExprPath(None, pth);
2243                 } else {
2244                     // other literal expression
2245                     let lit = try!(self.parse_lit());
2246                     hi = lit.span.hi;
2247                     ex = ExprLit(P(lit));
2248                 }
2249             }
2250         }
2251
2252         return Ok(self.mk_expr(lo, hi, ex));
2253     }
2254
2255     /// Parse a block or unsafe block
2256     pub fn parse_block_expr(&mut self, lo: BytePos, blk_mode: BlockCheckMode)
2257                             -> PResult<P<Expr>> {
2258         try!(self.expect(&token::OpenDelim(token::Brace)));
2259         let blk = try!(self.parse_block_tail(lo, blk_mode));
2260         return Ok(self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)));
2261     }
2262
2263     /// parse a.b or a(13) or a[4] or just a
2264     pub fn parse_dot_or_call_expr(&mut self) -> PResult<P<Expr>> {
2265         let b = try!(self.parse_bottom_expr());
2266         self.parse_dot_or_call_expr_with(b)
2267     }
2268
2269     pub fn parse_dot_or_call_expr_with(&mut self, e0: P<Expr>) -> PResult<P<Expr>> {
2270         let mut e = e0;
2271         let lo = e.span.lo;
2272         let mut hi;
2273         loop {
2274             // expr.f
2275             if try!(self.eat(&token::Dot) ){
2276                 match self.token {
2277                   token::Ident(i, _) => {
2278                     let dot = self.last_span.hi;
2279                     hi = self.span.hi;
2280                     try!(self.bump());
2281                     let (_, tys, bindings) = if try!(self.eat(&token::ModSep) ){
2282                         try!(self.expect_lt());
2283                         try!(self.parse_generic_values_after_lt())
2284                     } else {
2285                         (Vec::new(), Vec::new(), Vec::new())
2286                     };
2287
2288                     if !bindings.is_empty() {
2289                         let last_span = self.last_span;
2290                         self.span_err(last_span, "type bindings are only permitted on trait paths");
2291                     }
2292
2293                     // expr.f() method call
2294                     match self.token {
2295                         token::OpenDelim(token::Paren) => {
2296                             let mut es = try!(self.parse_unspanned_seq(
2297                                 &token::OpenDelim(token::Paren),
2298                                 &token::CloseDelim(token::Paren),
2299                                 seq_sep_trailing_allowed(token::Comma),
2300                                 |p| Ok(try!(p.parse_expr_nopanic()))
2301                             ));
2302                             hi = self.last_span.hi;
2303
2304                             es.insert(0, e);
2305                             let id = spanned(dot, hi, i);
2306                             let nd = self.mk_method_call(id, tys, es);
2307                             e = self.mk_expr(lo, hi, nd);
2308                         }
2309                         _ => {
2310                             if !tys.is_empty() {
2311                                 let last_span = self.last_span;
2312                                 self.span_err(last_span,
2313                                               "field expressions may not \
2314                                                have type parameters");
2315                             }
2316
2317                             let id = spanned(dot, hi, i);
2318                             let field = self.mk_field(e, id);
2319                             e = self.mk_expr(lo, hi, field);
2320                         }
2321                     }
2322                   }
2323                   token::Literal(token::Integer(n), suf) => {
2324                     let sp = self.span;
2325
2326                     // A tuple index may not have a suffix
2327                     self.expect_no_suffix(sp, "tuple index", suf);
2328
2329                     let dot = self.last_span.hi;
2330                     hi = self.span.hi;
2331                     try!(self.bump());
2332
2333                     let index = n.as_str().parse::<usize>().ok();
2334                     match index {
2335                         Some(n) => {
2336                             let id = spanned(dot, hi, n);
2337                             let field = self.mk_tup_field(e, id);
2338                             e = self.mk_expr(lo, hi, field);
2339                         }
2340                         None => {
2341                             let last_span = self.last_span;
2342                             self.span_err(last_span, "invalid tuple or tuple struct index");
2343                         }
2344                     }
2345                   }
2346                   token::Literal(token::Float(n), _suf) => {
2347                     try!(self.bump());
2348                     let last_span = self.last_span;
2349                     let fstr = n.as_str();
2350                     self.span_err(last_span,
2351                                   &format!("unexpected token: `{}`", n.as_str()));
2352                     if fstr.chars().all(|x| "0123456789.".contains(x)) {
2353                         let float = match fstr.parse::<f64>().ok() {
2354                             Some(f) => f,
2355                             None => continue,
2356                         };
2357                         self.fileline_help(last_span,
2358                             &format!("try parenthesizing the first index; e.g., `(foo.{}){}`",
2359                                     float.trunc() as usize,
2360                                     format!(".{}", fstr.splitn(2, ".").last().unwrap())));
2361                     }
2362                     self.abort_if_errors();
2363
2364                   }
2365                   _ => return Err(self.unexpected())
2366                 }
2367                 continue;
2368             }
2369             if self.expr_is_complete(&*e) { break; }
2370             match self.token {
2371               // expr(...)
2372               token::OpenDelim(token::Paren) => {
2373                 let es = try!(self.parse_unspanned_seq(
2374                     &token::OpenDelim(token::Paren),
2375                     &token::CloseDelim(token::Paren),
2376                     seq_sep_trailing_allowed(token::Comma),
2377                     |p| Ok(try!(p.parse_expr_nopanic()))
2378                 ));
2379                 hi = self.last_span.hi;
2380
2381                 let nd = self.mk_call(e, es);
2382                 e = self.mk_expr(lo, hi, nd);
2383               }
2384
2385               // expr[...]
2386               // Could be either an index expression or a slicing expression.
2387               token::OpenDelim(token::Bracket) => {
2388                 try!(self.bump());
2389                 let ix = try!(self.parse_expr_nopanic());
2390                 hi = self.span.hi;
2391                 try!(self.commit_expr_expecting(&*ix, token::CloseDelim(token::Bracket)));
2392                 let index = self.mk_index(e, ix);
2393                 e = self.mk_expr(lo, hi, index)
2394               }
2395               _ => return Ok(e)
2396             }
2397         }
2398         return Ok(e);
2399     }
2400
2401     // Parse unquoted tokens after a `$` in a token tree
2402     fn parse_unquoted(&mut self) -> PResult<TokenTree> {
2403         let mut sp = self.span;
2404         let (name, namep) = match self.token {
2405             token::Dollar => {
2406                 try!(self.bump());
2407
2408                 if self.token == token::OpenDelim(token::Paren) {
2409                     let Spanned { node: seq, span: seq_span } = try!(self.parse_seq(
2410                         &token::OpenDelim(token::Paren),
2411                         &token::CloseDelim(token::Paren),
2412                         seq_sep_none(),
2413                         |p| p.parse_token_tree()
2414                     ));
2415                     let (sep, repeat) = try!(self.parse_sep_and_kleene_op());
2416                     let name_num = macro_parser::count_names(&seq);
2417                     return Ok(TtSequence(mk_sp(sp.lo, seq_span.hi),
2418                                       Rc::new(SequenceRepetition {
2419                                           tts: seq,
2420                                           separator: sep,
2421                                           op: repeat,
2422                                           num_captures: name_num
2423                                       })));
2424                 } else if self.token.is_keyword_allow_following_colon(keywords::Crate) {
2425                     try!(self.bump());
2426                     return Ok(TtToken(sp, SpecialVarNt(SpecialMacroVar::CrateMacroVar)));
2427                 } else {
2428                     sp = mk_sp(sp.lo, self.span.hi);
2429                     let namep = match self.token { token::Ident(_, p) => p, _ => token::Plain };
2430                     let name = try!(self.parse_ident());
2431                     (name, namep)
2432                 }
2433             }
2434             token::SubstNt(name, namep) => {
2435                 try!(self.bump());
2436                 (name, namep)
2437             }
2438             _ => unreachable!()
2439         };
2440         // continue by trying to parse the `:ident` after `$name`
2441         if self.token == token::Colon && self.look_ahead(1, |t| t.is_ident() &&
2442                                                                 !t.is_strict_keyword() &&
2443                                                                 !t.is_reserved_keyword()) {
2444             try!(self.bump());
2445             sp = mk_sp(sp.lo, self.span.hi);
2446             let kindp = match self.token { token::Ident(_, p) => p, _ => token::Plain };
2447             let nt_kind = try!(self.parse_ident());
2448             Ok(TtToken(sp, MatchNt(name, nt_kind, namep, kindp)))
2449         } else {
2450             Ok(TtToken(sp, SubstNt(name, namep)))
2451         }
2452     }
2453
2454     pub fn check_unknown_macro_variable(&mut self) -> PResult<()> {
2455         if self.quote_depth == 0 {
2456             match self.token {
2457                 token::SubstNt(name, _) =>
2458                     return Err(self.fatal(&format!("unknown macro variable `{}`",
2459                                        name))),
2460                 _ => {}
2461             }
2462         }
2463         Ok(())
2464     }
2465
2466     /// Parse an optional separator followed by a Kleene-style
2467     /// repetition token (+ or *).
2468     pub fn parse_sep_and_kleene_op(&mut self) -> PResult<(Option<token::Token>, ast::KleeneOp)> {
2469         fn parse_kleene_op(parser: &mut Parser) -> PResult<Option<ast::KleeneOp>> {
2470             match parser.token {
2471                 token::BinOp(token::Star) => {
2472                     try!(parser.bump());
2473                     Ok(Some(ast::ZeroOrMore))
2474                 },
2475                 token::BinOp(token::Plus) => {
2476                     try!(parser.bump());
2477                     Ok(Some(ast::OneOrMore))
2478                 },
2479                 _ => Ok(None)
2480             }
2481         };
2482
2483         match try!(parse_kleene_op(self)) {
2484             Some(kleene_op) => return Ok((None, kleene_op)),
2485             None => {}
2486         }
2487
2488         let separator = try!(self.bump_and_get());
2489         match try!(parse_kleene_op(self)) {
2490             Some(zerok) => Ok((Some(separator), zerok)),
2491             None => return Err(self.fatal("expected `*` or `+`"))
2492         }
2493     }
2494
2495     /// parse a single token tree from the input.
2496     pub fn parse_token_tree(&mut self) -> PResult<TokenTree> {
2497         // FIXME #6994: currently, this is too eager. It
2498         // parses token trees but also identifies TtSequence's
2499         // and token::SubstNt's; it's too early to know yet
2500         // whether something will be a nonterminal or a seq
2501         // yet.
2502         maybe_whole!(deref self, NtTT);
2503
2504         // this is the fall-through for the 'match' below.
2505         // invariants: the current token is not a left-delimiter,
2506         // not an EOF, and not the desired right-delimiter (if
2507         // it were, parse_seq_to_before_end would have prevented
2508         // reaching this point.
2509         fn parse_non_delim_tt_tok(p: &mut Parser) -> PResult<TokenTree> {
2510             maybe_whole!(deref p, NtTT);
2511             match p.token {
2512                 token::CloseDelim(_) => {
2513                     // This is a conservative error: only report the last unclosed delimiter. The
2514                     // previous unclosed delimiters could actually be closed! The parser just hasn't
2515                     // gotten to them yet.
2516                     match p.open_braces.last() {
2517                         None => {}
2518                         Some(&sp) => p.span_note(sp, "unclosed delimiter"),
2519                     };
2520                     let token_str = p.this_token_to_string();
2521                     Err(p.fatal(&format!("incorrect close delimiter: `{}`",
2522                                     token_str)))
2523                 },
2524                 /* we ought to allow different depths of unquotation */
2525                 token::Dollar | token::SubstNt(..) if p.quote_depth > 0 => {
2526                     p.parse_unquoted()
2527                 }
2528                 _ => {
2529                     Ok(TtToken(p.span, try!(p.bump_and_get())))
2530                 }
2531             }
2532         }
2533
2534         match self.token {
2535             token::Eof => {
2536                 let open_braces = self.open_braces.clone();
2537                 for sp in &open_braces {
2538                     self.span_help(*sp, "did you mean to close this delimiter?");
2539                 }
2540                 // There shouldn't really be a span, but it's easier for the test runner
2541                 // if we give it one
2542                 return Err(self.fatal("this file contains an un-closed delimiter "));
2543             },
2544             token::OpenDelim(delim) => {
2545                 // The span for beginning of the delimited section
2546                 let pre_span = self.span;
2547
2548                 // Parse the open delimiter.
2549                 self.open_braces.push(self.span);
2550                 let open_span = self.span;
2551                 try!(self.bump());
2552
2553                 // Parse the token trees within the delimiters
2554                 let tts = try!(self.parse_seq_to_before_end(
2555                     &token::CloseDelim(delim),
2556                     seq_sep_none(),
2557                     |p| p.parse_token_tree()
2558                 ));
2559
2560                 // Parse the close delimiter.
2561                 let close_span = self.span;
2562                 try!(self.bump());
2563                 self.open_braces.pop().unwrap();
2564
2565                 // Expand to cover the entire delimited token tree
2566                 let span = Span { hi: close_span.hi, ..pre_span };
2567
2568                 Ok(TtDelimited(span, Rc::new(Delimited {
2569                     delim: delim,
2570                     open_span: open_span,
2571                     tts: tts,
2572                     close_span: close_span,
2573                 })))
2574             },
2575             _ => parse_non_delim_tt_tok(self),
2576         }
2577     }
2578
2579     // parse a stream of tokens into a list of TokenTree's,
2580     // up to EOF.
2581     pub fn parse_all_token_trees(&mut self) -> PResult<Vec<TokenTree>> {
2582         let mut tts = Vec::new();
2583         while self.token != token::Eof {
2584             tts.push(try!(self.parse_token_tree()));
2585         }
2586         Ok(tts)
2587     }
2588
2589     /// Parse a prefix-operator expr
2590     pub fn parse_prefix_expr(&mut self) -> PResult<P<Expr>> {
2591         let lo = self.span.lo;
2592         let hi;
2593
2594         // Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr()
2595         let ex;
2596         match self.token {
2597           token::Not => {
2598             try!(self.bump());
2599             let e = try!(self.parse_prefix_expr());
2600             hi = e.span.hi;
2601             ex = self.mk_unary(UnNot, e);
2602           }
2603           token::BinOp(token::Minus) => {
2604             try!(self.bump());
2605             let e = try!(self.parse_prefix_expr());
2606             hi = e.span.hi;
2607             ex = self.mk_unary(UnNeg, e);
2608           }
2609           token::BinOp(token::Star) => {
2610             try!(self.bump());
2611             let e = try!(self.parse_prefix_expr());
2612             hi = e.span.hi;
2613             ex = self.mk_unary(UnDeref, e);
2614           }
2615           token::BinOp(token::And) | token::AndAnd => {
2616             try!(self.expect_and());
2617             let m = try!(self.parse_mutability());
2618             let e = try!(self.parse_prefix_expr());
2619             hi = e.span.hi;
2620             ex = ExprAddrOf(m, e);
2621           }
2622           token::Ident(_, _) => {
2623             if !self.check_keyword(keywords::Box) && !self.check_keyword(keywords::In) {
2624                 return self.parse_dot_or_call_expr();
2625             }
2626
2627             let lo = self.span.lo;
2628             let keyword_hi = self.span.hi;
2629
2630             let is_in = self.token.is_keyword(keywords::In);
2631             try!(self.bump());
2632
2633             if is_in {
2634               let place = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL));
2635               let blk = try!(self.parse_block());
2636               hi = blk.span.hi;
2637               let blk_expr = self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk));
2638               ex = ExprBox(Some(place), blk_expr);
2639               return Ok(self.mk_expr(lo, hi, ex));
2640             }
2641
2642             // FIXME (#22181) Remove `box (PLACE) EXPR` support
2643             // entirely after next release (enabling `(box (EXPR))`),
2644             // since it will be replaced by `in PLACE { EXPR }`, ...
2645             //
2646             // ... but for now: check for a place: `box(PLACE) EXPR`.
2647
2648             if try!(self.eat(&token::OpenDelim(token::Paren))) {
2649                 let box_span = mk_sp(lo, self.last_span.hi);
2650                 self.span_warn(box_span,
2651                     "deprecated syntax; use the `in` keyword now \
2652                            (e.g. change `box (<expr>) <expr>` to \
2653                                         `in <expr> { <expr> }`)");
2654
2655                 // Continue supporting `box () EXPR` (temporarily)
2656                 if !try!(self.eat(&token::CloseDelim(token::Paren))) {
2657                     let place = try!(self.parse_expr_nopanic());
2658                     try!(self.expect(&token::CloseDelim(token::Paren)));
2659                     // Give a suggestion to use `box()` when a parenthesised expression is used
2660                     if !self.token.can_begin_expr() {
2661                         let span = self.span;
2662                         let this_token_to_string = self.this_token_to_string();
2663                         self.span_err(span,
2664                                       &format!("expected expression, found `{}`",
2665                                               this_token_to_string));
2666
2667                         // Spanning just keyword avoids constructing
2668                         // printout of arg expression (which starts
2669                         // with parenthesis, as established above).
2670
2671                         let box_span = mk_sp(lo, keyword_hi);
2672                         self.span_suggestion(box_span,
2673                                              "try using `box ()` instead:",
2674                                              format!("box ()"));
2675                         self.abort_if_errors();
2676                     }
2677                     let subexpression = try!(self.parse_prefix_expr());
2678                     hi = subexpression.span.hi;
2679                     ex = ExprBox(Some(place), subexpression);
2680                     return Ok(self.mk_expr(lo, hi, ex));
2681                 }
2682             }
2683
2684             // Otherwise, we use the unique pointer default.
