]> git.lizzy.rs Git - rust.git/blob - src/libsyntax/parse/parser.rs
Auto merge of #31319 - alexcrichton:msvc-backtraces, r=michaelwoerister
[rust.git] / src / libsyntax / parse / parser.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 pub use self::PathParsingMode::*;
12
13 use abi;
14 use ast::BareFnTy;
15 use ast::{RegionTyParamBound, TraitTyParamBound, TraitBoundModifier};
16 use ast::{Public, Unsafety};
17 use ast::{Mod, BiAdd, Arg, Arm, Attribute, BindingMode};
18 use ast::{BiBitAnd, BiBitOr, BiBitXor, BiRem, BiLt, Block};
19 use ast::{BlockCheckMode, CaptureByRef, CaptureByValue, CaptureClause};
20 use ast::{Constness, ConstTraitItem, Crate, CrateConfig};
21 use ast::{Decl, DeclItem, DeclLocal, DefaultBlock, DefaultReturn};
22 use ast::{UnDeref, BiDiv, EMPTY_CTXT, EnumDef, ExplicitSelf};
23 use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain};
24 use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox};
25 use ast::{ExprBreak, ExprCall, ExprCast, ExprInPlace};
26 use ast::{ExprField, ExprTupField, ExprClosure, ExprIf, ExprIfLet, ExprIndex};
27 use ast::{ExprLit, ExprLoop, ExprMac, ExprRange};
28 use ast::{ExprMethodCall, ExprParen, ExprPath};
29 use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprType, ExprUnary};
30 use ast::{ExprVec, ExprWhile, ExprWhileLet, ExprForLoop, Field, FnDecl};
31 use ast::{ForeignItem, ForeignItemStatic, ForeignItemFn, FunctionRetTy};
32 use ast::{Ident, Inherited, ImplItem, Item, Item_, ItemStatic};
33 use ast::{ItemEnum, ItemFn, ItemForeignMod, ItemImpl, ItemConst};
34 use ast::{ItemMac, ItemMod, ItemStruct, ItemTrait, ItemTy, ItemDefaultImpl};
35 use ast::{ItemExternCrate, ItemUse};
36 use ast::{Lit, Lit_};
37 use ast::{LitBool, LitChar, LitByte, LitByteStr};
38 use ast::{LitStr, LitInt, Local};
39 use ast::{MacStmtWithBraces, MacStmtWithSemicolon, MacStmtWithoutBraces};
40 use ast::{MutImmutable, MutMutable, Mac_};
41 use ast::{MutTy, BiMul, Mutability};
42 use ast::{NamedField, UnNeg, NoReturn, UnNot};
43 use ast::{Pat, PatBox, PatEnum, PatIdent, PatLit, PatQPath, PatMac, PatRange};
44 use ast::{PatRegion, PatStruct, PatTup, PatVec, PatWild};
45 use ast::{PolyTraitRef, QSelf};
46 use ast::{Return, BiShl, BiShr, Stmt, StmtDecl};
47 use ast::{StmtExpr, StmtSemi, StmtMac, VariantData, StructField};
48 use ast::{BiSub, StrStyle};
49 use ast::{SelfExplicit, SelfRegion, SelfStatic, SelfValue};
50 use ast::{Delimited, SequenceRepetition, TokenTree, TraitItem, TraitRef};
51 use ast::{Ty, Ty_, TypeBinding, TyMac};
52 use ast::{TyFixedLengthVec, TyBareFn, TyTypeof, TyInfer};
53 use ast::{TyParam, TyParamBounds, TyParen, TyPath, TyPtr};
54 use ast::{TyRptr, TyTup, TyU32, TyVec};
55 use ast::TypeTraitItem;
56 use ast::{UnnamedField, UnsafeBlock};
57 use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple};
58 use ast::{Visibility, WhereClause};
59 use attr::{ThinAttributes, ThinAttributesExt, AttributesExt};
60 use ast;
61 use ast_util::{self, ident_to_path};
62 use codemap::{self, Span, BytePos, Spanned, spanned, mk_sp, CodeMap};
63 use errors::{self, DiagnosticBuilder};
64 use ext::tt::macro_parser;
65 use parse;
66 use parse::classify;
67 use parse::common::{SeqSep, seq_sep_none, seq_sep_trailing_allowed};
