]> git.lizzy.rs Git - rust.git/blob - src/libsyntax/parse/parser.rs
Implement type ascription.
[rust.git] / src / libsyntax / parse / parser.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 pub use self::PathParsingMode::*;
12
13 use abi;
14 use ast::BareFnTy;
15 use ast::{RegionTyParamBound, TraitTyParamBound, TraitBoundModifier};
16 use ast::{Public, Unsafety};
17 use ast::{Mod, BiAdd, Arg, Arm, Attribute, BindByRef, BindByValue};
18 use ast::{BiBitAnd, BiBitOr, BiBitXor, BiRem, BiLt, Block};
19 use ast::{BlockCheckMode, CaptureByRef, CaptureByValue, CaptureClause};
20 use ast::{Constness, ConstTraitItem, Crate, CrateConfig};
21 use ast::{Decl, DeclItem, DeclLocal, DefaultBlock, DefaultReturn};
22 use ast::{UnDeref, BiDiv, EMPTY_CTXT, EnumDef, ExplicitSelf};
23 use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain};
24 use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox};
25 use ast::{ExprBreak, ExprCall, ExprCast, ExprInPlace};
26 use ast::{ExprField, ExprTupField, ExprClosure, ExprIf, ExprIfLet, ExprIndex};
27 use ast::{ExprLit, ExprLoop, ExprMac, ExprRange};
28 use ast::{ExprMethodCall, ExprParen, ExprPath};
29 use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprType, ExprUnary};
30 use ast::{ExprVec, ExprWhile, ExprWhileLet, ExprForLoop, Field, FnDecl};
31 use ast::{ForeignItem, ForeignItemStatic, ForeignItemFn, ForeignMod, FunctionRetTy};
32 use ast::{Ident, Inherited, ImplItem, Item, Item_, ItemStatic};
33 use ast::{ItemEnum, ItemFn, ItemForeignMod, ItemImpl, ItemConst};
34 use ast::{ItemMac, ItemMod, ItemStruct, ItemTrait, ItemTy, ItemDefaultImpl};
35 use ast::{ItemExternCrate, ItemUse};
36 use ast::{LifetimeDef, Lit, Lit_};
37 use ast::{LitBool, LitChar, LitByte, LitByteStr};
38 use ast::{LitStr, LitInt, Local};
39 use ast::{MacStmtWithBraces, MacStmtWithSemicolon, MacStmtWithoutBraces};
40 use ast::{MutImmutable, MutMutable, Mac_};
41 use ast::{MutTy, BiMul, Mutability};
42 use ast::{NamedField, UnNeg, NoReturn, UnNot};
43 use ast::{Pat, PatBox, PatEnum, PatIdent, PatLit, PatQPath, PatMac, PatRange};
44 use ast::{PatRegion, PatStruct, PatTup, PatVec, PatWild};
45 use ast::{PolyTraitRef, QSelf};
46 use ast::{Return, BiShl, BiShr, Stmt, StmtDecl};
47 use ast::{StmtExpr, StmtSemi, StmtMac, VariantData, StructField};
48 use ast::{BiSub, StrStyle};
49 use ast::{SelfExplicit, SelfRegion, SelfStatic, SelfValue};
50 use ast::{Delimited, SequenceRepetition, TokenTree, TraitItem, TraitRef};
51 use ast::{Ty, Ty_, TypeBinding, TyMac};
52 use ast::{TyFixedLengthVec, TyBareFn, TyTypeof, TyInfer};
53 use ast::{TyParam, TyParamBound, TyParen, TyPath, TyPolyTraitRef, TyPtr};
54 use ast::{TyRptr, TyTup, TyU32, TyVec};
55 use ast::TypeTraitItem;
56 use ast::{UnnamedField, UnsafeBlock};
57 use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple};
58 use ast::{Visibility, WhereClause};
59 use attr::{ThinAttributes, ThinAttributesExt, AttributesExt};
60 use ast;
61 use ast_util::{self, ident_to_path};
62 use codemap::{self, Span, BytePos, Spanned, spanned, mk_sp, CodeMap};
63 use diagnostic;
64 use ext::tt::macro_parser;
65 use parse;
66 use parse::classify;
67 use parse::common::{SeqSep, seq_sep_none, seq_sep_trailing_allowed};
68 use parse::lexer::{Reader, TokenAndSpan};
69 use parse::obsolete::{ParserObsoleteMethods, ObsoleteSyntax};
70 use parse::token::{self, MatchNt, SubstNt, SpecialVarNt, InternedString};
71 use parse::token::{keywords, special_idents, SpecialMacroVar};
72 use parse::{new_sub_parser_from_file, ParseSess};
73 use util::parser::{AssocOp, Fixity};
74 use print::pprust;
75 use ptr::P;
76 use owned_slice::OwnedSlice;
77 use parse::PResult;
78 use diagnostic::FatalError;
79
80 use std::collections::HashSet;
81 use std::io::prelude::*;
82 use std::mem;
83 use std::path::{Path, PathBuf};
84 use std::rc::Rc;
85 use std::slice;
86
87 bitflags! {
88     flags Restrictions: u8 {
89         const RESTRICTION_STMT_EXPR         = 1 << 0,
90         const RESTRICTION_NO_STRUCT_LITERAL = 1 << 1,
91     }
92 }
93
94 type ItemInfo = (Ident, Item_, Option<Vec<Attribute> >);
95
96 /// How to parse a path. There are four different kinds of paths, all of which
97 /// are parsed somewhat differently.
98 #[derive(Copy, Clone, PartialEq)]
99 pub enum PathParsingMode {
100     /// A path with no type parameters; e.g. `foo::bar::Baz`
101     NoTypesAllowed,
102     /// A path with a lifetime and type parameters, with no double colons
103     /// before the type parameters; e.g. `foo::bar<'a>::Baz<T>`
104     LifetimeAndTypesWithoutColons,
105     /// A path with a lifetime and type parameters with double colons before
106     /// the type parameters; e.g. `foo::bar::<'a>::Baz::<T>`
107     LifetimeAndTypesWithColons,
108 }
109
110 /// How to parse a bound, whether to allow bound modifiers such as `?`.
111 #[derive(Copy, Clone, PartialEq)]
112 pub enum BoundParsingMode {
113     Bare,
114     Modified,
115 }
116
117 /// `pub` should be parsed in struct fields and not parsed in variant fields
118 #[derive(Clone, Copy, PartialEq)]
119 pub enum ParsePub {
120     Yes,
121     No,
122 }
123
124 /// Possibly accept an `token::Interpolated` expression (a pre-parsed expression
125 /// dropped into the token stream, which happens while parsing the result of
126 /// macro expansion). Placement of these is not as complex as I feared it would
127 /// be. The important thing is to make sure that lookahead doesn't balk at
128 /// `token::Interpolated` tokens.
129 macro_rules! maybe_whole_expr {
130     ($p:expr) => (
131         {
132             let found = match $p.token {
133                 token::Interpolated(token::NtExpr(ref e)) => {
134                     Some((*e).clone())
135                 }
136                 token::Interpolated(token::NtPath(_)) => {
137                     // FIXME: The following avoids an issue with lexical borrowck scopes,
138                     // but the clone is unfortunate.
139                     let pt = match $p.token {
140                         token::Interpolated(token::NtPath(ref pt)) => (**pt).clone(),
141                         _ => unreachable!()
142                     };
143                     let span = $p.span;
144                     Some($p.mk_expr(span.lo, span.hi, ExprPath(None, pt), None))
145                 }
146                 token::Interpolated(token::NtBlock(_)) => {
147                     // FIXME: The following avoids an issue with lexical borrowck scopes,
148                     // but the clone is unfortunate.
149                     let b = match $p.token {
150                         token::Interpolated(token::NtBlock(ref b)) => (*b).clone(),
151                         _ => unreachable!()
152                     };
153                     let span = $p.span;
154                     Some($p.mk_expr(span.lo, span.hi, ExprBlock(b), None))
155                 }
156                 _ => None
157             };
158             match found {
159                 Some(e) => {
160                     try!($p.bump());
161                     return Ok(e);
162                 }
163                 None => ()
164             }
165         }
166     )
167 }
168
169 /// As maybe_whole_expr, but for things other than expressions
170 macro_rules! maybe_whole {
171     ($p:expr, $constructor:ident) => (
172         {
173             let found = match ($p).token {
174                 token::Interpolated(token::$constructor(_)) => {
175                     Some(try!(($p).bump_and_get()))
176                 }
177                 _ => None
178             };
179             if let Some(token::Interpolated(token::$constructor(x))) = found {
180                 return Ok(x.clone());
181             }
182         }
183     );
184     (no_clone $p:expr, $constructor:ident) => (
185         {
186             let found = match ($p).token {
187                 token::Interpolated(token::$constructor(_)) => {
188                     Some(try!(($p).bump_and_get()))
189                 }
190                 _ => None
191             };
192             if let Some(token::Interpolated(token::$constructor(x))) = found {
193                 return Ok(x);
194             }
195         }
196     );
197     (deref $p:expr, $constructor:ident) => (
198         {
199             let found = match ($p).token {
200                 token::Interpolated(token::$constructor(_)) => {
201                     Some(try!(($p).bump_and_get()))
202                 }
203                 _ => None
204             };
205             if let Some(token::Interpolated(token::$constructor(x))) = found {
206                 return Ok((*x).clone());
207             }
208         }
209     );
210     (Some deref $p:expr, $constructor:ident) => (
211         {
212             let found = match ($p).token {
213                 token::Interpolated(token::$constructor(_)) => {
214                     Some(try!(($p).bump_and_get()))
215                 }
216                 _ => None
217             };
218             if let Some(token::Interpolated(token::$constructor(x))) = found {
219                 return Ok(Some((*x).clone()));
220             }
221         }
222     );
223     (pair_empty $p:expr, $constructor:ident) => (
224         {
225             let found = match ($p).token {
226                 token::Interpolated(token::$constructor(_)) => {
227                     Some(try!(($p).bump_and_get()))
228                 }
229                 _ => None
230             };
231             if let Some(token::Interpolated(token::$constructor(x))) = found {
232                 return Ok((Vec::new(), x));
233             }
234         }
235     )
236 }
237
238
239 fn maybe_append(mut lhs: Vec<Attribute>, rhs: Option<Vec<Attribute>>)
240                 -> Vec<Attribute> {
241     if let Some(ref attrs) = rhs {
242         lhs.extend(attrs.iter().cloned())
243     }
244     lhs
245 }
246
247 /* ident is handled by common.rs */
248
249 pub struct Parser<'a> {
250     pub sess: &'a ParseSess,
251     /// the current token:
252     pub token: token::Token,
253     /// the span of the current token:
254     pub span: Span,
255     /// the span of the prior token:
256     pub last_span: Span,
257     pub cfg: CrateConfig,
258     /// the previous token or None (only stashed sometimes).
259     pub last_token: Option<Box<token::Token>>,
260     pub buffer: [TokenAndSpan; 4],
261     pub buffer_start: isize,
262     pub buffer_end: isize,
263     pub tokens_consumed: usize,
264     pub restrictions: Restrictions,
265     pub quote_depth: usize, // not (yet) related to the quasiquoter
266     pub reader: Box<Reader+'a>,
267     pub interner: Rc<token::IdentInterner>,
268     /// The set of seen errors about obsolete syntax. Used to suppress
269     /// extra detail when the same error is seen twice
270     pub obsolete_set: HashSet<ObsoleteSyntax>,
271     /// Used to determine the path to externally loaded source files
272     pub mod_path_stack: Vec<InternedString>,
273     /// Stack of spans of open delimiters. Used for error message.
274     pub open_braces: Vec<Span>,
275     /// Flag if this parser "owns" the directory that it is currently parsing
276     /// in. This will affect how nested files are looked up.
277     pub owns_directory: bool,
278     /// Name of the root module this parser originated from. If `None`, then the
279     /// name is not known. This does not change while the parser is descending
280     /// into modules, and sub-parsers have new values for this name.
281     pub root_module_name: Option<String>,
282     pub expected_tokens: Vec<TokenType>,
283 }
284
285 #[derive(PartialEq, Eq, Clone)]
286 pub enum TokenType {
287     Token(token::Token),
288     Keyword(keywords::Keyword),
289     Operator,
290 }
291
292 impl TokenType {
293     fn to_string(&self) -> String {
294         match *self {
295             TokenType::Token(ref t) => format!("`{}`", Parser::token_to_string(t)),
296             TokenType::Operator => "an operator".to_string(),
297             TokenType::Keyword(kw) => format!("`{}`", kw.to_name()),
298         }
299     }
300 }
301
302 fn is_plain_ident_or_underscore(t: &token::Token) -> bool {
303     t.is_plain_ident() || *t == token::Underscore
304 }
305
306 /// Information about the path to a module.
307 pub struct ModulePath {
308     pub name: String,
309     pub path_exists: bool,
310     pub result: Result<ModulePathSuccess, ModulePathError>,
311 }
312
313 pub struct ModulePathSuccess {
314     pub path: ::std::path::PathBuf,
315     pub owns_directory: bool,
316 }
317
318 pub struct ModulePathError {
319     pub err_msg: String,
320     pub help_msg: String,
321 }
322
323 pub enum LhsExpr {
324     NotYetParsed,
325     AttributesParsed(ThinAttributes),
326     AlreadyParsed(P<Expr>),
327 }
328
329 impl From<Option<ThinAttributes>> for LhsExpr {
330     fn from(o: Option<ThinAttributes>) -> Self {
331         if let Some(attrs) = o {
332             LhsExpr::AttributesParsed(attrs)
333         } else {
334             LhsExpr::NotYetParsed
335         }
336     }
337 }
338
339 impl From<P<Expr>> for LhsExpr {
340     fn from(expr: P<Expr>) -> Self {
341         LhsExpr::AlreadyParsed(expr)
342     }
343 }
344
345 impl<'a> Parser<'a> {
346     pub fn new(sess: &'a ParseSess,
347                cfg: ast::CrateConfig,
348                mut rdr: Box<Reader+'a>)
349                -> Parser<'a>
350     {
351         let tok0 = rdr.real_token();
352         let span = tok0.sp;
353         let placeholder = TokenAndSpan {
354             tok: token::Underscore,
355             sp: span,
356         };
357
358         Parser {
359             reader: rdr,
360             interner: token::get_ident_interner(),
361             sess: sess,
362             cfg: cfg,
363             token: tok0.tok,
364             span: span,
365             last_span: span,
366             last_token: None,
367             buffer: [
368                 placeholder.clone(),
369                 placeholder.clone(),
370                 placeholder.clone(),
371                 placeholder.clone(),
372             ],
373             buffer_start: 0,
374             buffer_end: 0,
375             tokens_consumed: 0,
376             restrictions: Restrictions::empty(),
377             quote_depth: 0,
378             obsolete_set: HashSet::new(),
379             mod_path_stack: Vec::new(),
380             open_braces: Vec::new(),
381             owns_directory: true,
382             root_module_name: None,
383             expected_tokens: Vec::new(),
384         }
385     }
386
387     /// Convert a token to a string using self's reader
388     pub fn token_to_string(token: &token::Token) -> String {
389         pprust::token_to_string(token)
390     }
391
392     /// Convert the current token to a string using self's reader
393     pub fn this_token_to_string(&self) -> String {
394         Parser::token_to_string(&self.token)
395     }
396
397     pub fn unexpected_last(&self, t: &token::Token) -> FatalError {
398         let token_str = Parser::token_to_string(t);
399         let last_span = self.last_span;
400         self.span_fatal(last_span, &format!("unexpected token: `{}`",
401                                                 token_str))
402     }
403
404     pub fn unexpected(&mut self) -> FatalError {
405         match self.expect_one_of(&[], &[]) {
406             Err(e) => e,
407             Ok(_) => unreachable!()
408         }
409     }
410
411     /// Expect and consume the token t. Signal an error if
412     /// the next token is not t.
413     pub fn expect(&mut self, t: &token::Token) -> PResult<()> {
414         if self.expected_tokens.is_empty() {
415             if self.token == *t {
416                 self.bump()
417             } else {
418                 let token_str = Parser::token_to_string(t);
419                 let this_token_str = self.this_token_to_string();
420                 Err(self.fatal(&format!("expected `{}`, found `{}`",
421                                    token_str,
422                                    this_token_str)))
423             }
424         } else {
425             self.expect_one_of(unsafe { slice::from_raw_parts(t, 1) }, &[])
426         }
427     }
428
429     /// Expect next token to be edible or inedible token.  If edible,
430     /// then consume it; if inedible, then return without consuming
431     /// anything.  Signal a fatal error if next token is unexpected.
432     pub fn expect_one_of(&mut self,
433                          edible: &[token::Token],
434                          inedible: &[token::Token]) -> PResult<()>{
435         fn tokens_to_string(tokens: &[TokenType]) -> String {
436             let mut i = tokens.iter();
437             // This might be a sign we need a connect method on Iterator.
438             let b = i.next()
439                      .map_or("".to_string(), |t| t.to_string());
440             i.enumerate().fold(b, |mut b, (i, ref a)| {
441                 if tokens.len() > 2 && i == tokens.len() - 2 {
442                     b.push_str(", or ");
443                 } else if tokens.len() == 2 && i == tokens.len() - 2 {
444                     b.push_str(" or ");
445                 } else {
446                     b.push_str(", ");
447                 }
448                 b.push_str(&*a.to_string());
449                 b
450             })
451         }
452         if edible.contains(&self.token) {
453             self.bump()
454         } else if inedible.contains(&self.token) {
455             // leave it in the input
456             Ok(())
457         } else {
458             let mut expected = edible.iter()
459                 .map(|x| TokenType::Token(x.clone()))
460                 .chain(inedible.iter().map(|x| TokenType::Token(x.clone())))
461                 .chain(self.expected_tokens.iter().cloned())
462                 .collect::<Vec<_>>();
463             expected.sort_by(|a, b| a.to_string().cmp(&b.to_string()));
464             expected.dedup();
465             let expect = tokens_to_string(&expected[..]);
466             let actual = self.this_token_to_string();
467             Err(self.fatal(
468                 &(if expected.len() > 1 {
469                     (format!("expected one of {}, found `{}`",
470                              expect,
471                              actual))
472                 } else if expected.is_empty() {
473                     (format!("unexpected token: `{}`",
474                              actual))
475                 } else {
476                     (format!("expected {}, found `{}`",
477                              expect,
478                              actual))
479                 })[..]
480             ))
481         }
482     }
483
484     /// Check for erroneous `ident { }`; if matches, signal error and
485     /// recover (without consuming any expected input token).  Returns
486     /// true if and only if input was consumed for recovery.
487     pub fn check_for_erroneous_unit_struct_expecting(&mut self,
488                                                      expected: &[token::Token])
489                                                      -> PResult<bool> {
490         if self.token == token::OpenDelim(token::Brace)
491             && expected.iter().all(|t| *t != token::OpenDelim(token::Brace))
492             && self.look_ahead(1, |t| *t == token::CloseDelim(token::Brace)) {
493             // matched; signal non-fatal error and recover.
494             let span = self.span;
495             self.span_err(span,
496                           "unit-like struct construction is written with no trailing `{ }`");
497             try!(self.eat(&token::OpenDelim(token::Brace)));
498             try!(self.eat(&token::CloseDelim(token::Brace)));
499             Ok(true)
500         } else {
501             Ok(false)
502         }
503     }
504
505     /// Commit to parsing a complete expression `e` expected to be
506     /// followed by some token from the set edible + inedible.  Recover
507     /// from anticipated input errors, discarding erroneous characters.
508     pub fn commit_expr(&mut self, e: &Expr, edible: &[token::Token],
509                        inedible: &[token::Token]) -> PResult<()> {
510         debug!("commit_expr {:?}", e);
511         if let ExprPath(..) = e.node {
512             // might be unit-struct construction; check for recoverableinput error.
513             let expected = edible.iter()
514                 .cloned()
515                 .chain(inedible.iter().cloned())
516                 .collect::<Vec<_>>();
517             try!(self.check_for_erroneous_unit_struct_expecting(&expected[..]));
518         }
519         self.expect_one_of(edible, inedible)
520     }
521
522     pub fn commit_expr_expecting(&mut self, e: &Expr, edible: token::Token) -> PResult<()> {
523         self.commit_expr(e, &[edible], &[])
524     }
525
526     /// Commit to parsing a complete statement `s`, which expects to be
527     /// followed by some token from the set edible + inedible.  Check
528     /// for recoverable input errors, discarding erroneous characters.
529     pub fn commit_stmt(&mut self, edible: &[token::Token],
530                        inedible: &[token::Token]) -> PResult<()> {
531         if self.last_token
532                .as_ref()
533                .map_or(false, |t| t.is_ident() || t.is_path()) {
534             let expected = edible.iter()
535                 .cloned()
536                 .chain(inedible.iter().cloned())
537                 .collect::<Vec<_>>();
538             try!(self.check_for_erroneous_unit_struct_expecting(&expected));
539         }
540         self.expect_one_of(edible, inedible)
541     }
542
543     pub fn commit_stmt_expecting(&mut self, edible: token::Token) -> PResult<()> {
544         self.commit_stmt(&[edible], &[])
545     }
546
547     pub fn parse_ident(&mut self) -> PResult<ast::Ident> {
548         self.check_strict_keywords();
549         try!(self.check_reserved_keywords());
550         match self.token {
551             token::Ident(i, _) => {
552                 try!(self.bump());
553                 Ok(i)
554             }
555             token::Interpolated(token::NtIdent(..)) => {
556                 self.bug("ident interpolation not converted to real token");
557             }
558             _ => {
559                 let token_str = self.this_token_to_string();
560                 Err(self.fatal(&format!("expected ident, found `{}`",
561                                     token_str)))
562             }
563         }
564     }
565
566     pub fn parse_ident_or_self_type(&mut self) -> PResult<ast::Ident> {
567         if self.is_self_type_ident() {
568             self.expect_self_type_ident()
569         } else {
570             self.parse_ident()
571         }
572     }
573
574     pub fn parse_path_list_item(&mut self) -> PResult<ast::PathListItem> {
575         let lo = self.span.lo;
576         let node = if try!(self.eat_keyword(keywords::SelfValue)) {
577             let rename = try!(self.parse_rename());
578             ast::PathListMod { id: ast::DUMMY_NODE_ID, rename: rename }
579         } else {
580             let ident = try!(self.parse_ident());
581             let rename = try!(self.parse_rename());
582             ast::PathListIdent { name: ident, rename: rename, id: ast::DUMMY_NODE_ID }
583         };
584         let hi = self.last_span.hi;
585         Ok(spanned(lo, hi, node))
586     }
587
588     /// Check if the next token is `tok`, and return `true` if so.
589     ///
590     /// This method is will automatically add `tok` to `expected_tokens` if `tok` is not
591     /// encountered.
592     pub fn check(&mut self, tok: &token::Token) -> bool {
593         let is_present = self.token == *tok;
594         if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); }
595         is_present
596     }
597
598     /// Consume token 'tok' if it exists. Returns true if the given
599     /// token was present, false otherwise.
600     pub fn eat(&mut self, tok: &token::Token) -> PResult<bool> {
601         let is_present = self.check(tok);
602         if is_present { try!(self.bump())}
603         Ok(is_present)
604     }
605
606     pub fn check_keyword(&mut self, kw: keywords::Keyword) -> bool {
607         self.expected_tokens.push(TokenType::Keyword(kw));
608         self.token.is_keyword(kw)
609     }
610
611     /// If the next token is the given keyword, eat it and return
612     /// true. Otherwise, return false.
613     pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> PResult<bool> {
614         if self.check_keyword(kw) {
615             try!(self.bump());
616             Ok(true)
617         } else {
618             Ok(false)
619         }
620     }
621
622     pub fn eat_keyword_noexpect(&mut self, kw: keywords::Keyword) -> PResult<bool> {
623         if self.token.is_keyword(kw) {
624             try!(self.bump());
625             Ok(true)
626         } else {
627             Ok(false)
628         }
629     }
630
631     /// If the given word is not a keyword, signal an error.
632     /// If the next token is not the given word, signal an error.
633     /// Otherwise, eat it.
634     pub fn expect_keyword(&mut self, kw: keywords::Keyword) -> PResult<()> {
635         if !try!(self.eat_keyword(kw) ){
636             self.expect_one_of(&[], &[])
637         } else {
638             Ok(())
639         }
640     }
641
642     /// Signal an error if the given string is a strict keyword
643     pub fn check_strict_keywords(&mut self) {
644         if self.token.is_strict_keyword() {
645             let token_str = self.this_token_to_string();
646             let span = self.span;
647             self.span_err(span,
648                           &format!("expected identifier, found keyword `{}`",
649                                   token_str));
650         }
651     }
652
653     /// Signal an error if the current token is a reserved keyword
654     pub fn check_reserved_keywords(&mut self) -> PResult<()>{
655         if self.token.is_reserved_keyword() {
656             let token_str = self.this_token_to_string();
657             Err(self.fatal(&format!("`{}` is a reserved keyword",
658                                token_str)))
659         } else {
660             Ok(())
661         }
662     }
663
664     /// Expect and consume an `&`. If `&&` is seen, replace it with a single
665     /// `&` and continue. If an `&` is not seen, signal an error.
666     fn expect_and(&mut self) -> PResult<()> {
667         self.expected_tokens.push(TokenType::Token(token::BinOp(token::And)));
668         match self.token {
669             token::BinOp(token::And) => self.bump(),
670             token::AndAnd => {
671                 let span = self.span;
672                 let lo = span.lo + BytePos(1);
673                 Ok(self.replace_token(token::BinOp(token::And), lo, span.hi))
674             }
675             _ => self.expect_one_of(&[], &[])
676         }
677     }
678
679     pub fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) {
680         match suffix {
681             None => {/* everything ok */}
682             Some(suf) => {
683                 let text = suf.as_str();
684                 if text.is_empty() {
685                     self.span_bug(sp, "found empty literal suffix in Some")
686                 }
687                 self.span_err(sp, &*format!("{} with a suffix is invalid", kind));
688             }
689         }
690     }
691
692
693     /// Attempt to consume a `<`. If `<<` is seen, replace it with a single
694     /// `<` and continue. If a `<` is not seen, return false.
695     ///
696     /// This is meant to be used when parsing generics on a path to get the
697     /// starting token.
698     fn eat_lt(&mut self) -> PResult<bool> {
699         self.expected_tokens.push(TokenType::Token(token::Lt));
700         match self.token {
701             token::Lt => { try!(self.bump()); Ok(true)}
702             token::BinOp(token::Shl) => {
703                 let span = self.span;
704                 let lo = span.lo + BytePos(1);
705                 self.replace_token(token::Lt, lo, span.hi);
706                 Ok(true)
707             }
708             _ => Ok(false),
709         }
710     }
711
712     fn expect_lt(&mut self) -> PResult<()> {
713         if !try!(self.eat_lt()) {
714             self.expect_one_of(&[], &[])
715         } else {
716             Ok(())
717         }
718     }
719
720     /// Expect and consume a GT. if a >> is seen, replace it
721     /// with a single > and continue. If a GT is not seen,
722     /// signal an error.
723     pub fn expect_gt(&mut self) -> PResult<()> {
724         self.expected_tokens.push(TokenType::Token(token::Gt));
725         match self.token {
726             token::Gt => self.bump(),
727             token::BinOp(token::Shr) => {
728                 let span = self.span;
729                 let lo = span.lo + BytePos(1);
730                 Ok(self.replace_token(token::Gt, lo, span.hi))
731             }
732             token::BinOpEq(token::Shr) => {
733                 let span = self.span;
734                 let lo = span.lo + BytePos(1);
735                 Ok(self.replace_token(token::Ge, lo, span.hi))
736             }
737             token::Ge => {
738                 let span = self.span;
739                 let lo = span.lo + BytePos(1);
740                 Ok(self.replace_token(token::Eq, lo, span.hi))
741             }
742             _ => {
743                 let gt_str = Parser::token_to_string(&token::Gt);
744                 let this_token_str = self.this_token_to_string();
745                 Err(self.fatal(&format!("expected `{}`, found `{}`",
746                                    gt_str,
747                                    this_token_str)))
748             }
749         }
750     }
751
752     pub fn parse_seq_to_before_gt_or_return<T, F>(&mut self,
753                                                   sep: Option<token::Token>,
754                                                   mut f: F)
755                                                   -> PResult<(OwnedSlice<T>, bool)> where
756         F: FnMut(&mut Parser) -> PResult<Option<T>>,
757     {
758         let mut v = Vec::new();
759         // This loop works by alternating back and forth between parsing types
760         // and commas.  For example, given a string `A, B,>`, the parser would
761         // first parse `A`, then a comma, then `B`, then a comma. After that it
762         // would encounter a `>` and stop. This lets the parser handle trailing
763         // commas in generic parameters, because it can stop either after
764         // parsing a type or after parsing a comma.