2685             let subexpression = try!(self.parse_prefix_expr());
2686             hi = subexpression.span.hi;
2687
2688             // FIXME (pnkfelix): After working out kinks with box
2689             // desugaring, should be `ExprBox(None, subexpression)`
2690             // instead.
2691             ex = self.mk_unary(UnUniq, subexpression);
2692           }
2693           _ => return self.parse_dot_or_call_expr()
2694         }
2695         return Ok(self.mk_expr(lo, hi, ex));
2696     }
2697
2698     /// Parse an expression of binops
2699     pub fn parse_binops(&mut self) -> PResult<P<Expr>> {
2700         let prefix_expr = try!(self.parse_prefix_expr());
2701         self.parse_more_binops(prefix_expr, 0)
2702     }
2703
2704     /// Parse an expression of binops of at least min_prec precedence
2705     pub fn parse_more_binops(&mut self, lhs: P<Expr>, min_prec: usize) -> PResult<P<Expr>> {
2706         if self.expr_is_complete(&*lhs) { return Ok(lhs); }
2707
2708         self.expected_tokens.push(TokenType::Operator);
2709
2710         let cur_op_span = self.span;
2711         let cur_opt = self.token.to_binop();
2712         match cur_opt {
2713             Some(cur_op) => {
2714                 if ast_util::is_comparison_binop(cur_op) {
2715                     self.check_no_chained_comparison(&*lhs, cur_op)
2716                 }
2717                 let cur_prec = operator_prec(cur_op);
2718                 if cur_prec >= min_prec {
2719                     try!(self.bump());
2720                     let expr = try!(self.parse_prefix_expr());
2721                     let rhs = try!(self.parse_more_binops(expr, cur_prec + 1));
2722                     let lhs_span = lhs.span;
2723                     let rhs_span = rhs.span;
2724                     let binary = self.mk_binary(codemap::respan(cur_op_span, cur_op), lhs, rhs);
2725                     let bin = self.mk_expr(lhs_span.lo, rhs_span.hi, binary);
2726                     self.parse_more_binops(bin, min_prec)
2727                 } else {
2728                     Ok(lhs)
2729                 }
2730             }
2731             None => {
2732                 if AS_PREC >= min_prec && try!(self.eat_keyword_noexpect(keywords::As) ){
2733                     let rhs = try!(self.parse_ty_nopanic());
2734                     let _as = self.mk_expr(lhs.span.lo,
2735                                            rhs.span.hi,
2736                                            ExprCast(lhs, rhs));
2737                     self.parse_more_binops(_as, min_prec)
2738                 } else {
2739                     Ok(lhs)
2740                 }
2741             }
2742         }
2743     }
2744
2745     /// Produce an error if comparison operators are chained (RFC #558).
2746     /// We only need to check lhs, not rhs, because all comparison ops
2747     /// have same precedence and are left-associative
2748     fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: ast::BinOp_) {
2749         debug_assert!(ast_util::is_comparison_binop(outer_op));
2750         match lhs.node {
2751             ExprBinary(op, _, _) if ast_util::is_comparison_binop(op.node) => {
2752                 // respan to include both operators
2753                 let op_span = mk_sp(op.span.lo, self.span.hi);
2754                 self.span_err(op_span,
2755                     "chained comparison operators require parentheses");
2756                 if op.node == BiLt && outer_op == BiGt {
2757                     self.fileline_help(op_span,
2758                         "use `::<...>` instead of `<...>` if you meant to specify type arguments");
2759                 }
2760             }
2761             _ => {}
2762         }
2763     }
2764
2765     /// Parse an assignment expression....
2766     /// actually, this seems to be the main entry point for
2767     /// parsing an arbitrary expression.
2768     pub fn parse_assign_expr(&mut self) -> PResult<P<Expr>> {
2769         match self.token {
2770           token::DotDot => {
2771             // prefix-form of range notation '..expr'
2772             // This has the same precedence as assignment expressions
2773             // (much lower than other prefix expressions) to be consistent
2774             // with the postfix-form 'expr..'
2775             let lo = self.span.lo;
2776             let mut hi = self.span.hi;
2777             try!(self.bump());
2778             let opt_end = if self.is_at_start_of_range_notation_rhs() {
2779                 let end = try!(self.parse_binops());
2780                 hi = end.span.hi;
2781                 Some(end)
2782             } else {
2783                 None
2784             };
2785             let ex = self.mk_range(None, opt_end);
2786             Ok(self.mk_expr(lo, hi, ex))
2787           }
2788           _ => {
2789             let lhs = try!(self.parse_binops());
2790             self.parse_assign_expr_with(lhs)
2791           }
2792         }
2793     }
2794
2795     pub fn parse_assign_expr_with(&mut self, lhs: P<Expr>) -> PResult<P<Expr>> {
2796         let restrictions = self.restrictions & Restrictions::RESTRICTION_NO_STRUCT_LITERAL;
2797         let op_span = self.span;
2798         match self.token {
2799           token::Eq => {
2800               try!(self.bump());
2801               let rhs = try!(self.parse_expr_res(restrictions));
2802               Ok(self.mk_expr(lhs.span.lo, rhs.span.hi, ExprAssign(lhs, rhs)))
2803           }
2804           token::BinOpEq(op) => {
2805               try!(self.bump());
2806               let rhs = try!(self.parse_expr_res(restrictions));
2807               let aop = match op {
2808                   token::Plus =>    BiAdd,
2809                   token::Minus =>   BiSub,
2810                   token::Star =>    BiMul,
2811                   token::Slash =>   BiDiv,
2812                   token::Percent => BiRem,
2813                   token::Caret =>   BiBitXor,
2814                   token::And =>     BiBitAnd,
2815                   token::Or =>      BiBitOr,
2816                   token::Shl =>     BiShl,
2817                   token::Shr =>     BiShr
2818               };
2819               let rhs_span = rhs.span;
2820               let span = lhs.span;
2821               let assign_op = self.mk_assign_op(codemap::respan(op_span, aop), lhs, rhs);
2822               Ok(self.mk_expr(span.lo, rhs_span.hi, assign_op))
2823           }
2824           // A range expression, either `expr..expr` or `expr..`.
2825           token::DotDot => {
2826             let lo = lhs.span.lo;
2827             let mut hi = self.span.hi;
2828             try!(self.bump());
2829
2830             let opt_end = if self.is_at_start_of_range_notation_rhs() {
2831                 let end = try!(self.parse_binops());
2832                 hi = end.span.hi;
2833                 Some(end)
2834             } else {
2835                 None
2836             };
2837             let range = self.mk_range(Some(lhs), opt_end);
2838             return Ok(self.mk_expr(lo, hi, range));
2839           }
2840
2841           _ => {
2842               Ok(lhs)
2843           }
2844         }
2845     }
2846
2847     fn is_at_start_of_range_notation_rhs(&self) -> bool {
2848         if self.token.can_begin_expr() {
2849             // parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
2850             if self.token == token::OpenDelim(token::Brace) {
2851                 return !self.restrictions.contains(Restrictions::RESTRICTION_NO_STRUCT_LITERAL);
2852             }
2853             true
2854         } else {
2855             false
2856         }
2857     }
2858
2859     /// Parse an 'if' or 'if let' expression ('if' token already eaten)
2860     pub fn parse_if_expr(&mut self) -> PResult<P<Expr>> {
2861         if self.check_keyword(keywords::Let) {
2862             return self.parse_if_let_expr();
2863         }
2864         let lo = self.last_span.lo;
2865         let cond = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL));
2866         let thn = try!(self.parse_block());
2867         let mut els: Option<P<Expr>> = None;
2868         let mut hi = thn.span.hi;
2869         if try!(self.eat_keyword(keywords::Else) ){
2870             let elexpr = try!(self.parse_else_expr());
2871             hi = elexpr.span.hi;
2872             els = Some(elexpr);
2873         }
2874         Ok(self.mk_expr(lo, hi, ExprIf(cond, thn, els)))
2875     }
2876
2877     /// Parse an 'if let' expression ('if' token already eaten)
2878     pub fn parse_if_let_expr(&mut self) -> PResult<P<Expr>> {
2879         let lo = self.last_span.lo;
2880         try!(self.expect_keyword(keywords::Let));
2881         let pat = try!(self.parse_pat_nopanic());
2882         try!(self.expect(&token::Eq));
2883         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL));
2884         let thn = try!(self.parse_block());
2885         let (hi, els) = if try!(self.eat_keyword(keywords::Else) ){
2886             let expr = try!(self.parse_else_expr());
2887             (expr.span.hi, Some(expr))
2888         } else {
2889             (thn.span.hi, None)
2890         };
2891         Ok(self.mk_expr(lo, hi, ExprIfLet(pat, expr, thn, els)))
2892     }
2893
2894     // `|args| expr`
2895     pub fn parse_lambda_expr(&mut self, lo: BytePos, capture_clause: CaptureClause)
2896                              -> PResult<P<Expr>>
2897     {
2898         let decl = try!(self.parse_fn_block_decl());
2899         let body = match decl.output {
2900             DefaultReturn(_) => {
2901                 // If no explicit return type is given, parse any
2902                 // expr and wrap it up in a dummy block:
2903                 let body_expr = try!(self.parse_expr_nopanic());
2904                 P(ast::Block {
2905                     id: ast::DUMMY_NODE_ID,
2906                     stmts: vec![],
2907                     span: body_expr.span,
2908                     expr: Some(body_expr),
2909                     rules: DefaultBlock,
2910                 })
2911             }
2912             _ => {
2913                 // If an explicit return type is given, require a
2914                 // block to appear (RFC 968).
2915                 try!(self.parse_block())
2916             }
2917         };
2918
2919         Ok(self.mk_expr(
2920             lo,
2921             body.span.hi,
2922             ExprClosure(capture_clause, decl, body)))
2923     }
2924
2925     pub fn parse_else_expr(&mut self) -> PResult<P<Expr>> {
2926         if try!(self.eat_keyword(keywords::If) ){
2927             return self.parse_if_expr();
2928         } else {
2929             let blk = try!(self.parse_block());
2930             return Ok(self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)));
2931         }
2932     }
2933
2934     /// Parse a 'for' .. 'in' expression ('for' token already eaten)
2935     pub fn parse_for_expr(&mut self, opt_ident: Option<ast::Ident>,
2936                           span_lo: BytePos) -> PResult<P<Expr>> {
2937         // Parse: `for <src_pat> in <src_expr> <src_loop_block>`
2938
2939         let pat = try!(self.parse_pat_nopanic());
2940         try!(self.expect_keyword(keywords::In));
2941         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL));
2942         let loop_block = try!(self.parse_block());
2943         let hi = self.last_span.hi;
2944
2945         Ok(self.mk_expr(span_lo, hi, ExprForLoop(pat, expr, loop_block, opt_ident)))
2946     }
2947
2948     /// Parse a 'while' or 'while let' expression ('while' token already eaten)
2949     pub fn parse_while_expr(&mut self, opt_ident: Option<ast::Ident>,
2950                             span_lo: BytePos) -> PResult<P<Expr>> {
2951         if self.token.is_keyword(keywords::Let) {
2952             return self.parse_while_let_expr(opt_ident, span_lo);
2953         }
2954         let cond = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL));
2955         let body = try!(self.parse_block());
2956         let hi = body.span.hi;
2957         return Ok(self.mk_expr(span_lo, hi, ExprWhile(cond, body, opt_ident)));
2958     }
2959
2960     /// Parse a 'while let' expression ('while' token already eaten)
2961     pub fn parse_while_let_expr(&mut self, opt_ident: Option<ast::Ident>,
2962                                 span_lo: BytePos) -> PResult<P<Expr>> {
2963         try!(self.expect_keyword(keywords::Let));
2964         let pat = try!(self.parse_pat_nopanic());
2965         try!(self.expect(&token::Eq));
2966         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL));
2967         let body = try!(self.parse_block());
2968         let hi = body.span.hi;
2969         return Ok(self.mk_expr(span_lo, hi, ExprWhileLet(pat, expr, body, opt_ident)));
2970     }
2971
2972     pub fn parse_loop_expr(&mut self, opt_ident: Option<ast::Ident>,
2973                            span_lo: BytePos) -> PResult<P<Expr>> {
2974         let body = try!(self.parse_block());
2975         let hi = body.span.hi;
2976         Ok(self.mk_expr(span_lo, hi, ExprLoop(body, opt_ident)))
2977     }
2978
2979     fn parse_match_expr(&mut self) -> PResult<P<Expr>> {
2980         let lo = self.last_span.lo;
2981         let discriminant = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL));
2982         try!(self.commit_expr_expecting(&*discriminant, token::OpenDelim(token::Brace)));
2983         let mut arms: Vec<Arm> = Vec::new();
2984         while self.token != token::CloseDelim(token::Brace) {
2985             arms.push(try!(self.parse_arm_nopanic()));
2986         }
2987         let hi = self.span.hi;
2988         try!(self.bump());
2989         return Ok(self.mk_expr(lo, hi, ExprMatch(discriminant, arms, MatchSource::Normal)));
2990     }
2991
2992     pub fn parse_arm_nopanic(&mut self) -> PResult<Arm> {
2993         maybe_whole!(no_clone self, NtArm);
2994
2995         let attrs = self.parse_outer_attributes();
2996         let pats = try!(self.parse_pats());
2997         let mut guard = None;
2998         if try!(self.eat_keyword(keywords::If) ){
2999             guard = Some(try!(self.parse_expr_nopanic()));
3000         }
3001         try!(self.expect(&token::FatArrow));
3002         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_STMT_EXPR));
3003
3004         let require_comma =
3005             !classify::expr_is_simple_block(&*expr)
3006             && self.token != token::CloseDelim(token::Brace);
3007
3008         if require_comma {
3009             try!(self.commit_expr(&*expr, &[token::Comma], &[token::CloseDelim(token::Brace)]));
3010         } else {
3011             try!(self.eat(&token::Comma));
3012         }
3013
3014         Ok(ast::Arm {
3015             attrs: attrs,
3016             pats: pats,
3017             guard: guard,
3018             body: expr,
3019         })
3020     }
3021
3022     /// Parse an expression
3023     pub fn parse_expr_nopanic(&mut self) -> PResult<P<Expr>> {
3024         self.parse_expr_res(Restrictions::empty())
3025     }
3026
3027     /// Parse an expression, subject to the given restrictions
3028     pub fn parse_expr_res(&mut self, r: Restrictions) -> PResult<P<Expr>> {
3029         let old = self.restrictions;
3030         self.restrictions = r;
3031         let e = try!(self.parse_assign_expr());
3032         self.restrictions = old;
3033         return Ok(e);
3034     }
3035
3036     /// Parse the RHS of a local variable declaration (e.g. '= 14;')
3037     fn parse_initializer(&mut self) -> PResult<Option<P<Expr>>> {
3038         if self.check(&token::Eq) {
3039             try!(self.bump());
3040             Ok(Some(try!(self.parse_expr_nopanic())))
3041         } else {
3042             Ok(None)
3043         }
3044     }
3045
3046     /// Parse patterns, separated by '|' s
3047     fn parse_pats(&mut self) -> PResult<Vec<P<Pat>>> {
3048         let mut pats = Vec::new();
3049         loop {
3050             pats.push(try!(self.parse_pat_nopanic()));
3051             if self.check(&token::BinOp(token::Or)) { try!(self.bump());}
3052             else { return Ok(pats); }
3053         };
3054     }
3055
3056     fn parse_pat_tuple_elements(&mut self) -> PResult<Vec<P<Pat>>> {
3057         let mut fields = vec![];
3058         if !self.check(&token::CloseDelim(token::Paren)) {
3059             fields.push(try!(self.parse_pat_nopanic()));
3060             if self.look_ahead(1, |t| *t != token::CloseDelim(token::Paren)) {
3061                 while try!(self.eat(&token::Comma)) &&
3062                       !self.check(&token::CloseDelim(token::Paren)) {
3063                     fields.push(try!(self.parse_pat_nopanic()));
3064                 }
3065             }
3066             if fields.len() == 1 {
3067                 try!(self.expect(&token::Comma));
3068             }
3069         }
3070         Ok(fields)
3071     }
3072
3073     fn parse_pat_vec_elements(
3074         &mut self,
3075     ) -> PResult<(Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>)> {
3076         let mut before = Vec::new();
3077         let mut slice = None;
3078         let mut after = Vec::new();
3079         let mut first = true;
3080         let mut before_slice = true;
3081
3082         while self.token != token::CloseDelim(token::Bracket) {
3083             if first {
3084                 first = false;
3085             } else {
3086                 try!(self.expect(&token::Comma));
3087
3088                 if self.token == token::CloseDelim(token::Bracket)
3089                         && (before_slice || !after.is_empty()) {
3090                     break
3091                 }
3092             }
3093
3094             if before_slice {
3095                 if self.check(&token::DotDot) {
3096                     try!(self.bump());
3097
3098                     if self.check(&token::Comma) ||
3099                             self.check(&token::CloseDelim(token::Bracket)) {
3100                         slice = Some(P(ast::Pat {
3101                             id: ast::DUMMY_NODE_ID,
3102                             node: PatWild(PatWildMulti),
3103                             span: self.span,
3104                         }));
3105                         before_slice = false;
3106                     }
3107                     continue
3108                 }
3109             }
3110
3111             let subpat = try!(self.parse_pat_nopanic());
3112             if before_slice && self.check(&token::DotDot) {
3113                 try!(self.bump());
3114                 slice = Some(subpat);
3115                 before_slice = false;
3116             } else if before_slice {
3117                 before.push(subpat);
3118             } else {
3119                 after.push(subpat);
3120             }
3121         }
3122
3123         Ok((before, slice, after))
3124     }
3125
3126     /// Parse the fields of a struct-like pattern
3127     fn parse_pat_fields(&mut self) -> PResult<(Vec<codemap::Spanned<ast::FieldPat>> , bool)> {
3128         let mut fields = Vec::new();
3129         let mut etc = false;
3130         let mut first = true;
3131         while self.token != token::CloseDelim(token::Brace) {
3132             if first {
3133                 first = false;
3134             } else {
3135                 try!(self.expect(&token::Comma));
3136                 // accept trailing commas
3137                 if self.check(&token::CloseDelim(token::Brace)) { break }
3138             }
3139
3140             let lo = self.span.lo;
3141             let hi;
3142
3143             if self.check(&token::DotDot) {
3144                 try!(self.bump());
3145                 if self.token != token::CloseDelim(token::Brace) {
3146                     let token_str = self.this_token_to_string();
3147                     return Err(self.fatal(&format!("expected `{}`, found `{}`", "}",
3148                                        token_str)))
3149                 }
3150                 etc = true;
3151                 break;
3152             }
3153
3154             // Check if a colon exists one ahead. This means we're parsing a fieldname.