68 use parse::lexer::{Reader, TokenAndSpan};
69 use parse::obsolete::{ParserObsoleteMethods, ObsoleteSyntax};
70 use parse::token::{self, intern, MatchNt, SubstNt, SpecialVarNt, InternedString};
71 use parse::token::{keywords, special_idents, SpecialMacroVar};
72 use parse::{new_sub_parser_from_file, ParseSess};
73 use util::parser::{AssocOp, Fixity};
74 use print::pprust;
75 use ptr::P;
76 use parse::PResult;
77
78 use std::collections::HashSet;
79 use std::io::prelude::*;
80 use std::mem;
81 use std::path::{Path, PathBuf};
82 use std::rc::Rc;
83 use std::slice;
84
85 bitflags! {
86     flags Restrictions: u8 {
87         const RESTRICTION_STMT_EXPR         = 1 << 0,
88         const RESTRICTION_NO_STRUCT_LITERAL = 1 << 1,
89     }
90 }
91
92 type ItemInfo = (Ident, Item_, Option<Vec<Attribute> >);
93
94 /// How to parse a path. There are four different kinds of paths, all of which
95 /// are parsed somewhat differently.
96 #[derive(Copy, Clone, PartialEq)]
97 pub enum PathParsingMode {
98     /// A path with no type parameters; e.g. `foo::bar::Baz`
99     NoTypesAllowed,
100     /// A path with a lifetime and type parameters, with no double colons
101     /// before the type parameters; e.g. `foo::bar<'a>::Baz<T>`
102     LifetimeAndTypesWithoutColons,
103     /// A path with a lifetime and type parameters with double colons before
104     /// the type parameters; e.g. `foo::bar::<'a>::Baz::<T>`
105     LifetimeAndTypesWithColons,
106 }
107
108 /// How to parse a bound, whether to allow bound modifiers such as `?`.
109 #[derive(Copy, Clone, PartialEq)]
110 pub enum BoundParsingMode {
111     Bare,
112     Modified,
113 }
114
115 /// `pub` should be parsed in struct fields and not parsed in variant fields
116 #[derive(Clone, Copy, PartialEq)]
117 pub enum ParsePub {
118     Yes,
119     No,
120 }
121
122 /// Possibly accept an `token::Interpolated` expression (a pre-parsed expression
123 /// dropped into the token stream, which happens while parsing the result of
124 /// macro expansion). Placement of these is not as complex as I feared it would
125 /// be. The important thing is to make sure that lookahead doesn't balk at
126 /// `token::Interpolated` tokens.
127 macro_rules! maybe_whole_expr {
128     ($p:expr) => (
129         {
130             let found = match $p.token {
131                 token::Interpolated(token::NtExpr(ref e)) => {
132                     Some((*e).clone())
133                 }
134                 token::Interpolated(token::NtPath(_)) => {
135                     // FIXME: The following avoids an issue with lexical borrowck scopes,
136                     // but the clone is unfortunate.
137                     let pt = match $p.token {
138                         token::Interpolated(token::NtPath(ref pt)) => (**pt).clone(),
139                         _ => unreachable!()
140                     };
141                     let span = $p.span;
142                     Some($p.mk_expr(span.lo, span.hi, ExprPath(None, pt), None))
143                 }
144                 token::Interpolated(token::NtBlock(_)) => {
145                     // FIXME: The following avoids an issue with lexical borrowck scopes,
146                     // but the clone is unfortunate.