765         for i in 0.. {
766             if self.check(&token::Gt)
767                 || self.token == token::BinOp(token::Shr)
768                 || self.token == token::Ge
769                 || self.token == token::BinOpEq(token::Shr) {
770                 break;
771             }
772
773             if i % 2 == 0 {
774                 match try!(f(self)) {
775                     Some(result) => v.push(result),
776                     None => return Ok((OwnedSlice::from_vec(v), true))
777                 }
778             } else {
779                 if let Some(t) = sep.as_ref() {
780                     try!(self.expect(t));
781                 }
782
783             }
784         }
785         return Ok((OwnedSlice::from_vec(v), false));
786     }
787
788     /// Parse a sequence bracketed by '<' and '>', stopping
789     /// before the '>'.
790     pub fn parse_seq_to_before_gt<T, F>(&mut self,
791                                         sep: Option<token::Token>,
792                                         mut f: F)
793                                         -> PResult<OwnedSlice<T>> where
794         F: FnMut(&mut Parser) -> PResult<T>,
795     {
796         let (result, returned) = try!(self.parse_seq_to_before_gt_or_return(sep,
797                                                     |p| Ok(Some(try!(f(p))))));
798         assert!(!returned);
799         return Ok(result);
800     }
801
802     pub fn parse_seq_to_gt<T, F>(&mut self,
803                                  sep: Option<token::Token>,
804                                  f: F)
805                                  -> PResult<OwnedSlice<T>> where
806         F: FnMut(&mut Parser) -> PResult<T>,
807     {
808         let v = try!(self.parse_seq_to_before_gt(sep, f));
809         try!(self.expect_gt());
810         return Ok(v);
811     }
812
813     pub fn parse_seq_to_gt_or_return<T, F>(&mut self,
814                                            sep: Option<token::Token>,
815                                            f: F)
816                                            -> PResult<(OwnedSlice<T>, bool)> where
817         F: FnMut(&mut Parser) -> PResult<Option<T>>,
818     {
819         let (v, returned) = try!(self.parse_seq_to_before_gt_or_return(sep, f));
820         if !returned {
821             try!(self.expect_gt());
822         }
823         return Ok((v, returned));
824     }
825
826     /// Parse a sequence, including the closing delimiter. The function
827     /// f must consume tokens until reaching the next separator or
828     /// closing bracket.
829     pub fn parse_seq_to_end<T, F>(&mut self,
830                                   ket: &token::Token,
831                                   sep: SeqSep,
832                                   f: F)
833                                   -> PResult<Vec<T>> where
834         F: FnMut(&mut Parser) -> PResult<T>,
835     {
836         let val = try!(self.parse_seq_to_before_end(ket, sep, f));
837         try!(self.bump());
838         Ok(val)
839     }
840
841     /// Parse a sequence, not including the closing delimiter. The function
842     /// f must consume tokens until reaching the next separator or
843     /// closing bracket.
844     pub fn parse_seq_to_before_end<T, F>(&mut self,
845                                          ket: &token::Token,
846                                          sep: SeqSep,
847                                          mut f: F)
848                                          -> PResult<Vec<T>> where
849         F: FnMut(&mut Parser) -> PResult<T>,
850     {
851         let mut first: bool = true;
852         let mut v = vec!();
853         while self.token != *ket {
854             match sep.sep {
855               Some(ref t) => {
856                 if first { first = false; }
857                 else { try!(self.expect(t)); }
858               }
859               _ => ()
860             }
861             if sep.trailing_sep_allowed && self.check(ket) { break; }
862             v.push(try!(f(self)));
863         }
864         return Ok(v);
865     }
866
867     /// Parse a sequence, including the closing delimiter. The function
868     /// f must consume tokens until reaching the next separator or
869     /// closing bracket.
870     pub fn parse_unspanned_seq<T, F>(&mut self,
871                                      bra: &token::Token,
872                                      ket: &token::Token,
873                                      sep: SeqSep,
874                                      f: F)
875                                      -> PResult<Vec<T>> where
876         F: FnMut(&mut Parser) -> PResult<T>,
877     {
878         try!(self.expect(bra));
879         let result = try!(self.parse_seq_to_before_end(ket, sep, f));
880         try!(self.bump());
881         Ok(result)
882     }
883
884     /// Parse a sequence parameter of enum variant. For consistency purposes,
885     /// these should not be empty.
886     pub fn parse_enum_variant_seq<T, F>(&mut self,
887                                         bra: &token::Token,
888                                         ket: &token::Token,
889                                         sep: SeqSep,
890                                         f: F)
891                                         -> PResult<Vec<T>> where
892         F: FnMut(&mut Parser) -> PResult<T>,
893     {
894         let result = try!(self.parse_unspanned_seq(bra, ket, sep, f));
895         if result.is_empty() {
896             let last_span = self.last_span;
897             self.span_err(last_span,
898             "nullary enum variants are written with no trailing `( )`");
899         }
900         Ok(result)
901     }
902
903     // NB: Do not use this function unless you actually plan to place the
904     // spanned list in the AST.
905     pub fn parse_seq<T, F>(&mut self,
906                            bra: &token::Token,
907                            ket: &token::Token,
908                            sep: SeqSep,
909                            f: F)
910                            -> PResult<Spanned<Vec<T>>> where
911         F: FnMut(&mut Parser) -> PResult<T>,
912     {
913         let lo = self.span.lo;
914         try!(self.expect(bra));
915         let result = try!(self.parse_seq_to_before_end(ket, sep, f));
916         let hi = self.span.hi;
917         try!(self.bump());
918         Ok(spanned(lo, hi, result))
919     }
920
921     /// Advance the parser by one token
922     pub fn bump(&mut self) -> PResult<()> {
923         self.last_span = self.span;
924         // Stash token for error recovery (sometimes; clone is not necessarily cheap).
925         self.last_token = if self.token.is_ident() ||
926                           self.token.is_path() ||
927                           self.token == token::Comma {
928             Some(Box::new(self.token.clone()))
929         } else {
930             None
931         };
932         let next = if self.buffer_start == self.buffer_end {
933             self.reader.real_token()
934         } else {
935             // Avoid token copies with `replace`.
936             let buffer_start = self.buffer_start as usize;
937             let next_index = (buffer_start + 1) & 3;
938             self.buffer_start = next_index as isize;
939
940             let placeholder = TokenAndSpan {
941                 tok: token::Underscore,
942                 sp: self.span,
943             };
944             mem::replace(&mut self.buffer[buffer_start], placeholder)
945         };
946         self.span = next.sp;
947         self.token = next.tok;
948         self.tokens_consumed += 1;
949         self.expected_tokens.clear();
950         // check after each token
951         self.check_unknown_macro_variable()
952     }
953
954     /// Advance the parser by one token and return the bumped token.
955     pub fn bump_and_get(&mut self) -> PResult<token::Token> {
956         let old_token = mem::replace(&mut self.token, token::Underscore);
957         try!(self.bump());
958         Ok(old_token)
959     }
960
961     /// EFFECT: replace the current token and span with the given one
962     pub fn replace_token(&mut self,
963                          next: token::Token,
964                          lo: BytePos,
965                          hi: BytePos) {
966         self.last_span = mk_sp(self.span.lo, lo);
967         self.token = next;
968         self.span = mk_sp(lo, hi);
969     }
970     pub fn buffer_length(&mut self) -> isize {
971         if self.buffer_start <= self.buffer_end {
972             return self.buffer_end - self.buffer_start;
973         }
974         return (4 - self.buffer_start) + self.buffer_end;
975     }
976     pub fn look_ahead<R, F>(&mut self, distance: usize, f: F) -> R where
977         F: FnOnce(&token::Token) -> R,
978     {
979         let dist = distance as isize;
980         while self.buffer_length() < dist {
981             self.buffer[self.buffer_end as usize] = self.reader.real_token();
982             self.buffer_end = (self.buffer_end + 1) & 3;
983         }
984         f(&self.buffer[((self.buffer_start + dist - 1) & 3) as usize].tok)
985     }
986     pub fn fatal(&self, m: &str) -> diagnostic::FatalError {
987         self.sess.span_diagnostic.span_fatal(self.span, m)
988     }
989     pub fn span_fatal(&self, sp: Span, m: &str) -> diagnostic::FatalError {
990         self.sess.span_diagnostic.span_fatal(sp, m)
991     }
992     pub fn span_fatal_help(&self, sp: Span, m: &str, help: &str) -> diagnostic::FatalError {
993         self.span_err(sp, m);
994         self.fileline_help(sp, help);
995         diagnostic::FatalError
996     }
997     pub fn span_note(&self, sp: Span, m: &str) {
998         self.sess.span_diagnostic.span_note(sp, m)
999     }
1000     pub fn span_help(&self, sp: Span, m: &str) {
1001         self.sess.span_diagnostic.span_help(sp, m)
1002     }
1003     pub fn span_suggestion(&self, sp: Span, m: &str, n: String) {
1004         self.sess.span_diagnostic.span_suggestion(sp, m, n)
1005     }
1006     pub fn fileline_help(&self, sp: Span, m: &str) {
1007         self.sess.span_diagnostic.fileline_help(sp, m)
1008     }
1009     pub fn bug(&self, m: &str) -> ! {
1010         self.sess.span_diagnostic.span_bug(self.span, m)
1011     }
1012     pub fn warn(&self, m: &str) {
1013         self.sess.span_diagnostic.span_warn(self.span, m)
1014     }
1015     pub fn span_warn(&self, sp: Span, m: &str) {
1016         self.sess.span_diagnostic.span_warn(sp, m)
1017     }
1018     pub fn span_err(&self, sp: Span, m: &str) {
1019         self.sess.span_diagnostic.span_err(sp, m)
1020     }
1021     pub fn span_bug(&self, sp: Span, m: &str) -> ! {
1022         self.sess.span_diagnostic.span_bug(sp, m)
1023     }
1024     pub fn abort_if_errors(&self) {
1025         self.sess.span_diagnostic.handler().abort_if_errors();
1026     }
1027
1028     pub fn id_to_interned_str(&mut self, id: Ident) -> InternedString {
1029         id.name.as_str()
1030     }
1031
1032     /// Is the current token one of the keywords that signals a bare function
1033     /// type?
1034     pub fn token_is_bare_fn_keyword(&mut self) -> bool {
1035         self.check_keyword(keywords::Fn) ||
1036             self.check_keyword(keywords::Unsafe) ||
1037             self.check_keyword(keywords::Extern)
1038     }
1039
1040     pub fn get_lifetime(&mut self) -> ast::Ident {
1041         match self.token {
1042             token::Lifetime(ref ident) => *ident,
1043             _ => self.bug("not a lifetime"),
1044         }
1045     }
1046
1047     pub fn parse_for_in_type(&mut self) -> PResult<Ty_> {
1048         /*
1049         Parses whatever can come after a `for` keyword in a type.
1050         The `for` has already been consumed.
1051
1052         Deprecated:
1053
1054         - for <'lt> |S| -> T
1055
1056         Eventually:
1057
1058         - for <'lt> [unsafe] [extern "ABI"] fn (S) -> T
1059         - for <'lt> path::foo(a, b)
1060
1061         */
1062
1063         // parse <'lt>
1064         let lo = self.span.lo;
1065
1066         let lifetime_defs = try!(self.parse_late_bound_lifetime_defs());
1067
1068         // examine next token to decide to do
1069         if self.token_is_bare_fn_keyword() {
1070             self.parse_ty_bare_fn(lifetime_defs)
1071         } else {
1072             let hi = self.span.hi;
1073             let trait_ref = try!(self.parse_trait_ref());
1074             let poly_trait_ref = ast::PolyTraitRef { bound_lifetimes: lifetime_defs,
1075                                                      trait_ref: trait_ref,
1076                                                      span: mk_sp(lo, hi)};
1077             let other_bounds = if try!(self.eat(&token::BinOp(token::Plus)) ){
1078                 try!(self.parse_ty_param_bounds(BoundParsingMode::Bare))
1079             } else {
1080                 OwnedSlice::empty()
1081             };
1082             let all_bounds =
1083                 Some(TraitTyParamBound(poly_trait_ref, TraitBoundModifier::None)).into_iter()
1084                 .chain(other_bounds.into_vec())
1085                 .collect();
1086             Ok(ast::TyPolyTraitRef(all_bounds))
1087         }
1088     }
1089
1090     pub fn parse_ty_path(&mut self) -> PResult<Ty_> {
1091         Ok(TyPath(None, try!(self.parse_path(LifetimeAndTypesWithoutColons))))
1092     }
1093
1094     /// parse a TyBareFn type:
1095     pub fn parse_ty_bare_fn(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> PResult<Ty_> {
1096         /*
1097
1098         [unsafe] [extern "ABI"] fn <'lt> (S) -> T
1099          ^~~~^           ^~~~^     ^~~~^ ^~^    ^
1100            |               |         |    |     |
1101            |               |         |    |   Return type
1102            |               |         |  Argument types
1103            |               |     Lifetimes
1104            |              ABI
1105         Function Style
1106         */
1107
1108         let unsafety = try!(self.parse_unsafety());
1109         let abi = if try!(self.eat_keyword(keywords::Extern) ){
1110             try!(self.parse_opt_abi()).unwrap_or(abi::C)
1111         } else {
1112             abi::Rust
1113         };
1114
1115         try!(self.expect_keyword(keywords::Fn));
1116         let (inputs, variadic) = try!(self.parse_fn_args(false, true));
1117         let ret_ty = try!(self.parse_ret_ty());
1118         let decl = P(FnDecl {
1119             inputs: inputs,
1120             output: ret_ty,
1121             variadic: variadic
1122         });
1123         Ok(TyBareFn(P(BareFnTy {
1124             abi: abi,
1125             unsafety: unsafety,
1126             lifetimes: lifetime_defs,
1127             decl: decl
1128         })))
1129     }
1130
1131     /// Parses an obsolete closure kind (`&:`, `&mut:`, or `:`).
1132     pub fn parse_obsolete_closure_kind(&mut self) -> PResult<()> {
1133          let lo = self.span.lo;
1134         if
1135             self.check(&token::BinOp(token::And)) &&
1136             self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) &&
1137             self.look_ahead(2, |t| *t == token::Colon)
1138         {
1139             try!(self.bump());
1140             try!(self.bump());
1141             try!(self.bump());
1142         } else if
1143             self.token == token::BinOp(token::And) &&
1144             self.look_ahead(1, |t| *t == token::Colon)
1145         {
1146             try!(self.bump());
1147             try!(self.bump());
1148         } else if
1149             try!(self.eat(&token::Colon))
1150         {
1151             /* nothing */
1152         } else {
1153             return Ok(());
1154         }
1155
1156         let span = mk_sp(lo, self.span.hi);
1157         self.obsolete(span, ObsoleteSyntax::ClosureKind);
1158         Ok(())
1159     }
1160
1161     pub fn parse_unsafety(&mut self) -> PResult<Unsafety> {
1162         if try!(self.eat_keyword(keywords::Unsafe)) {
1163             return Ok(Unsafety::Unsafe);
1164         } else {
1165             return Ok(Unsafety::Normal);
1166         }
1167     }
1168
1169     /// Parse the items in a trait declaration
1170     pub fn parse_trait_items(&mut self) -> PResult<Vec<P<TraitItem>>> {
1171         self.parse_unspanned_seq(
1172             &token::OpenDelim(token::Brace),
1173             &token::CloseDelim(token::Brace),
1174             seq_sep_none(),
1175             |p| -> PResult<P<TraitItem>> {
1176             maybe_whole!(no_clone p, NtTraitItem);
1177             let mut attrs = try!(p.parse_outer_attributes());
1178             let lo = p.span.lo;
1179
1180             let (name, node) = if try!(p.eat_keyword(keywords::Type)) {
1181                 let TyParam {ident, bounds, default, ..} = try!(p.parse_ty_param());
1182                 try!(p.expect(&token::Semi));
1183                 (ident, TypeTraitItem(bounds, default))
1184             } else if p.is_const_item() {
1185                 try!(p.expect_keyword(keywords::Const));
1186                 let ident = try!(p.parse_ident());
1187                 try!(p.expect(&token::Colon));
1188                 let ty = try!(p.parse_ty_sum());
1189                 let default = if p.check(&token::Eq) {
1190                     try!(p.bump());
1191                     let expr = try!(p.parse_expr());
1192                     try!(p.commit_expr_expecting(&expr, token::Semi));
1193                     Some(expr)
1194                 } else {
1195                     try!(p.expect(&token::Semi));
1196                     None
1197                 };
1198                 (ident, ConstTraitItem(ty, default))
1199             } else {
1200                 let (constness, unsafety, abi) = try!(p.parse_fn_front_matter());
1201
1202                 let ident = try!(p.parse_ident());
1203                 let mut generics = try!(p.parse_generics());
1204
1205                 let (explicit_self, d) = try!(p.parse_fn_decl_with_self(|p|{
1206                     // This is somewhat dubious; We don't want to allow
1207                     // argument names to be left off if there is a
1208                     // definition...
1209                     p.parse_arg_general(false)
1210                 }));
1211
1212                 generics.where_clause = try!(p.parse_where_clause());
1213                 let sig = ast::MethodSig {
1214                     unsafety: unsafety,
1215                     constness: constness,
1216                     decl: d,
1217                     generics: generics,
1218                     abi: abi,
1219                     explicit_self: explicit_self,
1220                 };
1221
1222                 let body = match p.token {
1223                   token::Semi => {
1224                     try!(p.bump());
1225                     debug!("parse_trait_methods(): parsing required method");
1226                     None
1227                   }
1228                   token::OpenDelim(token::Brace) => {
1229                     debug!("parse_trait_methods(): parsing provided method");
1230                     let (inner_attrs, body) =
1231                         try!(p.parse_inner_attrs_and_block());
1232                     attrs.extend(inner_attrs.iter().cloned());
1233                     Some(body)
1234                   }
1235
1236                   _ => {
1237                       let token_str = p.this_token_to_string();
1238                       return Err(p.fatal(&format!("expected `;` or `{{`, found `{}`",
1239                                        token_str)[..]))
1240                   }
1241                 };
1242                 (ident, ast::MethodTraitItem(sig, body))
1243             };
1244
1245             Ok(P(TraitItem {
1246                 id: ast::DUMMY_NODE_ID,
1247                 ident: name,
1248                 attrs: attrs,
1249                 node: node,
1250                 span: mk_sp(lo, p.last_span.hi),
1251             }))
1252         })
1253     }
1254
1255     /// Parse a possibly mutable type
1256     pub fn parse_mt(&mut self) -> PResult<MutTy> {
1257         let mutbl = try!(self.parse_mutability());
1258         let t = try!(self.parse_ty());
1259         Ok(MutTy { ty: t, mutbl: mutbl })
1260     }
1261
1262     /// Parse optional return type [ -> TY ] in function decl
1263     pub fn parse_ret_ty(&mut self) -> PResult<FunctionRetTy> {
1264         if try!(self.eat(&token::RArrow) ){
1265             if try!(self.eat(&token::Not) ){
1266                 Ok(NoReturn(self.last_span))
1267             } else {
1268                 Ok(Return(try!(self.parse_ty())))
1269             }
1270         } else {
1271             let pos = self.span.lo;
1272             Ok(DefaultReturn(mk_sp(pos, pos)))
1273         }
1274     }
1275
1276     /// Parse a type in a context where `T1+T2` is allowed.
1277     pub fn parse_ty_sum(&mut self) -> PResult<P<Ty>> {
1278         let lo = self.span.lo;
1279         let lhs = try!(self.parse_ty());
1280
1281         if !try!(self.eat(&token::BinOp(token::Plus)) ){
1282             return Ok(lhs);
1283         }
1284
1285         let bounds = try!(self.parse_ty_param_bounds(BoundParsingMode::Bare));
1286
1287         // In type grammar, `+` is treated like a binary operator,
1288         // and hence both L and R side are required.
1289         if bounds.is_empty() {
1290             let last_span = self.last_span;
1291             self.span_err(last_span,
1292                           "at least one type parameter bound \
1293                           must be specified");
1294         }
1295
1296         let sp = mk_sp(lo, self.last_span.hi);
1297         let sum = ast::TyObjectSum(lhs, bounds);
1298         Ok(P(Ty {id: ast::DUMMY_NODE_ID, node: sum, span: sp}))
1299     }
1300
1301     /// Parse a type.
1302     pub fn parse_ty(&mut self) -> PResult<P<Ty>> {
1303         maybe_whole!(no_clone self, NtTy);
1304
1305         let lo = self.span.lo;
1306
1307         let t = if self.check(&token::OpenDelim(token::Paren)) {
1308             try!(self.bump());
1309
1310             // (t) is a parenthesized ty
1311             // (t,) is the type of a tuple with only one field,
1312             // of type t
1313             let mut ts = vec![];
1314             let mut last_comma = false;
1315             while self.token != token::CloseDelim(token::Paren) {
1316                 ts.push(try!(self.parse_ty_sum()));
1317                 if self.check(&token::Comma) {
1318                     last_comma = true;
1319                     try!(self.bump());
1320                 } else {
1321                     last_comma = false;
1322                     break;
1323                 }
1324             }
1325
1326             try!(self.expect(&token::CloseDelim(token::Paren)));
1327             if ts.len() == 1 && !last_comma {
1328                 TyParen(ts.into_iter().nth(0).unwrap())
1329             } else {
1330                 TyTup(ts)
1331             }
1332         } else if self.check(&token::BinOp(token::Star)) {
1333             // STAR POINTER (bare pointer?)
1334             try!(self.bump());
1335             TyPtr(try!(self.parse_ptr()))
1336         } else if self.check(&token::OpenDelim(token::Bracket)) {
1337             // VECTOR
1338             try!(self.expect(&token::OpenDelim(token::Bracket)));
1339             let t = try!(self.parse_ty_sum());
1340
1341             // Parse the `; e` in `[ i32; e ]`
1342             // where `e` is a const expression
1343             let t = match try!(self.maybe_parse_fixed_length_of_vec()) {
1344                 None => TyVec(t),
1345                 Some(suffix) => TyFixedLengthVec(t, suffix)
1346             };
1347             try!(self.expect(&token::CloseDelim(token::Bracket)));
1348             t
1349         } else if self.check(&token::BinOp(token::And)) ||
1350                   self.token == token::AndAnd {
1351             // BORROWED POINTER
1352             try!(self.expect_and());
1353             try!(self.parse_borrowed_pointee())
1354         } else if self.check_keyword(keywords::For) {
1355             try!(self.parse_for_in_type())
1356         } else if self.token_is_bare_fn_keyword() {
1357             // BARE FUNCTION
1358             try!(self.parse_ty_bare_fn(Vec::new()))
1359         } else if try!(self.eat_keyword_noexpect(keywords::Typeof)) {
1360             // TYPEOF
1361             // In order to not be ambiguous, the type must be surrounded by parens.
1362             try!(self.expect(&token::OpenDelim(token::Paren)));
1363             let e = try!(self.parse_expr());
1364             try!(self.expect(&token::CloseDelim(token::Paren)));
1365             TyTypeof(e)
1366         } else if try!(self.eat_lt()) {
1367
1368             let (qself, path) =
1369                  try!(self.parse_qualified_path(NoTypesAllowed));
1370
1371             TyPath(Some(qself), path)
1372         } else if self.check(&token::ModSep) ||
1373                   self.token.is_ident() ||
1374                   self.token.is_path() {
1375             let path = try!(self.parse_path(LifetimeAndTypesWithoutColons));
1376             if self.check(&token::Not) {
1377                 // MACRO INVOCATION
1378                 try!(self.bump());
1379                 let delim = try!(self.expect_open_delim());
1380                 let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
1381                                                      seq_sep_none(),
1382                                                      |p| p.parse_token_tree()));
1383                 let hi = self.span.hi;
1384                 TyMac(spanned(lo, hi, Mac_ { path: path, tts: tts, ctxt: EMPTY_CTXT }))
1385             } else {
1386                 // NAMED TYPE
1387                 TyPath(None, path)
1388             }
1389         } else if try!(self.eat(&token::Underscore) ){
1390             // TYPE TO BE INFERRED
1391             TyInfer
1392         } else {
1393             let this_token_str = self.this_token_to_string();
1394             let msg = format!("expected type, found `{}`", this_token_str);
1395             return Err(self.fatal(&msg[..]));
1396         };
1397
1398         let sp = mk_sp(lo, self.last_span.hi);
1399         Ok(P(Ty {id: ast::DUMMY_NODE_ID, node: t, span: sp}))
1400     }
1401
1402     pub fn parse_borrowed_pointee(&mut self) -> PResult<Ty_> {
1403         // look for `&'lt` or `&'foo ` and interpret `foo` as the region name:
1404         let opt_lifetime = try!(self.parse_opt_lifetime());
1405
1406         let mt = try!(self.parse_mt());
1407         return Ok(TyRptr(opt_lifetime, mt));
1408     }
1409
1410     pub fn parse_ptr(&mut self) -> PResult<MutTy> {
1411         let mutbl = if try!(self.eat_keyword(keywords::Mut) ){
1412             MutMutable
1413         } else if try!(self.eat_keyword(keywords::Const) ){
1414             MutImmutable
1415         } else {
1416             let span = self.last_span;
1417             self.span_err(span,
1418                           "bare raw pointers are no longer allowed, you should \
1419                            likely use `*mut T`, but otherwise `*T` is now \
1420                            known as `*const T`");
1421             MutImmutable
1422         };
1423         let t = try!(self.parse_ty());
1424         Ok(MutTy { ty: t, mutbl: mutbl })
1425     }
1426
1427     pub fn is_named_argument(&mut self) -> bool {
1428         let offset = match self.token {
1429             token::BinOp(token::And) => 1,
1430             token::AndAnd => 1,
1431             _ if self.token.is_keyword(keywords::Mut) => 1,
1432             _ => 0
1433         };
1434
1435         debug!("parser is_named_argument offset:{}", offset);
1436
1437         if offset == 0 {
1438             is_plain_ident_or_underscore(&self.token)
1439                 && self.look_ahead(1, |t| *t == token::Colon)
1440         } else {
1441             self.look_ahead(offset, |t| is_plain_ident_or_underscore(t))
1442                 && self.look_ahead(offset + 1, |t| *t == token::Colon)
1443         }
1444     }
1445
1446     /// This version of parse arg doesn't necessarily require
1447     /// identifier names.
1448     pub fn parse_arg_general(&mut self, require_name: bool) -> PResult<Arg> {
1449         maybe_whole!(no_clone self, NtArg);
1450
1451         let pat = if require_name || self.is_named_argument() {
1452             debug!("parse_arg_general parse_pat (require_name:{})",
1453                    require_name);
1454             let pat = try!(self.parse_pat());
1455
1456             try!(self.expect(&token::Colon));
1457             pat
1458         } else {
1459             debug!("parse_arg_general ident_to_pat");
1460             ast_util::ident_to_pat(ast::DUMMY_NODE_ID,
1461                                    self.last_span,
1462                                    special_idents::invalid)
1463         };
1464
1465         let t = try!(self.parse_ty_sum());
1466
1467         Ok(Arg {
1468             ty: t,
1469             pat: pat,
1470             id: ast::DUMMY_NODE_ID,
1471         })
1472     }
1473
1474     /// Parse a single function argument
1475     pub fn parse_arg(&mut self) -> PResult<Arg> {
1476         self.parse_arg_general(true)
1477     }
1478
1479     /// Parse an argument in a lambda header e.g. |arg, arg|
1480     pub fn parse_fn_block_arg(&mut self) -> PResult<Arg> {
1481         let pat = try!(self.parse_pat());
1482         let t = if try!(self.eat(&token::Colon) ){
1483             try!(self.parse_ty_sum())
1484         } else {
1485             P(Ty {
1486                 id: ast::DUMMY_NODE_ID,
1487                 node: TyInfer,
1488                 span: mk_sp(self.span.lo, self.span.hi),
1489             })
1490         };
1491         Ok(Arg {
1492             ty: t,
1493             pat: pat,
1494             id: ast::DUMMY_NODE_ID
1495         })
1496     }
1497
1498     pub fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<Option<P<ast::Expr>>> {
1499         if self.check(&token::Semi) {
1500             try!(self.bump());
1501             Ok(Some(try!(self.parse_expr())))
1502         } else {
1503             Ok(None)
1504         }
1505     }
1506
1507     /// Matches token_lit = LIT_INTEGER | ...