3155             let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) {
3156                 // Parsing a pattern of the form "fieldname: pat"
3157                 let fieldname = try!(self.parse_ident());
3158                 try!(self.bump());
3159                 let pat = try!(self.parse_pat_nopanic());
3160                 hi = pat.span.hi;
3161                 (pat, fieldname, false)
3162             } else {
3163                 // Parsing a pattern of the form "(box) (ref) (mut) fieldname"
3164                 let is_box = try!(self.eat_keyword(keywords::Box));
3165                 let boxed_span_lo = self.span.lo;
3166                 let is_ref = try!(self.eat_keyword(keywords::Ref));
3167                 let is_mut = try!(self.eat_keyword(keywords::Mut));
3168                 let fieldname = try!(self.parse_ident());
3169                 hi = self.last_span.hi;
3170
3171                 let bind_type = match (is_ref, is_mut) {
3172                     (true, true) => BindByRef(MutMutable),
3173                     (true, false) => BindByRef(MutImmutable),
3174                     (false, true) => BindByValue(MutMutable),
3175                     (false, false) => BindByValue(MutImmutable),
3176                 };
3177                 let fieldpath = codemap::Spanned{span:self.last_span, node:fieldname};
3178                 let fieldpat = P(ast::Pat{
3179                     id: ast::DUMMY_NODE_ID,
3180                     node: PatIdent(bind_type, fieldpath, None),
3181                     span: mk_sp(boxed_span_lo, hi),
3182                 });
3183
3184                 let subpat = if is_box {
3185                     P(ast::Pat{
3186                         id: ast::DUMMY_NODE_ID,
3187                         node: PatBox(fieldpat),
3188                         span: mk_sp(lo, hi),
3189                     })
3190                 } else {
3191                     fieldpat
3192                 };
3193                 (subpat, fieldname, true)
3194             };
3195
3196             fields.push(codemap::Spanned { span: mk_sp(lo, hi),
3197                                            node: ast::FieldPat { ident: fieldname,
3198                                                                  pat: subpat,
3199                                                                  is_shorthand: is_shorthand }});
3200         }
3201         return Ok((fields, etc));
3202     }
3203
3204     fn parse_pat_range_end(&mut self) -> PResult<P<Expr>> {
3205         if self.is_path_start() {
3206             let lo = self.span.lo;
3207             let (qself, path) = if try!(self.eat_lt()) {
3208                 // Parse a qualified path
3209                 let (qself, path) =
3210                     try!(self.parse_qualified_path(NoTypesAllowed));
3211                 (Some(qself), path)
3212             } else {
3213                 // Parse an unqualified path
3214                 (None, try!(self.parse_path(LifetimeAndTypesWithColons)))
3215             };
3216             let hi = self.last_span.hi;
3217             Ok(self.mk_expr(lo, hi, ExprPath(qself, path)))
3218         } else {
3219             self.parse_literal_maybe_minus()
3220         }
3221     }
3222
3223     fn is_path_start(&self) -> bool {
3224         (self.token == token::Lt || self.token == token::ModSep
3225             || self.token.is_ident() || self.token.is_path())
3226             && !self.token.is_keyword(keywords::True) && !self.token.is_keyword(keywords::False)
3227     }
3228
3229     /// Parse a pattern.
3230     pub fn parse_pat_nopanic(&mut self) -> PResult<P<Pat>> {
3231         maybe_whole!(self, NtPat);
3232
3233         let lo = self.span.lo;
3234         let pat;
3235         match self.token {
3236           token::Underscore => {
3237             // Parse _
3238             try!(self.bump());
3239             pat = PatWild(PatWildSingle);
3240           }
3241           token::BinOp(token::And) | token::AndAnd => {
3242             // Parse &pat / &mut pat
3243             try!(self.expect_and());
3244             let mutbl = try!(self.parse_mutability());
3245             let subpat = try!(self.parse_pat_nopanic());
3246             pat = PatRegion(subpat, mutbl);
3247           }
3248           token::OpenDelim(token::Paren) => {
3249             // Parse (pat,pat,pat,...) as tuple pattern
3250             try!(self.bump());
3251             let fields = try!(self.parse_pat_tuple_elements());
3252             try!(self.expect(&token::CloseDelim(token::Paren)));
3253             pat = PatTup(fields);
3254           }
3255           token::OpenDelim(token::Bracket) => {
3256             // Parse [pat,pat,...] as slice pattern
3257             try!(self.bump());
3258             let (before, slice, after) = try!(self.parse_pat_vec_elements());
3259             try!(self.expect(&token::CloseDelim(token::Bracket)));
3260             pat = PatVec(before, slice, after);
3261           }
3262           _ => {
3263             // At this point, token != _, &, &&, (, [
3264             if try!(self.eat_keyword(keywords::Mut)) {
3265                 // Parse mut ident @ pat
3266                 pat = try!(self.parse_pat_ident(BindByValue(MutMutable)));
3267             } else if try!(self.eat_keyword(keywords::Ref)) {
3268                 // Parse ref ident @ pat / ref mut ident @ pat
3269                 let mutbl = try!(self.parse_mutability());
3270                 pat = try!(self.parse_pat_ident(BindByRef(mutbl)));
3271             } else if try!(self.eat_keyword(keywords::Box)) {
3272                 // Parse box pat
3273                 let subpat = try!(self.parse_pat_nopanic());
3274                 pat = PatBox(subpat);
3275             } else if self.is_path_start() {
3276                 // Parse pattern starting with a path
3277                 if self.token.is_plain_ident() && self.look_ahead(1, |t| *t != token::DotDotDot &&
3278                         *t != token::OpenDelim(token::Brace) &&
3279                         *t != token::OpenDelim(token::Paren) &&
3280                         // Contrary to its definition, a plain ident can be followed by :: in macros
3281                         *t != token::ModSep) {
3282                     // Plain idents have some extra abilities here compared to general paths
3283                     if self.look_ahead(1, |t| *t == token::Not) {
3284                         // Parse macro invocation
3285                         let ident = try!(self.parse_ident());
3286                         let ident_span = self.last_span;
3287                         let path = ident_to_path(ident_span, ident);
3288                         try!(self.bump());
3289                         let delim = try!(self.expect_open_delim());
3290                         let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
3291                                 seq_sep_none(), |p| p.parse_token_tree()));
3292                         let mac = MacInvocTT(path, tts, EMPTY_CTXT);
3293                         pat = PatMac(codemap::Spanned {node: mac, span: self.span});
3294                     } else {
3295                         // Parse ident @ pat
3296                         // This can give false positives and parse nullary enums,
3297                         // they are dealt with later in resolve
3298                         pat = try!(self.parse_pat_ident(BindByValue(MutImmutable)));
3299                     }
3300                 } else {
3301                     let (qself, path) = if try!(self.eat_lt()) {
3302                         // Parse a qualified path
3303                         let (qself, path) =
3304                             try!(self.parse_qualified_path(NoTypesAllowed));
3305                         (Some(qself), path)
3306                     } else {
3307                         // Parse an unqualified path
3308                         (None, try!(self.parse_path(LifetimeAndTypesWithColons)))
3309                     };
3310                     match self.token {
3311                       token::DotDotDot => {
3312                         // Parse range
3313                         let hi = self.last_span.hi;
3314                         let begin = self.mk_expr(lo, hi, ExprPath(qself, path));
3315                         try!(self.bump());
3316                         let end = try!(self.parse_pat_range_end());
3317                         pat = PatRange(begin, end);
3318                       }
3319                       token::OpenDelim(token::Brace) => {
3320                          if qself.is_some() {
3321                             let span = self.span;
3322                             self.span_err(span,
3323                                           "unexpected `{` after qualified path");
3324                             self.abort_if_errors();
3325                         }
3326                        // Parse struct pattern
3327                         try!(self.bump());
3328                         let (fields, etc) = try!(self.parse_pat_fields());
3329                         try!(self.bump());
3330                         pat = PatStruct(path, fields, etc);
3331                       }
3332                       token::OpenDelim(token::Paren) => {
3333                         if qself.is_some() {
3334                             let span = self.span;
3335                             self.span_err(span,
3336                                           "unexpected `(` after qualified path");
3337                             self.abort_if_errors();
3338                         }
3339                         // Parse tuple struct or enum pattern
3340                         if self.look_ahead(1, |t| *t == token::DotDot) {
3341                             // This is a "top constructor only" pat
3342                             try!(self.bump());
3343                             try!(self.bump());
3344                             try!(self.expect(&token::CloseDelim(token::Paren)));
3345                             pat = PatEnum(path, None);
3346                         } else {
3347                             let args = try!(self.parse_enum_variant_seq(
3348                                     &token::OpenDelim(token::Paren),
3349                                     &token::CloseDelim(token::Paren),
3350                                     seq_sep_trailing_allowed(token::Comma),
3351                                     |p| p.parse_pat_nopanic()));
3352                             pat = PatEnum(path, Some(args));
3353                         }
3354                       }
3355                       _ if qself.is_some() => {
3356                         // Parse qualified path
3357                         pat = PatQPath(qself.unwrap(), path);
3358                       }
3359                       _ => {
3360                         // Parse nullary enum
3361                         pat = PatEnum(path, Some(vec![]));
3362                       }
3363                     }
3364                 }
3365             } else {
3366                 // Try to parse everything else as literal with optional minus
3367                 let begin = try!(self.parse_literal_maybe_minus());
3368                 if try!(self.eat(&token::DotDotDot)) {
3369                     let end = try!(self.parse_pat_range_end());
3370                     pat = PatRange(begin, end);
3371                 } else {
3372                     pat = PatLit(begin);
3373                 }
3374             }
3375           }
3376         }
3377
3378         let hi = self.last_span.hi;
3379         Ok(P(ast::Pat {
3380             id: ast::DUMMY_NODE_ID,
3381             node: pat,
3382             span: mk_sp(lo, hi),
3383         }))
3384     }
3385
3386     /// Parse ident or ident @ pat
3387     /// used by the copy foo and ref foo patterns to give a good
3388     /// error message when parsing mistakes like ref foo(a,b)
3389     fn parse_pat_ident(&mut self,
3390                        binding_mode: ast::BindingMode)
3391                        -> PResult<ast::Pat_> {
3392         if !self.token.is_plain_ident() {
3393             let span = self.span;
3394             let tok_str = self.this_token_to_string();
3395             return Err(self.span_fatal(span,
3396                             &format!("expected identifier, found `{}`", tok_str)))
3397         }
3398         let ident = try!(self.parse_ident());
3399         let last_span = self.last_span;
3400         let name = codemap::Spanned{span: last_span, node: ident};
3401         let sub = if try!(self.eat(&token::At) ){
3402             Some(try!(self.parse_pat_nopanic()))
3403         } else {
3404             None
3405         };
3406
3407         // just to be friendly, if they write something like
3408         //   ref Some(i)
3409         // we end up here with ( as the current token.  This shortly
3410         // leads to a parse error.  Note that if there is no explicit
3411         // binding mode then we do not end up here, because the lookahead
3412         // will direct us over to parse_enum_variant()
3413         if self.token == token::OpenDelim(token::Paren) {
3414             let last_span = self.last_span;
3415             return Err(self.span_fatal(
3416                 last_span,
3417                 "expected identifier, found enum pattern"))
3418         }
3419
3420         Ok(PatIdent(binding_mode, name, sub))
3421     }
3422
3423     /// Parse a local variable declaration
3424     fn parse_local(&mut self) -> PResult<P<Local>> {
3425         let lo = self.span.lo;
3426         let pat = try!(self.parse_pat_nopanic());
3427
3428         let mut ty = None;
3429         if try!(self.eat(&token::Colon) ){
3430             ty = Some(try!(self.parse_ty_sum()));
3431         }
3432         let init = try!(self.parse_initializer());
3433         Ok(P(ast::Local {
3434             ty: ty,
3435             pat: pat,
3436             init: init,
3437             id: ast::DUMMY_NODE_ID,
3438             span: mk_sp(lo, self.last_span.hi),
3439         }))
3440     }
3441
3442     /// Parse a "let" stmt
3443     fn parse_let(&mut self) -> PResult<P<Decl>> {
3444         let lo = self.span.lo;
3445         let local = try!(self.parse_local());
3446         Ok(P(spanned(lo, self.last_span.hi, DeclLocal(local))))
3447     }
3448
3449     /// Parse a structure field
3450     fn parse_name_and_ty(&mut self, pr: Visibility,
3451                          attrs: Vec<Attribute> ) -> PResult<StructField> {
3452         let lo = match pr {
3453             Inherited => self.span.lo,
3454             Public => self.last_span.lo,
3455         };
3456         if !self.token.is_plain_ident() {
3457             return Err(self.fatal("expected ident"));
3458         }
3459         let name = try!(self.parse_ident());
3460         try!(self.expect(&token::Colon));
3461         let ty = try!(self.parse_ty_sum());
3462         Ok(spanned(lo, self.last_span.hi, ast::StructField_ {
3463             kind: NamedField(name, pr),
3464             id: ast::DUMMY_NODE_ID,
3465             ty: ty,
3466             attrs: attrs,
3467         }))
3468     }
3469
3470     /// Emit an expected item after attributes error.
3471     fn expected_item_err(&self, attrs: &[Attribute]) {
3472         let message = match attrs.last() {
3473             Some(&Attribute { node: ast::Attribute_ { is_sugared_doc: true, .. }, .. }) => {
3474                 "expected item after doc comment"
3475             }
3476             _ => "expected item after attributes",
3477         };
3478
3479         self.span_err(self.last_span, message);
3480     }
3481
3482     /// Parse a statement. may include decl.
3483     pub fn parse_stmt_nopanic(&mut self) -> PResult<Option<P<Stmt>>> {
3484         Ok(try!(self.parse_stmt_()).map(P))
3485     }
3486
3487     fn parse_stmt_(&mut self) -> PResult<Option<Stmt>> {
3488         maybe_whole!(Some deref self, NtStmt);
3489
3490         fn check_expected_item(p: &mut Parser, attrs: &[Attribute]) {
3491             // If we have attributes then we should have an item
3492             if !attrs.is_empty() {
3493                 p.expected_item_err(attrs);
3494             }
3495         }
3496
3497         let attrs = self.parse_outer_attributes();
3498         let lo = self.span.lo;
3499
3500         Ok(Some(if self.check_keyword(keywords::Let) {
3501             check_expected_item(self, &attrs);
3502             try!(self.expect_keyword(keywords::Let));
3503             let decl = try!(self.parse_let());
3504             spanned(lo, decl.span.hi, StmtDecl(decl, ast::DUMMY_NODE_ID))
3505         } else if self.token.is_ident()
3506             && !self.token.is_any_keyword()
3507             && self.look_ahead(1, |t| *t == token::Not) {
3508             // it's a macro invocation:
3509
3510             check_expected_item(self, &attrs);
3511
3512             // Potential trouble: if we allow macros with paths instead of
3513             // idents, we'd need to look ahead past the whole path here...
3514             let pth = try!(self.parse_path(NoTypesAllowed));
3515             try!(self.bump());
3516
3517             let id = match self.token {
3518                 token::OpenDelim(_) => token::special_idents::invalid, // no special identifier
3519                 _ => try!(self.parse_ident()),
3520             };
3521
3522             // check that we're pointing at delimiters (need to check
3523             // again after the `if`, because of `parse_ident`
3524             // consuming more tokens).
3525             let delim = match self.token {
3526                 token::OpenDelim(delim) => delim,
3527                 _ => {
3528                     // we only expect an ident if we didn't parse one
3529                     // above.
3530                     let ident_str = if id.name == token::special_idents::invalid.name {
3531                         "identifier, "
3532                     } else {
3533                         ""
3534                     };
3535                     let tok_str = self.this_token_to_string();
3536                     return Err(self.fatal(&format!("expected {}`(` or `{{`, found `{}`",
3537                                        ident_str,
3538                                        tok_str)))
3539                 },
3540             };
3541
3542             let tts = try!(self.parse_unspanned_seq(
3543                 &token::OpenDelim(delim),
3544                 &token::CloseDelim(delim),
3545                 seq_sep_none(),
3546                 |p| p.parse_token_tree()
3547             ));
3548             let hi = self.last_span.hi;
3549
3550             let style = if delim == token::Brace {
3551                 MacStmtWithBraces
3552             } else {
3553                 MacStmtWithoutBraces
3554             };
3555
3556             if id.name == token::special_idents::invalid.name {
3557                 spanned(lo, hi,
3558                         StmtMac(P(spanned(lo,
3559                                           hi,
3560                                           MacInvocTT(pth, tts, EMPTY_CTXT))),
3561                                   style))
3562             } else {
3563                 // if it has a special ident, it's definitely an item
3564                 //
3565                 // Require a semicolon or braces.