147                     let b = match $p.token {
148                         token::Interpolated(token::NtBlock(ref b)) => (*b).clone(),
149                         _ => unreachable!()
150                     };
151                     let span = $p.span;
152                     Some($p.mk_expr(span.lo, span.hi, ExprBlock(b), None))
153                 }
154                 _ => None
155             };
156             match found {
157                 Some(e) => {
158                     $p.bump();
159                     return Ok(e);
160                 }
161                 None => ()
162             }
163         }
164     )
165 }
166
167 /// As maybe_whole_expr, but for things other than expressions
168 macro_rules! maybe_whole {
169     ($p:expr, $constructor:ident) => (
170         {
171             let found = match ($p).token {
172                 token::Interpolated(token::$constructor(_)) => {
173                     Some(($p).bump_and_get())
174                 }
175                 _ => None
176             };
177             if let Some(token::Interpolated(token::$constructor(x))) = found {
178                 return Ok(x.clone());
179             }
180         }
181     );
182     (no_clone $p:expr, $constructor:ident) => (
183         {
184             let found = match ($p).token {
185                 token::Interpolated(token::$constructor(_)) => {
186                     Some(($p).bump_and_get())
187                 }
188                 _ => None
189             };
190             if let Some(token::Interpolated(token::$constructor(x))) = found {
191                 return Ok(x);
192             }
193         }
194     );
195     (deref $p:expr, $constructor:ident) => (
196         {
197             let found = match ($p).token {
198                 token::Interpolated(token::$constructor(_)) => {
199                     Some(($p).bump_and_get())
200                 }
201                 _ => None
202             };
203             if let Some(token::Interpolated(token::$constructor(x))) = found {
204                 return Ok((*x).clone());
205             }
206         }
207     );
208     (Some deref $p:expr, $constructor:ident) => (
209         {
210             let found = match ($p).token {
211                 token::Interpolated(token::$constructor(_)) => {
212                     Some(($p).bump_and_get())
213                 }
214                 _ => None
215             };
216             if let Some(token::Interpolated(token::$constructor(x))) = found {
217                 return Ok(Some((*x).clone()));
218             }
219         }
220     );
221     (pair_empty $p:expr, $constructor:ident) => (
222         {
223             let found = match ($p).token {
224                 token::Interpolated(token::$constructor(_)) => {
225                     Some(($p).bump_and_get())
226                 }
227                 _ => None
228             };
229             if let Some(token::Interpolated(token::$constructor(x))) = found {
230                 return Ok((Vec::new(), x));
231             }
232         }
233     )
234 }
235
236 fn maybe_append(mut lhs: Vec<Attribute>, rhs: Option<Vec<Attribute>>)
237                 -> Vec<Attribute> {
238     if let Some(ref attrs) = rhs {
239         lhs.extend(attrs.iter().cloned())
240     }
241     lhs
242 }
243
244 /* ident is handled by common.rs */
245
246 pub struct Parser<'a> {
247     pub sess: &'a ParseSess,
248     /// the current token:
249     pub token: token::Token,
250     /// the span of the current token:
251     pub span: Span,
252     /// the span of the prior token:
253     pub last_span: Span,
254     pub cfg: CrateConfig,
255     /// the previous token or None (only stashed sometimes).
256     pub last_token: Option<Box<token::Token>>,
257     last_token_interpolated: bool,
258     pub buffer: [TokenAndSpan; 4],
259     pub buffer_start: isize,
260     pub buffer_end: isize,
261     pub tokens_consumed: usize,
262     pub restrictions: Restrictions,
263     pub quote_depth: usize, // not (yet) related to the quasiquoter
264     pub reader: Box<Reader+'a>,
265     pub interner: Rc<token::IdentInterner>,
266     /// The set of seen errors about obsolete syntax. Used to suppress
267     /// extra detail when the same error is seen twice
268     pub obsolete_set: HashSet<ObsoleteSyntax>,
269     /// Used to determine the path to externally loaded source files
270     pub mod_path_stack: Vec<InternedString>,
271     /// Stack of spans of open delimiters. Used for error message.
272     pub open_braces: Vec<Span>,
273     /// Flag if this parser "owns" the directory that it is currently parsing
274     /// in. This will affect how nested files are looked up.
275     pub owns_directory: bool,
276     /// Name of the root module this parser originated from. If `None`, then the
277     /// name is not known. This does not change while the parser is descending
278     /// into modules, and sub-parsers have new values for this name.