1508     pub fn lit_from_token(&self, tok: &token::Token) -> PResult<Lit_> {
1509         match *tok {
1510             token::Interpolated(token::NtExpr(ref v)) => {
1511                 match v.node {
1512                     ExprLit(ref lit) => { Ok(lit.node.clone()) }
1513                     _ => { return Err(self.unexpected_last(tok)); }
1514                 }
1515             }
1516             token::Literal(lit, suf) => {
1517                 let (suffix_illegal, out) = match lit {
1518                     token::Byte(i) => (true, LitByte(parse::byte_lit(&i.as_str()).0)),
1519                     token::Char(i) => (true, LitChar(parse::char_lit(&i.as_str()).0)),
1520
1521                     // there are some valid suffixes for integer and
1522                     // float literals, so all the handling is done
1523                     // internally.
1524                     token::Integer(s) => {
1525                         (false, parse::integer_lit(&s.as_str(),
1526                                                    suf.as_ref().map(|s| s.as_str()),
1527                                                    &self.sess.span_diagnostic,
1528                                                    self.last_span))
1529                     }
1530                     token::Float(s) => {
1531                         (false, parse::float_lit(&s.as_str(),
1532                                                  suf.as_ref().map(|s| s.as_str()),
1533                                                   &self.sess.span_diagnostic,
1534                                                  self.last_span))
1535                     }
1536
1537                     token::Str_(s) => {
1538                         (true,
1539                          LitStr(token::intern_and_get_ident(&parse::str_lit(&s.as_str())),
1540                                 ast::CookedStr))
1541                     }
1542                     token::StrRaw(s, n) => {
1543                         (true,
1544                          LitStr(
1545                             token::intern_and_get_ident(&parse::raw_str_lit(&s.as_str())),
1546                             ast::RawStr(n)))
1547                     }
1548                     token::ByteStr(i) =>
1549                         (true, LitByteStr(parse::byte_str_lit(&i.as_str()))),
1550                     token::ByteStrRaw(i, _) =>
1551                         (true,
1552                          LitByteStr(Rc::new(i.to_string().into_bytes()))),
1553                 };
1554
1555                 if suffix_illegal {
1556                     let sp = self.last_span;
1557                     self.expect_no_suffix(sp, &*format!("{} literal", lit.short_name()), suf)
1558                 }
1559
1560                 Ok(out)
1561             }
1562             _ => { return Err(self.unexpected_last(tok)); }
1563         }
1564     }
1565
1566     /// Matches lit = true | false | token_lit
1567     pub fn parse_lit(&mut self) -> PResult<Lit> {
1568         let lo = self.span.lo;
1569         let lit = if try!(self.eat_keyword(keywords::True) ){
1570             LitBool(true)
1571         } else if try!(self.eat_keyword(keywords::False) ){
1572             LitBool(false)
1573         } else {
1574             let token = try!(self.bump_and_get());
1575             let lit = try!(self.lit_from_token(&token));
1576             lit
1577         };
1578         Ok(codemap::Spanned { node: lit, span: mk_sp(lo, self.last_span.hi) })
1579     }
1580
1581     /// matches '-' lit | lit
1582     pub fn parse_pat_literal_maybe_minus(&mut self) -> PResult<P<Expr>> {
1583         let minus_lo = self.span.lo;
1584         let minus_present = try!(self.eat(&token::BinOp(token::Minus)));
1585         let lo = self.span.lo;
1586         let literal = P(try!(self.parse_lit()));
1587         let hi = self.last_span.hi;
1588         let expr = self.mk_expr(lo, hi, ExprLit(literal), None);
1589
1590         if minus_present {
1591             let minus_hi = self.last_span.hi;
1592             let unary = self.mk_unary(UnNeg, expr);
1593             Ok(self.mk_expr(minus_lo, minus_hi, unary, None))
1594         } else {
1595             Ok(expr)
1596         }
1597     }
1598
1599     /// Parses qualified path.
1600     ///
1601     /// Assumes that the leading `<` has been parsed already.
1602     ///
1603     /// Qualifed paths are a part of the universal function call
1604     /// syntax (UFCS).
1605     ///
1606     /// `qualified_path = <type [as trait_ref]>::path`
1607     ///
1608     /// See `parse_path` for `mode` meaning.
1609     ///
1610     /// # Examples:
1611     ///
1612     /// `<T as U>::a`
1613     /// `<T as U>::F::a::<S>`
1614     pub fn parse_qualified_path(&mut self, mode: PathParsingMode)
1615                                 -> PResult<(QSelf, ast::Path)> {
1616         let span = self.last_span;
1617         let self_type = try!(self.parse_ty_sum());
1618         let mut path = if try!(self.eat_keyword(keywords::As)) {
1619             try!(self.parse_path(LifetimeAndTypesWithoutColons))
1620         } else {
1621             ast::Path {
1622                 span: span,
1623                 global: false,
1624                 segments: vec![]
1625             }
1626         };
1627
1628         let qself = QSelf {
1629             ty: self_type,
1630             position: path.segments.len()
1631         };
1632
1633         try!(self.expect(&token::Gt));
1634         try!(self.expect(&token::ModSep));
1635
1636         let segments = match mode {
1637             LifetimeAndTypesWithoutColons => {
1638                 try!(self.parse_path_segments_without_colons())
1639             }
1640             LifetimeAndTypesWithColons => {
1641                 try!(self.parse_path_segments_with_colons())
1642             }
1643             NoTypesAllowed => {
1644                 try!(self.parse_path_segments_without_types())
1645             }
1646         };
1647         path.segments.extend(segments);
1648
1649         path.span.hi = self.last_span.hi;
1650
1651         Ok((qself, path))
1652     }
1653
1654     /// Parses a path and optional type parameter bounds, depending on the
1655     /// mode. The `mode` parameter determines whether lifetimes, types, and/or
1656     /// bounds are permitted and whether `::` must precede type parameter
1657     /// groups.
1658     pub fn parse_path(&mut self, mode: PathParsingMode) -> PResult<ast::Path> {
1659         // Check for a whole path...
1660         let found = match self.token {
1661             token::Interpolated(token::NtPath(_)) => Some(try!(self.bump_and_get())),
1662             _ => None,
1663         };
1664         if let Some(token::Interpolated(token::NtPath(path))) = found {
1665             return Ok(*path);
1666         }
1667
1668         let lo = self.span.lo;
1669         let is_global = try!(self.eat(&token::ModSep));
1670
1671         // Parse any number of segments and bound sets. A segment is an
1672         // identifier followed by an optional lifetime and a set of types.
1673         // A bound set is a set of type parameter bounds.
1674         let segments = match mode {
1675             LifetimeAndTypesWithoutColons => {
1676                 try!(self.parse_path_segments_without_colons())
1677             }
1678             LifetimeAndTypesWithColons => {
1679                 try!(self.parse_path_segments_with_colons())
1680             }
1681             NoTypesAllowed => {
1682                 try!(self.parse_path_segments_without_types())
1683             }
1684         };
1685
1686         // Assemble the span.
1687         let span = mk_sp(lo, self.last_span.hi);
1688
1689         // Assemble the result.
1690         Ok(ast::Path {
1691             span: span,
1692             global: is_global,
1693             segments: segments,
1694         })
1695     }
1696
1697     /// Examples:
1698     /// - `a::b<T,U>::c<V,W>`
1699     /// - `a::b<T,U>::c(V) -> W`
1700     /// - `a::b<T,U>::c(V)`
1701     pub fn parse_path_segments_without_colons(&mut self) -> PResult<Vec<ast::PathSegment>> {
1702         let mut segments = Vec::new();
1703         loop {
1704             // First, parse an identifier.
1705             let identifier = try!(self.parse_ident_or_self_type());
1706
1707             // Parse types, optionally.
1708             let parameters = if try!(self.eat_lt() ){
1709                 let (lifetimes, types, bindings) = try!(self.parse_generic_values_after_lt());
1710
1711                 ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
1712                     lifetimes: lifetimes,
1713                     types: OwnedSlice::from_vec(types),
1714                     bindings: OwnedSlice::from_vec(bindings),
1715                 })
1716             } else if try!(self.eat(&token::OpenDelim(token::Paren)) ){
1717                 let lo = self.last_span.lo;
1718
1719                 let inputs = try!(self.parse_seq_to_end(
1720                     &token::CloseDelim(token::Paren),
1721                     seq_sep_trailing_allowed(token::Comma),
1722                     |p| p.parse_ty_sum()));
1723
1724                 let output_ty = if try!(self.eat(&token::RArrow) ){
1725                     Some(try!(self.parse_ty()))
1726                 } else {
1727                     None
1728                 };
1729
1730                 let hi = self.last_span.hi;
1731
1732                 ast::ParenthesizedParameters(ast::ParenthesizedParameterData {
1733                     span: mk_sp(lo, hi),
1734                     inputs: inputs,
1735                     output: output_ty,
1736                 })
1737             } else {
1738                 ast::PathParameters::none()
1739             };
1740
1741             // Assemble and push the result.
1742             segments.push(ast::PathSegment { identifier: identifier,
1743                                              parameters: parameters });
1744
1745             // Continue only if we see a `::`
1746             if !try!(self.eat(&token::ModSep) ){
1747                 return Ok(segments);
1748             }
1749         }
1750     }
1751
1752     /// Examples:
1753     /// - `a::b::<T,U>::c`
1754     pub fn parse_path_segments_with_colons(&mut self) -> PResult<Vec<ast::PathSegment>> {
1755         let mut segments = Vec::new();
1756         loop {
1757             // First, parse an identifier.
1758             let identifier = try!(self.parse_ident_or_self_type());
1759
1760             // If we do not see a `::`, stop.
1761             if !try!(self.eat(&token::ModSep) ){
1762                 segments.push(ast::PathSegment {
1763                     identifier: identifier,
1764                     parameters: ast::PathParameters::none()
1765                 });
1766                 return Ok(segments);
1767             }
1768
1769             // Check for a type segment.
1770             if try!(self.eat_lt() ){
1771                 // Consumed `a::b::<`, go look for types
1772                 let (lifetimes, types, bindings) = try!(self.parse_generic_values_after_lt());
1773                 segments.push(ast::PathSegment {
1774                     identifier: identifier,
1775                     parameters: ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
1776                         lifetimes: lifetimes,
1777                         types: OwnedSlice::from_vec(types),
1778                         bindings: OwnedSlice::from_vec(bindings),
1779                     }),
1780                 });
1781
1782                 // Consumed `a::b::<T,U>`, check for `::` before proceeding
1783                 if !try!(self.eat(&token::ModSep) ){
1784                     return Ok(segments);
1785                 }
1786             } else {
1787                 // Consumed `a::`, go look for `b`
1788                 segments.push(ast::PathSegment {
1789                     identifier: identifier,
1790                     parameters: ast::PathParameters::none(),
1791                 });
1792             }
1793         }
1794     }
1795
1796
1797     /// Examples:
1798     /// - `a::b::c`
1799     pub fn parse_path_segments_without_types(&mut self) -> PResult<Vec<ast::PathSegment>> {
1800         let mut segments = Vec::new();
1801         loop {
1802             // First, parse an identifier.
1803             let identifier = try!(self.parse_ident_or_self_type());
1804
1805             // Assemble and push the result.
1806             segments.push(ast::PathSegment {
1807                 identifier: identifier,
1808                 parameters: ast::PathParameters::none()
1809             });
1810
1811             // If we do not see a `::`, stop.
1812             if !try!(self.eat(&token::ModSep) ){
1813                 return Ok(segments);
1814             }
1815         }
1816     }
1817
1818     /// parses 0 or 1 lifetime
1819     pub fn parse_opt_lifetime(&mut self) -> PResult<Option<ast::Lifetime>> {
1820         match self.token {
1821             token::Lifetime(..) => {
1822                 Ok(Some(try!(self.parse_lifetime())))
1823             }
1824             _ => {
1825                 Ok(None)
1826             }
1827         }
1828     }
1829
1830     /// Parses a single lifetime
1831     /// Matches lifetime = LIFETIME
1832     pub fn parse_lifetime(&mut self) -> PResult<ast::Lifetime> {
1833         match self.token {
1834             token::Lifetime(i) => {
1835                 let span = self.span;
1836                 try!(self.bump());
1837                 return Ok(ast::Lifetime {
1838                     id: ast::DUMMY_NODE_ID,
1839                     span: span,
1840                     name: i.name
1841                 });
1842             }
1843             _ => {
1844                 return Err(self.fatal("expected a lifetime name"));
1845             }
1846         }
1847     }
1848
1849     /// Parses `lifetime_defs = [ lifetime_defs { ',' lifetime_defs } ]` where `lifetime_def  =
1850     /// lifetime [':' lifetimes]`
1851     pub fn parse_lifetime_defs(&mut self) -> PResult<Vec<ast::LifetimeDef>> {
1852
1853         let mut res = Vec::new();
1854         loop {
1855             match self.token {
1856                 token::Lifetime(_) => {
1857                     let lifetime = try!(self.parse_lifetime());
1858                     let bounds =
1859                         if try!(self.eat(&token::Colon) ){
1860                             try!(self.parse_lifetimes(token::BinOp(token::Plus)))
1861                         } else {
1862                             Vec::new()
1863                         };
1864                     res.push(ast::LifetimeDef { lifetime: lifetime,
1865                                                 bounds: bounds });
1866                 }
1867
1868                 _ => {
1869                     return Ok(res);
1870                 }
1871             }
1872
1873             match self.token {
1874                 token::Comma => { try!(self.bump());}
1875                 token::Gt => { return Ok(res); }
1876                 token::BinOp(token::Shr) => { return Ok(res); }
1877                 _ => {
1878                     let this_token_str = self.this_token_to_string();
1879                     let msg = format!("expected `,` or `>` after lifetime \
1880                                       name, found `{}`",
1881                                       this_token_str);
1882                     return Err(self.fatal(&msg[..]));
1883                 }
1884             }
1885         }
1886     }
1887
1888     /// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes ) actually, it matches the empty
1889     /// one too, but putting that in there messes up the grammar....
1890     ///
1891     /// Parses zero or more comma separated lifetimes. Expects each lifetime to be followed by
1892     /// either a comma or `>`.  Used when parsing type parameter lists, where we expect something
1893     /// like `<'a, 'b, T>`.
1894     pub fn parse_lifetimes(&mut self, sep: token::Token) -> PResult<Vec<ast::Lifetime>> {
1895
1896         let mut res = Vec::new();
1897         loop {
1898             match self.token {
1899                 token::Lifetime(_) => {
1900                     res.push(try!(self.parse_lifetime()));
1901                 }
1902                 _ => {
1903                     return Ok(res);
1904                 }
1905             }
1906
1907             if self.token != sep {
1908                 return Ok(res);
1909             }
1910
1911             try!(self.bump());
1912         }
1913     }
1914
1915     /// Parse mutability declaration (mut/const/imm)
1916     pub fn parse_mutability(&mut self) -> PResult<Mutability> {
1917         if try!(self.eat_keyword(keywords::Mut) ){
1918             Ok(MutMutable)
1919         } else {
1920             Ok(MutImmutable)
1921         }
1922     }
1923
1924     /// Parse ident COLON expr
1925     pub fn parse_field(&mut self) -> PResult<Field> {
1926         let lo = self.span.lo;
1927         let i = try!(self.parse_ident());
1928         let hi = self.last_span.hi;
1929         try!(self.expect(&token::Colon));
1930         let e = try!(self.parse_expr());
1931         Ok(ast::Field {
1932             ident: spanned(lo, hi, i),
1933             span: mk_sp(lo, e.span.hi),
1934             expr: e,
1935         })
1936     }
1937
1938     pub fn mk_expr(&mut self, lo: BytePos, hi: BytePos,
1939                    node: Expr_, attrs: ThinAttributes) -> P<Expr> {
1940         P(Expr {
1941             id: ast::DUMMY_NODE_ID,
1942             node: node,
1943             span: mk_sp(lo, hi),
1944             attrs: attrs,
1945         })
1946     }
1947
1948     pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::Expr_ {
1949         ExprUnary(unop, expr)
1950     }
1951
1952     pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
1953         ExprBinary(binop, lhs, rhs)
1954     }
1955
1956     pub fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::Expr_ {
1957         ExprCall(f, args)
1958     }
1959
1960     fn mk_method_call(&mut self,
1961                       ident: ast::SpannedIdent,
1962                       tps: Vec<P<Ty>>,
1963                       args: Vec<P<Expr>>)
1964                       -> ast::Expr_ {
1965         ExprMethodCall(ident, tps, args)
1966     }
1967
1968     pub fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::Expr_ {
1969         ExprIndex(expr, idx)
1970     }
1971
1972     pub fn mk_range(&mut self,
1973                     start: Option<P<Expr>>,
1974                     end: Option<P<Expr>>)
1975                     -> ast::Expr_ {
1976         ExprRange(start, end)
1977     }
1978
1979     pub fn mk_field(&mut self, expr: P<Expr>, ident: ast::SpannedIdent) -> ast::Expr_ {
1980         ExprField(expr, ident)
1981     }
1982
1983     pub fn mk_tup_field(&mut self, expr: P<Expr>, idx: codemap::Spanned<usize>) -> ast::Expr_ {
1984         ExprTupField(expr, idx)
1985     }
1986
1987     pub fn mk_assign_op(&mut self, binop: ast::BinOp,
1988                         lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
1989         ExprAssignOp(binop, lhs, rhs)
1990     }
1991
1992     pub fn mk_mac_expr(&mut self, lo: BytePos, hi: BytePos,
1993                        m: Mac_, attrs: ThinAttributes) -> P<Expr> {
1994         P(Expr {
1995             id: ast::DUMMY_NODE_ID,
1996             node: ExprMac(codemap::Spanned {node: m, span: mk_sp(lo, hi)}),
1997             span: mk_sp(lo, hi),
1998             attrs: attrs,
1999         })
2000     }
2001
2002     pub fn mk_lit_u32(&mut self, i: u32, attrs: ThinAttributes) -> P<Expr> {
2003         let span = &self.span;
2004         let lv_lit = P(codemap::Spanned {
2005             node: LitInt(i as u64, ast::UnsignedIntLit(TyU32)),
2006             span: *span
2007         });
2008
2009         P(Expr {
2010             id: ast::DUMMY_NODE_ID,
2011             node: ExprLit(lv_lit),
2012             span: *span,
2013             attrs: attrs,
2014         })
2015     }
2016
2017     fn expect_open_delim(&mut self) -> PResult<token::DelimToken> {
2018         self.expected_tokens.push(TokenType::Token(token::Gt));
2019         match self.token {
2020             token::OpenDelim(delim) => {
2021                 try!(self.bump());
2022                 Ok(delim)
2023             },
2024             _ => Err(self.fatal("expected open delimiter")),
2025         }
2026     }
2027
2028     /// At the bottom (top?) of the precedence hierarchy,
2029     /// parse things like parenthesized exprs,
2030     /// macros, return, etc.
2031     ///
2032     /// NB: This does not parse outer attributes,
2033     ///     and is private because it only works
2034     ///     correctly if called from parse_dot_or_call_expr().
2035     fn parse_bottom_expr(&mut self) -> PResult<P<Expr>> {
2036         maybe_whole_expr!(self);
2037
2038         // Outer attributes are already parsed and will be
2039         // added to the return value after the fact.
2040         //
2041         // Therefore, prevent sub-parser from parsing
2042         // attributes by giving them a empty "already parsed" list.
2043         let mut attrs = None;
2044
2045         let lo = self.span.lo;
2046         let mut hi = self.span.hi;
2047
2048         let ex: Expr_;
2049
2050         // Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr().
2051         match self.token {
2052             token::OpenDelim(token::Paren) => {
2053                 try!(self.bump());
2054
2055                 let attrs = try!(self.parse_inner_attributes())
2056                     .into_thin_attrs()
2057                     .prepend(attrs);
2058
2059                 // (e) is parenthesized e
2060                 // (e,) is a tuple with only one field, e
2061                 let mut es = vec![];
2062                 let mut trailing_comma = false;
2063                 while self.token != token::CloseDelim(token::Paren) {
2064                     es.push(try!(self.parse_expr()));
2065                     try!(self.commit_expr(&**es.last().unwrap(), &[],
2066                                      &[token::Comma, token::CloseDelim(token::Paren)]));
2067                     if self.check(&token::Comma) {
2068                         trailing_comma = true;
2069
2070                         try!(self.bump());
2071                     } else {
2072                         trailing_comma = false;
2073                         break;
2074                     }
2075                 }
2076                 try!(self.bump());
2077
2078                 hi = self.last_span.hi;
2079                 return if es.len() == 1 && !trailing_comma {
2080                     Ok(self.mk_expr(lo, hi, ExprParen(es.into_iter().nth(0).unwrap()), attrs))
2081                 } else {
2082                     Ok(self.mk_expr(lo, hi, ExprTup(es), attrs))
2083                 }
2084             },
2085             token::OpenDelim(token::Brace) => {
2086                 return self.parse_block_expr(lo, DefaultBlock, attrs);
2087             },
2088             token::BinOp(token::Or) |  token::OrOr => {
2089                 let lo = self.span.lo;
2090                 return self.parse_lambda_expr(lo, CaptureByRef, attrs);
2091             },
2092             token::Ident(id @ ast::Ident {
2093                             name: token::SELF_KEYWORD_NAME,
2094                             ctxt: _
2095                          }, token::Plain) => {
2096                 try!(self.bump());
2097                 let path = ast_util::ident_to_path(mk_sp(lo, hi), id);
2098                 ex = ExprPath(None, path);
2099                 hi = self.last_span.hi;
2100             }
2101             token::OpenDelim(token::Bracket) => {
2102                 try!(self.bump());
2103
2104                 let inner_attrs = try!(self.parse_inner_attributes())
2105                     .into_thin_attrs();
2106                 attrs.update(|attrs| attrs.append(inner_attrs));
2107
2108                 if self.check(&token::CloseDelim(token::Bracket)) {
2109                     // Empty vector.
2110                     try!(self.bump());
2111                     ex = ExprVec(Vec::new());
2112                 } else {
2113                     // Nonempty vector.
2114                     let first_expr = try!(self.parse_expr());
2115                     if self.check(&token::Semi) {
2116                         // Repeating array syntax: [ 0; 512 ]
2117                         try!(self.bump());
2118                         let count = try!(self.parse_expr());
2119                         try!(self.expect(&token::CloseDelim(token::Bracket)));
2120                         ex = ExprRepeat(first_expr, count);
2121                     } else if self.check(&token::Comma) {
2122                         // Vector with two or more elements.
2123                         try!(self.bump());
2124                         let remaining_exprs = try!(self.parse_seq_to_end(
2125                             &token::CloseDelim(token::Bracket),
2126                             seq_sep_trailing_allowed(token::Comma),
2127                             |p| Ok(try!(p.parse_expr()))
2128                                 ));
2129                         let mut exprs = vec!(first_expr);
2130                         exprs.extend(remaining_exprs);
2131                         ex = ExprVec(exprs);
2132                     } else {
2133                         // Vector with one element.
2134                         try!(self.expect(&token::CloseDelim(token::Bracket)));
2135                         ex = ExprVec(vec!(first_expr));
2136                     }
2137                 }
2138                 hi = self.last_span.hi;
2139             }
2140             _ => {
2141                 if try!(self.eat_lt()){
2142                     let (qself, path) =
2143                         try!(self.parse_qualified_path(LifetimeAndTypesWithColons));
2144                     hi = path.span.hi;
2145                     return Ok(self.mk_expr(lo, hi, ExprPath(Some(qself), path), attrs));
2146                 }
2147                 if try!(self.eat_keyword(keywords::Move) ){
2148                     let lo = self.last_span.lo;
2149                     return self.parse_lambda_expr(lo, CaptureByValue, attrs);
2150                 }
2151                 if try!(self.eat_keyword(keywords::If)) {
2152                     return self.parse_if_expr(attrs);
2153                 }
2154                 if try!(self.eat_keyword(keywords::For) ){
2155                     let lo = self.last_span.lo;
2156                     return self.parse_for_expr(None, lo, attrs);
2157                 }
2158                 if try!(self.eat_keyword(keywords::While) ){
2159                     let lo = self.last_span.lo;
2160                     return self.parse_while_expr(None, lo, attrs);
2161                 }
2162                 if self.token.is_lifetime() {
2163                     let lifetime = self.get_lifetime();
2164                     let lo = self.span.lo;
2165                     try!(self.bump());
2166                     try!(self.expect(&token::Colon));
2167                     if try!(self.eat_keyword(keywords::While) ){
2168                         return self.parse_while_expr(Some(lifetime), lo, attrs)
2169                     }
2170                     if try!(self.eat_keyword(keywords::For) ){
2171                         return self.parse_for_expr(Some(lifetime), lo, attrs)
2172                     }
2173                     if try!(self.eat_keyword(keywords::Loop) ){
2174                         return self.parse_loop_expr(Some(lifetime), lo, attrs)
2175                     }
2176                     return Err(self.fatal("expected `while`, `for`, or `loop` after a label"))
2177                 }
2178                 if try!(self.eat_keyword(keywords::Loop) ){
2179                     let lo = self.last_span.lo;
2180                     return self.parse_loop_expr(None, lo, attrs);
2181                 }
2182                 if try!(self.eat_keyword(keywords::Continue) ){
2183                     let ex = if self.token.is_lifetime() {
2184                         let ex = ExprAgain(Some(Spanned{
2185                             node: self.get_lifetime(),
2186                             span: self.span
2187                         }));
2188                         try!(self.bump());
2189                         ex
2190                     } else {
2191                         ExprAgain(None)
2192                     };
2193                     let hi = self.last_span.hi;
2194                     return Ok(self.mk_expr(lo, hi, ex, attrs));
2195                 }
2196                 if try!(self.eat_keyword(keywords::Match) ){
2197                     return self.parse_match_expr(attrs);
2198                 }
2199                 if try!(self.eat_keyword(keywords::Unsafe) ){
2200                     return self.parse_block_expr(
2201                         lo,
2202                         UnsafeBlock(ast::UserProvided),
2203                         attrs);
2204                 }
2205                 if try!(self.eat_keyword(keywords::Return) ){
2206                     if self.token.can_begin_expr() {
2207                         let e = try!(self.parse_expr());
2208                         hi = e.span.hi;
2209                         ex = ExprRet(Some(e));
2210                     } else {
2211                         ex = ExprRet(None);
2212                     }
2213                 } else if try!(self.eat_keyword(keywords::Break) ){
2214                     if self.token.is_lifetime() {
2215                         ex = ExprBreak(Some(Spanned {
2216                             node: self.get_lifetime(),
2217                             span: self.span
2218                         }));
2219                         try!(self.bump());
2220                     } else {
2221                         ex = ExprBreak(None);
2222                     }
2223                     hi = self.last_span.hi;
2224                 } else if self.check(&token::ModSep) ||
2225                         self.token.is_ident() &&
2226                         !self.check_keyword(keywords::True) &&
2227                         !self.check_keyword(keywords::False) {
2228                     let pth =
2229                         try!(self.parse_path(LifetimeAndTypesWithColons));
2230
2231                     // `!`, as an operator, is prefix, so we know this isn't that
2232                     if self.check(&token::Not) {
2233                         // MACRO INVOCATION expression
2234                         try!(self.bump());
2235
2236                         let delim = try!(self.expect_open_delim());
2237                         let tts = try!(self.parse_seq_to_end(
2238                             &token::CloseDelim(delim),
2239                             seq_sep_none(),
2240                             |p| p.parse_token_tree()));
2241                         let hi = self.last_span.hi;
2242
2243                         return Ok(self.mk_mac_expr(lo,
2244                                                    hi,
2245                                                    Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT },
2246                                                    attrs));
2247                     }
2248                     if self.check(&token::OpenDelim(token::Brace)) {
2249                         // This is a struct literal, unless we're prohibited
2250                         // from parsing struct literals here.
2251                         let prohibited = self.restrictions.contains(
2252                             Restrictions::RESTRICTION_NO_STRUCT_LITERAL
2253                         );
2254                         if !prohibited {
2255                             // It's a struct literal.