3566                 if style != MacStmtWithBraces {
3567                     if !try!(self.eat(&token::Semi) ){
3568                         let last_span = self.last_span;
3569                         self.span_err(last_span,
3570                                       "macros that expand to items must \
3571                                        either be surrounded with braces or \
3572                                        followed by a semicolon");
3573                     }
3574                 }
3575                 spanned(lo, hi, StmtDecl(
3576                     P(spanned(lo, hi, DeclItem(
3577                         self.mk_item(
3578                             lo, hi, id /*id is good here*/,
3579                             ItemMac(spanned(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT))),
3580                             Inherited, Vec::new(/*no attrs*/))))),
3581                     ast::DUMMY_NODE_ID))
3582             }
3583         } else {
3584             match try!(self.parse_item_(attrs, false)) {
3585                 Some(i) => {
3586                     let hi = i.span.hi;
3587                     let decl = P(spanned(lo, hi, DeclItem(i)));
3588                     spanned(lo, hi, StmtDecl(decl, ast::DUMMY_NODE_ID))
3589                 }
3590                 None => {
3591                     // Do not attempt to parse an expression if we're done here.
3592                     if self.token == token::Semi {
3593                         try!(self.bump());
3594                         return Ok(None);
3595                     }
3596
3597                     if self.token == token::CloseDelim(token::Brace) {
3598                         return Ok(None);
3599                     }
3600
3601                     // Remainder are line-expr stmts.
3602                     let e = try!(self.parse_expr_res(Restrictions::RESTRICTION_STMT_EXPR));
3603                     spanned(lo, e.span.hi, StmtExpr(e, ast::DUMMY_NODE_ID))
3604                 }
3605             }
3606         }))
3607     }
3608
3609     /// Is this expression a successfully-parsed statement?
3610     fn expr_is_complete(&mut self, e: &Expr) -> bool {
3611         self.restrictions.contains(Restrictions::RESTRICTION_STMT_EXPR) &&
3612             !classify::expr_requires_semi_to_be_stmt(e)
3613     }
3614
3615     /// Parse a block. No inner attrs are allowed.
3616     pub fn parse_block(&mut self) -> PResult<P<Block>> {
3617         maybe_whole!(no_clone self, NtBlock);
3618
3619         let lo = self.span.lo;
3620
3621         if !try!(self.eat(&token::OpenDelim(token::Brace)) ){
3622             let sp = self.span;
3623             let tok = self.this_token_to_string();
3624             return Err(self.span_fatal_help(sp,
3625                                  &format!("expected `{{`, found `{}`", tok),
3626                                  "place this code inside a block"));
3627         }
3628
3629         self.parse_block_tail(lo, DefaultBlock)
3630     }
3631
3632     /// Parse a block. Inner attrs are allowed.
3633     fn parse_inner_attrs_and_block(&mut self) -> PResult<(Vec<Attribute>, P<Block>)> {
3634         maybe_whole!(pair_empty self, NtBlock);
3635
3636         let lo = self.span.lo;
3637         try!(self.expect(&token::OpenDelim(token::Brace)));
3638         Ok((self.parse_inner_attributes(),
3639          try!(self.parse_block_tail(lo, DefaultBlock))))
3640     }
3641
3642     /// Parse the rest of a block expression or function body
3643     /// Precondition: already parsed the '{'.
3644     fn parse_block_tail(&mut self, lo: BytePos, s: BlockCheckMode) -> PResult<P<Block>> {
3645         let mut stmts = vec![];
3646         let mut expr = None;
3647
3648         while !try!(self.eat(&token::CloseDelim(token::Brace))) {
3649             let Spanned {node, span} = if let Some(s) = try!(self.parse_stmt_()) {
3650                 s
3651             } else {
3652                 // Found only `;` or `}`.
3653                 continue;
3654             };
3655             match node {
3656                 StmtExpr(e, _) => {
3657                     try!(self.handle_expression_like_statement(e, span, &mut stmts, &mut expr));
3658                 }
3659                 StmtMac(mac, MacStmtWithoutBraces) => {
3660                     // statement macro without braces; might be an
3661                     // expr depending on whether a semicolon follows
3662                     match self.token {
3663                         token::Semi => {
3664                             stmts.push(P(Spanned {
3665                                 node: StmtMac(mac, MacStmtWithSemicolon),
3666                                 span: mk_sp(span.lo, self.span.hi),
3667                             }));
3668                             try!(self.bump());
3669                         }
3670                         _ => {
3671                             let e = self.mk_mac_expr(span.lo, span.hi,
3672                                                      mac.and_then(|m| m.node));
3673                             let e = try!(self.parse_dot_or_call_expr_with(e));
3674                             let e = try!(self.parse_more_binops(e, 0));
3675                             let e = try!(self.parse_assign_expr_with(e));
3676                             try!(self.handle_expression_like_statement(
3677                                 e,
3678                                 span,
3679                                 &mut stmts,
3680                                 &mut expr));
3681                         }
3682                     }
3683                 }
3684                 StmtMac(m, style) => {
3685                     // statement macro; might be an expr
3686                     match self.token {
3687                         token::Semi => {
3688                             stmts.push(P(Spanned {
3689                                 node: StmtMac(m, MacStmtWithSemicolon),
3690                                 span: mk_sp(span.lo, self.span.hi),
3691                             }));
3692                             try!(self.bump());
3693                         }
3694                         token::CloseDelim(token::Brace) => {
3695                             // if a block ends in `m!(arg)` without
3696                             // a `;`, it must be an expr
3697                             expr = Some(self.mk_mac_expr(span.lo, span.hi,
3698                                                          m.and_then(|x| x.node)));
3699                         }
3700                         _ => {
3701                             stmts.push(P(Spanned {
3702                                 node: StmtMac(m, style),
3703                                 span: span
3704                             }));
3705                         }
3706                     }
3707                 }
3708                 _ => { // all other kinds of statements:
3709                     let mut hi = span.hi;
3710                     if classify::stmt_ends_with_semi(&node) {
3711                         try!(self.commit_stmt_expecting(token::Semi));
3712                         hi = self.last_span.hi;
3713                     }
3714
3715                     stmts.push(P(Spanned {
3716                         node: node,
3717                         span: mk_sp(span.lo, hi)
3718                     }));
3719                 }
3720             }
3721         }
3722
3723         Ok(P(ast::Block {
3724             stmts: stmts,
3725             expr: expr,
3726             id: ast::DUMMY_NODE_ID,
3727             rules: s,
3728             span: mk_sp(lo, self.last_span.hi),
3729         }))
3730     }
3731
3732     fn handle_expression_like_statement(
3733             &mut self,
3734             e: P<Expr>,
3735             span: Span,
3736             stmts: &mut Vec<P<Stmt>>,
3737             last_block_expr: &mut Option<P<Expr>>) -> PResult<()> {
3738         // expression without semicolon
3739         if classify::expr_requires_semi_to_be_stmt(&*e) {
3740             // Just check for errors and recover; do not eat semicolon yet.
3741             try!(self.commit_stmt(&[],
3742                              &[token::Semi, token::CloseDelim(token::Brace)]));
3743         }
3744
3745         match self.token {
3746             token::Semi => {
3747                 try!(self.bump());
3748                 let span_with_semi = Span {
3749                     lo: span.lo,
3750                     hi: self.last_span.hi,
3751                     expn_id: span.expn_id,
3752                 };
3753                 stmts.push(P(Spanned {
3754                     node: StmtSemi(e, ast::DUMMY_NODE_ID),
3755                     span: span_with_semi,
3756                 }));
3757             }
3758             token::CloseDelim(token::Brace) => *last_block_expr = Some(e),
3759             _ => {
3760                 stmts.push(P(Spanned {
3761                     node: StmtExpr(e, ast::DUMMY_NODE_ID),
3762                     span: span
3763                 }));
3764             }
3765         }
3766         Ok(())
3767     }
3768
3769     // Parses a sequence of bounds if a `:` is found,
3770     // otherwise returns empty list.
3771     fn parse_colon_then_ty_param_bounds(&mut self,
3772                                         mode: BoundParsingMode)
3773                                         -> PResult<OwnedSlice<TyParamBound>>
3774     {
3775         if !try!(self.eat(&token::Colon) ){
3776             Ok(OwnedSlice::empty())
3777         } else {
3778             self.parse_ty_param_bounds(mode)
3779         }
3780     }
3781
3782     // matches bounds    = ( boundseq )?
3783     // where   boundseq  = ( polybound + boundseq ) | polybound
3784     // and     polybound = ( 'for' '<' 'region '>' )? bound
3785     // and     bound     = 'region | trait_ref
3786     fn parse_ty_param_bounds(&mut self,
3787                              mode: BoundParsingMode)
3788                              -> PResult<OwnedSlice<TyParamBound>>
3789     {
3790         let mut result = vec!();
3791         loop {
3792             let question_span = self.span;
3793             let ate_question = try!(self.eat(&token::Question));
3794             match self.token {
3795                 token::Lifetime(lifetime) => {
3796                     if ate_question {
3797                         self.span_err(question_span,
3798                                       "`?` may only modify trait bounds, not lifetime bounds");
3799                     }
3800                     result.push(RegionTyParamBound(ast::Lifetime {
3801                         id: ast::DUMMY_NODE_ID,
3802                         span: self.span,
3803                         name: lifetime.name
3804                     }));
3805                     try!(self.bump());
3806                 }
3807                 token::ModSep | token::Ident(..) => {
3808                     let poly_trait_ref = try!(self.parse_poly_trait_ref());
3809                     let modifier = if ate_question {
3810                         if mode == BoundParsingMode::Modified {
3811                             TraitBoundModifier::Maybe
3812                         } else {
3813                             self.span_err(question_span,
3814                                           "unexpected `?`");
3815                             TraitBoundModifier::None
3816                         }
3817                     } else {
3818                         TraitBoundModifier::None
3819                     };
3820                     result.push(TraitTyParamBound(poly_trait_ref, modifier))
3821                 }
3822                 _ => break,
3823             }
3824
3825             if !try!(self.eat(&token::BinOp(token::Plus)) ){
3826                 break;
3827             }
3828         }
3829
3830         return Ok(OwnedSlice::from_vec(result));
3831     }
3832
3833     /// Matches typaram = IDENT (`?` unbound)? optbounds ( EQ ty )?
3834     fn parse_ty_param(&mut self) -> PResult<TyParam> {
3835         let span = self.span;
3836         let ident = try!(self.parse_ident());
3837
3838         let bounds = try!(self.parse_colon_then_ty_param_bounds(BoundParsingMode::Modified));
3839
3840         let default = if self.check(&token::Eq) {
3841             try!(self.bump());
3842             Some(try!(self.parse_ty_sum()))
3843         } else {
3844             None
3845         };
3846
3847         Ok(TyParam {
3848             ident: ident,
3849             id: ast::DUMMY_NODE_ID,
3850             bounds: bounds,
3851             default: default,
3852             span: span,
3853         })
3854     }
3855
3856     /// Parse a set of optional generic type parameter declarations. Where
3857     /// clauses are not parsed here, and must be added later via
3858     /// `parse_where_clause()`.
3859     ///
3860     /// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
3861     ///                  | ( < lifetimes , typaramseq ( , )? > )
3862     /// where   typaramseq = ( typaram ) | ( typaram , typaramseq )
3863     pub fn parse_generics(&mut self) -> PResult<ast::Generics> {
3864         maybe_whole!(self, NtGenerics);
3865
3866         if try!(self.eat(&token::Lt) ){
3867             let lifetime_defs = try!(self.parse_lifetime_defs());
3868             let mut seen_default = false;
3869             let ty_params = try!(self.parse_seq_to_gt(Some(token::Comma), |p| {
3870                 try!(p.forbid_lifetime());
3871                 let ty_param = try!(p.parse_ty_param());
3872                 if ty_param.default.is_some() {
3873                     seen_default = true;
3874                 } else if seen_default {
3875                     let last_span = p.last_span;
3876                     p.span_err(last_span,
3877                                "type parameters with a default must be trailing");
3878                 }
3879                 Ok(ty_param)
3880             }));
3881             Ok(ast::Generics {
3882                 lifetimes: lifetime_defs,
3883                 ty_params: ty_params,
3884                 where_clause: WhereClause {
3885                     id: ast::DUMMY_NODE_ID,
3886                     predicates: Vec::new(),
3887                 }
3888             })
3889         } else {
3890             Ok(ast_util::empty_generics())
3891         }
3892     }
3893
3894     fn parse_generic_values_after_lt(&mut self) -> PResult<(Vec<ast::Lifetime>,
3895                                                             Vec<P<Ty>>,
3896                                                             Vec<P<TypeBinding>>)> {
3897         let span_lo = self.span.lo;
3898         let lifetimes = try!(self.parse_lifetimes(token::Comma));
3899
3900         let missing_comma = !lifetimes.is_empty() &&
3901                             !self.token.is_like_gt() &&
3902                             self.last_token
3903                                 .as_ref().map_or(true,
3904                                                  |x| &**x != &token::Comma);
3905
3906         if missing_comma {
3907
3908             let msg = format!("expected `,` or `>` after lifetime \
3909                               name, found `{}`",
3910                               self.this_token_to_string());
3911             self.span_err(self.span, &msg);
3912
3913             let span_hi = self.span.hi;
3914             let span_hi = if self.parse_ty_nopanic().is_ok() {
3915                 self.span.hi
3916             } else {
3917                 span_hi
3918             };
3919
3920             let msg = format!("did you mean a single argument type &'a Type, \
3921                               or did you mean the comma-separated arguments \
3922                               'a, Type?");
3923             self.span_note(mk_sp(span_lo, span_hi), &msg);
3924
3925             self.abort_if_errors()
3926         }
3927
3928         // First parse types.
3929         let (types, returned) = try!(self.parse_seq_to_gt_or_return(
3930             Some(token::Comma),
3931             |p| {
3932                 try!(p.forbid_lifetime());
3933                 if p.look_ahead(1, |t| t == &token::Eq) {
3934                     Ok(None)
3935                 } else {
3936                     Ok(Some(try!(p.parse_ty_sum())))
3937                 }
3938             }
3939         ));
3940
3941         // If we found the `>`, don't continue.
3942         if !returned {
3943             return Ok((lifetimes, types.into_vec(), Vec::new()));
3944         }
3945
3946         // Then parse type bindings.
3947         let bindings = try!(self.parse_seq_to_gt(
3948             Some(token::Comma),
3949             |p| {
3950                 try!(p.forbid_lifetime());
3951                 let lo = p.span.lo;
3952                 let ident = try!(p.parse_ident());
3953                 let found_eq = try!(p.eat(&token::Eq));
3954                 if !found_eq {
3955                     let span = p.span;
3956                     p.span_warn(span, "whoops, no =?");
3957                 }
3958                 let ty = try!(p.parse_ty_nopanic());
3959                 let hi = ty.span.hi;
3960                 let span = mk_sp(lo, hi);
3961                 return Ok(P(TypeBinding{id: ast::DUMMY_NODE_ID,
3962                     ident: ident,
3963                     ty: ty,
3964                     span: span,
3965                 }));
3966             }
3967         ));
3968         Ok((lifetimes, types.into_vec(), bindings.into_vec()))
3969     }
3970
3971     fn forbid_lifetime(&mut self) -> PResult<()> {
3972         if self.token.is_lifetime() {
3973             let span = self.span;
3974             return Err(self.span_fatal(span, "lifetime parameters must be declared \
3975                                         prior to type parameters"))
3976         }
3977         Ok(())
3978     }
3979
3980     /// Parses an optional `where` clause and places it in `generics`.
3981     ///
3982     /// ```
3983     /// where T : Trait<U, V> + 'b, 'a : 'b
3984     /// ```
3985     pub fn parse_where_clause(&mut self) -> PResult<ast::WhereClause> {
3986         maybe_whole!(self, NtWhereClause);
3987
3988         let mut where_clause = WhereClause {
3989             id: ast::DUMMY_NODE_ID,
3990             predicates: Vec::new(),
3991         };
3992
3993         if !try!(self.eat_keyword(keywords::Where)) {
3994             return Ok(where_clause);
3995         }
3996
3997         let mut parsed_something = false;
3998         loop {
3999             let lo = self.span.lo;
4000             match self.token {
4001                 token::OpenDelim(token::Brace) => {
4002                     break
4003                 }
4004
4005                 token::Lifetime(..) => {
4006                     let bounded_lifetime =
4007                         try!(self.parse_lifetime());
4008
4009                     try!(self.eat(&token::Colon));
4010
4011                     let bounds =
4012                         try!(self.parse_lifetimes(token::BinOp(token::Plus)));
4013
4014                     let hi = self.last_span.hi;
4015                     let span = mk_sp(lo, hi);
4016
4017                     where_clause.predicates.push(ast::WherePredicate::RegionPredicate(
4018                         ast::WhereRegionPredicate {
4019                             span: span,
4020                             lifetime: bounded_lifetime,
4021                             bounds: bounds
4022                         }
4023                     ));
4024
4025                     parsed_something = true;
4026                 }
4027
4028                 _ => {
4029                     let bound_lifetimes = if try!(self.eat_keyword(keywords::For) ){
4030                         // Higher ranked constraint.