279     pub root_module_name: Option<String>,
280     pub expected_tokens: Vec<TokenType>,
281 }
282
283 #[derive(PartialEq, Eq, Clone)]
284 pub enum TokenType {
285     Token(token::Token),
286     Keyword(keywords::Keyword),
287     Operator,
288 }
289
290 impl TokenType {
291     fn to_string(&self) -> String {
292         match *self {
293             TokenType::Token(ref t) => format!("`{}`", Parser::token_to_string(t)),
294             TokenType::Operator => "an operator".to_string(),
295             TokenType::Keyword(kw) => format!("`{}`", kw.to_name()),
296         }
297     }
298 }
299
300 fn is_plain_ident_or_underscore(t: &token::Token) -> bool {
301     t.is_plain_ident() || *t == token::Underscore
302 }
303
304 /// Information about the path to a module.
305 pub struct ModulePath {
306     pub name: String,
307     pub path_exists: bool,
308     pub result: Result<ModulePathSuccess, ModulePathError>,
309 }
310
311 pub struct ModulePathSuccess {
312     pub path: ::std::path::PathBuf,
313     pub owns_directory: bool,
314 }
315
316 pub struct ModulePathError {
317     pub err_msg: String,
318     pub help_msg: String,
319 }
320
321 pub enum LhsExpr {
322     NotYetParsed,
323     AttributesParsed(ThinAttributes),
324     AlreadyParsed(P<Expr>),
325 }
326
327 impl From<Option<ThinAttributes>> for LhsExpr {
328     fn from(o: Option<ThinAttributes>) -> Self {
329         if let Some(attrs) = o {
330             LhsExpr::AttributesParsed(attrs)
331         } else {
332             LhsExpr::NotYetParsed
333         }
334     }
335 }
336
337 impl From<P<Expr>> for LhsExpr {
338     fn from(expr: P<Expr>) -> Self {
339         LhsExpr::AlreadyParsed(expr)
340     }
341 }
342
343 impl<'a> Parser<'a> {
344     pub fn new(sess: &'a ParseSess,
345                cfg: ast::CrateConfig,
346                mut rdr: Box<Reader+'a>)
347                -> Parser<'a>
348     {
349         let tok0 = rdr.real_token();
350         let span = tok0.sp;
351         let placeholder = TokenAndSpan {
352             tok: token::Underscore,
353             sp: span,
354         };
355
356         Parser {
357             reader: rdr,
358             interner: token::get_ident_interner(),
359             sess: sess,
360             cfg: cfg,
361             token: tok0.tok,
362             span: span,
363             last_span: span,
364             last_token: None,
365             last_token_interpolated: false,
366             buffer: [
367                 placeholder.clone(),
368                 placeholder.clone(),
369                 placeholder.clone(),
370                 placeholder.clone(),
371             ],
372             buffer_start: 0,
373             buffer_end: 0,
374             tokens_consumed: 0,
375             restrictions: Restrictions::empty(),
376             quote_depth: 0,
377             obsolete_set: HashSet::new(),
378             mod_path_stack: Vec::new(),
379             open_braces: Vec::new(),
380             owns_directory: true,
381             root_module_name: None,
382             expected_tokens: Vec::new(),
383         }
384     }
385
386     /// Convert a token to a string using self's reader
387     pub fn token_to_string(token: &token::Token) -> String {
388         pprust::token_to_string(token)
389     }
390
391     /// Convert the current token to a string using self's reader
392     pub fn this_token_to_string(&self) -> String {
393         Parser::token_to_string(&self.token)
394     }
395
396     pub fn unexpected_last<T>(&self, t: &token::Token) -> PResult<'a, T> {
397         let token_str = Parser::token_to_string(t);
398         let last_span = self.last_span;
399         Err(self.span_fatal(last_span, &format!("unexpected token: `{}`", token_str)))
400     }
401
402     pub fn unexpected<T>(&mut self) -> PResult<'a, T> {
403         match self.expect_one_of(&[], &[]) {
404             Err(e) => Err(e),
405             Ok(_) => unreachable!(),
406         }
407     }
408
409     /// Expect and consume the token t. Signal an error if
410     /// the next token is not t.