2256                             try!(self.bump());
2257                             let mut fields = Vec::new();
2258                             let mut base = None;
2259
2260                             let attrs = attrs.append(
2261                                 try!(self.parse_inner_attributes())
2262                                     .into_thin_attrs());
2263
2264                             while self.token != token::CloseDelim(token::Brace) {
2265                                 if try!(self.eat(&token::DotDot) ){
2266                                     base = Some(try!(self.parse_expr()));
2267                                     break;
2268                                 }
2269
2270                                 fields.push(try!(self.parse_field()));
2271                                 try!(self.commit_expr(&*fields.last().unwrap().expr,
2272                                                  &[token::Comma],
2273                                                  &[token::CloseDelim(token::Brace)]));
2274                             }
2275
2276                             hi = self.span.hi;
2277                             try!(self.expect(&token::CloseDelim(token::Brace)));
2278                             ex = ExprStruct(pth, fields, base);
2279                             return Ok(self.mk_expr(lo, hi, ex, attrs));
2280                         }
2281                     }
2282
2283                     hi = pth.span.hi;
2284                     ex = ExprPath(None, pth);
2285                 } else {
2286                     // other literal expression
2287                     let lit = try!(self.parse_lit());
2288                     hi = lit.span.hi;
2289                     ex = ExprLit(P(lit));
2290                 }
2291             }
2292         }
2293
2294         return Ok(self.mk_expr(lo, hi, ex, attrs));
2295     }
2296
2297     fn parse_or_use_outer_attributes(&mut self,
2298                                      already_parsed_attrs: Option<ThinAttributes>)
2299                                      -> PResult<ThinAttributes> {
2300         if let Some(attrs) = already_parsed_attrs {
2301             Ok(attrs)
2302         } else {
2303             self.parse_outer_attributes().map(|a| a.into_thin_attrs())
2304         }
2305     }
2306
2307     /// Parse a block or unsafe block
2308     pub fn parse_block_expr(&mut self, lo: BytePos, blk_mode: BlockCheckMode,
2309                             attrs: ThinAttributes)
2310                             -> PResult<P<Expr>> {
2311
2312         let outer_attrs = attrs;
2313         try!(self.expect(&token::OpenDelim(token::Brace)));
2314
2315         let inner_attrs = try!(self.parse_inner_attributes()).into_thin_attrs();
2316         let attrs = outer_attrs.append(inner_attrs);
2317
2318         let blk = try!(self.parse_block_tail(lo, blk_mode));
2319         return Ok(self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk), attrs));
2320     }
2321
2322     /// parse a.b or a(13) or a[4] or just a
2323     pub fn parse_dot_or_call_expr(&mut self,
2324                                   already_parsed_attrs: Option<ThinAttributes>)
2325                                   -> PResult<P<Expr>> {
2326         let attrs = try!(self.parse_or_use_outer_attributes(already_parsed_attrs));
2327
2328         let b = try!(self.parse_bottom_expr());
2329         self.parse_dot_or_call_expr_with(b, attrs)
2330     }
2331
2332     pub fn parse_dot_or_call_expr_with(&mut self,
2333                                        e0: P<Expr>,
2334                                        attrs: ThinAttributes)
2335                                        -> PResult<P<Expr>> {
2336         // Stitch the list of outer attributes onto the return value.
2337         // A little bit ugly, but the best way given the current code
2338         // structure
2339         self.parse_dot_or_call_expr_with_(e0)
2340         .map(|expr|
2341             expr.map(|mut expr| {
2342                 expr.attrs.update(|a| a.prepend(attrs));
2343                 match expr.node {
2344                     ExprIf(..) | ExprIfLet(..) => {
2345                         if !expr.attrs.as_attr_slice().is_empty() {
2346                             // Just point to the first attribute in there...
2347                             let span = expr.attrs.as_attr_slice()[0].span;
2348
2349                             self.span_err(span,
2350                                 "attributes are not yet allowed on `if` \
2351                                 expressions");
2352                         }
2353                     }
2354                     _ => {}
2355                 }
2356                 expr
2357             })
2358         )
2359     }
2360
2361     fn parse_dot_or_call_expr_with_(&mut self, e0: P<Expr>) -> PResult<P<Expr>> {
2362         let mut e = e0;
2363         let lo = e.span.lo;
2364         let mut hi;
2365         loop {
2366             // expr.f
2367             if try!(self.eat(&token::Dot) ){
2368                 match self.token {
2369                   token::Ident(i, _) => {
2370                     let dot = self.last_span.hi;
2371                     hi = self.span.hi;
2372                     try!(self.bump());
2373                     let (_, tys, bindings) = if try!(self.eat(&token::ModSep) ){
2374                         try!(self.expect_lt());
2375                         try!(self.parse_generic_values_after_lt())
2376                     } else {
2377                         (Vec::new(), Vec::new(), Vec::new())
2378                     };
2379
2380                     if !bindings.is_empty() {
2381                         let last_span = self.last_span;
2382                         self.span_err(last_span, "type bindings are only permitted on trait paths");
2383                     }
2384
2385                     // expr.f() method call
2386                     match self.token {
2387                         token::OpenDelim(token::Paren) => {
2388                             let mut es = try!(self.parse_unspanned_seq(
2389                                 &token::OpenDelim(token::Paren),
2390                                 &token::CloseDelim(token::Paren),
2391                                 seq_sep_trailing_allowed(token::Comma),
2392                                 |p| Ok(try!(p.parse_expr()))
2393                             ));
2394                             hi = self.last_span.hi;
2395
2396                             es.insert(0, e);
2397                             let id = spanned(dot, hi, i);
2398                             let nd = self.mk_method_call(id, tys, es);
2399                             e = self.mk_expr(lo, hi, nd, None);
2400                         }
2401                         _ => {
2402                             if !tys.is_empty() {
2403                                 let last_span = self.last_span;
2404                                 self.span_err(last_span,
2405                                               "field expressions may not \
2406                                                have type parameters");
2407                             }
2408
2409                             let id = spanned(dot, hi, i);
2410                             let field = self.mk_field(e, id);
2411                             e = self.mk_expr(lo, hi, field, None);
2412                         }
2413                     }
2414                   }
2415                   token::Literal(token::Integer(n), suf) => {
2416                     let sp = self.span;
2417
2418                     // A tuple index may not have a suffix
2419                     self.expect_no_suffix(sp, "tuple index", suf);
2420
2421                     let dot = self.last_span.hi;
2422                     hi = self.span.hi;
2423                     try!(self.bump());
2424
2425                     let index = n.as_str().parse::<usize>().ok();
2426                     match index {
2427                         Some(n) => {
2428                             let id = spanned(dot, hi, n);
2429                             let field = self.mk_tup_field(e, id);
2430                             e = self.mk_expr(lo, hi, field, None);
2431                         }
2432                         None => {
2433                             let last_span = self.last_span;
2434                             self.span_err(last_span, "invalid tuple or tuple struct index");
2435                         }
2436                     }
2437                   }
2438                   token::Literal(token::Float(n), _suf) => {
2439                     try!(self.bump());
2440                     let last_span = self.last_span;
2441                     let fstr = n.as_str();
2442                     self.span_err(last_span,
2443                                   &format!("unexpected token: `{}`", n.as_str()));
2444                     if fstr.chars().all(|x| "0123456789.".contains(x)) {
2445                         let float = match fstr.parse::<f64>().ok() {
2446                             Some(f) => f,
2447                             None => continue,
2448                         };
2449                         self.fileline_help(last_span,
2450                             &format!("try parenthesizing the first index; e.g., `(foo.{}){}`",
2451                                     float.trunc() as usize,
2452                                     format!(".{}", fstr.splitn(2, ".").last().unwrap())));
2453                     }
2454                     self.abort_if_errors();
2455
2456                   }
2457                   _ => return Err(self.unexpected())
2458                 }
2459                 continue;
2460             }
2461             if self.expr_is_complete(&*e) { break; }
2462             match self.token {
2463               // expr(...)
2464               token::OpenDelim(token::Paren) => {
2465                 let es = try!(self.parse_unspanned_seq(
2466                     &token::OpenDelim(token::Paren),
2467                     &token::CloseDelim(token::Paren),
2468                     seq_sep_trailing_allowed(token::Comma),
2469                     |p| Ok(try!(p.parse_expr()))
2470                 ));
2471                 hi = self.last_span.hi;
2472
2473                 let nd = self.mk_call(e, es);
2474                 e = self.mk_expr(lo, hi, nd, None);
2475               }
2476
2477               // expr[...]
2478               // Could be either an index expression or a slicing expression.
2479               token::OpenDelim(token::Bracket) => {
2480                 try!(self.bump());
2481                 let ix = try!(self.parse_expr());
2482                 hi = self.span.hi;
2483                 try!(self.commit_expr_expecting(&*ix, token::CloseDelim(token::Bracket)));
2484                 let index = self.mk_index(e, ix);
2485                 e = self.mk_expr(lo, hi, index, None)
2486               }
2487               _ => return Ok(e)
2488             }
2489         }
2490         return Ok(e);
2491     }
2492
2493     // Parse unquoted tokens after a `$` in a token tree
2494     fn parse_unquoted(&mut self) -> PResult<TokenTree> {
2495         let mut sp = self.span;
2496         let (name, namep) = match self.token {
2497             token::Dollar => {
2498                 try!(self.bump());
2499
2500                 if self.token == token::OpenDelim(token::Paren) {
2501                     let Spanned { node: seq, span: seq_span } = try!(self.parse_seq(
2502                         &token::OpenDelim(token::Paren),
2503                         &token::CloseDelim(token::Paren),
2504                         seq_sep_none(),
2505                         |p| p.parse_token_tree()
2506                     ));
2507                     let (sep, repeat) = try!(self.parse_sep_and_kleene_op());
2508                     let name_num = macro_parser::count_names(&seq);
2509                     return Ok(TokenTree::Sequence(mk_sp(sp.lo, seq_span.hi),
2510                                       Rc::new(SequenceRepetition {
2511                                           tts: seq,
2512                                           separator: sep,
2513                                           op: repeat,
2514                                           num_captures: name_num
2515                                       })));
2516                 } else if self.token.is_keyword_allow_following_colon(keywords::Crate) {
2517                     try!(self.bump());
2518                     return Ok(TokenTree::Token(sp, SpecialVarNt(SpecialMacroVar::CrateMacroVar)));
2519                 } else {
2520                     sp = mk_sp(sp.lo, self.span.hi);
2521                     let namep = match self.token { token::Ident(_, p) => p, _ => token::Plain };
2522                     let name = try!(self.parse_ident());
2523                     (name, namep)
2524                 }
2525             }
2526             token::SubstNt(name, namep) => {
2527                 try!(self.bump());
2528                 (name, namep)
2529             }
2530             _ => unreachable!()
2531         };
2532         // continue by trying to parse the `:ident` after `$name`
2533         if self.token == token::Colon && self.look_ahead(1, |t| t.is_ident() &&
2534                                                                 !t.is_strict_keyword() &&
2535                                                                 !t.is_reserved_keyword()) {
2536             try!(self.bump());
2537             sp = mk_sp(sp.lo, self.span.hi);
2538             let kindp = match self.token { token::Ident(_, p) => p, _ => token::Plain };
2539             let nt_kind = try!(self.parse_ident());
2540             Ok(TokenTree::Token(sp, MatchNt(name, nt_kind, namep, kindp)))
2541         } else {
2542             Ok(TokenTree::Token(sp, SubstNt(name, namep)))
2543         }
2544     }
2545
2546     pub fn check_unknown_macro_variable(&mut self) -> PResult<()> {
2547         if self.quote_depth == 0 {
2548             match self.token {
2549                 token::SubstNt(name, _) =>
2550                     return Err(self.fatal(&format!("unknown macro variable `{}`",
2551                                        name))),
2552                 _ => {}
2553             }
2554         }
2555         Ok(())
2556     }
2557
2558     /// Parse an optional separator followed by a Kleene-style
2559     /// repetition token (+ or *).
2560     pub fn parse_sep_and_kleene_op(&mut self) -> PResult<(Option<token::Token>, ast::KleeneOp)> {
2561         fn parse_kleene_op(parser: &mut Parser) -> PResult<Option<ast::KleeneOp>> {
2562             match parser.token {
2563                 token::BinOp(token::Star) => {
2564                     try!(parser.bump());
2565                     Ok(Some(ast::ZeroOrMore))
2566                 },
2567                 token::BinOp(token::Plus) => {
2568                     try!(parser.bump());
2569                     Ok(Some(ast::OneOrMore))
2570                 },
2571                 _ => Ok(None)
2572             }
2573         };
2574
2575         match try!(parse_kleene_op(self)) {
2576             Some(kleene_op) => return Ok((None, kleene_op)),
2577             None => {}
2578         }
2579
2580         let separator = try!(self.bump_and_get());
2581         match try!(parse_kleene_op(self)) {
2582             Some(zerok) => Ok((Some(separator), zerok)),
2583             None => return Err(self.fatal("expected `*` or `+`"))
2584         }
2585     }
2586
2587     /// parse a single token tree from the input.
2588     pub fn parse_token_tree(&mut self) -> PResult<TokenTree> {
2589         // FIXME #6994: currently, this is too eager. It
2590         // parses token trees but also identifies TokenType::Sequence's
2591         // and token::SubstNt's; it's too early to know yet
2592         // whether something will be a nonterminal or a seq
2593         // yet.
2594         maybe_whole!(deref self, NtTT);
2595
2596         // this is the fall-through for the 'match' below.
2597         // invariants: the current token is not a left-delimiter,
2598         // not an EOF, and not the desired right-delimiter (if
2599         // it were, parse_seq_to_before_end would have prevented
2600         // reaching this point.
2601         fn parse_non_delim_tt_tok(p: &mut Parser) -> PResult<TokenTree> {
2602             maybe_whole!(deref p, NtTT);
2603             match p.token {
2604                 token::CloseDelim(_) => {
2605                     // This is a conservative error: only report the last unclosed delimiter. The
2606                     // previous unclosed delimiters could actually be closed! The parser just hasn't
2607                     // gotten to them yet.
2608                     match p.open_braces.last() {
2609                         None => {}
2610                         Some(&sp) => p.span_note(sp, "unclosed delimiter"),
2611                     };
2612                     let token_str = p.this_token_to_string();
2613                     Err(p.fatal(&format!("incorrect close delimiter: `{}`",
2614                                     token_str)))
2615                 },
2616                 /* we ought to allow different depths of unquotation */
2617                 token::Dollar | token::SubstNt(..) if p.quote_depth > 0 => {
2618                     p.parse_unquoted()
2619                 }
2620                 _ => {
2621                     Ok(TokenTree::Token(p.span, try!(p.bump_and_get())))
2622                 }
2623             }
2624         }
2625
2626         match self.token {
2627             token::Eof => {
2628                 let open_braces = self.open_braces.clone();
2629                 for sp in &open_braces {
2630                     self.span_help(*sp, "did you mean to close this delimiter?");
2631                 }
2632                 // There shouldn't really be a span, but it's easier for the test runner
2633                 // if we give it one
2634                 return Err(self.fatal("this file contains an un-closed delimiter "));
2635             },
2636             token::OpenDelim(delim) => {
2637                 // The span for beginning of the delimited section
2638                 let pre_span = self.span;
2639
2640                 // Parse the open delimiter.
2641                 self.open_braces.push(self.span);
2642                 let open_span = self.span;
2643                 try!(self.bump());
2644
2645                 // Parse the token trees within the delimiters
2646                 let tts = try!(self.parse_seq_to_before_end(
2647                     &token::CloseDelim(delim),
2648                     seq_sep_none(),
2649                     |p| p.parse_token_tree()
2650                 ));
2651
2652                 // Parse the close delimiter.
2653                 let close_span = self.span;
2654                 try!(self.bump());
2655                 self.open_braces.pop().unwrap();
2656
2657                 // Expand to cover the entire delimited token tree
2658                 let span = Span { hi: close_span.hi, ..pre_span };
2659
2660                 Ok(TokenTree::Delimited(span, Rc::new(Delimited {
2661                     delim: delim,
2662                     open_span: open_span,
2663                     tts: tts,
2664                     close_span: close_span,
2665                 })))
2666             },
2667             _ => parse_non_delim_tt_tok(self),
2668         }
2669     }
2670
2671     // parse a stream of tokens into a list of TokenTree's,
2672     // up to EOF.
2673     pub fn parse_all_token_trees(&mut self) -> PResult<Vec<TokenTree>> {
2674         let mut tts = Vec::new();
2675         while self.token != token::Eof {
2676             tts.push(try!(self.parse_token_tree()));
2677         }
2678         Ok(tts)
2679     }
2680
2681     /// Parse a prefix-unary-operator expr
2682     pub fn parse_prefix_expr(&mut self,
2683                              already_parsed_attrs: Option<ThinAttributes>)
2684                              -> PResult<P<Expr>> {
2685         let attrs = try!(self.parse_or_use_outer_attributes(already_parsed_attrs));
2686         let lo = self.span.lo;
2687         let hi;
2688         // Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr()
2689         let ex = match self.token {
2690             token::Not => {
2691                 try!(self.bump());
2692                 let e = try!(self.parse_prefix_expr(None));
2693                 hi = e.span.hi;
2694                 self.mk_unary(UnNot, e)
2695             }
2696             token::BinOp(token::Minus) => {
2697                 try!(self.bump());
2698                 let e = try!(self.parse_prefix_expr(None));
2699                 hi = e.span.hi;
2700                 self.mk_unary(UnNeg, e)
2701             }
2702             token::BinOp(token::Star) => {
2703                 try!(self.bump());
2704                 let e = try!(self.parse_prefix_expr(None));
2705                 hi = e.span.hi;
2706                 self.mk_unary(UnDeref, e)
2707             }
2708             token::BinOp(token::And) | token::AndAnd => {
2709                 try!(self.expect_and());
2710                 let m = try!(self.parse_mutability());
2711                 let e = try!(self.parse_prefix_expr(None));
2712                 hi = e.span.hi;
2713                 ExprAddrOf(m, e)
2714             }
2715             token::Ident(..) if self.token.is_keyword(keywords::In) => {
2716                 try!(self.bump());
2717                 let place = try!(self.parse_expr_res(
2718                     Restrictions::RESTRICTION_NO_STRUCT_LITERAL,
2719                     None,
2720                 ));
2721                 let blk = try!(self.parse_block());
2722                 let span = blk.span;
2723                 hi = span.hi;
2724                 let blk_expr = self.mk_expr(span.lo, span.hi, ExprBlock(blk),
2725                                             None);
2726                 ExprInPlace(place, blk_expr)
2727             }
2728             token::Ident(..) if self.token.is_keyword(keywords::Box) => {
2729                 try!(self.bump());
2730                 let subexpression = try!(self.parse_prefix_expr(None));
2731                 hi = subexpression.span.hi;
2732                 ExprBox(subexpression)
2733             }
2734             _ => return self.parse_dot_or_call_expr(Some(attrs))
2735         };
2736         return Ok(self.mk_expr(lo, hi, ex, attrs));
2737     }
2738
2739     /// Parse an associative expression
2740     ///
2741     /// This parses an expression accounting for associativity and precedence of the operators in
2742     /// the expression.
2743     pub fn parse_assoc_expr(&mut self,
2744                             already_parsed_attrs: Option<ThinAttributes>)
2745                             -> PResult<P<Expr>> {
2746         self.parse_assoc_expr_with(0, already_parsed_attrs.into())
2747     }
2748
2749     /// Parse an associative expression with operators of at least `min_prec` precedence
2750     pub fn parse_assoc_expr_with(&mut self,
2751                                  min_prec: usize,
2752                                  lhs: LhsExpr)
2753                                  -> PResult<P<Expr>> {
2754         let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
2755             expr
2756         } else {
2757             let attrs = match lhs {
2758                 LhsExpr::AttributesParsed(attrs) => Some(attrs),
2759                 _ => None,
2760             };
2761             if self.token == token::DotDot {
2762                 return self.parse_prefix_range_expr(attrs);
2763             } else {
2764                 try!(self.parse_prefix_expr(attrs))
2765             }
2766         };
2767         if self.expr_is_complete(&*lhs) {
2768             // Semi-statement forms are odd. See https://github.com/rust-lang/rust/issues/29071
2769             return Ok(lhs);
2770         }
2771         self.expected_tokens.push(TokenType::Operator);
2772         while let Some(op) = AssocOp::from_token(&self.token) {
2773             let cur_op_span = self.span;
2774             let restrictions = if op.is_assign_like() {
2775                 self.restrictions & Restrictions::RESTRICTION_NO_STRUCT_LITERAL
2776             } else {
2777                 self.restrictions
2778             };
2779             if op.precedence() < min_prec {
2780                 break;
2781             }
2782             try!(self.bump());
2783             if op.is_comparison() {
2784                 self.check_no_chained_comparison(&*lhs, &op);
2785             }
2786             // Special cases:
2787             if op == AssocOp::As {
2788                 let rhs = try!(self.parse_ty());
2789                 lhs = self.mk_expr(lhs.span.lo, rhs.span.hi,
2790                                    ExprCast(lhs, rhs), None);
2791                 continue
2792             } else if op == AssocOp::DotDot {
2793                     // If we didn’t have to handle `x..`, it would be pretty easy to generalise
2794                     // it to the Fixity::None code.
2795                     //
2796                     // We have 2 alternatives here: `x..y` and `x..` The other two variants are
2797                     // handled with `parse_prefix_range_expr` call above.
2798                     let rhs = if self.is_at_start_of_range_notation_rhs() {
2799                         self.parse_assoc_expr_with(op.precedence() + 1,
2800                                                    LhsExpr::NotYetParsed).ok()
2801                     } else {
2802                         None
2803                     };
2804                     let (lhs_span, rhs_span) = (lhs.span, if let Some(ref x) = rhs {
2805                         x.span
2806                     } else {
2807                         cur_op_span
2808                     });
2809                     let r = self.mk_range(Some(lhs), rhs);
2810                     lhs = self.mk_expr(lhs_span.lo, rhs_span.hi, r, None);
2811                     break
2812             }
2813
2814             let rhs = try!(match op.fixity() {
2815                 Fixity::Right => self.with_res(restrictions, |this|{
2816                     this.parse_assoc_expr_with(op.precedence(), LhsExpr::NotYetParsed)
2817                 }),
2818                 Fixity::Left => self.with_res(restrictions, |this|{
2819                     this.parse_assoc_expr_with(op.precedence() + 1, LhsExpr::NotYetParsed)
2820                 }),
2821                 // We currently have no non-associative operators that are not handled above by
2822                 // the special cases. The code is here only for future convenience.
2823                 Fixity::None => self.with_res(restrictions, |this|{
2824                     this.parse_assoc_expr_with(op.precedence() + 1, LhsExpr::NotYetParsed)
2825                 }),
2826             });
2827
2828             lhs = match op {
2829                 AssocOp::Add | AssocOp::Subtract | AssocOp::Multiply | AssocOp::Divide |
2830                 AssocOp::Modulus | AssocOp::LAnd | AssocOp::LOr | AssocOp::BitXor |
2831                 AssocOp::BitAnd | AssocOp::BitOr | AssocOp::ShiftLeft | AssocOp::ShiftRight |
2832                 AssocOp::Equal | AssocOp::Less | AssocOp::LessEqual | AssocOp::NotEqual |
2833                 AssocOp::Greater | AssocOp::GreaterEqual => {
2834                     let ast_op = op.to_ast_binop().unwrap();
2835                     let (lhs_span, rhs_span) = (lhs.span, rhs.span);
2836                     let binary = self.mk_binary(codemap::respan(cur_op_span, ast_op), lhs, rhs);
2837                     self.mk_expr(lhs_span.lo, rhs_span.hi, binary, None)
2838                 }
2839                 AssocOp::Assign =>
2840                     self.mk_expr(lhs.span.lo, rhs.span.hi, ExprAssign(lhs, rhs), None),
2841                 AssocOp::Inplace =>
2842                     self.mk_expr(lhs.span.lo, rhs.span.hi, ExprInPlace(lhs, rhs), None),
2843                 AssocOp::AssignOp(k) => {
2844                     let aop = match k {
2845                         token::Plus =>    BiAdd,
2846                         token::Minus =>   BiSub,
2847                         token::Star =>    BiMul,
2848                         token::Slash =>   BiDiv,
2849                         token::Percent => BiRem,
2850                         token::Caret =>   BiBitXor,
2851                         token::And =>     BiBitAnd,
2852                         token::Or =>      BiBitOr,
2853                         token::Shl =>     BiShl,
2854                         token::Shr =>     BiShr
2855                     };
2856                     let (lhs_span, rhs_span) = (lhs.span, rhs.span);
2857                     let aopexpr = self.mk_assign_op(codemap::respan(cur_op_span, aop), lhs, rhs);
2858                     self.mk_expr(lhs_span.lo, rhs_span.hi, aopexpr, None)
2859                 }
2860                 AssocOp::As | AssocOp::DotDot => self.bug("As or DotDot branch reached")
2861             };
2862
2863             if op.fixity() == Fixity::None { break }
2864         }
2865         Ok(lhs)
2866     }
2867
2868     /// Produce an error if comparison operators are chained (RFC #558).
2869     /// We only need to check lhs, not rhs, because all comparison ops
2870     /// have same precedence and are left-associative
2871     fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: &AssocOp) {
2872         debug_assert!(outer_op.is_comparison());
2873         match lhs.node {
2874             ExprBinary(op, _, _) if op.node.is_comparison() => {
2875                 // respan to include both operators
2876                 let op_span = mk_sp(op.span.lo, self.span.hi);
2877                 self.span_err(op_span,
2878                     "chained comparison operators require parentheses");
2879                 if op.node == BiLt && *outer_op == AssocOp::Greater {
2880                     self.fileline_help(op_span,
2881                         "use `::<...>` instead of `<...>` if you meant to specify type arguments");
2882                 }
2883             }
2884             _ => {}
2885         }
2886     }
2887
2888     /// Parse prefix-forms of range notation: `..expr` and `..`
2889     fn parse_prefix_range_expr(&mut self,
2890                                already_parsed_attrs: Option<ThinAttributes>)
2891                                -> PResult<P<Expr>> {
2892         debug_assert!(self.token == token::DotDot);
2893         let attrs = try!(self.parse_or_use_outer_attributes(already_parsed_attrs));
2894         let lo = self.span.lo;
2895         let mut hi = self.span.hi;
2896         try!(self.bump());
2897         let opt_end = if self.is_at_start_of_range_notation_rhs() {
2898             // RHS must be parsed with more associativity than DotDot.
2899             let next_prec = AssocOp::from_token(&token::DotDot).unwrap().precedence() + 1;
2900             Some(try!(self.parse_assoc_expr_with(next_prec,
2901                                                  LhsExpr::NotYetParsed)
2902             .map(|x|{
2903                 hi = x.span.hi;
2904                 x
2905             })))
2906          } else {
2907             None
2908         };
2909         let r = self.mk_range(None, opt_end);
2910         Ok(self.mk_expr(lo, hi, r, attrs))
2911     }
2912
2913     fn is_at_start_of_range_notation_rhs(&self) -> bool {
2914         if self.token.can_begin_expr() {
2915             // parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
2916             if self.token == token::OpenDelim(token::Brace) {
2917                 return !self.restrictions.contains(Restrictions::RESTRICTION_NO_STRUCT_LITERAL);
2918             }
2919             true
2920         } else {
2921             false
2922         }
2923     }
2924
2925     /// Parse an 'if' or 'if let' expression ('if' token already eaten)
2926     pub fn parse_if_expr(&mut self, attrs: ThinAttributes) -> PResult<P<Expr>> {
2927         if self.check_keyword(keywords::Let) {
2928             return self.parse_if_let_expr(attrs);
2929         }
2930         let lo = self.last_span.lo;
2931         let cond = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
2932         let thn = try!(self.parse_block());
2933         let mut els: Option<P<Expr>> = None;
2934         let mut hi = thn.span.hi;
2935         if try!(self.eat_keyword(keywords::Else) ){
2936             let elexpr = try!(self.parse_else_expr());
2937             hi = elexpr.span.hi;
2938             els = Some(elexpr);
2939         }
2940         Ok(self.mk_expr(lo, hi, ExprIf(cond, thn, els), attrs))
2941     }
2942
2943     /// Parse an 'if let' expression ('if' token already eaten)
2944     pub fn parse_if_let_expr(&mut self, attrs: ThinAttributes)
2945                              -> PResult<P<Expr>> {
2946         let lo = self.last_span.lo;
2947         try!(self.expect_keyword(keywords::Let));
2948         let pat = try!(self.parse_pat());
2949         try!(self.expect(&token::Eq));
2950         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
2951         let thn = try!(self.parse_block());
2952         let (hi, els) = if try!(self.eat_keyword(keywords::Else) ){
2953             let expr = try!(self.parse_else_expr());
2954             (expr.span.hi, Some(expr))
2955         } else {
2956             (thn.span.hi, None)
2957         };
2958         Ok(self.mk_expr(lo, hi, ExprIfLet(pat, expr, thn, els), attrs))
2959     }
2960
2961     // `|args| expr`
2962     pub fn parse_lambda_expr(&mut self, lo: BytePos,
2963                              capture_clause: CaptureClause,
2964                              attrs: ThinAttributes)
2965                              -> PResult<P<Expr>>
2966     {
2967         let decl = try!(self.parse_fn_block_decl());
2968         let body = match decl.output {
2969             DefaultReturn(_) => {
2970                 // If no explicit return type is given, parse any
2971                 // expr and wrap it up in a dummy block:
2972                 let body_expr = try!(self.parse_expr());
2973                 P(ast::Block {
2974                     id: ast::DUMMY_NODE_ID,
2975                     stmts: vec![],
2976                     span: body_expr.span,
2977                     expr: Some(body_expr),
2978                     rules: DefaultBlock,
2979                 })
2980             }
2981             _ => {
2982                 // If an explicit return type is given, require a
2983                 // block to appear (RFC 968).