4031                         try!(self.expect(&token::Lt));
4032                         let lifetime_defs = try!(self.parse_lifetime_defs());
4033                         try!(self.expect_gt());
4034                         lifetime_defs
4035                     } else {
4036                         vec![]
4037                     };
4038
4039                     let bounded_ty = try!(self.parse_ty_nopanic());
4040
4041                     if try!(self.eat(&token::Colon) ){
4042                         let bounds = try!(self.parse_ty_param_bounds(BoundParsingMode::Bare));
4043                         let hi = self.last_span.hi;
4044                         let span = mk_sp(lo, hi);
4045
4046                         if bounds.is_empty() {
4047                             self.span_err(span,
4048                                           "each predicate in a `where` clause must have \
4049                                            at least one bound in it");
4050                         }
4051
4052                         where_clause.predicates.push(ast::WherePredicate::BoundPredicate(
4053                                 ast::WhereBoundPredicate {
4054                                     span: span,
4055                                     bound_lifetimes: bound_lifetimes,
4056                                     bounded_ty: bounded_ty,
4057                                     bounds: bounds,
4058                         }));
4059
4060                         parsed_something = true;
4061                     } else if try!(self.eat(&token::Eq) ){
4062                         // let ty = try!(self.parse_ty_nopanic());
4063                         let hi = self.last_span.hi;
4064                         let span = mk_sp(lo, hi);
4065                         // where_clause.predicates.push(
4066                         //     ast::WherePredicate::EqPredicate(ast::WhereEqPredicate {
4067                         //         id: ast::DUMMY_NODE_ID,
4068                         //         span: span,
4069                         //         path: panic!("NYI"), //bounded_ty,
4070                         //         ty: ty,
4071                         // }));
4072                         // parsed_something = true;
4073                         // // FIXME(#18433)
4074                         self.span_err(span,
4075                                      "equality constraints are not yet supported \
4076                                      in where clauses (#20041)");
4077                     } else {
4078                         let last_span = self.last_span;
4079                         self.span_err(last_span,
4080                               "unexpected token in `where` clause");
4081                     }
4082                 }
4083             };
4084
4085             if !try!(self.eat(&token::Comma) ){
4086                 break
4087             }
4088         }
4089
4090         if !parsed_something {
4091             let last_span = self.last_span;
4092             self.span_err(last_span,
4093                           "a `where` clause must have at least one predicate \
4094                            in it");
4095         }
4096
4097         Ok(where_clause)
4098     }
4099
4100     fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool)
4101                      -> PResult<(Vec<Arg> , bool)> {
4102         let sp = self.span;
4103         let mut args: Vec<Option<Arg>> =
4104             try!(self.parse_unspanned_seq(
4105                 &token::OpenDelim(token::Paren),
4106                 &token::CloseDelim(token::Paren),
4107                 seq_sep_trailing_allowed(token::Comma),
4108                 |p| {
4109                     if p.token == token::DotDotDot {
4110                         try!(p.bump());
4111                         if allow_variadic {
4112                             if p.token != token::CloseDelim(token::Paren) {
4113                                 let span = p.span;
4114                                 return Err(p.span_fatal(span,
4115                                     "`...` must be last in argument list for variadic function"))
4116                             }
4117                         } else {
4118                             let span = p.span;
4119                             return Err(p.span_fatal(span,
4120                                          "only foreign functions are allowed to be variadic"))
4121                         }
4122                         Ok(None)
4123                     } else {
4124                         Ok(Some(try!(p.parse_arg_general(named_args))))
4125                     }
4126                 }
4127             ));
4128
4129         let variadic = match args.pop() {
4130             Some(None) => true,
4131             Some(x) => {
4132                 // Need to put back that last arg
4133                 args.push(x);
4134                 false
4135             }
4136             None => false
4137         };
4138
4139         if variadic && args.is_empty() {
4140             self.span_err(sp,
4141                           "variadic function must be declared with at least one named argument");
4142         }
4143
4144         let args = args.into_iter().map(|x| x.unwrap()).collect();
4145
4146         Ok((args, variadic))
4147     }
4148
4149     /// Parse the argument list and result type of a function declaration
4150     pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> PResult<P<FnDecl>> {
4151
4152         let (args, variadic) = try!(self.parse_fn_args(true, allow_variadic));
4153         let ret_ty = try!(self.parse_ret_ty());
4154
4155         Ok(P(FnDecl {
4156             inputs: args,
4157             output: ret_ty,
4158             variadic: variadic
4159         }))
4160     }
4161
4162     fn is_self_ident(&mut self) -> bool {
4163         match self.token {
4164           token::Ident(id, token::Plain) => id.name == special_idents::self_.name,
4165           _ => false
4166         }
4167     }
4168
4169     fn expect_self_ident(&mut self) -> PResult<ast::Ident> {
4170         match self.token {
4171             token::Ident(id, token::Plain) if id.name == special_idents::self_.name => {
4172                 try!(self.bump());
4173                 Ok(id)
4174             },
4175             _ => {
4176                 let token_str = self.this_token_to_string();
4177                 return Err(self.fatal(&format!("expected `self`, found `{}`",
4178                                    token_str)))
4179             }
4180         }
4181     }
4182
4183     fn is_self_type_ident(&mut self) -> bool {
4184         match self.token {
4185           token::Ident(id, token::Plain) => id.name == special_idents::type_self.name,
4186           _ => false
4187         }
4188     }
4189
4190     fn expect_self_type_ident(&mut self) -> PResult<ast::Ident> {
4191         match self.token {
4192             token::Ident(id, token::Plain) if id.name == special_idents::type_self.name => {
4193                 try!(self.bump());
4194                 Ok(id)
4195             },
4196             _ => {
4197                 let token_str = self.this_token_to_string();
4198                 Err(self.fatal(&format!("expected `Self`, found `{}`",
4199                                    token_str)))
4200             }
4201         }
4202     }
4203
4204     /// Parse the argument list and result type of a function
4205     /// that may have a self type.
4206     fn parse_fn_decl_with_self<F>(&mut self,
4207                                   parse_arg_fn: F) -> PResult<(ExplicitSelf, P<FnDecl>)> where
4208         F: FnMut(&mut Parser) -> PResult<Arg>,
4209     {
4210         fn maybe_parse_borrowed_explicit_self(this: &mut Parser)
4211                                               -> PResult<ast::ExplicitSelf_> {
4212             // The following things are possible to see here:
4213             //
4214             //     fn(&mut self)
4215             //     fn(&mut self)
4216             //     fn(&'lt self)
4217             //     fn(&'lt mut self)
4218             //
4219             // We already know that the current token is `&`.
4220
4221             if this.look_ahead(1, |t| t.is_keyword(keywords::SelfValue)) {
4222                 try!(this.bump());
4223                 Ok(SelfRegion(None, MutImmutable, try!(this.expect_self_ident())))
4224             } else if this.look_ahead(1, |t| t.is_mutability()) &&
4225                       this.look_ahead(2, |t| t.is_keyword(keywords::SelfValue)) {
4226                 try!(this.bump());
4227                 let mutability = try!(this.parse_mutability());
4228                 Ok(SelfRegion(None, mutability, try!(this.expect_self_ident())))
4229             } else if this.look_ahead(1, |t| t.is_lifetime()) &&
4230                       this.look_ahead(2, |t| t.is_keyword(keywords::SelfValue)) {
4231                 try!(this.bump());
4232                 let lifetime = try!(this.parse_lifetime());
4233                 Ok(SelfRegion(Some(lifetime), MutImmutable, try!(this.expect_self_ident())))
4234             } else if this.look_ahead(1, |t| t.is_lifetime()) &&
4235                       this.look_ahead(2, |t| t.is_mutability()) &&
4236                       this.look_ahead(3, |t| t.is_keyword(keywords::SelfValue)) {
4237                 try!(this.bump());
4238                 let lifetime = try!(this.parse_lifetime());
4239                 let mutability = try!(this.parse_mutability());
4240                 Ok(SelfRegion(Some(lifetime), mutability, try!(this.expect_self_ident())))
4241             } else {
4242                 Ok(SelfStatic)
4243             }
4244         }
4245
4246         try!(self.expect(&token::OpenDelim(token::Paren)));
4247
4248         // A bit of complexity and lookahead is needed here in order to be
4249         // backwards compatible.
4250         let lo = self.span.lo;
4251         let mut self_ident_lo = self.span.lo;
4252         let mut self_ident_hi = self.span.hi;
4253
4254         let mut mutbl_self = MutImmutable;
4255         let explicit_self = match self.token {
4256             token::BinOp(token::And) => {
4257                 let eself = try!(maybe_parse_borrowed_explicit_self(self));
4258                 self_ident_lo = self.last_span.lo;
4259                 self_ident_hi = self.last_span.hi;
4260                 eself
4261             }
4262             token::BinOp(token::Star) => {
4263                 // Possibly "*self" or "*mut self" -- not supported. Try to avoid
4264                 // emitting cryptic "unexpected token" errors.
4265                 try!(self.bump());
4266                 let _mutability = if self.token.is_mutability() {
4267                     try!(self.parse_mutability())
4268                 } else {
4269                     MutImmutable
4270                 };
4271                 if self.is_self_ident() {
4272                     let span = self.span;
4273                     self.span_err(span, "cannot pass self by raw pointer");
4274                     try!(self.bump());
4275                 }
4276                 // error case, making bogus self ident:
4277                 SelfValue(special_idents::self_)
4278             }
4279             token::Ident(..) => {
4280                 if self.is_self_ident() {
4281                     let self_ident = try!(self.expect_self_ident());
4282
4283                     // Determine whether this is the fully explicit form, `self:
4284                     // TYPE`.
4285                     if try!(self.eat(&token::Colon) ){
4286                         SelfExplicit(try!(self.parse_ty_sum()), self_ident)
4287                     } else {
4288                         SelfValue(self_ident)
4289                     }
4290                 } else if self.token.is_mutability() &&
4291                         self.look_ahead(1, |t| t.is_keyword(keywords::SelfValue)) {
4292                     mutbl_self = try!(self.parse_mutability());
4293                     let self_ident = try!(self.expect_self_ident());
4294
4295                     // Determine whether this is the fully explicit form,
4296                     // `self: TYPE`.
4297                     if try!(self.eat(&token::Colon) ){
4298                         SelfExplicit(try!(self.parse_ty_sum()), self_ident)
4299                     } else {
4300                         SelfValue(self_ident)
4301                     }
4302                 } else {
4303                     SelfStatic
4304                 }
4305             }
4306             _ => SelfStatic,
4307         };
4308
4309         let explicit_self_sp = mk_sp(self_ident_lo, self_ident_hi);
4310
4311         // shared fall-through for the three cases below. borrowing prevents simply
4312         // writing this as a closure
4313         macro_rules! parse_remaining_arguments {
4314             ($self_id:ident) =>
4315             {
4316             // If we parsed a self type, expect a comma before the argument list.
4317             match self.token {
4318                 token::Comma => {
4319                     try!(self.bump());
4320                     let sep = seq_sep_trailing_allowed(token::Comma);
4321                     let mut fn_inputs = try!(self.parse_seq_to_before_end(
4322                         &token::CloseDelim(token::Paren),
4323                         sep,
4324                         parse_arg_fn
4325                     ));
4326                     fn_inputs.insert(0, Arg::new_self(explicit_self_sp, mutbl_self, $self_id));
4327                     fn_inputs
4328                 }
4329                 token::CloseDelim(token::Paren) => {
4330                     vec!(Arg::new_self(explicit_self_sp, mutbl_self, $self_id))
4331                 }
4332                 _ => {
4333                     let token_str = self.this_token_to_string();
4334                     return Err(self.fatal(&format!("expected `,` or `)`, found `{}`",
4335                                        token_str)))
4336                 }
4337             }
4338             }
4339         }
4340
4341         let fn_inputs = match explicit_self {
4342             SelfStatic =>  {
4343                 let sep = seq_sep_trailing_allowed(token::Comma);
4344                 try!(self.parse_seq_to_before_end(&token::CloseDelim(token::Paren),
4345                                                   sep, parse_arg_fn))
4346             }
4347             SelfValue(id) => parse_remaining_arguments!(id),
4348             SelfRegion(_,_,id) => parse_remaining_arguments!(id),
4349             SelfExplicit(_,id) => parse_remaining_arguments!(id),
4350         };
4351
4352
4353         try!(self.expect(&token::CloseDelim(token::Paren)));
4354
4355         let hi = self.span.hi;
4356
4357         let ret_ty = try!(self.parse_ret_ty());
4358
4359         let fn_decl = P(FnDecl {
4360             inputs: fn_inputs,
4361             output: ret_ty,
4362             variadic: false
4363         });
4364
4365         Ok((spanned(lo, hi, explicit_self), fn_decl))
4366     }
4367
4368     // parse the |arg, arg| header on a lambda
4369     fn parse_fn_block_decl(&mut self) -> PResult<P<FnDecl>> {
4370         let inputs_captures = {
4371             if try!(self.eat(&token::OrOr) ){
4372                 Vec::new()
4373             } else {
4374                 try!(self.expect(&token::BinOp(token::Or)));
4375                 try!(self.parse_obsolete_closure_kind());
4376                 let args = try!(self.parse_seq_to_before_end(
4377                     &token::BinOp(token::Or),
4378                     seq_sep_trailing_allowed(token::Comma),
4379                     |p| p.parse_fn_block_arg()
4380                 ));
4381                 try!(self.bump());
4382                 args
4383             }
4384         };
4385         let output = try!(self.parse_ret_ty());
4386
4387         Ok(P(FnDecl {
4388             inputs: inputs_captures,
4389             output: output,
4390             variadic: false
4391         }))
4392     }
4393
4394     /// Parse the name and optional generic types of a function header.
4395     fn parse_fn_header(&mut self) -> PResult<(Ident, ast::Generics)> {
4396         let id = try!(self.parse_ident());
4397         let generics = try!(self.parse_generics());
4398         Ok((id, generics))
4399     }
4400
4401     fn mk_item(&mut self, lo: BytePos, hi: BytePos, ident: Ident,
4402                node: Item_, vis: Visibility,
4403                attrs: Vec<Attribute>) -> P<Item> {
4404         P(Item {
4405             ident: ident,
4406             attrs: attrs,
4407             id: ast::DUMMY_NODE_ID,
4408             node: node,
4409             vis: vis,
4410             span: mk_sp(lo, hi)
4411         })
4412     }
4413
4414     /// Parse an item-position function declaration.
4415     fn parse_item_fn(&mut self,
4416                      unsafety: Unsafety,
4417                      constness: Constness,
4418                      abi: abi::Abi)
4419                      -> PResult<ItemInfo> {
4420         let (ident, mut generics) = try!(self.parse_fn_header());
4421         let decl = try!(self.parse_fn_decl(false));
4422         generics.where_clause = try!(self.parse_where_clause());
4423         let (inner_attrs, body) = try!(self.parse_inner_attrs_and_block());
4424         Ok((ident, ItemFn(decl, unsafety, constness, abi, generics, body), Some(inner_attrs)))
4425     }
4426
4427     /// true if we are looking at `const ID`, false for things like `const fn` etc
4428     pub fn is_const_item(&mut self) -> bool {
4429         self.token.is_keyword(keywords::Const) &&
4430             !self.look_ahead(1, |t| t.is_keyword(keywords::Fn))
4431     }
4432
4433     /// parses all the "front matter" for a `fn` declaration, up to
4434     /// and including the `fn` keyword:
4435     ///
4436     /// - `const fn`
4437     /// - `unsafe fn`
4438     /// - `extern fn`
4439     /// - etc
4440     pub fn parse_fn_front_matter(&mut self) -> PResult<(ast::Constness, ast::Unsafety, abi::Abi)> {
4441         let is_const_fn = try!(self.eat_keyword(keywords::Const));
4442         let (constness, unsafety, abi) = if is_const_fn {
4443             (Constness::Const, Unsafety::Normal, abi::Rust)
4444         } else {
4445             let unsafety = try!(self.parse_unsafety());
4446             let abi = if try!(self.eat_keyword(keywords::Extern)) {
4447                 try!(self.parse_opt_abi()).unwrap_or(abi::C)
4448             } else {
4449                 abi::Rust
4450             };
4451             (Constness::NotConst, unsafety, abi)
4452         };
4453         try!(self.expect_keyword(keywords::Fn));
4454         Ok((constness, unsafety, abi))
4455     }
4456
4457     /// Parse an impl item.
4458     pub fn parse_impl_item(&mut self) -> PResult<P<ImplItem>> {
4459         maybe_whole!(no_clone self, NtImplItem);
4460
4461         let mut attrs = self.parse_outer_attributes();
4462         let lo = self.span.lo;
4463         let vis = try!(self.parse_visibility());
4464         let (name, node) = if try!(self.eat_keyword(keywords::Type)) {
4465             let name = try!(self.parse_ident());
4466             try!(self.expect(&token::Eq));
4467             let typ = try!(self.parse_ty_sum());
4468             try!(self.expect(&token::Semi));
4469             (name, TypeImplItem(typ))
4470         } else if self.is_const_item() {
4471             try!(self.expect_keyword(keywords::Const));
4472             let name = try!(self.parse_ident());
4473             try!(self.expect(&token::Colon));
4474             let typ = try!(self.parse_ty_sum());
4475             try!(self.expect(&token::Eq));
4476             let expr = try!(self.parse_expr_nopanic());
4477             try!(self.commit_expr_expecting(&expr, token::Semi));
4478             (name, ConstImplItem(typ, expr))
4479         } else {
4480             let (name, inner_attrs, node) = try!(self.parse_impl_method(vis));
4481             attrs.extend(inner_attrs);
4482             (name, node)
4483         };
4484
4485         Ok(P(ImplItem {
4486             id: ast::DUMMY_NODE_ID,
4487             span: mk_sp(lo, self.last_span.hi),
4488             ident: name,
4489             vis: vis,
4490             attrs: attrs,
4491             node: node
4492         }))
4493     }
4494
4495     fn complain_if_pub_macro(&mut self, visa: Visibility, span: Span) {
4496         match visa {
4497             Public => {
4498                 self.span_err(span, "can't qualify macro invocation with `pub`");
4499                 self.fileline_help(span, "try adjusting the macro to put `pub` inside \
4500                                       the invocation");
4501             }
4502             Inherited => (),
4503         }
4504     }
4505
4506     /// Parse a method or a macro invocation in a trait impl.
4507     fn parse_impl_method(&mut self, vis: Visibility)
4508                          -> PResult<(Ident, Vec<ast::Attribute>, ast::ImplItem_)> {
4509         // code copied from parse_macro_use_or_failure... abstraction!
4510         if !self.token.is_any_keyword()
4511             && self.look_ahead(1, |t| *t == token::Not)
4512             && (self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
4513                 || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
4514             // method macro.
4515
4516             let last_span = self.last_span;
4517             self.complain_if_pub_macro(vis, last_span);
4518
4519             let pth = try!(self.parse_path(NoTypesAllowed));
4520             try!(self.expect(&token::Not));
4521
4522             // eat a matched-delimiter token tree:
4523             let delim = try!(self.expect_open_delim());
4524             let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
4525                                             seq_sep_none(),
4526                                             |p| p.parse_token_tree()));
4527             let m_ = ast::MacInvocTT(pth, tts, EMPTY_CTXT);
4528             let m: ast::Mac = codemap::Spanned { node: m_,
4529                                                 span: mk_sp(self.span.lo,
4530                                                             self.span.hi) };
4531             if delim != token::Brace {
4532                 try!(self.expect(&token::Semi))
4533             }
4534             Ok((token::special_idents::invalid, vec![], ast::MacImplItem(m)))
4535         } else {
4536             let (constness, unsafety, abi) = try!(self.parse_fn_front_matter());
4537             let ident = try!(self.parse_ident());
4538             let mut generics = try!(self.parse_generics());
4539             let (explicit_self, decl) = try!(self.parse_fn_decl_with_self(|p| {
4540                     p.parse_arg()
4541                 }));
4542             generics.where_clause = try!(self.parse_where_clause());
4543             let (inner_attrs, body) = try!(self.parse_inner_attrs_and_block());
4544             Ok((ident, inner_attrs, MethodImplItem(ast::MethodSig {
4545                 generics: generics,
4546                 abi: abi,
4547                 explicit_self: explicit_self,
4548                 unsafety: unsafety,
4549                 constness: constness,
4550                 decl: decl
4551              }, body)))
4552         }
4553     }
4554
4555     /// Parse trait Foo { ... }
4556     fn parse_item_trait(&mut self, unsafety: Unsafety) -> PResult<ItemInfo> {
4557
4558         let ident = try!(self.parse_ident());
4559         let mut tps = try!(self.parse_generics());
4560
4561         // Parse supertrait bounds.
4562         let bounds = try!(self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare));
4563
4564         tps.where_clause = try!(self.parse_where_clause());
4565
4566         let meths = try!(self.parse_trait_items());
4567         Ok((ident, ItemTrait(unsafety, tps, bounds, meths), None))
4568     }
4569
4570     /// Parses items implementations variants
4571     ///    impl<T> Foo { ... }
4572     ///    impl<T> ToString for &'static T { ... }
4573     ///    impl Send for .. {}
4574     fn parse_item_impl(&mut self, unsafety: ast::Unsafety) -> PResult<ItemInfo> {
4575         let impl_span = self.span;
4576
4577         // First, parse type parameters if necessary.
4578         let mut generics = try!(self.parse_generics());
4579
4580         // Special case: if the next identifier that follows is '(', don't
4581         // allow this to be parsed as a trait.
4582         let could_be_trait = self.token != token::OpenDelim(token::Paren);
4583
4584         let neg_span = self.span;
4585         let polarity = if try!(self.eat(&token::Not) ){
4586             ast::ImplPolarity::Negative
4587         } else {
4588             ast::ImplPolarity::Positive
4589         };
4590
4591         // Parse the trait.
4592         let mut ty = try!(self.parse_ty_sum());
4593
4594         // Parse traits, if necessary.
4595         let opt_trait = if could_be_trait && try!(self.eat_keyword(keywords::For) ){
4596             // New-style trait. Reinterpret the type as a trait.
4597             match ty.node {
4598                 TyPath(None, ref path) => {
4599                     Some(TraitRef {
4600                         path: (*path).clone(),
4601                         ref_id: ty.id,
4602                     })
4603                 }
4604                 _ => {
4605                     self.span_err(ty.span, "not a trait");
4606                     None
4607                 }
4608             }
4609         } else {
4610             match polarity {
4611                 ast::ImplPolarity::Negative => {
4612                     // This is a negated type implementation
4613                     // `impl !MyType {}`, which is not allowed.
4614                     self.span_err(neg_span, "inherent implementation can't be negated");
4615                 },
4616                 _ => {}
4617             }
4618             None
4619         };
4620
4621         if opt_trait.is_some() && try!(self.eat(&token::DotDot) ){
4622             if generics.is_parameterized() {
4623                 self.span_err(impl_span, "default trait implementations are not \
4624                                           allowed to have generics");
4625             }
4626
4627             try!(self.expect(&token::OpenDelim(token::Brace)));
4628             try!(self.expect(&token::CloseDelim(token::Brace)));
4629             Ok((ast_util::impl_pretty_name(&opt_trait, None),
4630              ItemDefaultImpl(unsafety, opt_trait.unwrap()), None))
4631         } else {
4632             if opt_trait.is_some() {
4633                 ty = try!(self.parse_ty_sum());
4634             }
4635             generics.where_clause = try!(self.parse_where_clause());
4636
4637             try!(self.expect(&token::OpenDelim(token::Brace)));
4638             let attrs = self.parse_inner_attributes();
4639
4640             let mut impl_items = vec![];
4641             while !try!(self.eat(&token::CloseDelim(token::Brace))) {
4642                 impl_items.push(try!(self.parse_impl_item()));
4643             }
4644
4645             Ok((ast_util::impl_pretty_name(&opt_trait, Some(&*ty)),
4646              ItemImpl(unsafety, polarity, generics, opt_trait, ty, impl_items),
4647              Some(attrs)))
4648         }
4649     }
4650
4651     /// Parse a::B<String,i32>
4652     fn parse_trait_ref(&mut self) -> PResult<TraitRef> {
4653         Ok(ast::TraitRef {
4654             path: try!(self.parse_path(LifetimeAndTypesWithoutColons)),
4655             ref_id: ast::DUMMY_NODE_ID,
4656         })
4657     }
4658
4659     fn parse_late_bound_lifetime_defs(&mut self) -> PResult<Vec<ast::LifetimeDef>> {
4660         if try!(self.eat_keyword(keywords::For) ){
4661             try!(self.expect(&token::Lt));
4662             let lifetime_defs = try!(self.parse_lifetime_defs());
4663             try!(self.expect_gt());
4664             Ok(lifetime_defs)
4665         } else {
4666             Ok(Vec::new())
4667         }
4668     }
4669
4670     /// Parse for<'l> a::B<String,i32>
4671     fn parse_poly_trait_ref(&mut self) -> PResult<PolyTraitRef> {
4672         let lo = self.span.lo;
4673         let lifetime_defs = try!(self.parse_late_bound_lifetime_defs());
4674
4675         Ok(ast::PolyTraitRef {
4676             bound_lifetimes: lifetime_defs,
4677             trait_ref: try!(self.parse_trait_ref()),
4678             span: mk_sp(lo, self.last_span.hi),
4679         })
4680     }
4681
4682     /// Parse struct Foo { ... }
4683     fn parse_item_struct(&mut self) -> PResult<ItemInfo> {
4684         let class_name = try!(self.parse_ident());
4685         let mut generics = try!(self.parse_generics());
4686
4687         // There is a special case worth noting here, as reported in issue #17904.
4688         // If we are parsing a tuple struct it is the case that the where clause
4689         // should follow the field list. Like so:
4690         //
4691         // struct Foo<T>(T) where T: Copy;
4692         //
4693         // If we are parsing a normal record-style struct it is the case
4694         // that the where clause comes before the body, and after the generics.
4695         // So if we look ahead and see a brace or a where-clause we begin
4696         // parsing a record style struct.
4697         //
4698         // Otherwise if we look ahead and see a paren we parse a tuple-style
4699         // struct.
4700
4701         let (fields, ctor_id) = if self.token.is_keyword(keywords::Where) {
4702             generics.where_clause = try!(self.parse_where_clause());
4703             if try!(self.eat(&token::Semi)) {
4704                 // If we see a: `struct Foo<T> where T: Copy;` style decl.
4705                 (Vec::new(), Some(ast::DUMMY_NODE_ID))
4706             } else {
4707                 // If we see: `struct Foo<T> where T: Copy { ... }`
4708                 (try!(self.parse_record_struct_body()), None)
4709             }
4710         // No `where` so: `struct Foo<T>;`
4711         } else if try!(self.eat(&token::Semi) ){
4712             (Vec::new(), Some(ast::DUMMY_NODE_ID))
4713         // Record-style struct definition
4714         } else if self.token == token::OpenDelim(token::Brace) {
4715             let fields = try!(self.parse_record_struct_body());
4716             (fields, None)
4717         // Tuple-style struct definition with optional where-clause.
4718         } else if self.token == token::OpenDelim(token::Paren) {
4719             let fields = try!(self.parse_tuple_struct_body(&class_name, &mut generics));
4720             (fields, Some(ast::DUMMY_NODE_ID))
4721         } else {
4722             let token_str = self.this_token_to_string();
4723             return Err(self.fatal(&format!("expected `where`, `{{`, `(`, or `;` after struct \
4724                                             name, found `{}`", token_str)))
4725         };
4726
4727         Ok((class_name,
4728          ItemStruct(P(ast::StructDef {
4729              fields: fields,
4730              ctor_id: ctor_id,
4731          }), generics),
4732          None))
4733     }
4734
4735     pub fn parse_record_struct_body(&mut self) -> PResult<Vec<StructField>> {
4736         let mut fields = Vec::new();
4737         if try!(self.eat(&token::OpenDelim(token::Brace)) ){
4738             while self.token != token::CloseDelim(token::Brace) {
4739                 fields.push(try!(self.parse_struct_decl_field(true)));
4740             }
4741
4742             try!(self.bump());
4743         } else {
4744             let token_str = self.this_token_to_string();
4745             return Err(self.fatal(&format!("expected `where`, or `{{` after struct \
4746                                 name, found `{}`",
4747                                 token_str)));
4748         }
4749
4750         Ok(fields)
4751     }
4752
4753     pub fn parse_tuple_struct_body(&mut self,
4754                                    class_name: &ast::Ident,
4755                                    generics: &mut ast::Generics)
4756                                    -> PResult<Vec<StructField>> {
4757         // This is the case where we find `struct Foo<T>(T) where T: Copy;`
4758         // Unit like structs are handled in parse_item_struct function
4759         let fields = try!(self.parse_unspanned_seq(
4760             &token::OpenDelim(token::Paren),
4761             &token::CloseDelim(token::Paren),
4762             seq_sep_trailing_allowed(token::Comma),
4763             |p| {
4764                 let attrs = p.parse_outer_attributes();
4765                 let lo = p.span.lo;
4766                 let struct_field_ = ast::StructField_ {
4767                     kind: UnnamedField(try!(p.parse_visibility())),
4768                     id: ast::DUMMY_NODE_ID,
4769                     ty: try!(p.parse_ty_sum()),
4770                     attrs: attrs,
4771                 };
4772                 Ok(spanned(lo, p.span.hi, struct_field_))
4773             }));
4774
4775         if fields.is_empty() {
4776             return Err(self.fatal(&format!("unit-like struct definition should be \
4777                                             written as `struct {};`",
4778                                            class_name)));
4779         }
4780
4781         generics.where_clause = try!(self.parse_where_clause());
4782         try!(self.expect(&token::Semi));
4783         Ok(fields)
4784     }
4785
4786     /// Parse a structure field declaration
4787     pub fn parse_single_struct_field(&mut self,
4788                                      vis: Visibility,
4789                                      attrs: Vec<Attribute> )
4790                                      -> PResult<StructField> {
4791         let a_var = try!(self.parse_name_and_ty(vis, attrs));
4792         match self.token {
4793             token::Comma => {
4794                 try!(self.bump());
4795             }
4796             token::CloseDelim(token::Brace) => {}
4797             _ => {
4798                 let span = self.span;
4799                 let token_str = self.this_token_to_string();
4800                 return Err(self.span_fatal_help(span,
4801                                      &format!("expected `,`, or `}}`, found `{}`",
4802                                              token_str),
4803                                      "struct fields should be separated by commas"))
4804             }
4805         }
4806         Ok(a_var)
4807     }
4808
4809     /// Parse an element of a struct definition
4810     fn parse_struct_decl_field(&mut self, allow_pub: bool) -> PResult<StructField> {
4811
4812         let attrs = self.parse_outer_attributes();
4813
4814         if try!(self.eat_keyword(keywords::Pub) ){
4815             if !allow_pub {
4816                 let span = self.last_span;
4817                 self.span_err(span, "`pub` is not allowed here");
4818             }
4819             return self.parse_single_struct_field(Public, attrs);
4820         }
4821
4822         return self.parse_single_struct_field(Inherited, attrs);
4823     }
4824
4825     /// Parse visibility: PUB or nothing
4826     fn parse_visibility(&mut self) -> PResult<Visibility> {
4827         if try!(self.eat_keyword(keywords::Pub)) { Ok(Public) }
4828         else { Ok(Inherited) }
4829     }
4830
4831     /// Given a termination token, parse all of the items in a module
4832     fn parse_mod_items(&mut self, term: &token::Token, inner_lo: BytePos) -> PResult<Mod> {
4833         let mut items = vec![];
4834         while let Some(item) = try!(self.parse_item_nopanic()) {
4835             items.push(item);
4836         }
4837
4838         if !try!(self.eat(term)) {
4839             let token_str = self.this_token_to_string();
4840             return Err(self.fatal(&format!("expected item, found `{}`", token_str)));
4841         }
4842
4843         let hi = if self.span == codemap::DUMMY_SP {
4844             inner_lo
4845         } else {
4846             self.span.lo
4847         };
4848
4849         Ok(ast::Mod {
4850             inner: mk_sp(inner_lo, hi),
4851             items: items
4852         })
4853     }
4854
4855     fn parse_item_const(&mut self, m: Option<Mutability>) -> PResult<ItemInfo> {
4856         let id = try!(self.parse_ident());
4857         try!(self.expect(&token::Colon));
4858         let ty = try!(self.parse_ty_sum());
4859         try!(self.expect(&token::Eq));
4860         let e = try!(self.parse_expr_nopanic());
4861         try!(self.commit_expr_expecting(&*e, token::Semi));
4862         let item = match m {
4863             Some(m) => ItemStatic(ty, m, e),
4864             None => ItemConst(ty, e),
4865         };
4866         Ok((id, item, None))
4867     }
4868
4869     /// Parse a `mod <foo> { ... }` or `mod <foo>;` item
4870     fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> PResult<ItemInfo> {
4871         let id_span = self.span;
4872         let id = try!(self.parse_ident());
4873         if self.check(&token::Semi) {
4874             try!(self.bump());
4875             // This mod is in an external file. Let's go get it!
4876             let (m, attrs) = try!(self.eval_src_mod(id, outer_attrs, id_span));
4877             Ok((id, m, Some(attrs)))
4878         } else {
4879             self.push_mod_path(id, outer_attrs);
4880             try!(self.expect(&token::OpenDelim(token::Brace)));
4881             let mod_inner_lo = self.span.lo;
4882             let old_owns_directory = self.owns_directory;
4883             self.owns_directory = true;
4884             let attrs = self.parse_inner_attributes();
4885             let m = try!(self.parse_mod_items(&token::CloseDelim(token::Brace), mod_inner_lo));
4886             self.owns_directory = old_owns_directory;
4887             self.pop_mod_path();
4888             Ok((id, ItemMod(m), Some(attrs)))
4889         }
4890     }
4891
4892     fn push_mod_path(&mut self, id: Ident, attrs: &[Attribute]) {
4893         let default_path = self.id_to_interned_str(id);
4894         let file_path = match ::attr::first_attr_value_str_by_name(attrs, "path") {
4895             Some(d) => d,
4896             None => default_path,
4897         };
4898         self.mod_path_stack.push(file_path)
4899     }
4900
4901     fn pop_mod_path(&mut self) {
4902         self.mod_path_stack.pop().unwrap();
4903     }
4904
4905     pub fn submod_path_from_attr(attrs: &[ast::Attribute], dir_path: &Path) -> Option<PathBuf> {
4906         ::attr::first_attr_value_str_by_name(attrs, "path").map(|d| dir_path.join(&*d))
4907     }
4908
4909     /// Returns either a path to a module, or .