2984                 try!(self.parse_block())
2985             }
2986         };
2987
2988         Ok(self.mk_expr(
2989             lo,
2990             body.span.hi,
2991             ExprClosure(capture_clause, decl, body), attrs))
2992     }
2993
2994     // `else` token already eaten
2995     pub fn parse_else_expr(&mut self) -> PResult<P<Expr>> {
2996         if try!(self.eat_keyword(keywords::If) ){
2997             return self.parse_if_expr(None);
2998         } else {
2999             let blk = try!(self.parse_block());
3000             return Ok(self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk), None));
3001         }
3002     }
3003
3004     /// Parse a 'for' .. 'in' expression ('for' token already eaten)
3005     pub fn parse_for_expr(&mut self, opt_ident: Option<ast::Ident>,
3006                           span_lo: BytePos,
3007                           attrs: ThinAttributes) -> PResult<P<Expr>> {
3008         // Parse: `for <src_pat> in <src_expr> <src_loop_block>`
3009
3010         let pat = try!(self.parse_pat());
3011         try!(self.expect_keyword(keywords::In));
3012         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3013         let (iattrs, loop_block) = try!(self.parse_inner_attrs_and_block());
3014         let attrs = attrs.append(iattrs.into_thin_attrs());
3015
3016         let hi = self.last_span.hi;
3017
3018         Ok(self.mk_expr(span_lo, hi,
3019                         ExprForLoop(pat, expr, loop_block, opt_ident),
3020                         attrs))
3021     }
3022
3023     /// Parse a 'while' or 'while let' expression ('while' token already eaten)
3024     pub fn parse_while_expr(&mut self, opt_ident: Option<ast::Ident>,
3025                             span_lo: BytePos,
3026                             attrs: ThinAttributes) -> PResult<P<Expr>> {
3027         if self.token.is_keyword(keywords::Let) {
3028             return self.parse_while_let_expr(opt_ident, span_lo, attrs);
3029         }
3030         let cond = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3031         let (iattrs, body) = try!(self.parse_inner_attrs_and_block());
3032         let attrs = attrs.append(iattrs.into_thin_attrs());
3033         let hi = body.span.hi;
3034         return Ok(self.mk_expr(span_lo, hi, ExprWhile(cond, body, opt_ident),
3035                                attrs));
3036     }
3037
3038     /// Parse a 'while let' expression ('while' token already eaten)
3039     pub fn parse_while_let_expr(&mut self, opt_ident: Option<ast::Ident>,
3040                                 span_lo: BytePos,
3041                                 attrs: ThinAttributes) -> PResult<P<Expr>> {
3042         try!(self.expect_keyword(keywords::Let));
3043         let pat = try!(self.parse_pat());
3044         try!(self.expect(&token::Eq));
3045         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3046         let (iattrs, body) = try!(self.parse_inner_attrs_and_block());
3047         let attrs = attrs.append(iattrs.into_thin_attrs());
3048         let hi = body.span.hi;
3049         return Ok(self.mk_expr(span_lo, hi, ExprWhileLet(pat, expr, body, opt_ident), attrs));
3050     }
3051
3052     // parse `loop {...}`, `loop` token already eaten
3053     pub fn parse_loop_expr(&mut self, opt_ident: Option<ast::Ident>,
3054                            span_lo: BytePos,
3055                            attrs: ThinAttributes) -> PResult<P<Expr>> {
3056         let (iattrs, body) = try!(self.parse_inner_attrs_and_block());
3057         let attrs = attrs.append(iattrs.into_thin_attrs());
3058         let hi = body.span.hi;
3059         Ok(self.mk_expr(span_lo, hi, ExprLoop(body, opt_ident), attrs))
3060     }
3061
3062     // `match` token already eaten
3063     fn parse_match_expr(&mut self, attrs: ThinAttributes) -> PResult<P<Expr>> {
3064         let match_span = self.last_span;
3065         let lo = self.last_span.lo;
3066         let discriminant = try!(self.parse_expr_res(
3067             Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3068         if let Err(e) = self.commit_expr_expecting(&*discriminant, token::OpenDelim(token::Brace)) {
3069             if self.token == token::Token::Semi {
3070                 self.span_note(match_span, "did you mean to remove this `match` keyword?");
3071             }
3072             return Err(e)
3073         }
3074         let attrs = attrs.append(
3075             try!(self.parse_inner_attributes()).into_thin_attrs());
3076         let mut arms: Vec<Arm> = Vec::new();
3077         while self.token != token::CloseDelim(token::Brace) {
3078             arms.push(try!(self.parse_arm()));
3079         }
3080         let hi = self.span.hi;
3081         try!(self.bump());
3082         return Ok(self.mk_expr(lo, hi, ExprMatch(discriminant, arms), attrs));
3083     }
3084
3085     pub fn parse_arm(&mut self) -> PResult<Arm> {
3086         maybe_whole!(no_clone self, NtArm);
3087
3088         let attrs = try!(self.parse_outer_attributes());
3089         let pats = try!(self.parse_pats());
3090         let mut guard = None;
3091         if try!(self.eat_keyword(keywords::If) ){
3092             guard = Some(try!(self.parse_expr()));
3093         }
3094         try!(self.expect(&token::FatArrow));
3095         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_STMT_EXPR, None));
3096
3097         let require_comma =
3098             !classify::expr_is_simple_block(&*expr)
3099             && self.token != token::CloseDelim(token::Brace);
3100
3101         if require_comma {
3102             try!(self.commit_expr(&*expr, &[token::Comma], &[token::CloseDelim(token::Brace)]));
3103         } else {
3104             try!(self.eat(&token::Comma));
3105         }
3106
3107         Ok(ast::Arm {
3108             attrs: attrs,
3109             pats: pats,
3110             guard: guard,
3111             body: expr,
3112         })
3113     }
3114
3115     /// Parse an expression
3116     pub fn parse_expr(&mut self) -> PResult<P<Expr>> {
3117         self.parse_expr_res(Restrictions::empty(), None)
3118     }
3119
3120     /// Evaluate the closure with restrictions in place.
3121     ///
3122     /// After the closure is evaluated, restrictions are reset.
3123     pub fn with_res<F>(&mut self, r: Restrictions, f: F) -> PResult<P<Expr>>
3124     where F: FnOnce(&mut Self) -> PResult<P<Expr>> {
3125         let old = self.restrictions;
3126         self.restrictions = r;
3127         let r = f(self);
3128         self.restrictions = old;
3129         return r;
3130
3131     }
3132
3133     /// Parse an expression, subject to the given restrictions
3134     pub fn parse_expr_res(&mut self, r: Restrictions,
3135                           already_parsed_attrs: Option<ThinAttributes>)
3136                           -> PResult<P<Expr>> {
3137         self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
3138     }
3139
3140     /// Parse the RHS of a local variable declaration (e.g. '= 14;')
3141     fn parse_initializer(&mut self) -> PResult<Option<P<Expr>>> {
3142         if self.check(&token::Eq) {
3143             try!(self.bump());
3144             Ok(Some(try!(self.parse_expr())))
3145         } else {
3146             Ok(None)
3147         }
3148     }
3149
3150     /// Parse patterns, separated by '|' s
3151     fn parse_pats(&mut self) -> PResult<Vec<P<Pat>>> {
3152         let mut pats = Vec::new();
3153         loop {
3154             pats.push(try!(self.parse_pat()));
3155             if self.check(&token::BinOp(token::Or)) { try!(self.bump());}
3156             else { return Ok(pats); }
3157         };
3158     }
3159
3160     fn parse_pat_tuple_elements(&mut self) -> PResult<Vec<P<Pat>>> {
3161         let mut fields = vec![];
3162         if !self.check(&token::CloseDelim(token::Paren)) {
3163             fields.push(try!(self.parse_pat()));
3164             if self.look_ahead(1, |t| *t != token::CloseDelim(token::Paren)) {
3165                 while try!(self.eat(&token::Comma)) &&
3166                       !self.check(&token::CloseDelim(token::Paren)) {
3167                     fields.push(try!(self.parse_pat()));
3168                 }
3169             }
3170             if fields.len() == 1 {
3171                 try!(self.expect(&token::Comma));
3172             }
3173         }
3174         Ok(fields)
3175     }
3176
3177     fn parse_pat_vec_elements(
3178         &mut self,
3179     ) -> PResult<(Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>)> {
3180         let mut before = Vec::new();
3181         let mut slice = None;
3182         let mut after = Vec::new();
3183         let mut first = true;
3184         let mut before_slice = true;
3185
3186         while self.token != token::CloseDelim(token::Bracket) {
3187             if first {
3188                 first = false;
3189             } else {
3190                 try!(self.expect(&token::Comma));
3191
3192                 if self.token == token::CloseDelim(token::Bracket)
3193                         && (before_slice || !after.is_empty()) {
3194                     break
3195                 }
3196             }
3197
3198             if before_slice {
3199                 if self.check(&token::DotDot) {
3200                     try!(self.bump());
3201
3202                     if self.check(&token::Comma) ||
3203                             self.check(&token::CloseDelim(token::Bracket)) {
3204                         slice = Some(P(ast::Pat {
3205                             id: ast::DUMMY_NODE_ID,
3206                             node: PatWild,
3207                             span: self.span,
3208                         }));
3209                         before_slice = false;
3210                     }
3211                     continue
3212                 }
3213             }
3214
3215             let subpat = try!(self.parse_pat());
3216             if before_slice && self.check(&token::DotDot) {
3217                 try!(self.bump());
3218                 slice = Some(subpat);
3219                 before_slice = false;
3220             } else if before_slice {
3221                 before.push(subpat);
3222             } else {
3223                 after.push(subpat);
3224             }
3225         }
3226
3227         Ok((before, slice, after))
3228     }
3229
3230     /// Parse the fields of a struct-like pattern
3231     fn parse_pat_fields(&mut self) -> PResult<(Vec<codemap::Spanned<ast::FieldPat>> , bool)> {
3232         let mut fields = Vec::new();
3233         let mut etc = false;
3234         let mut first = true;
3235         while self.token != token::CloseDelim(token::Brace) {
3236             if first {
3237                 first = false;
3238             } else {
3239                 try!(self.expect(&token::Comma));
3240                 // accept trailing commas
3241                 if self.check(&token::CloseDelim(token::Brace)) { break }
3242             }
3243
3244             let lo = self.span.lo;
3245             let hi;
3246
3247             if self.check(&token::DotDot) {
3248                 try!(self.bump());
3249                 if self.token != token::CloseDelim(token::Brace) {
3250                     let token_str = self.this_token_to_string();
3251                     return Err(self.fatal(&format!("expected `{}`, found `{}`", "}",
3252                                        token_str)))
3253                 }
3254                 etc = true;
3255                 break;
3256             }
3257
3258             // Check if a colon exists one ahead. This means we're parsing a fieldname.
3259             let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) {
3260                 // Parsing a pattern of the form "fieldname: pat"
3261                 let fieldname = try!(self.parse_ident());
3262                 try!(self.bump());
3263                 let pat = try!(self.parse_pat());
3264                 hi = pat.span.hi;
3265                 (pat, fieldname, false)
3266             } else {
3267                 // Parsing a pattern of the form "(box) (ref) (mut) fieldname"
3268                 let is_box = try!(self.eat_keyword(keywords::Box));
3269                 let boxed_span_lo = self.span.lo;
3270                 let is_ref = try!(self.eat_keyword(keywords::Ref));
3271                 let is_mut = try!(self.eat_keyword(keywords::Mut));
3272                 let fieldname = try!(self.parse_ident());
3273                 hi = self.last_span.hi;
3274
3275                 let bind_type = match (is_ref, is_mut) {
3276                     (true, true) => BindByRef(MutMutable),
3277                     (true, false) => BindByRef(MutImmutable),
3278                     (false, true) => BindByValue(MutMutable),
3279                     (false, false) => BindByValue(MutImmutable),
3280                 };
3281                 let fieldpath = codemap::Spanned{span:self.last_span, node:fieldname};
3282                 let fieldpat = P(ast::Pat{
3283                     id: ast::DUMMY_NODE_ID,
3284                     node: PatIdent(bind_type, fieldpath, None),
3285                     span: mk_sp(boxed_span_lo, hi),
3286                 });
3287
3288                 let subpat = if is_box {
3289                     P(ast::Pat{
3290                         id: ast::DUMMY_NODE_ID,
3291                         node: PatBox(fieldpat),
3292                         span: mk_sp(lo, hi),
3293                     })
3294                 } else {
3295                     fieldpat
3296                 };
3297                 (subpat, fieldname, true)
3298             };
3299
3300             fields.push(codemap::Spanned { span: mk_sp(lo, hi),
3301                                            node: ast::FieldPat { ident: fieldname,
3302                                                                  pat: subpat,
3303                                                                  is_shorthand: is_shorthand }});
3304         }
3305         return Ok((fields, etc));
3306     }
3307
3308     fn parse_pat_range_end(&mut self) -> PResult<P<Expr>> {
3309         if self.is_path_start() {
3310             let lo = self.span.lo;
3311             let (qself, path) = if try!(self.eat_lt()) {
3312                 // Parse a qualified path
3313                 let (qself, path) =
3314                     try!(self.parse_qualified_path(NoTypesAllowed));
3315                 (Some(qself), path)
3316             } else {
3317                 // Parse an unqualified path
3318                 (None, try!(self.parse_path(LifetimeAndTypesWithColons)))
3319             };
3320             let hi = self.last_span.hi;
3321             Ok(self.mk_expr(lo, hi, ExprPath(qself, path), None))
3322         } else {
3323             self.parse_pat_literal_maybe_minus()
3324         }
3325     }
3326
3327     fn is_path_start(&self) -> bool {
3328         (self.token == token::Lt || self.token == token::ModSep
3329             || self.token.is_ident() || self.token.is_path())
3330             && !self.token.is_keyword(keywords::True) && !self.token.is_keyword(keywords::False)
3331     }
3332
3333     /// Parse a pattern.
3334     pub fn parse_pat(&mut self) -> PResult<P<Pat>> {
3335         maybe_whole!(self, NtPat);
3336
3337         let lo = self.span.lo;
3338         let pat;
3339         match self.token {
3340           token::Underscore => {
3341             // Parse _
3342             try!(self.bump());
3343             pat = PatWild;
3344           }
3345           token::BinOp(token::And) | token::AndAnd => {
3346             // Parse &pat / &mut pat
3347             try!(self.expect_and());
3348             let mutbl = try!(self.parse_mutability());
3349             if let token::Lifetime(ident) = self.token {
3350                 return Err(self.fatal(&format!("unexpected lifetime `{}` in pattern", ident)));
3351             }
3352
3353             let subpat = try!(self.parse_pat());
3354             pat = PatRegion(subpat, mutbl);
3355           }
3356           token::OpenDelim(token::Paren) => {
3357             // Parse (pat,pat,pat,...) as tuple pattern
3358             try!(self.bump());
3359             let fields = try!(self.parse_pat_tuple_elements());
3360             try!(self.expect(&token::CloseDelim(token::Paren)));
3361             pat = PatTup(fields);
3362           }
3363           token::OpenDelim(token::Bracket) => {
3364             // Parse [pat,pat,...] as slice pattern
3365             try!(self.bump());
3366             let (before, slice, after) = try!(self.parse_pat_vec_elements());
3367             try!(self.expect(&token::CloseDelim(token::Bracket)));
3368             pat = PatVec(before, slice, after);
3369           }
3370           _ => {
3371             // At this point, token != _, &, &&, (, [
3372             if try!(self.eat_keyword(keywords::Mut)) {
3373                 // Parse mut ident @ pat
3374                 pat = try!(self.parse_pat_ident(BindByValue(MutMutable)));
3375             } else if try!(self.eat_keyword(keywords::Ref)) {
3376                 // Parse ref ident @ pat / ref mut ident @ pat
3377                 let mutbl = try!(self.parse_mutability());
3378                 pat = try!(self.parse_pat_ident(BindByRef(mutbl)));
3379             } else if try!(self.eat_keyword(keywords::Box)) {
3380                 // Parse box pat
3381                 let subpat = try!(self.parse_pat());
3382                 pat = PatBox(subpat);
3383             } else if self.is_path_start() {
3384                 // Parse pattern starting with a path
3385                 if self.token.is_plain_ident() && self.look_ahead(1, |t| *t != token::DotDotDot &&
3386                         *t != token::OpenDelim(token::Brace) &&
3387                         *t != token::OpenDelim(token::Paren) &&
3388                         // Contrary to its definition, a plain ident can be followed by :: in macros
3389                         *t != token::ModSep) {
3390                     // Plain idents have some extra abilities here compared to general paths
3391                     if self.look_ahead(1, |t| *t == token::Not) {
3392                         // Parse macro invocation
3393                         let ident = try!(self.parse_ident());
3394                         let ident_span = self.last_span;
3395                         let path = ident_to_path(ident_span, ident);
3396                         try!(self.bump());
3397                         let delim = try!(self.expect_open_delim());
3398                         let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
3399                                 seq_sep_none(), |p| p.parse_token_tree()));
3400                         let mac = Mac_ { path: path, tts: tts, ctxt: EMPTY_CTXT };
3401                         pat = PatMac(codemap::Spanned {node: mac,
3402                                                        span: mk_sp(lo, self.last_span.hi)});
3403                     } else {
3404                         // Parse ident @ pat
3405                         // This can give false positives and parse nullary enums,
3406                         // they are dealt with later in resolve
3407                         pat = try!(self.parse_pat_ident(BindByValue(MutImmutable)));
3408                     }
3409                 } else {
3410                     let (qself, path) = if try!(self.eat_lt()) {
3411                         // Parse a qualified path
3412                         let (qself, path) =
3413                             try!(self.parse_qualified_path(NoTypesAllowed));
3414                         (Some(qself), path)
3415                     } else {
3416                         // Parse an unqualified path
3417                         (None, try!(self.parse_path(LifetimeAndTypesWithColons)))
3418                     };
3419                     match self.token {
3420                       token::DotDotDot => {
3421                         // Parse range
3422                         let hi = self.last_span.hi;
3423                         let begin = self.mk_expr(lo, hi, ExprPath(qself, path), None);
3424                         try!(self.bump());
3425                         let end = try!(self.parse_pat_range_end());
3426                         pat = PatRange(begin, end);
3427                       }
3428                       token::OpenDelim(token::Brace) => {
3429                          if qself.is_some() {
3430                             return Err(self.fatal("unexpected `{` after qualified path"));
3431                         }
3432                         // Parse struct pattern
3433                         try!(self.bump());
3434                         let (fields, etc) = try!(self.parse_pat_fields());
3435                         try!(self.bump());
3436                         pat = PatStruct(path, fields, etc);
3437                       }
3438                       token::OpenDelim(token::Paren) => {
3439                         if qself.is_some() {
3440                             return Err(self.fatal("unexpected `(` after qualified path"));
3441                         }
3442                         // Parse tuple struct or enum pattern
3443                         if self.look_ahead(1, |t| *t == token::DotDot) {
3444                             // This is a "top constructor only" pat
3445                             try!(self.bump());
3446                             try!(self.bump());
3447                             try!(self.expect(&token::CloseDelim(token::Paren)));
3448                             pat = PatEnum(path, None);
3449                         } else {
3450                             let args = try!(self.parse_enum_variant_seq(
3451                                     &token::OpenDelim(token::Paren),
3452                                     &token::CloseDelim(token::Paren),
3453                                     seq_sep_trailing_allowed(token::Comma),
3454                                     |p| p.parse_pat()));
3455                             pat = PatEnum(path, Some(args));
3456                         }
3457                       }
3458                       _ => {
3459                         pat = match qself {
3460                             // Parse qualified path
3461                             Some(qself) => PatQPath(qself, path),
3462                             // Parse nullary enum
3463                             None => PatEnum(path, Some(vec![]))
3464                         };
3465                       }
3466                     }
3467                 }
3468             } else {
3469                 // Try to parse everything else as literal with optional minus
3470                 let begin = try!(self.parse_pat_literal_maybe_minus());
3471                 if try!(self.eat(&token::DotDotDot)) {
3472                     let end = try!(self.parse_pat_range_end());
3473                     pat = PatRange(begin, end);
3474                 } else {
3475                     pat = PatLit(begin);
3476                 }
3477             }
3478           }
3479         }
3480
3481         let hi = self.last_span.hi;
3482         Ok(P(ast::Pat {
3483             id: ast::DUMMY_NODE_ID,
3484             node: pat,
3485             span: mk_sp(lo, hi),
3486         }))
3487     }
3488
3489     /// Parse ident or ident @ pat
3490     /// used by the copy foo and ref foo patterns to give a good
3491     /// error message when parsing mistakes like ref foo(a,b)
3492     fn parse_pat_ident(&mut self,
3493                        binding_mode: ast::BindingMode)
3494                        -> PResult<ast::Pat_> {
3495         if !self.token.is_plain_ident() {
3496             let span = self.span;
3497             let tok_str = self.this_token_to_string();
3498             return Err(self.span_fatal(span,
3499                             &format!("expected identifier, found `{}`", tok_str)))
3500         }
3501         let ident = try!(self.parse_ident());
3502         let last_span = self.last_span;
3503         let name = codemap::Spanned{span: last_span, node: ident};
3504         let sub = if try!(self.eat(&token::At) ){
3505             Some(try!(self.parse_pat()))
3506         } else {
3507             None
3508         };
3509
3510         // just to be friendly, if they write something like
3511         //   ref Some(i)
3512         // we end up here with ( as the current token.  This shortly
3513         // leads to a parse error.  Note that if there is no explicit
3514         // binding mode then we do not end up here, because the lookahead
3515         // will direct us over to parse_enum_variant()
3516         if self.token == token::OpenDelim(token::Paren) {
3517             let last_span = self.last_span;
3518             return Err(self.span_fatal(
3519                 last_span,
3520                 "expected identifier, found enum pattern"))
3521         }
3522
3523         Ok(PatIdent(binding_mode, name, sub))
3524     }
3525
3526     /// Parse a local variable declaration
3527     fn parse_local(&mut self, attrs: ThinAttributes) -> PResult<P<Local>> {
3528         let lo = self.span.lo;
3529         let pat = try!(self.parse_pat());
3530
3531         let mut ty = None;
3532         if try!(self.eat(&token::Colon) ){
3533             ty = Some(try!(self.parse_ty_sum()));
3534         }
3535         let init = try!(self.parse_initializer());
3536         Ok(P(ast::Local {
3537             ty: ty,
3538             pat: pat,
3539             init: init,
3540             id: ast::DUMMY_NODE_ID,
3541             span: mk_sp(lo, self.last_span.hi),
3542             attrs: attrs,
3543         }))
3544     }
3545
3546     /// Parse a "let" stmt
3547     fn parse_let(&mut self, attrs: ThinAttributes) -> PResult<P<Decl>> {
3548         let lo = self.span.lo;
3549         let local = try!(self.parse_local(attrs));
3550         Ok(P(spanned(lo, self.last_span.hi, DeclLocal(local))))
3551     }
3552
3553     /// Parse a structure field
3554     fn parse_name_and_ty(&mut self, pr: Visibility,
3555                          attrs: Vec<Attribute> ) -> PResult<StructField> {
3556         let lo = match pr {
3557             Inherited => self.span.lo,
3558             Public => self.last_span.lo,
3559         };
3560         if !self.token.is_plain_ident() {
3561             return Err(self.fatal("expected ident"));
3562         }
3563         let name = try!(self.parse_ident());
3564         try!(self.expect(&token::Colon));
3565         let ty = try!(self.parse_ty_sum());
3566         Ok(spanned(lo, self.last_span.hi, ast::StructField_ {
3567             kind: NamedField(name, pr),
3568             id: ast::DUMMY_NODE_ID,
3569             ty: ty,
3570             attrs: attrs,
3571         }))
3572     }
3573
3574     /// Emit an expected item after attributes error.
3575     fn expected_item_err(&self, attrs: &[Attribute]) {
3576         let message = match attrs.last() {
3577             Some(&Attribute { node: ast::Attribute_ { is_sugared_doc: true, .. }, .. }) => {
3578                 "expected item after doc comment"
3579             }
3580             _ => "expected item after attributes",
3581         };
3582
3583         self.span_err(self.last_span, message);
3584     }
3585
3586     /// Parse a statement. may include decl.
3587     pub fn parse_stmt(&mut self) -> PResult<Option<P<Stmt>>> {
3588         Ok(try!(self.parse_stmt_()).map(P))
3589     }
3590
3591     fn parse_stmt_(&mut self) -> PResult<Option<Stmt>> {
3592         maybe_whole!(Some deref self, NtStmt);
3593
3594         let attrs = try!(self.parse_outer_attributes());
3595         let lo = self.span.lo;
3596
3597         Ok(Some(if self.check_keyword(keywords::Let) {
3598             try!(self.expect_keyword(keywords::Let));
3599             let decl = try!(self.parse_let(attrs.into_thin_attrs()));
3600             let hi = decl.span.hi;
3601             let stmt = StmtDecl(decl, ast::DUMMY_NODE_ID);
3602             spanned(lo, hi, stmt)
3603         } else if self.token.is_ident()
3604             && !self.token.is_any_keyword()
3605             && self.look_ahead(1, |t| *t == token::Not) {
3606             // it's a macro invocation:
3607
3608             // Potential trouble: if we allow macros with paths instead of
3609             // idents, we'd need to look ahead past the whole path here...
3610             let pth = try!(self.parse_path(NoTypesAllowed));
3611             try!(self.bump());
3612
3613             let id = match self.token {
3614                 token::OpenDelim(_) => token::special_idents::invalid, // no special identifier
3615                 _ => try!(self.parse_ident()),
3616             };
3617
3618             // check that we're pointing at delimiters (need to check
3619             // again after the `if`, because of `parse_ident`
3620             // consuming more tokens).
3621             let delim = match self.token {
3622                 token::OpenDelim(delim) => delim,
3623                 _ => {
3624                     // we only expect an ident if we didn't parse one
3625                     // above.
3626                     let ident_str = if id.name == token::special_idents::invalid.name {
3627                         "identifier, "
3628                     } else {
3629                         ""
3630                     };
3631                     let tok_str = self.this_token_to_string();
3632                     return Err(self.fatal(&format!("expected {}`(` or `{{`, found `{}`",
3633                                        ident_str,
3634                                        tok_str)))
3635                 },
3636             };
3637
3638             let tts = try!(self.parse_unspanned_seq(
3639                 &token::OpenDelim(delim),
3640                 &token::CloseDelim(delim),
3641                 seq_sep_none(),
3642                 |p| p.parse_token_tree()
3643             ));
3644             let hi = self.last_span.hi;
3645
3646             let style = if delim == token::Brace {
3647                 MacStmtWithBraces
3648             } else {
3649                 MacStmtWithoutBraces
3650             };
3651
3652             if id.name == token::special_idents::invalid.name {
3653                 let stmt = StmtMac(P(spanned(lo,
3654                                              hi,
3655                                              Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT })),
3656                                    style,
3657                                    attrs.into_thin_attrs());
3658                 spanned(lo, hi, stmt)
3659             } else {
3660                 // if it has a special ident, it's definitely an item
3661                 //
3662                 // Require a semicolon or braces.
3663                 if style != MacStmtWithBraces {
3664                     if !try!(self.eat(&token::Semi) ){
3665                         let last_span = self.last_span;
3666                         self.span_err(last_span,
3667                                       "macros that expand to items must \
3668                                        either be surrounded with braces or \
3669                                        followed by a semicolon");
3670                     }
3671                 }
3672                 spanned(lo, hi, StmtDecl(
3673                     P(spanned(lo, hi, DeclItem(
3674                         self.mk_item(
3675                             lo, hi, id /*id is good here*/,
3676                             ItemMac(spanned(lo, hi,
3677                                             Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT })),
3678                             Inherited, attrs)))),
3679                     ast::DUMMY_NODE_ID))
3680             }
3681         } else {
3682             // FIXME: Bad copy of attrs
3683             match try!(self.parse_item_(attrs.clone(), false, true)) {
3684                 Some(i) => {
3685                     let hi = i.span.hi;
3686                     let decl = P(spanned(lo, hi, DeclItem(i)));
3687                     spanned(lo, hi, StmtDecl(decl, ast::DUMMY_NODE_ID))
3688                 }
3689                 None => {
3690                     let unused_attrs = |attrs: &[_], s: &mut Self| {
3691                         if attrs.len() > 0 {
3692                             s.span_err(s.span,
3693                                 "expected statement after outer attribute");
3694                         }
3695                     };
3696
3697                     // Do not attempt to parse an expression if we're done here.