4910     pub fn default_submod_path(id: ast::Ident, dir_path: &Path, codemap: &CodeMap) -> ModulePath
4911     {
4912         let mod_name = id.to_string();
4913         let default_path_str = format!("{}.rs", mod_name);
4914         let secondary_path_str = format!("{}/mod.rs", mod_name);
4915         let default_path = dir_path.join(&default_path_str);
4916         let secondary_path = dir_path.join(&secondary_path_str);
4917         let default_exists = codemap.file_exists(&default_path);
4918         let secondary_exists = codemap.file_exists(&secondary_path);
4919
4920         let result = match (default_exists, secondary_exists) {
4921             (true, false) => Ok(ModulePathSuccess { path: default_path, owns_directory: false }),
4922             (false, true) => Ok(ModulePathSuccess { path: secondary_path, owns_directory: true }),
4923             (false, false) => Err(ModulePathError {
4924                 err_msg: format!("file not found for module `{}`", mod_name),
4925                 help_msg: format!("name the file either {} or {} inside the directory {:?}",
4926                                   default_path_str,
4927                                   secondary_path_str,
4928                                   dir_path.display()),
4929             }),
4930             (true, true) => Err(ModulePathError {
4931                 err_msg: format!("file for module `{}` found at both {} and {}",
4932                                  mod_name,
4933                                  default_path_str,
4934                                  secondary_path_str),
4935                 help_msg: "delete or rename one of them to remove the ambiguity".to_owned(),
4936             }),
4937         };
4938
4939         ModulePath {
4940             name: mod_name,
4941             path_exists: default_exists || secondary_exists,
4942             result: result,
4943         }
4944     }
4945
4946     fn submod_path(&mut self,
4947                    id: ast::Ident,
4948                    outer_attrs: &[ast::Attribute],
4949                    id_sp: Span) -> PResult<ModulePathSuccess> {
4950         let mut prefix = PathBuf::from(&self.sess.codemap().span_to_filename(self.span));
4951         prefix.pop();
4952         let mut dir_path = prefix;
4953         for part in &self.mod_path_stack {
4954             dir_path.push(&**part);
4955         }
4956
4957         if let Some(p) = Parser::submod_path_from_attr(outer_attrs, &dir_path) {
4958             return Ok(ModulePathSuccess { path: p, owns_directory: true });
4959         }
4960
4961         let paths = Parser::default_submod_path(id, &dir_path, self.sess.codemap());
4962
4963         if !self.owns_directory {
4964             self.span_err(id_sp, "cannot declare a new module at this location");
4965             let this_module = match self.mod_path_stack.last() {
4966                 Some(name) => name.to_string(),
4967                 None => self.root_module_name.as_ref().unwrap().clone(),
4968             };
4969             self.span_note(id_sp,
4970                            &format!("maybe move this module `{0}` to its own directory \
4971                                      via `{0}/mod.rs`",
4972                                     this_module));
4973             if paths.path_exists {
4974                 self.span_note(id_sp,
4975                                &format!("... or maybe `use` the module `{}` instead \
4976                                          of possibly redeclaring it",
4977                                         paths.name));
4978             }
4979             self.abort_if_errors();
4980         }
4981
4982         match paths.result {
4983             Ok(succ) => Ok(succ),
4984             Err(err) => Err(self.span_fatal_help(id_sp, &err.err_msg, &err.help_msg)),
4985         }
4986     }
4987
4988     /// Read a module from a source file.
4989     fn eval_src_mod(&mut self,
4990                     id: ast::Ident,
4991                     outer_attrs: &[ast::Attribute],
4992                     id_sp: Span)
4993                     -> PResult<(ast::Item_, Vec<ast::Attribute> )> {
4994         let ModulePathSuccess { path, owns_directory } = try!(self.submod_path(id,
4995                                                                                outer_attrs,
4996                                                                                id_sp));
4997
4998         self.eval_src_mod_from_path(path,
4999                                     owns_directory,
5000                                     id.to_string(),
5001                                     id_sp)
5002     }
5003
5004     fn eval_src_mod_from_path(&mut self,
5005                               path: PathBuf,
5006                               owns_directory: bool,
5007                               name: String,
5008                               id_sp: Span) -> PResult<(ast::Item_, Vec<ast::Attribute> )> {
5009         let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut();
5010         match included_mod_stack.iter().position(|p| *p == path) {
5011             Some(i) => {
5012                 let mut err = String::from("circular modules: ");
5013                 let len = included_mod_stack.len();
5014                 for p in &included_mod_stack[i.. len] {
5015                     err.push_str(&p.to_string_lossy());
5016                     err.push_str(" -> ");
5017                 }
5018                 err.push_str(&path.to_string_lossy());
5019                 return Err(self.span_fatal(id_sp, &err[..]));
5020             }
5021             None => ()
5022         }
5023         included_mod_stack.push(path.clone());
5024         drop(included_mod_stack);
5025
5026         let mut p0 = new_sub_parser_from_file(self.sess,
5027                                               self.cfg.clone(),
5028                                               &path,
5029                                               owns_directory,
5030                                               Some(name),
5031                                               id_sp);
5032         let mod_inner_lo = p0.span.lo;
5033         let mod_attrs = p0.parse_inner_attributes();
5034         let m0 = try!(p0.parse_mod_items(&token::Eof, mod_inner_lo));
5035         self.sess.included_mod_stack.borrow_mut().pop();
5036         Ok((ast::ItemMod(m0), mod_attrs))
5037     }
5038
5039     /// Parse a function declaration from a foreign module
5040     fn parse_item_foreign_fn(&mut self, vis: ast::Visibility,
5041                              attrs: Vec<Attribute>) -> PResult<P<ForeignItem>> {
5042         let lo = self.span.lo;
5043         try!(self.expect_keyword(keywords::Fn));
5044
5045         let (ident, mut generics) = try!(self.parse_fn_header());
5046         let decl = try!(self.parse_fn_decl(true));
5047         generics.where_clause = try!(self.parse_where_clause());
5048         let hi = self.span.hi;
5049         try!(self.expect(&token::Semi));
5050         Ok(P(ast::ForeignItem {
5051             ident: ident,
5052             attrs: attrs,
5053             node: ForeignItemFn(decl, generics),
5054             id: ast::DUMMY_NODE_ID,
5055             span: mk_sp(lo, hi),
5056             vis: vis
5057         }))
5058     }
5059
5060     /// Parse a static item from a foreign module
5061     fn parse_item_foreign_static(&mut self, vis: ast::Visibility,
5062                                  attrs: Vec<Attribute>) -> PResult<P<ForeignItem>> {
5063         let lo = self.span.lo;
5064
5065         try!(self.expect_keyword(keywords::Static));
5066         let mutbl = try!(self.eat_keyword(keywords::Mut));
5067
5068         let ident = try!(self.parse_ident());
5069         try!(self.expect(&token::Colon));
5070         let ty = try!(self.parse_ty_sum());
5071         let hi = self.span.hi;
5072         try!(self.expect(&token::Semi));
5073         Ok(P(ForeignItem {
5074             ident: ident,
5075             attrs: attrs,
5076             node: ForeignItemStatic(ty, mutbl),
5077             id: ast::DUMMY_NODE_ID,
5078             span: mk_sp(lo, hi),
5079             vis: vis
5080         }))
5081     }
5082
5083     /// Parse extern crate links
5084     ///
5085     /// # Examples
5086     ///
5087     /// extern crate foo;
5088     /// extern crate bar as foo;
5089     fn parse_item_extern_crate(&mut self,
5090                                lo: BytePos,
5091                                visibility: Visibility,
5092                                attrs: Vec<Attribute>)
5093                                 -> PResult<P<Item>> {
5094
5095         let crate_name = try!(self.parse_ident());
5096         let (maybe_path, ident) = if let Some(ident) = try!(self.parse_rename()) {
5097             (Some(crate_name.name), ident)
5098         } else {
5099             (None, crate_name)
5100         };
5101         try!(self.expect(&token::Semi));
5102
5103         let last_span = self.last_span;
5104
5105         if visibility == ast::Public {
5106             self.span_warn(mk_sp(lo, last_span.hi),
5107                            "`pub extern crate` does not work as expected and should not be used. \
5108                             Likely to become an error. Prefer `extern crate` and `pub use`.");
5109         }
5110
5111         Ok(self.mk_item(lo,
5112                         last_span.hi,
5113                         ident,
5114                         ItemExternCrate(maybe_path),
5115                         visibility,
5116                         attrs))
5117     }
5118
5119     /// Parse `extern` for foreign ABIs
5120     /// modules.
5121     ///
5122     /// `extern` is expected to have been
5123     /// consumed before calling this method
5124     ///
5125     /// # Examples:
5126     ///
5127     /// extern "C" {}
5128     /// extern {}
5129     fn parse_item_foreign_mod(&mut self,
5130                               lo: BytePos,
5131                               opt_abi: Option<abi::Abi>,
5132                               visibility: Visibility,
5133                               mut attrs: Vec<Attribute>)
5134                               -> PResult<P<Item>> {
5135         try!(self.expect(&token::OpenDelim(token::Brace)));
5136
5137         let abi = opt_abi.unwrap_or(abi::C);
5138
5139         attrs.extend(self.parse_inner_attributes());
5140
5141         let mut foreign_items = vec![];
5142         while let Some(item) = try!(self.parse_foreign_item()) {
5143             foreign_items.push(item);
5144         }
5145         try!(self.expect(&token::CloseDelim(token::Brace)));
5146
5147         let last_span = self.last_span;
5148         let m = ast::ForeignMod {
5149             abi: abi,
5150             items: foreign_items
5151         };
5152         Ok(self.mk_item(lo,
5153                      last_span.hi,
5154                      special_idents::invalid,
5155                      ItemForeignMod(m),
5156                      visibility,
5157                      attrs))
5158     }
5159
5160     /// Parse type Foo = Bar;
5161     fn parse_item_type(&mut self) -> PResult<ItemInfo> {
5162         let ident = try!(self.parse_ident());
5163         let mut tps = try!(self.parse_generics());
5164         tps.where_clause = try!(self.parse_where_clause());
5165         try!(self.expect(&token::Eq));
5166         let ty = try!(self.parse_ty_sum());
5167         try!(self.expect(&token::Semi));
5168         Ok((ident, ItemTy(ty, tps), None))
5169     }
5170
5171     /// Parse a structure-like enum variant definition
5172     /// this should probably be renamed or refactored...
5173     fn parse_struct_def(&mut self) -> PResult<P<StructDef>> {
5174         let mut fields: Vec<StructField> = Vec::new();
5175         while self.token != token::CloseDelim(token::Brace) {
5176             fields.push(try!(self.parse_struct_decl_field(false)));
5177         }
5178         try!(self.bump());
5179
5180         Ok(P(StructDef {
5181             fields: fields,
5182             ctor_id: None,
5183         }))
5184     }
5185
5186     /// Parse the part of an "enum" decl following the '{'
5187     fn parse_enum_def(&mut self, _generics: &ast::Generics) -> PResult<EnumDef> {
5188         let mut variants = Vec::new();
5189         let mut all_nullary = true;
5190         let mut any_disr = None;
5191         while self.token != token::CloseDelim(token::Brace) {
5192             let variant_attrs = self.parse_outer_attributes();
5193             let vlo = self.span.lo;
5194
5195             let kind;
5196             let mut args = Vec::new();
5197             let mut disr_expr = None;
5198             let ident = try!(self.parse_ident());
5199             if try!(self.eat(&token::OpenDelim(token::Brace)) ){
5200                 // Parse a struct variant.
5201                 all_nullary = false;
5202                 let start_span = self.span;
5203                 let struct_def = try!(self.parse_struct_def());
5204                 if struct_def.fields.is_empty() {
5205                     self.span_err(start_span,
5206                         &format!("unit-like struct variant should be written \
5207                                  without braces, as `{},`",
5208                                 ident));
5209                 }
5210                 kind = StructVariantKind(struct_def);
5211             } else if self.check(&token::OpenDelim(token::Paren)) {
5212                 all_nullary = false;
5213                 let arg_tys = try!(self.parse_enum_variant_seq(
5214                     &token::OpenDelim(token::Paren),
5215                     &token::CloseDelim(token::Paren),
5216                     seq_sep_trailing_allowed(token::Comma),
5217                     |p| p.parse_ty_sum()
5218                 ));
5219                 for ty in arg_tys {
5220                     args.push(ast::VariantArg {
5221                         ty: ty,
5222                         id: ast::DUMMY_NODE_ID,
5223                     });
5224                 }
5225                 kind = TupleVariantKind(args);
5226             } else if try!(self.eat(&token::Eq) ){
5227                 disr_expr = Some(try!(self.parse_expr_nopanic()));
5228                 any_disr = disr_expr.as_ref().map(|expr| expr.span);
5229                 kind = TupleVariantKind(args);
5230             } else {
5231                 kind = TupleVariantKind(Vec::new());
5232             }
5233
5234             let vr = ast::Variant_ {
5235                 name: ident,
5236                 attrs: variant_attrs,
5237                 kind: kind,
5238                 id: ast::DUMMY_NODE_ID,
5239                 disr_expr: disr_expr,
5240             };
5241             variants.push(P(spanned(vlo, self.last_span.hi, vr)));
5242
5243             if !try!(self.eat(&token::Comma)) { break; }
5244         }
5245         try!(self.expect(&token::CloseDelim(token::Brace)));
5246         match any_disr {
5247             Some(disr_span) if !all_nullary =>
5248                 self.span_err(disr_span,
5249                     "discriminator values can only be used with a c-like enum"),
5250             _ => ()
5251         }
5252
5253         Ok(ast::EnumDef { variants: variants })
5254     }
5255
5256     /// Parse an "enum" declaration
5257     fn parse_item_enum(&mut self) -> PResult<ItemInfo> {
5258         let id = try!(self.parse_ident());
5259         let mut generics = try!(self.parse_generics());
5260         generics.where_clause = try!(self.parse_where_clause());
5261         try!(self.expect(&token::OpenDelim(token::Brace)));
5262
5263         let enum_definition = try!(self.parse_enum_def(&generics));
5264         Ok((id, ItemEnum(enum_definition, generics), None))
5265     }
5266
5267     /// Parses a string as an ABI spec on an extern type or module. Consumes
5268     /// the `extern` keyword, if one is found.
5269     fn parse_opt_abi(&mut self) -> PResult<Option<abi::Abi>> {
5270         match self.token {
5271             token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => {
5272                 let sp = self.span;
5273                 self.expect_no_suffix(sp, "ABI spec", suf);
5274                 try!(self.bump());
5275                 match abi::lookup(&s.as_str()) {
5276                     Some(abi) => Ok(Some(abi)),
5277                     None => {
5278                         let last_span = self.last_span;
5279                         self.span_err(
5280                             last_span,
5281                             &format!("invalid ABI: expected one of [{}], \
5282                                      found `{}`",
5283                                     abi::all_names().join(", "),
5284                                     s));
5285                         Ok(None)
5286                     }
5287                 }
5288             }
5289
5290             _ => Ok(None),
5291         }
5292     }
5293
5294     /// Parse one of the items allowed by the flags.
5295     /// NB: this function no longer parses the items inside an
5296     /// extern crate.
5297     fn parse_item_(&mut self, attrs: Vec<Attribute>,
5298                    macros_allowed: bool) -> PResult<Option<P<Item>>> {
5299         let nt_item = match self.token {
5300             token::Interpolated(token::NtItem(ref item)) => {
5301                 Some((**item).clone())
5302             }
5303             _ => None
5304         };
5305         match nt_item {
5306             Some(mut item) => {
5307                 try!(self.bump());
5308                 let mut attrs = attrs;
5309                 mem::swap(&mut item.attrs, &mut attrs);
5310                 item.attrs.extend(attrs);
5311                 return Ok(Some(P(item)));
5312             }
5313             None => {}
5314         }
5315
5316         let lo = self.span.lo;
5317
5318         let visibility = try!(self.parse_visibility());
5319
5320         if try!(self.eat_keyword(keywords::Use) ){
5321             // USE ITEM
5322             let item_ = ItemUse(try!(self.parse_view_path()));
5323             try!(self.expect(&token::Semi));
5324
5325             let last_span = self.last_span;
5326             let item = self.mk_item(lo,
5327                                     last_span.hi,
5328                                     token::special_idents::invalid,
5329                                     item_,
5330                                     visibility,
5331                                     attrs);
5332             return Ok(Some(item));
5333         }
5334
5335         if try!(self.eat_keyword(keywords::Extern)) {
5336             if try!(self.eat_keyword(keywords::Crate)) {
5337                 return Ok(Some(try!(self.parse_item_extern_crate(lo, visibility, attrs))));
5338             }
5339
5340             let opt_abi = try!(self.parse_opt_abi());
5341
5342             if try!(self.eat_keyword(keywords::Fn) ){
5343                 // EXTERN FUNCTION ITEM
5344                 let abi = opt_abi.unwrap_or(abi::C);
5345                 let (ident, item_, extra_attrs) =
5346                     try!(self.parse_item_fn(Unsafety::Normal, Constness::NotConst, abi));
5347                 let last_span = self.last_span;
5348                 let item = self.mk_item(lo,
5349                                         last_span.hi,
5350                                         ident,
5351                                         item_,
5352                                         visibility,
5353                                         maybe_append(attrs, extra_attrs));
5354                 return Ok(Some(item));
5355             } else if self.check(&token::OpenDelim(token::Brace)) {
5356                 return Ok(Some(try!(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs))));
5357             }
5358
5359             try!(self.expect_one_of(&[], &[]));
5360         }
5361
5362         if try!(self.eat_keyword(keywords::Static) ){
5363             // STATIC ITEM
5364             let m = if try!(self.eat_keyword(keywords::Mut)) {MutMutable} else {MutImmutable};
5365             let (ident, item_, extra_attrs) = try!(self.parse_item_const(Some(m)));
5366             let last_span = self.last_span;
5367             let item = self.mk_item(lo,
5368                                     last_span.hi,
5369                                     ident,
5370                                     item_,
5371                                     visibility,
5372                                     maybe_append(attrs, extra_attrs));
5373             return Ok(Some(item));
5374         }
5375         if try!(self.eat_keyword(keywords::Const) ){
5376             if self.check_keyword(keywords::Fn) {
5377                 // CONST FUNCTION ITEM
5378                 try!(self.bump());
5379                 let (ident, item_, extra_attrs) =
5380                     try!(self.parse_item_fn(Unsafety::Normal, Constness::Const, abi::Rust));
5381                 let last_span = self.last_span;
5382                 let item = self.mk_item(lo,
5383                                         last_span.hi,
5384                                         ident,
5385                                         item_,
5386                                         visibility,
5387                                         maybe_append(attrs, extra_attrs));
5388                 return Ok(Some(item));
5389             }
5390
5391             // CONST ITEM
5392             if try!(self.eat_keyword(keywords::Mut) ){
5393                 let last_span = self.last_span;
5394                 self.span_err(last_span, "const globals cannot be mutable");
5395                 self.fileline_help(last_span, "did you mean to declare a static?");
5396             }
5397             let (ident, item_, extra_attrs) = try!(self.parse_item_const(None));
5398             let last_span = self.last_span;
5399             let item = self.mk_item(lo,
5400                                     last_span.hi,
5401                                     ident,
5402                                     item_,
5403                                     visibility,
5404                                     maybe_append(attrs, extra_attrs));
5405             return Ok(Some(item));
5406         }
5407         if self.check_keyword(keywords::Unsafe) &&
5408             self.look_ahead(1, |t| t.is_keyword(keywords::Trait))
5409         {
5410             // UNSAFE TRAIT ITEM
5411             try!(self.expect_keyword(keywords::Unsafe));
5412             try!(self.expect_keyword(keywords::Trait));
5413             let (ident, item_, extra_attrs) =
5414                 try!(self.parse_item_trait(ast::Unsafety::Unsafe));
5415             let last_span = self.last_span;
5416             let item = self.mk_item(lo,
5417                                     last_span.hi,
5418                                     ident,
5419                                     item_,
5420                                     visibility,
5421                                     maybe_append(attrs, extra_attrs));
5422             return Ok(Some(item));
5423         }
5424         if self.check_keyword(keywords::Unsafe) &&
5425             self.look_ahead(1, |t| t.is_keyword(keywords::Impl))
5426         {
5427             // IMPL ITEM
5428             try!(self.expect_keyword(keywords::Unsafe));
5429             try!(self.expect_keyword(keywords::Impl));
5430             let (ident, item_, extra_attrs) = try!(self.parse_item_impl(ast::Unsafety::Unsafe));
5431             let last_span = self.last_span;
5432             let item = self.mk_item(lo,
5433                                     last_span.hi,
5434                                     ident,
5435                                     item_,
5436                                     visibility,
5437                                     maybe_append(attrs, extra_attrs));
5438             return Ok(Some(item));
5439         }
5440         if self.check_keyword(keywords::Fn) {
5441             // FUNCTION ITEM
5442             try!(self.bump());
5443             let (ident, item_, extra_attrs) =
5444                 try!(self.parse_item_fn(Unsafety::Normal, Constness::NotConst, abi::Rust));
5445             let last_span = self.last_span;
5446             let item = self.mk_item(lo,
5447                                     last_span.hi,
5448                                     ident,
5449                                     item_,
5450                                     visibility,
5451                                     maybe_append(attrs, extra_attrs));
5452             return Ok(Some(item));
5453         }
5454         if self.check_keyword(keywords::Unsafe)
5455             && self.look_ahead(1, |t| *t != token::OpenDelim(token::Brace)) {
5456             // UNSAFE FUNCTION ITEM
5457             try!(self.bump());
5458             let abi = if try!(self.eat_keyword(keywords::Extern) ){
5459                 try!(self.parse_opt_abi()).unwrap_or(abi::C)
5460             } else {
5461                 abi::Rust
5462             };
5463             try!(self.expect_keyword(keywords::Fn));
5464             let (ident, item_, extra_attrs) =
5465                 try!(self.parse_item_fn(Unsafety::Unsafe, Constness::NotConst, abi));
5466             let last_span = self.last_span;
5467             let item = self.mk_item(lo,
5468                                     last_span.hi,
5469                                     ident,
5470                                     item_,
5471                                     visibility,
5472                                     maybe_append(attrs, extra_attrs));
5473             return Ok(Some(item));
5474         }
5475         if try!(self.eat_keyword(keywords::Mod) ){
5476             // MODULE ITEM
5477             let (ident, item_, extra_attrs) =
5478                 try!(self.parse_item_mod(&attrs[..]));
5479             let last_span = self.last_span;
5480             let item = self.mk_item(lo,
5481                                     last_span.hi,
5482                                     ident,
5483                                     item_,
5484                                     visibility,
5485                                     maybe_append(attrs, extra_attrs));
5486             return Ok(Some(item));
5487         }
5488         if try!(self.eat_keyword(keywords::Type) ){
5489             // TYPE ITEM
5490             let (ident, item_, extra_attrs) = try!(self.parse_item_type());
5491             let last_span = self.last_span;
5492             let item = self.mk_item(lo,
5493                                     last_span.hi,
5494                                     ident,
5495                                     item_,
5496                                     visibility,
5497                                     maybe_append(attrs, extra_attrs));
5498             return Ok(Some(item));
5499         }
5500         if try!(self.eat_keyword(keywords::Enum) ){
5501             // ENUM ITEM
5502             let (ident, item_, extra_attrs) = try!(self.parse_item_enum());
5503             let last_span = self.last_span;
5504             let item = self.mk_item(lo,
5505                                     last_span.hi,
5506                                     ident,
5507                                     item_,
5508                                     visibility,
5509                                     maybe_append(attrs, extra_attrs));
5510             return Ok(Some(item));
5511         }
5512         if try!(self.eat_keyword(keywords::Trait) ){
5513             // TRAIT ITEM
5514             let (ident, item_, extra_attrs) =
5515                 try!(self.parse_item_trait(ast::Unsafety::Normal));
5516             let last_span = self.last_span;
5517             let item = self.mk_item(lo,
5518                                     last_span.hi,
5519                                     ident,
5520                                     item_,
5521                                     visibility,
5522                                     maybe_append(attrs, extra_attrs));
5523             return Ok(Some(item));
5524         }
5525         if try!(self.eat_keyword(keywords::Impl) ){
5526             // IMPL ITEM
5527             let (ident, item_, extra_attrs) = try!(self.parse_item_impl(ast::Unsafety::Normal));
5528             let last_span = self.last_span;
5529             let item = self.mk_item(lo,
5530                                     last_span.hi,
5531                                     ident,
5532                                     item_,
5533                                     visibility,
5534                                     maybe_append(attrs, extra_attrs));
5535             return Ok(Some(item));
5536         }
5537         if try!(self.eat_keyword(keywords::Struct) ){
5538             // STRUCT ITEM
5539             let (ident, item_, extra_attrs) = try!(self.parse_item_struct());
5540             let last_span = self.last_span;
5541             let item = self.mk_item(lo,
5542                                     last_span.hi,
5543                                     ident,
5544                                     item_,
5545                                     visibility,
5546                                     maybe_append(attrs, extra_attrs));
5547             return Ok(Some(item));
5548         }
5549         self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility)
5550     }
5551
5552     /// Parse a foreign item.
5553     fn parse_foreign_item(&mut self) -> PResult<Option<P<ForeignItem>>> {
5554         let attrs = self.parse_outer_attributes();
5555         let lo = self.span.lo;
5556         let visibility = try!(self.parse_visibility());
5557
5558         if self.check_keyword(keywords::Static) {
5559             // FOREIGN STATIC ITEM
5560             return Ok(Some(try!(self.parse_item_foreign_static(visibility, attrs))));
5561         }
5562         if self.check_keyword(keywords::Fn) || self.check_keyword(keywords::Unsafe) {
5563             // FOREIGN FUNCTION ITEM
5564             return Ok(Some(try!(self.parse_item_foreign_fn(visibility, attrs))));
5565         }
5566
5567         // FIXME #5668: this will occur for a macro invocation:
5568         match try!(self.parse_macro_use_or_failure(attrs, true, lo, visibility)) {
5569             Some(item) => {
5570                 return Err(self.span_fatal(item.span, "macros cannot expand to foreign items"));
5571             }
5572             None => Ok(None)
5573         }
5574     }
5575
5576     /// This is the fall-through for parsing items.
5577     fn parse_macro_use_or_failure(
5578         &mut self,
5579         attrs: Vec<Attribute> ,
5580         macros_allowed: bool,
5581         lo: BytePos,
5582         visibility: Visibility
5583     ) -> PResult<Option<P<Item>>> {
5584         if macros_allowed && !self.token.is_any_keyword()
5585                 && self.look_ahead(1, |t| *t == token::Not)
5586                 && (self.look_ahead(2, |t| t.is_plain_ident())
5587                     || self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
5588                     || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
5589             // MACRO INVOCATION ITEM
5590
5591             let last_span = self.last_span;
5592             self.complain_if_pub_macro(visibility, last_span);
5593
5594             // item macro.
5595             let pth = try!(self.parse_path(NoTypesAllowed));
5596             try!(self.expect(&token::Not));
5597
5598             // a 'special' identifier (like what `macro_rules!` uses)
5599             // is optional. We should eventually unify invoc syntax
5600             // and remove this.
5601             let id = if self.token.is_plain_ident() {
5602                 try!(self.parse_ident())
5603             } else {
5604                 token::special_idents::invalid // no special identifier
5605             };
5606             // eat a matched-delimiter token tree:
5607             let delim = try!(self.expect_open_delim());
5608             let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
5609                                             seq_sep_none(),
5610                                             |p| p.parse_token_tree()));
5611             // single-variant-enum... :
5612             let m = ast::MacInvocTT(pth, tts, EMPTY_CTXT);
5613             let m: ast::Mac = codemap::Spanned { node: m,
5614                                              span: mk_sp(self.span.lo,
5615                                                          self.span.hi) };
5616
5617             if delim != token::Brace {
5618                 if !try!(self.eat(&token::Semi) ){
5619                     let last_span = self.last_span;
5620                     self.span_err(last_span,
5621                                   "macros that expand to items must either \
5622                                    be surrounded with braces or followed by \
5623                                    a semicolon");
5624                 }
5625             }
5626
5627             let item_ = ItemMac(m);
5628             let last_span = self.last_span;
5629             let item = self.mk_item(lo,
5630                                     last_span.hi,
5631                                     id,
5632                                     item_,
5633                                     visibility,
5634                                     attrs);
5635             return Ok(Some(item));
5636         }
5637
5638         // FAILURE TO PARSE ITEM
5639         match visibility {
5640             Inherited => {}
5641             Public => {
5642                 let last_span = self.last_span;
5643                 return Err(self.span_fatal(last_span, "unmatched visibility `pub`"));
5644             }
5645         }
5646
5647         if !attrs.is_empty() {
5648             self.expected_item_err(&attrs);
5649         }
5650         Ok(None)
5651     }
5652
5653     pub fn parse_item_nopanic(&mut self) -> PResult<Option<P<Item>>> {
5654         let attrs = self.parse_outer_attributes();
5655         self.parse_item_(attrs, true)
5656     }
5657
5658
5659     /// Matches view_path : MOD? non_global_path as IDENT
5660     /// | MOD? non_global_path MOD_SEP LBRACE RBRACE
5661     /// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE
5662     /// | MOD? non_global_path MOD_SEP STAR
5663     /// | MOD? non_global_path
5664     fn parse_view_path(&mut self) -> PResult<P<ViewPath>> {
5665         let lo = self.span.lo;
5666
5667         // Allow a leading :: because the paths are absolute either way.
5668         // This occurs with "use $crate::..." in macros.
5669         try!(self.eat(&token::ModSep));
5670
5671         if self.check(&token::OpenDelim(token::Brace)) {
5672             // use {foo,bar}
5673             let idents = try!(self.parse_unspanned_seq(
5674                 &token::OpenDelim(token::Brace),
5675                 &token::CloseDelim(token::Brace),
5676                 seq_sep_trailing_allowed(token::Comma),
5677                 |p| p.parse_path_list_item()));
5678             let path = ast::Path {
5679                 span: mk_sp(lo, self.span.hi),
5680                 global: false,
5681                 segments: Vec::new()
5682             };
5683             return Ok(P(spanned(lo, self.span.hi, ViewPathList(path, idents))));
5684         }
5685
5686         let first_ident = try!(self.parse_ident());
5687         let mut path = vec!(first_ident);
5688         if let token::ModSep = self.token {
5689             // foo::bar or foo::{a,b,c} or foo::*
5690             while self.check(&token::ModSep) {
5691                 try!(self.bump());
5692
5693                 match self.token {
5694                   token::Ident(..) => {
5695                     let ident = try!(self.parse_ident());
5696                     path.push(ident);
5697                   }
5698
5699                   // foo::bar::{a,b,c}
5700                   token::OpenDelim(token::Brace) => {
5701                     let idents = try!(self.parse_unspanned_seq(
5702                         &token::OpenDelim(token::Brace),
5703                         &token::CloseDelim(token::Brace),
5704                         seq_sep_trailing_allowed(token::Comma),
5705                         |p| p.parse_path_list_item()
5706                     ));
5707                     let path = ast::Path {
5708                         span: mk_sp(lo, self.span.hi),
5709                         global: false,
5710                         segments: path.into_iter().map(|identifier| {
5711                             ast::PathSegment {
5712                                 identifier: identifier,
5713                                 parameters: ast::PathParameters::none(),
5714                             }
5715                         }).collect()
5716                     };
5717                     return Ok(P(spanned(lo, self.span.hi, ViewPathList(path, idents))));
5718                   }
5719
5720                   // foo::bar::*
5721                   token::BinOp(token::Star) => {
5722                     try!(self.bump());
5723                     let path = ast::Path {
5724                         span: mk_sp(lo, self.span.hi),
5725                         global: false,
5726                         segments: path.into_iter().map(|identifier| {
5727                             ast::PathSegment {
5728                                 identifier: identifier,
5729                                 parameters: ast::PathParameters::none(),
5730                             }
5731                         }).collect()
5732                     };
5733                     return Ok(P(spanned(lo, self.span.hi, ViewPathGlob(path))));
5734                   }
5735
5736                   // fall-through for case foo::bar::;
5737                   token::Semi => {
5738                     self.span_err(self.span, "expected identifier or `{` or `*`, found `;`");
5739                   }
5740
5741                   _ => break
5742                 }
5743             }
5744         }
5745         let mut rename_to = path[path.len() - 1];
5746         let path = ast::Path {
5747             span: mk_sp(lo, self.last_span.hi),
5748             global: false,
5749             segments: path.into_iter().map(|identifier| {
5750                 ast::PathSegment {
5751                     identifier: identifier,
5752                     parameters: ast::PathParameters::none(),
5753                 }
5754             }).collect()
5755         };
5756         rename_to = try!(self.parse_rename()).unwrap_or(rename_to);
5757         Ok(P(spanned(lo, self.last_span.hi, ViewPathSimple(rename_to, path))))
5758     }
5759
5760     fn parse_rename(&mut self) -> PResult<Option<Ident>> {
5761         if try!(self.eat_keyword(keywords::As)) {
5762             self.parse_ident().map(Some)
5763         } else {
5764             Ok(None)
5765         }
5766     }
5767
5768     /// Parses a source module as a crate. This is the main
5769     /// entry point for the parser.
5770     pub fn parse_crate_mod(&mut self) -> PResult<Crate> {
5771         let lo = self.span.lo;
5772         Ok(ast::Crate {
5773             attrs: self.parse_inner_attributes(),
5774             module: try!(self.parse_mod_items(&token::Eof, lo)),
5775             config: self.cfg.clone(),
5776             span: mk_sp(lo, self.span.lo),
5777             exported_macros: Vec::new(),
5778         })
5779     }
5780
5781     pub fn parse_optional_str(&mut self)
5782                               -> PResult<Option<(InternedString,
5783                                                  ast::StrStyle,
5784                                                  Option<ast::Name>)>> {
5785         let ret = match self.token {
5786             token::Literal(token::Str_(s), suf) => {
5787                 (self.id_to_interned_str(s.ident()), ast::CookedStr, suf)
5788             }
5789             token::Literal(token::StrRaw(s, n), suf) => {
5790                 (self.id_to_interned_str(s.ident()), ast::RawStr(n), suf)
5791             }
5792             _ => return Ok(None)
5793         };
5794         try!(self.bump());
5795         Ok(Some(ret))
5796     }
5797
5798     pub fn parse_str(&mut self) -> PResult<(InternedString, StrStyle)> {
5799         match try!(self.parse_optional_str()) {
5800             Some((s, style, suf)) => {
5801                 let sp = self.last_span;
5802                 self.expect_no_suffix(sp, "string literal", suf);
5803                 Ok((s, style))
5804             }
5805             _ =>  Err(self.fatal("expected string literal"))
5806         }
5807     }
5808 }