3698                     if self.token == token::Semi {
3699                         unused_attrs(&attrs, self);
3700                         try!(self.bump());
3701                         return Ok(None);
3702                     }
3703
3704                     if self.token == token::CloseDelim(token::Brace) {
3705                         unused_attrs(&attrs, self);
3706                         return Ok(None);
3707                     }
3708
3709                     // Remainder are line-expr stmts.
3710                     let e = try!(self.parse_expr_res(
3711                         Restrictions::RESTRICTION_STMT_EXPR, Some(attrs.into_thin_attrs())));
3712                     let hi = e.span.hi;
3713                     let stmt = StmtExpr(e, ast::DUMMY_NODE_ID);
3714                     spanned(lo, hi, stmt)
3715                 }
3716             }
3717         }))
3718     }
3719
3720     /// Is this expression a successfully-parsed statement?
3721     fn expr_is_complete(&mut self, e: &Expr) -> bool {
3722         self.restrictions.contains(Restrictions::RESTRICTION_STMT_EXPR) &&
3723             !classify::expr_requires_semi_to_be_stmt(e)
3724     }
3725
3726     /// Parse a block. No inner attrs are allowed.
3727     pub fn parse_block(&mut self) -> PResult<P<Block>> {
3728         maybe_whole!(no_clone self, NtBlock);
3729
3730         let lo = self.span.lo;
3731
3732         if !try!(self.eat(&token::OpenDelim(token::Brace)) ){
3733             let sp = self.span;
3734             let tok = self.this_token_to_string();
3735             return Err(self.span_fatal_help(sp,
3736                                  &format!("expected `{{`, found `{}`", tok),
3737                                  "place this code inside a block"));
3738         }
3739
3740         self.parse_block_tail(lo, DefaultBlock)
3741     }
3742
3743     /// Parse a block. Inner attrs are allowed.
3744     fn parse_inner_attrs_and_block(&mut self) -> PResult<(Vec<Attribute>, P<Block>)> {
3745         maybe_whole!(pair_empty self, NtBlock);
3746
3747         let lo = self.span.lo;
3748         try!(self.expect(&token::OpenDelim(token::Brace)));
3749         Ok((try!(self.parse_inner_attributes()),
3750          try!(self.parse_block_tail(lo, DefaultBlock))))
3751     }
3752
3753     /// Parse the rest of a block expression or function body
3754     /// Precondition: already parsed the '{'.
3755     fn parse_block_tail(&mut self, lo: BytePos, s: BlockCheckMode) -> PResult<P<Block>> {
3756         let mut stmts = vec![];
3757         let mut expr = None;
3758
3759         while !try!(self.eat(&token::CloseDelim(token::Brace))) {
3760             let Spanned {node, span} = if let Some(s) = try!(self.parse_stmt_()) {
3761                 s
3762             } else {
3763                 // Found only `;` or `}`.
3764                 continue;
3765             };
3766             match node {
3767                 StmtExpr(e, _) => {
3768                     try!(self.handle_expression_like_statement(e, span, &mut stmts, &mut expr));
3769                 }
3770                 StmtMac(mac, MacStmtWithoutBraces, attrs) => {
3771                     // statement macro without braces; might be an
3772                     // expr depending on whether a semicolon follows
3773                     match self.token {
3774                         token::Semi => {
3775                             stmts.push(P(Spanned {
3776                                 node: StmtMac(mac, MacStmtWithSemicolon, attrs),
3777                                 span: mk_sp(span.lo, self.span.hi),
3778                             }));
3779                             try!(self.bump());
3780                         }
3781                         _ => {
3782                             let e = self.mk_mac_expr(span.lo, span.hi,
3783                                                      mac.and_then(|m| m.node),
3784                                                      None);
3785                             let e = try!(self.parse_dot_or_call_expr_with(e, attrs));
3786                             let e = try!(self.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(e)));
3787                             try!(self.handle_expression_like_statement(
3788                                 e,
3789                                 span,
3790                                 &mut stmts,
3791                                 &mut expr));
3792                         }
3793                     }
3794                 }
3795                 StmtMac(m, style, attrs) => {
3796                     // statement macro; might be an expr
3797                     match self.token {
3798                         token::Semi => {
3799                             stmts.push(P(Spanned {
3800                                 node: StmtMac(m, MacStmtWithSemicolon, attrs),
3801                                 span: mk_sp(span.lo, self.span.hi),
3802                             }));
3803                             try!(self.bump());
3804                         }
3805                         token::CloseDelim(token::Brace) => {
3806                             // if a block ends in `m!(arg)` without
3807                             // a `;`, it must be an expr
3808                             expr = Some(self.mk_mac_expr(span.lo, span.hi,
3809                                                          m.and_then(|x| x.node),
3810                                                          attrs));
3811                         }
3812                         _ => {
3813                             stmts.push(P(Spanned {
3814                                 node: StmtMac(m, style, attrs),
3815                                 span: span
3816                             }));
3817                         }
3818                     }
3819                 }
3820                 _ => { // all other kinds of statements:
3821                     let mut hi = span.hi;
3822                     if classify::stmt_ends_with_semi(&node) {
3823                         try!(self.commit_stmt_expecting(token::Semi));
3824                         hi = self.last_span.hi;
3825                     }
3826
3827                     stmts.push(P(Spanned {
3828                         node: node,
3829                         span: mk_sp(span.lo, hi)
3830                     }));
3831                 }
3832             }
3833         }
3834
3835         Ok(P(ast::Block {
3836             stmts: stmts,
3837             expr: expr,
3838             id: ast::DUMMY_NODE_ID,
3839             rules: s,
3840             span: mk_sp(lo, self.last_span.hi),
3841         }))
3842     }
3843
3844     fn handle_expression_like_statement(
3845             &mut self,
3846             e: P<Expr>,
3847             span: Span,
3848             stmts: &mut Vec<P<Stmt>>,
3849             last_block_expr: &mut Option<P<Expr>>) -> PResult<()> {
3850         // expression without semicolon
3851         if classify::expr_requires_semi_to_be_stmt(&*e) {
3852             // Just check for errors and recover; do not eat semicolon yet.
3853             try!(self.commit_stmt(&[],
3854                              &[token::Semi, token::CloseDelim(token::Brace)]));
3855         }
3856
3857         match self.token {
3858             token::Semi => {
3859                 try!(self.bump());
3860                 let span_with_semi = Span {
3861                     lo: span.lo,
3862                     hi: self.last_span.hi,
3863                     expn_id: span.expn_id,
3864                 };
3865                 stmts.push(P(Spanned {
3866                     node: StmtSemi(e, ast::DUMMY_NODE_ID),
3867                     span: span_with_semi,
3868                 }));
3869             }
3870             token::CloseDelim(token::Brace) => *last_block_expr = Some(e),
3871             _ => {
3872                 stmts.push(P(Spanned {
3873                     node: StmtExpr(e, ast::DUMMY_NODE_ID),
3874                     span: span
3875                 }));
3876             }
3877         }
3878         Ok(())
3879     }
3880
3881     // Parses a sequence of bounds if a `:` is found,
3882     // otherwise returns empty list.
3883     fn parse_colon_then_ty_param_bounds(&mut self,
3884                                         mode: BoundParsingMode)
3885                                         -> PResult<OwnedSlice<TyParamBound>>
3886     {
3887         if !try!(self.eat(&token::Colon) ){
3888             Ok(OwnedSlice::empty())
3889         } else {
3890             self.parse_ty_param_bounds(mode)
3891         }
3892     }
3893
3894     // matches bounds    = ( boundseq )?
3895     // where   boundseq  = ( polybound + boundseq ) | polybound
3896     // and     polybound = ( 'for' '<' 'region '>' )? bound
3897     // and     bound     = 'region | trait_ref
3898     fn parse_ty_param_bounds(&mut self,
3899                              mode: BoundParsingMode)
3900                              -> PResult<OwnedSlice<TyParamBound>>
3901     {
3902         let mut result = vec!();
3903         loop {
3904             let question_span = self.span;
3905             let ate_question = try!(self.eat(&token::Question));
3906             match self.token {
3907                 token::Lifetime(lifetime) => {
3908                     if ate_question {
3909                         self.span_err(question_span,
3910                                       "`?` may only modify trait bounds, not lifetime bounds");
3911                     }
3912                     result.push(RegionTyParamBound(ast::Lifetime {
3913                         id: ast::DUMMY_NODE_ID,
3914                         span: self.span,
3915                         name: lifetime.name
3916                     }));
3917                     try!(self.bump());
3918                 }
3919                 token::ModSep | token::Ident(..) => {
3920                     let poly_trait_ref = try!(self.parse_poly_trait_ref());
3921                     let modifier = if ate_question {
3922                         if mode == BoundParsingMode::Modified {
3923                             TraitBoundModifier::Maybe
3924                         } else {
3925                             self.span_err(question_span,
3926                                           "unexpected `?`");
3927                             TraitBoundModifier::None
3928                         }
3929                     } else {
3930                         TraitBoundModifier::None
3931                     };
3932                     result.push(TraitTyParamBound(poly_trait_ref, modifier))
3933                 }
3934                 _ => break,
3935             }
3936
3937             if !try!(self.eat(&token::BinOp(token::Plus)) ){
3938                 break;
3939             }
3940         }
3941
3942         return Ok(OwnedSlice::from_vec(result));
3943     }
3944
3945     /// Matches typaram = IDENT (`?` unbound)? optbounds ( EQ ty )?
3946     fn parse_ty_param(&mut self) -> PResult<TyParam> {
3947         let span = self.span;
3948         let ident = try!(self.parse_ident());
3949
3950         let bounds = try!(self.parse_colon_then_ty_param_bounds(BoundParsingMode::Modified));
3951
3952         let default = if self.check(&token::Eq) {
3953             try!(self.bump());
3954             Some(try!(self.parse_ty_sum()))
3955         } else {
3956             None
3957         };
3958
3959         Ok(TyParam {
3960             ident: ident,
3961             id: ast::DUMMY_NODE_ID,
3962             bounds: bounds,
3963             default: default,
3964             span: span,
3965         })
3966     }
3967
3968     /// Parse a set of optional generic type parameter declarations. Where
3969     /// clauses are not parsed here, and must be added later via
3970     /// `parse_where_clause()`.
3971     ///
3972     /// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
3973     ///                  | ( < lifetimes , typaramseq ( , )? > )
3974     /// where   typaramseq = ( typaram ) | ( typaram , typaramseq )
3975     pub fn parse_generics(&mut self) -> PResult<ast::Generics> {
3976         maybe_whole!(self, NtGenerics);
3977
3978         if try!(self.eat(&token::Lt) ){
3979             let lifetime_defs = try!(self.parse_lifetime_defs());
3980             let mut seen_default = false;
3981             let ty_params = try!(self.parse_seq_to_gt(Some(token::Comma), |p| {
3982                 try!(p.forbid_lifetime());
3983                 let ty_param = try!(p.parse_ty_param());
3984                 if ty_param.default.is_some() {
3985                     seen_default = true;
3986                 } else if seen_default {
3987                     let last_span = p.last_span;
3988                     p.span_err(last_span,
3989                                "type parameters with a default must be trailing");
3990                 }
3991                 Ok(ty_param)
3992             }));
3993             Ok(ast::Generics {
3994                 lifetimes: lifetime_defs,
3995                 ty_params: ty_params,
3996                 where_clause: WhereClause {
3997                     id: ast::DUMMY_NODE_ID,
3998                     predicates: Vec::new(),
3999                 }
4000             })
4001         } else {
4002             Ok(ast::Generics::default())
4003         }
4004     }
4005
4006     fn parse_generic_values_after_lt(&mut self) -> PResult<(Vec<ast::Lifetime>,
4007                                                             Vec<P<Ty>>,
4008                                                             Vec<P<TypeBinding>>)> {
4009         let span_lo = self.span.lo;
4010         let lifetimes = try!(self.parse_lifetimes(token::Comma));
4011
4012         let missing_comma = !lifetimes.is_empty() &&
4013                             !self.token.is_like_gt() &&
4014                             self.last_token
4015                                 .as_ref().map_or(true,
4016                                                  |x| &**x != &token::Comma);
4017
4018         if missing_comma {
4019
4020             let msg = format!("expected `,` or `>` after lifetime \
4021                               name, found `{}`",
4022                               self.this_token_to_string());
4023             self.span_err(self.span, &msg);
4024
4025             let span_hi = self.span.hi;
4026             let span_hi = if self.parse_ty().is_ok() {
4027                 self.span.hi
4028             } else {
4029                 span_hi
4030             };
4031
4032             let msg = format!("did you mean a single argument type &'a Type, \
4033                               or did you mean the comma-separated arguments \
4034                               'a, Type?");
4035             self.span_note(mk_sp(span_lo, span_hi), &msg);
4036
4037             self.abort_if_errors()
4038         }
4039
4040         // First parse types.
4041         let (types, returned) = try!(self.parse_seq_to_gt_or_return(
4042             Some(token::Comma),
4043             |p| {
4044                 try!(p.forbid_lifetime());
4045                 if p.look_ahead(1, |t| t == &token::Eq) {
4046                     Ok(None)
4047                 } else {
4048                     Ok(Some(try!(p.parse_ty_sum())))
4049                 }
4050             }
4051         ));
4052
4053         // If we found the `>`, don't continue.
4054         if !returned {
4055             return Ok((lifetimes, types.into_vec(), Vec::new()));
4056         }
4057
4058         // Then parse type bindings.
4059         let bindings = try!(self.parse_seq_to_gt(
4060             Some(token::Comma),
4061             |p| {
4062                 try!(p.forbid_lifetime());
4063                 let lo = p.span.lo;
4064                 let ident = try!(p.parse_ident());
4065                 let found_eq = try!(p.eat(&token::Eq));
4066                 if !found_eq {
4067                     let span = p.span;
4068                     p.span_warn(span, "whoops, no =?");
4069                 }
4070                 let ty = try!(p.parse_ty());
4071                 let hi = ty.span.hi;
4072                 let span = mk_sp(lo, hi);
4073                 return Ok(P(TypeBinding{id: ast::DUMMY_NODE_ID,
4074                     ident: ident,
4075                     ty: ty,
4076                     span: span,
4077                 }));
4078             }
4079         ));
4080         Ok((lifetimes, types.into_vec(), bindings.into_vec()))
4081     }
4082
4083     fn forbid_lifetime(&mut self) -> PResult<()> {
4084         if self.token.is_lifetime() {
4085             let span = self.span;
4086             return Err(self.span_fatal(span, "lifetime parameters must be declared \
4087                                         prior to type parameters"))
4088         }
4089         Ok(())
4090     }
4091
4092     /// Parses an optional `where` clause and places it in `generics`.
4093     ///
4094     /// ```ignore
4095     /// where T : Trait<U, V> + 'b, 'a : 'b
4096     /// ```
4097     pub fn parse_where_clause(&mut self) -> PResult<ast::WhereClause> {
4098         maybe_whole!(self, NtWhereClause);
4099
4100         let mut where_clause = WhereClause {
4101             id: ast::DUMMY_NODE_ID,
4102             predicates: Vec::new(),
4103         };
4104
4105         if !try!(self.eat_keyword(keywords::Where)) {
4106             return Ok(where_clause);
4107         }
4108
4109         let mut parsed_something = false;
4110         loop {
4111             let lo = self.span.lo;
4112             match self.token {
4113                 token::OpenDelim(token::Brace) => {
4114                     break
4115                 }
4116
4117                 token::Lifetime(..) => {
4118                     let bounded_lifetime =
4119                         try!(self.parse_lifetime());
4120
4121                     try!(self.eat(&token::Colon));
4122
4123                     let bounds =
4124                         try!(self.parse_lifetimes(token::BinOp(token::Plus)));
4125
4126                     let hi = self.last_span.hi;
4127                     let span = mk_sp(lo, hi);
4128
4129                     where_clause.predicates.push(ast::WherePredicate::RegionPredicate(
4130                         ast::WhereRegionPredicate {
4131                             span: span,
4132                             lifetime: bounded_lifetime,
4133                             bounds: bounds
4134                         }
4135                     ));
4136
4137                     parsed_something = true;
4138                 }
4139
4140                 _ => {
4141                     let bound_lifetimes = if try!(self.eat_keyword(keywords::For) ){
4142                         // Higher ranked constraint.
4143                         try!(self.expect(&token::Lt));
4144                         let lifetime_defs = try!(self.parse_lifetime_defs());
4145                         try!(self.expect_gt());
4146                         lifetime_defs
4147                     } else {
4148                         vec![]
4149                     };
4150
4151                     let bounded_ty = try!(self.parse_ty());
4152
4153                     if try!(self.eat(&token::Colon) ){
4154                         let bounds = try!(self.parse_ty_param_bounds(BoundParsingMode::Bare));
4155                         let hi = self.last_span.hi;
4156                         let span = mk_sp(lo, hi);
4157
4158                         if bounds.is_empty() {
4159                             self.span_err(span,
4160                                           "each predicate in a `where` clause must have \
4161                                            at least one bound in it");
4162                         }
4163
4164                         where_clause.predicates.push(ast::WherePredicate::BoundPredicate(
4165                                 ast::WhereBoundPredicate {
4166                                     span: span,
4167                                     bound_lifetimes: bound_lifetimes,
4168                                     bounded_ty: bounded_ty,
4169                                     bounds: bounds,
4170                         }));
4171
4172                         parsed_something = true;
4173                     } else if try!(self.eat(&token::Eq) ){
4174                         // let ty = try!(self.parse_ty());
4175                         let hi = self.last_span.hi;
4176                         let span = mk_sp(lo, hi);
4177                         // where_clause.predicates.push(
4178                         //     ast::WherePredicate::EqPredicate(ast::WhereEqPredicate {
4179                         //         id: ast::DUMMY_NODE_ID,
4180                         //         span: span,
4181                         //         path: panic!("NYI"), //bounded_ty,
4182                         //         ty: ty,
4183                         // }));
4184                         // parsed_something = true;
4185                         // // FIXME(#18433)
4186                         self.span_err(span,
4187                                      "equality constraints are not yet supported \
4188                                      in where clauses (#20041)");
4189                     } else {
4190                         let last_span = self.last_span;
4191                         self.span_err(last_span,
4192                               "unexpected token in `where` clause");
4193                     }
4194                 }
4195             };
4196
4197             if !try!(self.eat(&token::Comma) ){
4198                 break
4199             }
4200         }
4201
4202         if !parsed_something {
4203             let last_span = self.last_span;
4204             self.span_err(last_span,
4205                           "a `where` clause must have at least one predicate \
4206                            in it");
4207         }
4208
4209         Ok(where_clause)
4210     }
4211
4212     fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool)
4213                      -> PResult<(Vec<Arg> , bool)> {
4214         let sp = self.span;
4215         let mut args: Vec<Option<Arg>> =
4216             try!(self.parse_unspanned_seq(
4217                 &token::OpenDelim(token::Paren),
4218                 &token::CloseDelim(token::Paren),
4219                 seq_sep_trailing_allowed(token::Comma),
4220                 |p| {
4221                     if p.token == token::DotDotDot {
4222                         try!(p.bump());
4223                         if allow_variadic {
4224                             if p.token != token::CloseDelim(token::Paren) {
4225                                 let span = p.span;
4226                                 return Err(p.span_fatal(span,
4227                                     "`...` must be last in argument list for variadic function"))
4228                             }
4229                         } else {
4230                             let span = p.span;
4231                             return Err(p.span_fatal(span,
4232                                          "only foreign functions are allowed to be variadic"))
4233                         }
4234                         Ok(None)
4235                     } else {
4236                         Ok(Some(try!(p.parse_arg_general(named_args))))
4237                     }
4238                 }
4239             ));
4240
4241         let variadic = match args.pop() {
4242             Some(None) => true,
4243             Some(x) => {
4244                 // Need to put back that last arg
4245                 args.push(x);
4246                 false
4247             }
4248             None => false
4249         };
4250
4251         if variadic && args.is_empty() {
4252             self.span_err(sp,
4253                           "variadic function must be declared with at least one named argument");
4254         }
4255
4256         let args = args.into_iter().map(|x| x.unwrap()).collect();
4257
4258         Ok((args, variadic))
4259     }
4260
4261     /// Parse the argument list and result type of a function declaration
4262     pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> PResult<P<FnDecl>> {
4263
4264         let (args, variadic) = try!(self.parse_fn_args(true, allow_variadic));
4265         let ret_ty = try!(self.parse_ret_ty());
4266
4267         Ok(P(FnDecl {
4268             inputs: args,
4269             output: ret_ty,
4270             variadic: variadic
4271         }))
4272     }
4273
4274     fn is_self_ident(&mut self) -> bool {
4275         match self.token {
4276           token::Ident(id, token::Plain) => id.name == special_idents::self_.name,
4277           _ => false
4278         }
4279     }
4280
4281     fn expect_self_ident(&mut self) -> PResult<ast::Ident> {
4282         match self.token {
4283             token::Ident(id, token::Plain) if id.name == special_idents::self_.name => {
4284                 try!(self.bump());
4285                 Ok(id)
4286             },
4287             _ => {
4288                 let token_str = self.this_token_to_string();
4289                 return Err(self.fatal(&format!("expected `self`, found `{}`",
4290                                    token_str)))
4291             }
4292         }
4293     }
4294
4295     fn is_self_type_ident(&mut self) -> bool {
4296         match self.token {
4297           token::Ident(id, token::Plain) => id.name == special_idents::type_self.name,
4298           _ => false
4299         }
4300     }
4301
4302     fn expect_self_type_ident(&mut self) -> PResult<ast::Ident> {
4303         match self.token {
4304             token::Ident(id, token::Plain) if id.name == special_idents::type_self.name => {
4305                 try!(self.bump());
4306                 Ok(id)
4307             },
4308             _ => {
4309                 let token_str = self.this_token_to_string();
4310                 Err(self.fatal(&format!("expected `Self`, found `{}`",
4311                                    token_str)))
4312             }
4313         }
4314     }
4315
4316     /// Parse the argument list and result type of a function
4317     /// that may have a self type.
4318     fn parse_fn_decl_with_self<F>(&mut self,
4319                                   parse_arg_fn: F) -> PResult<(ExplicitSelf, P<FnDecl>)> where
4320         F: FnMut(&mut Parser) -> PResult<Arg>,
4321     {
4322         fn maybe_parse_borrowed_explicit_self(this: &mut Parser)
4323                                               -> PResult<ast::ExplicitSelf_> {
4324             // The following things are possible to see here:
4325             //
4326             //     fn(&mut self)
4327             //     fn(&mut self)
4328             //     fn(&'lt self)
4329             //     fn(&'lt mut self)
4330             //
4331             // We already know that the current token is `&`.
4332
4333             if this.look_ahead(1, |t| t.is_keyword(keywords::SelfValue)) {
4334                 try!(this.bump());
4335                 Ok(SelfRegion(None, MutImmutable, try!(this.expect_self_ident())))
4336             } else if this.look_ahead(1, |t| t.is_mutability()) &&
4337                       this.look_ahead(2, |t| t.is_keyword(keywords::SelfValue)) {
4338                 try!(this.bump());
4339                 let mutability = try!(this.parse_mutability());
4340                 Ok(SelfRegion(None, mutability, try!(this.expect_self_ident())))
4341             } else if this.look_ahead(1, |t| t.is_lifetime()) &&
4342                       this.look_ahead(2, |t| t.is_keyword(keywords::SelfValue)) {
4343                 try!(this.bump());
4344                 let lifetime = try!(this.parse_lifetime());
4345                 Ok(SelfRegion(Some(lifetime), MutImmutable, try!(this.expect_self_ident())))
4346             } else if this.look_ahead(1, |t| t.is_lifetime()) &&
4347                       this.look_ahead(2, |t| t.is_mutability()) &&
4348                       this.look_ahead(3, |t| t.is_keyword(keywords::SelfValue)) {
4349                 try!(this.bump());
4350                 let lifetime = try!(this.parse_lifetime());
4351                 let mutability = try!(this.parse_mutability());
4352                 Ok(SelfRegion(Some(lifetime), mutability, try!(this.expect_self_ident())))
4353             } else {
4354                 Ok(SelfStatic)
4355             }
4356         }
4357
4358         try!(self.expect(&token::OpenDelim(token::Paren)));
4359
4360         // A bit of complexity and lookahead is needed here in order to be
4361         // backwards compatible.
4362         let lo = self.span.lo;
4363         let mut self_ident_lo = self.span.lo;
4364         let mut self_ident_hi = self.span.hi;
4365
4366         let mut mutbl_self = MutImmutable;
4367         let explicit_self = match self.token {
4368             token::BinOp(token::And) => {
4369                 let eself = try!(maybe_parse_borrowed_explicit_self(self));
4370                 self_ident_lo = self.last_span.lo;
4371                 self_ident_hi = self.last_span.hi;
4372                 eself
4373             }
4374             token::BinOp(token::Star) => {
4375                 // Possibly "*self" or "*mut self" -- not supported. Try to avoid
4376                 // emitting cryptic "unexpected token" errors.
4377                 try!(self.bump());
4378                 let _mutability = if self.token.is_mutability() {
4379                     try!(self.parse_mutability())
4380                 } else {
4381                     MutImmutable
4382                 };
4383                 if self.is_self_ident() {
4384                     let span = self.span;
4385                     self.span_err(span, "cannot pass self by raw pointer");
4386                     try!(self.bump());
4387                 }
4388                 // error case, making bogus self ident:
4389                 SelfValue(special_idents::self_)
4390             }
4391             token::Ident(..) => {
4392                 if self.is_self_ident() {
4393                     let self_ident = try!(self.expect_self_ident());
4394
4395                     // Determine whether this is the fully explicit form, `self:
4396                     // TYPE`.
4397                     if try!(self.eat(&token::Colon) ){
4398                         SelfExplicit(try!(self.parse_ty_sum()), self_ident)
4399                     } else {
4400                         SelfValue(self_ident)
4401                     }
4402                 } else if self.token.is_mutability() &&
4403                         self.look_ahead(1, |t| t.is_keyword(keywords::SelfValue)) {
4404                     mutbl_self = try!(self.parse_mutability());
4405                     let self_ident = try!(self.expect_self_ident());
4406
4407                     // Determine whether this is the fully explicit form,
4408                     // `self: TYPE`.
4409                     if try!(self.eat(&token::Colon) ){
4410                         SelfExplicit(try!(self.parse_ty_sum()), self_ident)
4411                     } else {
4412                         SelfValue(self_ident)
4413                     }
4414                 } else {
4415                     SelfStatic
4416                 }
4417             }
4418             _ => SelfStatic,
4419         };
4420
4421         let explicit_self_sp = mk_sp(self_ident_lo, self_ident_hi);
4422
4423         // shared fall-through for the three cases below. borrowing prevents simply
4424         // writing this as a closure
4425         macro_rules! parse_remaining_arguments {
4426             ($self_id:ident) =>
4427             {
4428             // If we parsed a self type, expect a comma before the argument list.
4429             match self.token {
4430                 token::Comma => {
4431                     try!(self.bump());
4432                     let sep = seq_sep_trailing_allowed(token::Comma);
4433                     let mut fn_inputs = try!(self.parse_seq_to_before_end(
4434                         &token::CloseDelim(token::Paren),
4435                         sep,
4436                         parse_arg_fn
4437                     ));
4438                     fn_inputs.insert(0, Arg::new_self(explicit_self_sp, mutbl_self, $self_id));
4439                     fn_inputs
4440                 }
4441                 token::CloseDelim(token::Paren) => {
4442                     vec!(Arg::new_self(explicit_self_sp, mutbl_self, $self_id))
4443                 }
4444                 _ => {
4445                     let token_str = self.this_token_to_string();
4446                     return Err(self.fatal(&format!("expected `,` or `)`, found `{}`",
4447                                        token_str)))
4448                 }
4449             }
4450             }
4451         }
4452
4453         let fn_inputs = match explicit_self {
4454             SelfStatic =>  {
4455                 let sep = seq_sep_trailing_allowed(token::Comma);
4456                 try!(self.parse_seq_to_before_end(&token::CloseDelim(token::Paren),
4457                                                   sep, parse_arg_fn))
4458             }
4459             SelfValue(id) => parse_remaining_arguments!(id),
4460             SelfRegion(_,_,id) => parse_remaining_arguments!(id),
4461             SelfExplicit(_,id) => parse_remaining_arguments!(id),
4462         };
4463
4464
4465         try!(self.expect(&token::CloseDelim(token::Paren)));
4466
4467         let hi = self.span.hi;
4468
4469         let ret_ty = try!(self.parse_ret_ty());
4470
4471         let fn_decl = P(FnDecl {
4472             inputs: fn_inputs,
4473             output: ret_ty,
4474             variadic: false
4475         });
4476
4477         Ok((spanned(lo, hi, explicit_self), fn_decl))
4478     }
4479
4480     // parse the |arg, arg| header on a lambda
4481     fn parse_fn_block_decl(&mut self) -> PResult<P<FnDecl>> {
4482         let inputs_captures = {
4483             if try!(self.eat(&token::OrOr) ){
4484                 Vec::new()
4485             } else {
4486                 try!(self.expect(&token::BinOp(token::Or)));
4487                 try!(self.parse_obsolete_closure_kind());
4488                 let args = try!(self.parse_seq_to_before_end(
4489                     &token::BinOp(token::Or),
4490                     seq_sep_trailing_allowed(token::Comma),
4491                     |p| p.parse_fn_block_arg()
4492                 ));
4493                 try!(self.bump());
4494                 args
4495             }
4496         };
4497         let output = try!(self.parse_ret_ty());
4498
4499         Ok(P(FnDecl {
4500             inputs: inputs_captures,
4501             output: output,
4502             variadic: false
4503         }))
4504     }
4505
4506     /// Parse the name and optional generic types of a function header.
4507     fn parse_fn_header(&mut self) -> PResult<(Ident, ast::Generics)> {
4508         let id = try!(self.parse_ident());
4509         let generics = try!(self.parse_generics());
4510         Ok((id, generics))
4511     }
4512
4513     fn mk_item(&mut self, lo: BytePos, hi: BytePos, ident: Ident,
4514                node: Item_, vis: Visibility,
4515                attrs: Vec<Attribute>) -> P<Item> {
4516         P(Item {
4517             ident: ident,
4518             attrs: attrs,
4519             id: ast::DUMMY_NODE_ID,
4520             node: node,
4521             vis: vis,
4522             span: mk_sp(lo, hi)
4523         })
4524     }
4525
4526     /// Parse an item-position function declaration.
4527     fn parse_item_fn(&mut self,
4528                      unsafety: Unsafety,
4529                      constness: Constness,
4530                      abi: abi::Abi)
4531                      -> PResult<ItemInfo> {
4532         let (ident, mut generics) = try!(self.parse_fn_header());
4533         let decl = try!(self.parse_fn_decl(false));
4534         generics.where_clause = try!(self.parse_where_clause());
4535         let (inner_attrs, body) = try!(self.parse_inner_attrs_and_block());
4536         Ok((ident, ItemFn(decl, unsafety, constness, abi, generics, body), Some(inner_attrs)))
4537     }
4538
4539     /// true if we are looking at `const ID`, false for things like `const fn` etc
4540     pub fn is_const_item(&mut self) -> bool {
4541         self.token.is_keyword(keywords::Const) &&
4542             !self.look_ahead(1, |t| t.is_keyword(keywords::Fn)) &&
4543             !self.look_ahead(1, |t| t.is_keyword(keywords::Unsafe))
4544     }
4545
4546     /// parses all the "front matter" for a `fn` declaration, up to
4547     /// and including the `fn` keyword:
4548     ///
4549     /// - `const fn`
4550     /// - `unsafe fn`
4551     /// - `const unsafe fn`
4552     /// - `extern fn`
4553     /// - etc
4554     pub fn parse_fn_front_matter(&mut self) -> PResult<(ast::Constness, ast::Unsafety, abi::Abi)> {
4555         let is_const_fn = try!(self.eat_keyword(keywords::Const));
4556         let unsafety = try!(self.parse_unsafety());
4557         let (constness, unsafety, abi) = if is_const_fn {
4558             (Constness::Const, unsafety, abi::Rust)
4559         } else {
4560             let abi = if try!(self.eat_keyword(keywords::Extern)) {
4561                 try!(self.parse_opt_abi()).unwrap_or(abi::C)
4562             } else {
4563                 abi::Rust
4564             };
4565             (Constness::NotConst, unsafety, abi)
4566         };
4567         try!(self.expect_keyword(keywords::Fn));
4568         Ok((constness, unsafety, abi))
4569     }
4570
4571     /// Parse an impl item.
4572     pub fn parse_impl_item(&mut self) -> PResult<P<ImplItem>> {
4573         maybe_whole!(no_clone self, NtImplItem);
4574
4575         let mut attrs = try!(self.parse_outer_attributes());
4576         let lo = self.span.lo;
4577         let vis = try!(self.parse_visibility());
4578         let (name, node) = if try!(self.eat_keyword(keywords::Type)) {
4579             let name = try!(self.parse_ident());
4580             try!(self.expect(&token::Eq));
4581             let typ = try!(self.parse_ty_sum());
4582             try!(self.expect(&token::Semi));
4583             (name, ast::ImplItemKind::Type(typ))
4584         } else if self.is_const_item() {
4585             try!(self.expect_keyword(keywords::Const));
4586             let name = try!(self.parse_ident());
4587             try!(self.expect(&token::Colon));
4588             let typ = try!(self.parse_ty_sum());
4589             try!(self.expect(&token::Eq));
4590             let expr = try!(self.parse_expr());
4591             try!(self.commit_expr_expecting(&expr, token::Semi));
4592             (name, ast::ImplItemKind::Const(typ, expr))
4593         } else {
4594             let (name, inner_attrs, node) = try!(self.parse_impl_method(vis));
4595             attrs.extend(inner_attrs);
4596             (name, node)
4597         };
4598
4599         Ok(P(ImplItem {
4600             id: ast::DUMMY_NODE_ID,
4601             span: mk_sp(lo, self.last_span.hi),
4602             ident: name,
4603             vis: vis,
4604             attrs: attrs,
4605             node: node
4606         }))
4607     }
4608
4609     fn complain_if_pub_macro(&mut self, visa: Visibility, span: Span) {
4610         match visa {
4611             Public => {
4612                 self.span_err(span, "can't qualify macro invocation with `pub`");
4613                 self.fileline_help(span, "try adjusting the macro to put `pub` inside \
4614                                       the invocation");
4615             }
4616             Inherited => (),
4617         }
4618     }
4619
4620     /// Parse a method or a macro invocation in a trait impl.
4621     fn parse_impl_method(&mut self, vis: Visibility)
4622                          -> PResult<(Ident, Vec<ast::Attribute>, ast::ImplItemKind)> {
4623         // code copied from parse_macro_use_or_failure... abstraction!
4624         if !self.token.is_any_keyword()
4625             && self.look_ahead(1, |t| *t == token::Not)
4626             && (self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
4627                 || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
4628             // method macro.
4629
4630             let last_span = self.last_span;
4631             self.complain_if_pub_macro(vis, last_span);
4632
4633             let lo = self.span.lo;
4634             let pth = try!(self.parse_path(NoTypesAllowed));
4635             try!(self.expect(&token::Not));
4636
4637             // eat a matched-delimiter token tree:
4638             let delim = try!(self.expect_open_delim());
4639             let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
4640                                             seq_sep_none(),
4641                                             |p| p.parse_token_tree()));
4642             let m_ = Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT };
4643             let m: ast::Mac = codemap::Spanned { node: m_,
4644                                                 span: mk_sp(lo,
4645                                                             self.last_span.hi) };
4646             if delim != token::Brace {
4647                 try!(self.expect(&token::Semi))
4648             }
4649             Ok((token::special_idents::invalid, vec![], ast::ImplItemKind::Macro(m)))
4650         } else {
4651             let (constness, unsafety, abi) = try!(self.parse_fn_front_matter());
4652             let ident = try!(self.parse_ident());
4653             let mut generics = try!(self.parse_generics());
4654             let (explicit_self, decl) = try!(self.parse_fn_decl_with_self(|p| {
4655                     p.parse_arg()
4656                 }));
4657             generics.where_clause = try!(self.parse_where_clause());
4658             let (inner_attrs, body) = try!(self.parse_inner_attrs_and_block());
4659             Ok((ident, inner_attrs, ast::ImplItemKind::Method(ast::MethodSig {
4660                 generics: generics,
4661                 abi: abi,
4662                 explicit_self: explicit_self,
4663                 unsafety: unsafety,
4664                 constness: constness,
4665                 decl: decl
4666              }, body)))
4667         }
4668     }
4669
4670     /// Parse trait Foo { ... }
4671     fn parse_item_trait(&mut self, unsafety: Unsafety) -> PResult<ItemInfo> {
4672
4673         let ident = try!(self.parse_ident());
4674         let mut tps = try!(self.parse_generics());
4675
4676         // Parse supertrait bounds.
4677         let bounds = try!(self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare));
4678
4679         tps.where_clause = try!(self.parse_where_clause());
4680
4681         let meths = try!(self.parse_trait_items());
4682         Ok((ident, ItemTrait(unsafety, tps, bounds, meths), None))
4683     }
4684
4685     /// Parses items implementations variants
4686     ///    impl<T> Foo { ... }
4687     ///    impl<T> ToString for &'static T { ... }
4688     ///    impl Send for .. {}
4689     fn parse_item_impl(&mut self, unsafety: ast::Unsafety) -> PResult<ItemInfo> {
4690         let impl_span = self.span;
4691
4692         // First, parse type parameters if necessary.
4693         let mut generics = try!(self.parse_generics());
4694
4695         // Special case: if the next identifier that follows is '(', don't
4696         // allow this to be parsed as a trait.
4697         let could_be_trait = self.token != token::OpenDelim(token::Paren);
4698
4699         let neg_span = self.span;
4700         let polarity = if try!(self.eat(&token::Not) ){
4701             ast::ImplPolarity::Negative
4702         } else {
4703             ast::ImplPolarity::Positive
4704         };
4705
4706         // Parse the trait.
4707         let mut ty = try!(self.parse_ty_sum());
4708
4709         // Parse traits, if necessary.
4710         let opt_trait = if could_be_trait && try!(self.eat_keyword(keywords::For) ){
4711             // New-style trait. Reinterpret the type as a trait.
4712             match ty.node {
4713                 TyPath(None, ref path) => {
4714                     Some(TraitRef {
4715                         path: (*path).clone(),
4716                         ref_id: ty.id,
4717                     })
4718                 }
4719                 _ => {
4720                     self.span_err(ty.span, "not a trait");
4721                     None
4722                 }
4723             }
4724         } else {
4725             match polarity {
4726                 ast::ImplPolarity::Negative => {
4727                     // This is a negated type implementation
4728                     // `impl !MyType {}`, which is not allowed.
4729                     self.span_err(neg_span, "inherent implementation can't be negated");
4730                 },
4731                 _ => {}
4732             }
4733             None
4734         };
4735
4736         if opt_trait.is_some() && try!(self.eat(&token::DotDot) ){
4737             if generics.is_parameterized() {
4738                 self.span_err(impl_span, "default trait implementations are not \
4739                                           allowed to have generics");
4740             }
4741
4742             try!(self.expect(&token::OpenDelim(token::Brace)));
4743             try!(self.expect(&token::CloseDelim(token::Brace)));
4744             Ok((ast_util::impl_pretty_name(&opt_trait, None),
4745              ItemDefaultImpl(unsafety, opt_trait.unwrap()), None))
4746         } else {
4747             if opt_trait.is_some() {
4748                 ty = try!(self.parse_ty_sum());
4749             }
4750             generics.where_clause = try!(self.parse_where_clause());
4751
4752             try!(self.expect(&token::OpenDelim(token::Brace)));
4753             let attrs = try!(self.parse_inner_attributes());
4754
4755             let mut impl_items = vec![];
4756             while !try!(self.eat(&token::CloseDelim(token::Brace))) {
4757                 impl_items.push(try!(self.parse_impl_item()));
4758             }
4759
4760             Ok((ast_util::impl_pretty_name(&opt_trait, Some(&*ty)),
4761              ItemImpl(unsafety, polarity, generics, opt_trait, ty, impl_items),
4762              Some(attrs)))
4763         }
4764     }
4765
4766     /// Parse a::B<String,i32>
4767     fn parse_trait_ref(&mut self) -> PResult<TraitRef> {
4768         Ok(ast::TraitRef {
4769             path: try!(self.parse_path(LifetimeAndTypesWithoutColons)),
4770             ref_id: ast::DUMMY_NODE_ID,
4771         })
4772     }
4773
4774     fn parse_late_bound_lifetime_defs(&mut self) -> PResult<Vec<ast::LifetimeDef>> {
4775         if try!(self.eat_keyword(keywords::For) ){
4776             try!(self.expect(&token::Lt));
4777             let lifetime_defs = try!(self.parse_lifetime_defs());
4778             try!(self.expect_gt());
4779             Ok(lifetime_defs)
4780         } else {
4781             Ok(Vec::new())
4782         }
4783     }
4784
4785     /// Parse for<'l> a::B<String,i32>
4786     fn parse_poly_trait_ref(&mut self) -> PResult<PolyTraitRef> {
4787         let lo = self.span.lo;
4788         let lifetime_defs = try!(self.parse_late_bound_lifetime_defs());
4789
4790         Ok(ast::PolyTraitRef {
4791             bound_lifetimes: lifetime_defs,
4792             trait_ref: try!(self.parse_trait_ref()),
4793             span: mk_sp(lo, self.last_span.hi),
4794         })
4795     }
4796
4797     /// Parse struct Foo { ... }
4798     fn parse_item_struct(&mut self) -> PResult<ItemInfo> {
4799         let class_name = try!(self.parse_ident());
4800         let mut generics = try!(self.parse_generics());
4801
4802         // There is a special case worth noting here, as reported in issue #17904.
4803         // If we are parsing a tuple struct it is the case that the where clause
4804         // should follow the field list. Like so:
4805         //
4806         // struct Foo<T>(T) where T: Copy;
4807         //
4808         // If we are parsing a normal record-style struct it is the case
4809         // that the where clause comes before the body, and after the generics.
4810         // So if we look ahead and see a brace or a where-clause we begin
4811         // parsing a record style struct.
4812         //
4813         // Otherwise if we look ahead and see a paren we parse a tuple-style
4814         // struct.
4815
4816         let vdata = if self.token.is_keyword(keywords::Where) {
4817             generics.where_clause = try!(self.parse_where_clause());
4818             if try!(self.eat(&token::Semi)) {
4819                 // If we see a: `struct Foo<T> where T: Copy;` style decl.
4820                 VariantData::Unit(ast::DUMMY_NODE_ID)
4821             } else {
4822                 // If we see: `struct Foo<T> where T: Copy { ... }`
4823                 VariantData::Struct(try!(self.parse_record_struct_body(ParsePub::Yes)),
4824                                     ast::DUMMY_NODE_ID)
4825             }
4826         // No `where` so: `struct Foo<T>;`
4827         } else if try!(self.eat(&token::Semi) ){
4828             VariantData::Unit(ast::DUMMY_NODE_ID)
4829         // Record-style struct definition
4830         } else if self.token == token::OpenDelim(token::Brace) {
4831             VariantData::Struct(try!(self.parse_record_struct_body(ParsePub::Yes)),
4832                                 ast::DUMMY_NODE_ID)
4833         // Tuple-style struct definition with optional where-clause.
4834         } else if self.token == token::OpenDelim(token::Paren) {
4835             let body = VariantData::Tuple(try!(self.parse_tuple_struct_body(ParsePub::Yes)),
4836                                           ast::DUMMY_NODE_ID);
4837             generics.where_clause = try!(self.parse_where_clause());
4838             try!(self.expect(&token::Semi));
4839             body
4840         } else {
4841             let token_str = self.this_token_to_string();
4842             return Err(self.fatal(&format!("expected `where`, `{{`, `(`, or `;` after struct \
4843                                             name, found `{}`", token_str)))
4844         };
4845
4846         Ok((class_name, ItemStruct(vdata, generics), None))
4847     }
4848
4849     pub fn parse_record_struct_body(&mut self, parse_pub: ParsePub) -> PResult<Vec<StructField>> {
4850         let mut fields = Vec::new();
4851         if try!(self.eat(&token::OpenDelim(token::Brace)) ){
4852             while self.token != token::CloseDelim(token::Brace) {
4853                 fields.push(try!(self.parse_struct_decl_field(parse_pub)));
4854             }
4855
4856             try!(self.bump());
4857         } else {
4858             let token_str = self.this_token_to_string();
4859             return Err(self.fatal(&format!("expected `where`, or `{{` after struct \
4860                                 name, found `{}`",
4861                                 token_str)));
4862         }
4863
4864         Ok(fields)
4865     }
4866
4867     pub fn parse_tuple_struct_body(&mut self, parse_pub: ParsePub) -> PResult<Vec<StructField>> {
4868         // This is the case where we find `struct Foo<T>(T) where T: Copy;`
4869         // Unit like structs are handled in parse_item_struct function
4870         let fields = try!(self.parse_unspanned_seq(
4871             &token::OpenDelim(token::Paren),
4872             &token::CloseDelim(token::Paren),
4873             seq_sep_trailing_allowed(token::Comma),
4874             |p| {
4875                 let attrs = try!(p.parse_outer_attributes());
4876                 let lo = p.span.lo;
4877                 let struct_field_ = ast::StructField_ {
4878                     kind: UnnamedField (
4879                         if parse_pub == ParsePub::Yes {
4880                             try!(p.parse_visibility())
4881                         } else {
4882                             Inherited
4883                         }
4884                     ),
4885                     id: ast::DUMMY_NODE_ID,
4886                     ty: try!(p.parse_ty_sum()),
4887                     attrs: attrs,
4888                 };
4889                 Ok(spanned(lo, p.span.hi, struct_field_))
4890             }));
4891
4892         Ok(fields)
4893     }
4894
4895     /// Parse a structure field declaration
4896     pub fn parse_single_struct_field(&mut self,
4897                                      vis: Visibility,
4898                                      attrs: Vec<Attribute> )
4899                                      -> PResult<StructField> {
4900         let a_var = try!(self.parse_name_and_ty(vis, attrs));
4901         match self.token {
4902             token::Comma => {
4903                 try!(self.bump());
4904             }
4905             token::CloseDelim(token::Brace) => {}
4906             _ => {
4907                 let span = self.span;
4908                 let token_str = self.this_token_to_string();
4909                 return Err(self.span_fatal_help(span,
4910                                      &format!("expected `,`, or `}}`, found `{}`",
4911                                              token_str),
4912                                      "struct fields should be separated by commas"))
4913             }
4914         }
4915         Ok(a_var)
4916     }
4917
4918     /// Parse an element of a struct definition
4919     fn parse_struct_decl_field(&mut self, parse_pub: ParsePub) -> PResult<StructField> {
4920
4921         let attrs = try!(self.parse_outer_attributes());
4922
4923         if try!(self.eat_keyword(keywords::Pub) ){
4924             if parse_pub == ParsePub::No {
4925                 let span = self.last_span;
4926                 self.span_err(span, "`pub` is not allowed here");
4927             }
4928             return self.parse_single_struct_field(Public, attrs);
4929         }
4930
4931         return self.parse_single_struct_field(Inherited, attrs);
4932     }
4933
4934     /// Parse visibility: PUB or nothing
4935     fn parse_visibility(&mut self) -> PResult<Visibility> {
4936         if try!(self.eat_keyword(keywords::Pub)) { Ok(Public) }
4937         else { Ok(Inherited) }
4938     }
4939
4940     /// Given a termination token, parse all of the items in a module
4941     fn parse_mod_items(&mut self, term: &token::Token, inner_lo: BytePos) -> PResult<Mod> {
4942         let mut items = vec![];
4943         while let Some(item) = try!(self.parse_item()) {
4944             items.push(item);
4945         }
4946
4947         if !try!(self.eat(term)) {
4948             let token_str = self.this_token_to_string();
4949             return Err(self.fatal(&format!("expected item, found `{}`", token_str)));
4950         }
4951
4952         let hi = if self.span == codemap::DUMMY_SP {
4953             inner_lo
4954         } else {
4955             self.last_span.hi
4956         };
4957
4958         Ok(ast::Mod {
4959             inner: mk_sp(inner_lo, hi),
4960             items: items
4961         })
4962     }
4963
4964     fn parse_item_const(&mut self, m: Option<Mutability>) -> PResult<ItemInfo> {
4965         let id = try!(self.parse_ident());
4966         try!(self.expect(&token::Colon));
4967         let ty = try!(self.parse_ty_sum());
4968         try!(self.expect(&token::Eq));
4969         let e = try!(self.parse_expr());
4970         try!(self.commit_expr_expecting(&*e, token::Semi));
4971         let item = match m {
4972             Some(m) => ItemStatic(ty, m, e),
4973             None => ItemConst(ty, e),
4974         };
4975         Ok((id, item, None))
4976     }
4977
4978     /// Parse a `mod <foo> { ... }` or `mod <foo>;` item
4979     fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> PResult<ItemInfo> {
4980         let id_span = self.span;
4981         let id = try!(self.parse_ident());
4982         if self.check(&token::Semi) {
4983             try!(self.bump());
4984             // This mod is in an external file. Let's go get it!
4985             let (m, attrs) = try!(self.eval_src_mod(id, outer_attrs, id_span));
4986             Ok((id, m, Some(attrs)))
4987         } else {
4988             self.push_mod_path(id, outer_attrs);
4989             try!(self.expect(&token::OpenDelim(token::Brace)));
4990             let mod_inner_lo = self.span.lo;
4991             let old_owns_directory = self.owns_directory;
4992             self.owns_directory = true;
4993             let attrs = try!(self.parse_inner_attributes());
4994             let m = try!(self.parse_mod_items(&token::CloseDelim(token::Brace), mod_inner_lo));
4995             self.owns_directory = old_owns_directory;
4996             self.pop_mod_path();
4997             Ok((id, ItemMod(m), Some(attrs)))
4998         }
4999     }
5000
5001     fn push_mod_path(&mut self, id: Ident, attrs: &[Attribute]) {
5002         let default_path = self.id_to_interned_str(id);
5003         let file_path = match ::attr::first_attr_value_str_by_name(attrs, "path") {
5004             Some(d) => d,
5005             None => default_path,
5006         };
5007         self.mod_path_stack.push(file_path)
5008     }
5009
5010     fn pop_mod_path(&mut self) {
5011         self.mod_path_stack.pop().unwrap();
5012     }
5013
5014     pub fn submod_path_from_attr(attrs: &[ast::Attribute], dir_path: &Path) -> Option<PathBuf> {
5015         ::attr::first_attr_value_str_by_name(attrs, "path").map(|d| dir_path.join(&*d))
5016     }
5017
5018     /// Returns either a path to a module, or .
5019     pub fn default_submod_path(id: ast::Ident, dir_path: &Path, codemap: &CodeMap) -> ModulePath
5020     {
5021         let mod_name = id.to_string();
5022         let default_path_str = format!("{}.rs", mod_name);
5023         let secondary_path_str = format!("{}/mod.rs", mod_name);
5024         let default_path = dir_path.join(&default_path_str);
5025         let secondary_path = dir_path.join(&secondary_path_str);
5026         let default_exists = codemap.file_exists(&default_path);
5027         let secondary_exists = codemap.file_exists(&secondary_path);
5028
5029         let result = match (default_exists, secondary_exists) {
5030             (true, false) => Ok(ModulePathSuccess { path: default_path, owns_directory: false }),
5031             (false, true) => Ok(ModulePathSuccess { path: secondary_path, owns_directory: true }),
5032             (false, false) => Err(ModulePathError {
5033                 err_msg: format!("file not found for module `{}`", mod_name),
5034                 help_msg: format!("name the file either {} or {} inside the directory {:?}",
5035                                   default_path_str,
5036                                   secondary_path_str,
5037                                   dir_path.display()),
5038             }),
5039             (true, true) => Err(ModulePathError {
5040                 err_msg: format!("file for module `{}` found at both {} and {}",
5041                                  mod_name,
5042                                  default_path_str,
5043                                  secondary_path_str),
5044                 help_msg: "delete or rename one of them to remove the ambiguity".to_owned(),
5045             }),
5046         };
5047
5048         ModulePath {
5049             name: mod_name,
5050             path_exists: default_exists || secondary_exists,
5051             result: result,
5052         }
5053     }
5054
5055     fn submod_path(&mut self,
5056                    id: ast::Ident,
5057                    outer_attrs: &[ast::Attribute],
5058                    id_sp: Span) -> PResult<ModulePathSuccess> {
5059         let mut prefix = PathBuf::from(&self.sess.codemap().span_to_filename(self.span));
5060         prefix.pop();
5061         let mut dir_path = prefix;
5062         for part in &self.mod_path_stack {
5063             dir_path.push(&**part);
5064         }
5065
5066         if let Some(p) = Parser::submod_path_from_attr(outer_attrs, &dir_path) {
5067             return Ok(ModulePathSuccess { path: p, owns_directory: true });
5068         }
5069
5070         let paths = Parser::default_submod_path(id, &dir_path, self.sess.codemap());
5071
5072         if !self.owns_directory {
5073             self.span_err(id_sp, "cannot declare a new module at this location");
5074             let this_module = match self.mod_path_stack.last() {
5075                 Some(name) => name.to_string(),
5076                 None => self.root_module_name.as_ref().unwrap().clone(),
5077             };
5078             self.span_note(id_sp,
5079                            &format!("maybe move this module `{0}` to its own directory \
5080                                      via `{0}/mod.rs`",
5081                                     this_module));
5082             if paths.path_exists {
5083                 self.span_note(id_sp,
5084                                &format!("... or maybe `use` the module `{}` instead \
5085                                          of possibly redeclaring it",
5086                                         paths.name));
5087             }
5088             self.abort_if_errors();
5089         }
5090
5091         match paths.result {
5092             Ok(succ) => Ok(succ),
5093             Err(err) => Err(self.span_fatal_help(id_sp, &err.err_msg, &err.help_msg)),
5094         }
5095     }
5096
5097     /// Read a module from a source file.
5098     fn eval_src_mod(&mut self,
5099                     id: ast::Ident,
5100                     outer_attrs: &[ast::Attribute],
5101                     id_sp: Span)
5102                     -> PResult<(ast::Item_, Vec<ast::Attribute> )> {
5103         let ModulePathSuccess { path, owns_directory } = try!(self.submod_path(id,
5104                                                                                outer_attrs,
5105                                                                                id_sp));
5106
5107         self.eval_src_mod_from_path(path,
5108                                     owns_directory,
5109                                     id.to_string(),
5110                                     id_sp)
5111     }
5112
5113     fn eval_src_mod_from_path(&mut self,
5114                               path: PathBuf,
5115                               owns_directory: bool,
5116                               name: String,
5117                               id_sp: Span) -> PResult<(ast::Item_, Vec<ast::Attribute> )> {
5118         let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut();
5119         match included_mod_stack.iter().position(|p| *p == path) {
5120             Some(i) => {
5121                 let mut err = String::from("circular modules: ");
5122                 let len = included_mod_stack.len();
5123                 for p in &included_mod_stack[i.. len] {
5124                     err.push_str(&p.to_string_lossy());
5125                     err.push_str(" -> ");
5126                 }
5127                 err.push_str(&path.to_string_lossy());
5128                 return Err(self.span_fatal(id_sp, &err[..]));
5129             }
5130             None => ()
5131         }
5132         included_mod_stack.push(path.clone());
5133         drop(included_mod_stack);
5134
5135         let mut p0 = new_sub_parser_from_file(self.sess,
5136                                               self.cfg.clone(),
5137                                               &path,
5138                                               owns_directory,
5139                                               Some(name),
5140                                               id_sp);
5141         let mod_inner_lo = p0.span.lo;
5142         let mod_attrs = try!(p0.parse_inner_attributes());
5143         let m0 = try!(p0.parse_mod_items(&token::Eof, mod_inner_lo));
5144         self.sess.included_mod_stack.borrow_mut().pop();
5145         Ok((ast::ItemMod(m0), mod_attrs))
5146     }
5147
5148     /// Parse a function declaration from a foreign module
5149     fn parse_item_foreign_fn(&mut self, vis: ast::Visibility, lo: BytePos,
5150                              attrs: Vec<Attribute>) -> PResult<P<ForeignItem>> {
5151         try!(self.expect_keyword(keywords::Fn));
5152
5153         let (ident, mut generics) = try!(self.parse_fn_header());
5154         let decl = try!(self.parse_fn_decl(true));
5155         generics.where_clause = try!(self.parse_where_clause());
5156         let hi = self.span.hi;
5157         try!(self.expect(&token::Semi));
5158         Ok(P(ast::ForeignItem {
5159             ident: ident,
5160             attrs: attrs,
5161             node: ForeignItemFn(decl, generics),
5162             id: ast::DUMMY_NODE_ID,
5163             span: mk_sp(lo, hi),
5164             vis: vis
5165         }))
5166     }
5167
5168     /// Parse a static item from a foreign module
5169     fn parse_item_foreign_static(&mut self, vis: ast::Visibility, lo: BytePos,
5170                                  attrs: Vec<Attribute>) -> PResult<P<ForeignItem>> {
5171         try!(self.expect_keyword(keywords::Static));
5172         let mutbl = try!(self.eat_keyword(keywords::Mut));
5173
5174         let ident = try!(self.parse_ident());
5175         try!(self.expect(&token::Colon));
5176         let ty = try!(self.parse_ty_sum());
5177         let hi = self.span.hi;
5178         try!(self.expect(&token::Semi));
5179         Ok(P(ForeignItem {
5180             ident: ident,
5181             attrs: attrs,
5182             node: ForeignItemStatic(ty, mutbl),
5183             id: ast::DUMMY_NODE_ID,
5184             span: mk_sp(lo, hi),
5185             vis: vis
5186         }))
5187     }
5188
5189     /// Parse extern crate links
5190     ///
5191     /// # Examples
5192     ///
5193     /// extern crate foo;
5194     /// extern crate bar as foo;
5195     fn parse_item_extern_crate(&mut self,
5196                                lo: BytePos,
5197                                visibility: Visibility,
5198                                attrs: Vec<Attribute>)
5199                                 -> PResult<P<Item>> {
5200
5201         let crate_name = try!(self.parse_ident());
5202         let (maybe_path, ident) = if let Some(ident) = try!(self.parse_rename()) {
5203             (Some(crate_name.name), ident)
5204         } else {
5205             (None, crate_name)
5206         };
5207         try!(self.expect(&token::Semi));
5208
5209         let last_span = self.last_span;
5210
5211         if visibility == ast::Public {
5212             self.span_warn(mk_sp(lo, last_span.hi),
5213                            "`pub extern crate` does not work as expected and should not be used. \
5214                             Likely to become an error. Prefer `extern crate` and `pub use`.");
5215         }
5216
5217         Ok(self.mk_item(lo,
5218                         last_span.hi,
5219                         ident,
5220                         ItemExternCrate(maybe_path),
5221                         visibility,
5222                         attrs))
5223     }
5224
5225     /// Parse `extern` for foreign ABIs
5226     /// modules.
5227     ///
5228     /// `extern` is expected to have been
5229     /// consumed before calling this method
5230     ///
5231     /// # Examples:
5232     ///
5233     /// extern "C" {}
5234     /// extern {}
5235     fn parse_item_foreign_mod(&mut self,
5236                               lo: BytePos,
5237                               opt_abi: Option<abi::Abi>,
5238                               visibility: Visibility,
5239                               mut attrs: Vec<Attribute>)
5240                               -> PResult<P<Item>> {
5241         try!(self.expect(&token::OpenDelim(token::Brace)));
5242
5243         let abi = opt_abi.unwrap_or(abi::C);
5244
5245         attrs.extend(try!(self.parse_inner_attributes()));
5246
5247         let mut foreign_items = vec![];
5248         while let Some(item) = try!(self.parse_foreign_item()) {
5249             foreign_items.push(item);
5250         }
5251         try!(self.expect(&token::CloseDelim(token::Brace)));
5252
5253         let last_span = self.last_span;
5254         let m = ast::ForeignMod {
5255             abi: abi,
5256             items: foreign_items
5257         };
5258         Ok(self.mk_item(lo,
5259                      last_span.hi,
5260                      special_idents::invalid,
5261                      ItemForeignMod(m),
5262                      visibility,
5263                      attrs))
5264     }
5265
5266     /// Parse type Foo = Bar;
5267     fn parse_item_type(&mut self) -> PResult<ItemInfo> {
5268         let ident = try!(self.parse_ident());
5269         let mut tps = try!(self.parse_generics());
5270         tps.where_clause = try!(self.parse_where_clause());
5271         try!(self.expect(&token::Eq));
5272         let ty = try!(self.parse_ty_sum());
5273         try!(self.expect(&token::Semi));
5274         Ok((ident, ItemTy(ty, tps), None))
5275     }
5276
5277     /// Parse the part of an "enum" decl following the '{'
5278     fn parse_enum_def(&mut self, _generics: &ast::Generics) -> PResult<EnumDef> {
5279         let mut variants = Vec::new();
5280         let mut all_nullary = true;
5281         let mut any_disr = None;
5282         while self.token != token::CloseDelim(token::Brace) {
5283             let variant_attrs = try!(self.parse_outer_attributes());
5284             let vlo = self.span.lo;
5285
5286             let struct_def;
5287             let mut disr_expr = None;
5288             let ident = try!(self.parse_ident());
5289             if self.check(&token::OpenDelim(token::Brace)) {
5290                 // Parse a struct variant.
5291                 all_nullary = false;
5292                 struct_def = VariantData::Struct(try!(self.parse_record_struct_body(ParsePub::No)),
5293                                                  ast::DUMMY_NODE_ID);
5294             } else if self.check(&token::OpenDelim(token::Paren)) {
5295                 all_nullary = false;
5296                 struct_def = VariantData::Tuple(try!(self.parse_tuple_struct_body(ParsePub::No)),
5297                                                 ast::DUMMY_NODE_ID);
5298             } else if try!(self.eat(&token::Eq) ){
5299                 disr_expr = Some(try!(self.parse_expr()));
5300                 any_disr = disr_expr.as_ref().map(|expr| expr.span);
5301                 struct_def = VariantData::Unit(ast::DUMMY_NODE_ID);
5302             } else {
5303                 struct_def = VariantData::Unit(ast::DUMMY_NODE_ID);
5304             }
5305
5306             let vr = ast::Variant_ {
5307                 name: ident,
5308                 attrs: variant_attrs,
5309                 data: struct_def,
5310                 disr_expr: disr_expr,
5311             };
5312             variants.push(P(spanned(vlo, self.last_span.hi, vr)));
5313
5314             if !try!(self.eat(&token::Comma)) { break; }
5315         }
5316         try!(self.expect(&token::CloseDelim(token::Brace)));
5317         match any_disr {
5318             Some(disr_span) if !all_nullary =>
5319                 self.span_err(disr_span,
5320                     "discriminator values can only be used with a c-like enum"),
5321             _ => ()
5322         }
5323
5324         Ok(ast::EnumDef { variants: variants })
5325     }
5326
5327     /// Parse an "enum" declaration
5328     fn parse_item_enum(&mut self) -> PResult<ItemInfo> {
5329         let id = try!(self.parse_ident());
5330         let mut generics = try!(self.parse_generics());
5331         generics.where_clause = try!(self.parse_where_clause());
5332         try!(self.expect(&token::OpenDelim(token::Brace)));
5333
5334         let enum_definition = try!(self.parse_enum_def(&generics));
5335         Ok((id, ItemEnum(enum_definition, generics), None))
5336     }
5337
5338     /// Parses a string as an ABI spec on an extern type or module. Consumes
5339     /// the `extern` keyword, if one is found.
5340     fn parse_opt_abi(&mut self) -> PResult<Option<abi::Abi>> {
5341         match self.token {
5342             token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => {
5343                 let sp = self.span;
5344                 self.expect_no_suffix(sp, "ABI spec", suf);
5345                 try!(self.bump());
5346                 match abi::lookup(&s.as_str()) {
5347                     Some(abi) => Ok(Some(abi)),
5348                     None => {
5349                         let last_span = self.last_span;
5350                         self.span_err(
5351                             last_span,
5352                             &format!("invalid ABI: expected one of [{}], \
5353                                      found `{}`",
5354                                     abi::all_names().join(", "),
5355                                     s));
5356                         Ok(None)
5357                     }
5358                 }
5359             }
5360
5361             _ => Ok(None),
5362         }
5363     }
5364
5365     /// Parse one of the items allowed by the flags.
5366     /// NB: this function no longer parses the items inside an
5367     /// extern crate.
5368     fn parse_item_(&mut self, attrs: Vec<Attribute>,
5369                    macros_allowed: bool, attributes_allowed: bool) -> PResult<Option<P<Item>>> {
5370         let nt_item = match self.token {
5371             token::Interpolated(token::NtItem(ref item)) => {
5372                 Some((**item).clone())
5373             }
5374             _ => None
5375         };
5376         match nt_item {
5377             Some(mut item) => {
5378                 try!(self.bump());
5379                 let mut attrs = attrs;
5380                 mem::swap(&mut item.attrs, &mut attrs);
5381                 item.attrs.extend(attrs);
5382                 return Ok(Some(P(item)));
5383             }
5384             None => {}
5385         }
5386
5387         let lo = self.span.lo;
5388
5389         let visibility = try!(self.parse_visibility());
5390
5391         if try!(self.eat_keyword(keywords::Use) ){
5392             // USE ITEM
5393             let item_ = ItemUse(try!(self.parse_view_path()));
5394             try!(self.expect(&token::Semi));
5395
5396             let last_span = self.last_span;
5397             let item = self.mk_item(lo,
5398                                     last_span.hi,
5399                                     token::special_idents::invalid,
5400                                     item_,
5401                                     visibility,
5402                                     attrs);
5403             return Ok(Some(item));
5404         }
5405
5406         if try!(self.eat_keyword(keywords::Extern)) {
5407             if try!(self.eat_keyword(keywords::Crate)) {
5408                 return Ok(Some(try!(self.parse_item_extern_crate(lo, visibility, attrs))));
5409             }
5410
5411             let opt_abi = try!(self.parse_opt_abi());
5412
5413             if try!(self.eat_keyword(keywords::Fn) ){
5414                 // EXTERN FUNCTION ITEM
5415                 let abi = opt_abi.unwrap_or(abi::C);
5416                 let (ident, item_, extra_attrs) =
5417                     try!(self.parse_item_fn(Unsafety::Normal, Constness::NotConst, abi));
5418                 let last_span = self.last_span;
5419                 let item = self.mk_item(lo,
5420                                         last_span.hi,
5421                                         ident,
5422                                         item_,
5423                                         visibility,
5424                                         maybe_append(attrs, extra_attrs));
5425                 return Ok(Some(item));
5426             } else if self.check(&token::OpenDelim(token::Brace)) {
5427                 return Ok(Some(try!(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs))));
5428             }
5429
5430             try!(self.expect_one_of(&[], &[]));
5431         }
5432
5433         if try!(self.eat_keyword(keywords::Static) ){
5434             // STATIC ITEM
5435             let m = if try!(self.eat_keyword(keywords::Mut)) {MutMutable} else {MutImmutable};
5436             let (ident, item_, extra_attrs) = try!(self.parse_item_const(Some(m)));
5437             let last_span = self.last_span;
5438             let item = self.mk_item(lo,
5439                                     last_span.hi,
5440                                     ident,
5441                                     item_,
5442                                     visibility,
5443                                     maybe_append(attrs, extra_attrs));
5444             return Ok(Some(item));
5445         }
5446         if try!(self.eat_keyword(keywords::Const) ){
5447             if self.check_keyword(keywords::Fn)
5448                 || (self.check_keyword(keywords::Unsafe)
5449                     && self.look_ahead(1, |t| t.is_keyword(keywords::Fn))) {
5450                 // CONST FUNCTION ITEM
5451                 let unsafety = if try!(self.eat_keyword(keywords::Unsafe) ){
5452                     Unsafety::Unsafe
5453                 } else {
5454                     Unsafety::Normal
5455                 };
5456                 try!(self.bump());
5457                 let (ident, item_, extra_attrs) =
5458                     try!(self.parse_item_fn(unsafety, Constness::Const, abi::Rust));
5459                 let last_span = self.last_span;
5460                 let item = self.mk_item(lo,
5461                                         last_span.hi,
5462                                         ident,
5463                                         item_,
5464                                         visibility,
5465                                         maybe_append(attrs, extra_attrs));
5466                 return Ok(Some(item));
5467             }
5468
5469             // CONST ITEM
5470             if try!(self.eat_keyword(keywords::Mut) ){
5471                 let last_span = self.last_span;
5472                 self.span_err(last_span, "const globals cannot be mutable");
5473                 self.fileline_help(last_span, "did you mean to declare a static?");
5474             }
5475             let (ident, item_, extra_attrs) = try!(self.parse_item_const(None));
5476             let last_span = self.last_span;
5477             let item = self.mk_item(lo,
5478                                     last_span.hi,
5479                                     ident,
5480                                     item_,
5481                                     visibility,
5482                                     maybe_append(attrs, extra_attrs));
5483             return Ok(Some(item));
5484         }
5485         if self.check_keyword(keywords::Unsafe) &&
5486             self.look_ahead(1, |t| t.is_keyword(keywords::Trait))
5487         {
5488             // UNSAFE TRAIT ITEM
5489             try!(self.expect_keyword(keywords::Unsafe));
5490             try!(self.expect_keyword(keywords::Trait));
5491             let (ident, item_, extra_attrs) =
5492                 try!(self.parse_item_trait(ast::Unsafety::Unsafe));
5493             let last_span = self.last_span;
5494             let item = self.mk_item(lo,
5495                                     last_span.hi,
5496                                     ident,
5497                                     item_,
5498                                     visibility,
5499                                     maybe_append(attrs, extra_attrs));
5500             return Ok(Some(item));
5501         }
5502         if self.check_keyword(keywords::Unsafe) &&
5503             self.look_ahead(1, |t| t.is_keyword(keywords::Impl))
5504         {
5505             // IMPL ITEM
5506             try!(self.expect_keyword(keywords::Unsafe));
5507             try!(self.expect_keyword(keywords::Impl));
5508             let (ident, item_, extra_attrs) = try!(self.parse_item_impl(ast::Unsafety::Unsafe));
5509             let last_span = self.last_span;
5510             let item = self.mk_item(lo,
5511                                     last_span.hi,
5512                                     ident,
5513                                     item_,
5514                                     visibility,
5515                                     maybe_append(attrs, extra_attrs));
5516             return Ok(Some(item));
5517         }
5518         if self.check_keyword(keywords::Fn) {
5519             // FUNCTION ITEM
5520             try!(self.bump());
5521             let (ident, item_, extra_attrs) =
5522                 try!(self.parse_item_fn(Unsafety::Normal, Constness::NotConst, abi::Rust));
5523             let last_span = self.last_span;
5524             let item = self.mk_item(lo,
5525                                     last_span.hi,
5526                                     ident,
5527                                     item_,
5528                                     visibility,
5529                                     maybe_append(attrs, extra_attrs));
5530             return Ok(Some(item));
5531         }
5532         if self.check_keyword(keywords::Unsafe)
5533             && self.look_ahead(1, |t| *t != token::OpenDelim(token::Brace)) {
5534             // UNSAFE FUNCTION ITEM
5535             try!(self.bump());
5536             let abi = if try!(self.eat_keyword(keywords::Extern) ){
5537                 try!(self.parse_opt_abi()).unwrap_or(abi::C)
5538             } else {
5539                 abi::Rust
5540             };
5541             try!(self.expect_keyword(keywords::Fn));
5542             let (ident, item_, extra_attrs) =
5543                 try!(self.parse_item_fn(Unsafety::Unsafe, Constness::NotConst, abi));
5544             let last_span = self.last_span;
5545             let item = self.mk_item(lo,
5546                                     last_span.hi,
5547                                     ident,
5548                                     item_,
5549                                     visibility,
5550                                     maybe_append(attrs, extra_attrs));
5551             return Ok(Some(item));
5552         }
5553         if try!(self.eat_keyword(keywords::Mod) ){
5554             // MODULE ITEM
5555             let (ident, item_, extra_attrs) =
5556                 try!(self.parse_item_mod(&attrs[..]));
5557             let last_span = self.last_span;
5558             let item = self.mk_item(lo,
5559                                     last_span.hi,
5560                                     ident,
5561                                     item_,
5562                                     visibility,
5563                                     maybe_append(attrs, extra_attrs));
5564             return Ok(Some(item));
5565         }
5566         if try!(self.eat_keyword(keywords::Type) ){
5567             // TYPE ITEM
5568             let (ident, item_, extra_attrs) = try!(self.parse_item_type());
5569             let last_span = self.last_span;
5570             let item = self.mk_item(lo,
5571                                     last_span.hi,
5572                                     ident,
5573                                     item_,
5574                                     visibility,
5575                                     maybe_append(attrs, extra_attrs));
5576             return Ok(Some(item));
5577         }
5578         if try!(self.eat_keyword(keywords::Enum) ){
5579             // ENUM ITEM
5580             let (ident, item_, extra_attrs) = try!(self.parse_item_enum());
5581             let last_span = self.last_span;
5582             let item = self.mk_item(lo,
5583                                     last_span.hi,
5584                                     ident,
5585                                     item_,
5586                                     visibility,
5587                                     maybe_append(attrs, extra_attrs));
5588             return Ok(Some(item));
5589         }
5590         if try!(self.eat_keyword(keywords::Trait) ){
5591             // TRAIT ITEM
5592             let (ident, item_, extra_attrs) =
5593                 try!(self.parse_item_trait(ast::Unsafety::Normal));
5594             let last_span = self.last_span;
5595             let item = self.mk_item(lo,
5596                                     last_span.hi,
5597                                     ident,
5598                                     item_,
5599                                     visibility,
5600                                     maybe_append(attrs, extra_attrs));
5601             return Ok(Some(item));
5602         }
5603         if try!(self.eat_keyword(keywords::Impl) ){
5604             // IMPL ITEM
5605             let (ident, item_, extra_attrs) = try!(self.parse_item_impl(ast::Unsafety::Normal));
5606             let last_span = self.last_span;
5607             let item = self.mk_item(lo,
5608                                     last_span.hi,
5609                                     ident,
5610                                     item_,
5611                                     visibility,
5612                                     maybe_append(attrs, extra_attrs));
5613             return Ok(Some(item));
5614         }
5615         if try!(self.eat_keyword(keywords::Struct) ){
5616             // STRUCT ITEM
5617             let (ident, item_, extra_attrs) = try!(self.parse_item_struct());
5618             let last_span = self.last_span;
5619             let item = self.mk_item(lo,
5620                                     last_span.hi,
5621                                     ident,
5622                                     item_,
5623                                     visibility,
5624                                     maybe_append(attrs, extra_attrs));
5625             return Ok(Some(item));
5626         }
5627         self.parse_macro_use_or_failure(attrs,macros_allowed,attributes_allowed,lo,visibility)
5628     }
5629
5630     /// Parse a foreign item.
5631     fn parse_foreign_item(&mut self) -> PResult<Option<P<ForeignItem>>> {
5632         let attrs = try!(self.parse_outer_attributes());
5633         let lo = self.span.lo;
5634         let visibility = try!(self.parse_visibility());
5635
5636         if self.check_keyword(keywords::Static) {
5637             // FOREIGN STATIC ITEM
5638             return Ok(Some(try!(self.parse_item_foreign_static(visibility, lo, attrs))));
5639         }
5640         if self.check_keyword(keywords::Fn) || self.check_keyword(keywords::Unsafe) {
5641             // FOREIGN FUNCTION ITEM
5642             return Ok(Some(try!(self.parse_item_foreign_fn(visibility, lo, attrs))));
5643         }
5644
5645         // FIXME #5668: this will occur for a macro invocation:
5646         match try!(self.parse_macro_use_or_failure(attrs, true, false, lo, visibility)) {
5647             Some(item) => {
5648                 return Err(self.span_fatal(item.span, "macros cannot expand to foreign items"));
5649             }
5650             None => Ok(None)
5651         }
5652     }
5653
5654     /// This is the fall-through for parsing items.
5655     fn parse_macro_use_or_failure(
5656         &mut self,
5657         attrs: Vec<Attribute> ,
5658         macros_allowed: bool,
5659         attributes_allowed: bool,
5660         lo: BytePos,
5661         visibility: Visibility
5662     ) -> PResult<Option<P<Item>>> {
5663         if macros_allowed && !self.token.is_any_keyword()
5664                 && self.look_ahead(1, |t| *t == token::Not)
5665                 && (self.look_ahead(2, |t| t.is_plain_ident())
5666                     || self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
5667                     || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
5668             // MACRO INVOCATION ITEM
5669
5670             let last_span = self.last_span;
5671             self.complain_if_pub_macro(visibility, last_span);
5672
5673             let mac_lo = self.span.lo;
5674
5675             // item macro.
5676             let pth = try!(self.parse_path(NoTypesAllowed));
5677             try!(self.expect(&token::Not));
5678
5679             // a 'special' identifier (like what `macro_rules!` uses)
5680             // is optional. We should eventually unify invoc syntax
5681             // and remove this.
5682             let id = if self.token.is_plain_ident() {
5683                 try!(self.parse_ident())
5684             } else {
5685                 token::special_idents::invalid // no special identifier
5686             };
5687             // eat a matched-delimiter token tree:
5688             let delim = try!(self.expect_open_delim());
5689             let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
5690                                             seq_sep_none(),
5691                                             |p| p.parse_token_tree()));
5692             // single-variant-enum... :
5693             let m = Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT };
5694             let m: ast::Mac = codemap::Spanned { node: m,
5695                                              span: mk_sp(mac_lo,
5696                                                          self.last_span.hi) };
5697
5698             if delim != token::Brace {
5699                 if !try!(self.eat(&token::Semi) ){
5700                     let last_span = self.last_span;
5701                     self.span_err(last_span,
5702                                   "macros that expand to items must either \
5703                                    be surrounded with braces or followed by \
5704                                    a semicolon");
5705                 }
5706             }
5707
5708             let item_ = ItemMac(m);
5709             let last_span = self.last_span;
5710             let item = self.mk_item(lo,
5711                                     last_span.hi,
5712                                     id,
5713                                     item_,
5714                                     visibility,
5715                                     attrs);
5716             return Ok(Some(item));
5717         }
5718
5719         // FAILURE TO PARSE ITEM
5720         match visibility {
5721             Inherited => {}
5722             Public => {
5723                 let last_span = self.last_span;
5724                 return Err(self.span_fatal(last_span, "unmatched visibility `pub`"));
5725             }
5726         }
5727
5728         if !attributes_allowed && !attrs.is_empty() {
5729             self.expected_item_err(&attrs);
5730         }
5731         Ok(None)
5732     }
5733
5734     pub fn parse_item(&mut self) -> PResult<Option<P<Item>>> {
5735         let attrs = try!(self.parse_outer_attributes());
5736         self.parse_item_(attrs, true, false)
5737     }
5738
5739
5740     /// Matches view_path : MOD? non_global_path as IDENT
5741     /// | MOD? non_global_path MOD_SEP LBRACE RBRACE
5742     /// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE
5743     /// | MOD? non_global_path MOD_SEP STAR
5744     /// | MOD? non_global_path
5745     fn parse_view_path(&mut self) -> PResult<P<ViewPath>> {
5746         let lo = self.span.lo;
5747
5748         // Allow a leading :: because the paths are absolute either way.
5749         // This occurs with "use $crate::..." in macros.
5750         try!(self.eat(&token::ModSep));
5751
5752         if self.check(&token::OpenDelim(token::Brace)) {
5753             // use {foo,bar}
5754             let idents = try!(self.parse_unspanned_seq(
5755                 &token::OpenDelim(token::Brace),
5756                 &token::CloseDelim(token::Brace),
5757                 seq_sep_trailing_allowed(token::Comma),
5758                 |p| p.parse_path_list_item()));
5759             let path = ast::Path {
5760                 span: mk_sp(lo, self.span.hi),
5761                 global: false,
5762                 segments: Vec::new()
5763             };
5764             return Ok(P(spanned(lo, self.span.hi, ViewPathList(path, idents))));
5765         }
5766
5767         let first_ident = try!(self.parse_ident());
5768         let mut path = vec!(first_ident);
5769         if let token::ModSep = self.token {
5770             // foo::bar or foo::{a,b,c} or foo::*
5771             while self.check(&token::ModSep) {
5772                 try!(self.bump());
5773
5774                 match self.token {
5775                   token::Ident(..) => {
5776                     let ident = try!(self.parse_ident());
5777                     path.push(ident);
5778                   }
5779
5780                   // foo::bar::{a,b,c}
5781                   token::OpenDelim(token::Brace) => {
5782                     let idents = try!(self.parse_unspanned_seq(
5783                         &token::OpenDelim(token::Brace),
5784                         &token::CloseDelim(token::Brace),
5785                         seq_sep_trailing_allowed(token::Comma),
5786                         |p| p.parse_path_list_item()
5787                     ));
5788                     let path = ast::Path {
5789                         span: mk_sp(lo, self.span.hi),
5790                         global: false,
5791                         segments: path.into_iter().map(|identifier| {
5792                             ast::PathSegment {
5793                                 identifier: identifier,
5794                                 parameters: ast::PathParameters::none(),
5795                             }
5796                         }).collect()
5797                     };
5798                     return Ok(P(spanned(lo, self.span.hi, ViewPathList(path, idents))));
5799                   }
5800
5801                   // foo::bar::*
5802                   token::BinOp(token::Star) => {
5803                     try!(self.bump());
5804                     let path = ast::Path {
5805                         span: mk_sp(lo, self.span.hi),
5806                         global: false,
5807                         segments: path.into_iter().map(|identifier| {
5808                             ast::PathSegment {
5809                                 identifier: identifier,
5810                                 parameters: ast::PathParameters::none(),
5811                             }
5812                         }).collect()
5813                     };
5814                     return Ok(P(spanned(lo, self.span.hi, ViewPathGlob(path))));
5815                   }
5816
5817                   // fall-through for case foo::bar::;
5818                   token::Semi => {
5819                     self.span_err(self.span, "expected identifier or `{` or `*`, found `;`");
5820                   }
5821
5822                   _ => break
5823                 }
5824             }
5825         }
5826         let mut rename_to = path[path.len() - 1];
5827         let path = ast::Path {
5828             span: mk_sp(lo, self.last_span.hi),
5829             global: false,
5830             segments: path.into_iter().map(|identifier| {
5831                 ast::PathSegment {
5832                     identifier: identifier,
5833                     parameters: ast::PathParameters::none(),
5834                 }
5835             }).collect()
5836         };
5837         rename_to = try!(self.parse_rename()).unwrap_or(rename_to);
5838         Ok(P(spanned(lo, self.last_span.hi, ViewPathSimple(rename_to, path))))
5839     }
5840
5841     fn parse_rename(&mut self) -> PResult<Option<Ident>> {
5842         if try!(self.eat_keyword(keywords::As)) {
5843             self.parse_ident().map(Some)
5844         } else {
5845             Ok(None)
5846         }
5847     }
5848
5849     /// Parses a source module as a crate. This is the main
5850     /// entry point for the parser.
5851     pub fn parse_crate_mod(&mut self) -> PResult<Crate> {
5852         let lo = self.span.lo;
5853         Ok(ast::Crate {
5854             attrs: try!(self.parse_inner_attributes()),
5855             module: try!(self.parse_mod_items(&token::Eof, lo)),
5856             config: self.cfg.clone(),
5857             span: mk_sp(lo, self.span.lo),
5858             exported_macros: Vec::new(),
5859         })
5860     }
5861
5862     pub fn parse_optional_str(&mut self)
5863                               -> PResult<Option<(InternedString,
5864                                                  ast::StrStyle,
5865                                                  Option<ast::Name>)>> {
5866         let ret = match self.token {
5867             token::Literal(token::Str_(s), suf) => {
5868                 (self.id_to_interned_str(ast::Ident::with_empty_ctxt(s)), ast::CookedStr, suf)
5869             }
5870             token::Literal(token::StrRaw(s, n), suf) => {
5871                 (self.id_to_interned_str(ast::Ident::with_empty_ctxt(s)), ast::RawStr(n), suf)
5872             }
5873             _ => return Ok(None)
5874         };
5875         try!(self.bump());
5876         Ok(Some(ret))
5877     }
5878
5879     pub fn parse_str(&mut self) -> PResult<(InternedString, StrStyle)> {
5880         match try!(self.parse_optional_str()) {
5881             Some((s, style, suf)) => {
5882                 let sp = self.last_span;
5883                 self.expect_no_suffix(sp, "string literal", suf);
5884                 Ok((s, style))
5885             }
5886             _ =>  Err(self.fatal("expected string literal"))
5887         }
5888     }
5889 }