411     pub fn expect(&mut self, t: &token::Token) -> PResult<'a,  ()> {
412         if self.expected_tokens.is_empty() {
413             if self.token == *t {
414                 self.bump();
415                 Ok(())
416             } else {
417                 let token_str = Parser::token_to_string(t);
418                 let this_token_str = self.this_token_to_string();
419                 Err(self.fatal(&format!("expected `{}`, found `{}`",
420                                    token_str,
421                                    this_token_str)))
422             }
423         } else {
424             self.expect_one_of(unsafe { slice::from_raw_parts(t, 1) }, &[])
425         }
426     }
427
428     /// Expect next token to be edible or inedible token.  If edible,
429     /// then consume it; if inedible, then return without consuming
430     /// anything.  Signal a fatal error if next token is unexpected.
431     pub fn expect_one_of(&mut self,
432                          edible: &[token::Token],
433                          inedible: &[token::Token]) -> PResult<'a,  ()>{
434         fn tokens_to_string(tokens: &[TokenType]) -> String {
435             let mut i = tokens.iter();
436             // This might be a sign we need a connect method on Iterator.
437             let b = i.next()
438                      .map_or("".to_string(), |t| t.to_string());
439             i.enumerate().fold(b, |mut b, (i, ref a)| {
440                 if tokens.len() > 2 && i == tokens.len() - 2 {
441                     b.push_str(", or ");
442                 } else if tokens.len() == 2 && i == tokens.len() - 2 {
443                     b.push_str(" or ");
444                 } else {
445                     b.push_str(", ");
446                 }
447                 b.push_str(&*a.to_string());
448                 b
449             })
450         }
451         if edible.contains(&self.token) {
452             self.bump();
453             Ok(())
454         } else if inedible.contains(&self.token) {
455             // leave it in the input
456             Ok(())
457         } else {
458             let mut expected = edible.iter()
459                 .map(|x| TokenType::Token(x.clone()))
460                 .chain(inedible.iter().map(|x| TokenType::Token(x.clone())))
461                 .chain(self.expected_tokens.iter().cloned())
462                 .collect::<Vec<_>>();
463             expected.sort_by(|a, b| a.to_string().cmp(&b.to_string()));
464             expected.dedup();
465             let expect = tokens_to_string(&expected[..]);
466             let actual = self.this_token_to_string();
467             Err(self.fatal(
468                 &(if expected.len() > 1 {
469                     (format!("expected one of {}, found `{}`",
470                              expect,
471                              actual))
472                 } else if expected.is_empty() {
473                     (format!("unexpected token: `{}`",
474                              actual))
475                 } else {
476                     (format!("expected {}, found `{}`",
477                              expect,
478                              actual))
479                 })[..]
480             ))
481         }
482     }
483
484     /// Check for erroneous `ident { }`; if matches, signal error and
485     /// recover (without consuming any expected input token).  Returns
486     /// true if and only if input was consumed for recovery.
487     pub fn check_for_erroneous_unit_struct_expecting(&mut self,
488                                                      expected: &[token::Token])
489                                                      -> bool {
490         if self.token == token::OpenDelim(token::Brace)
491             && expected.iter().all(|t| *t != token::OpenDelim(token::Brace))
492             && self.look_ahead(1, |t| *t == token::CloseDelim(token::Brace)) {
493             // matched; signal non-fatal error and recover.
494             let span = self.span;
495             self.span_err(span, "unit-like struct construction is written with no trailing `{ }`");
496             self.eat(&token::OpenDelim(token::Brace));
497             self.eat(&token::CloseDelim(token::Brace));
498             true
499         } else {
500             false
501         }
502     }
503
504     /// Commit to parsing a complete expression `e` expected to be
505     /// followed by some token from the set edible + inedible.  Recover
506     /// from anticipated input errors, discarding erroneous characters.
507     pub fn commit_expr(&mut self, e: &Expr, edible: &[token::Token],
508                        inedible: &[token::Token]) -> PResult<'a, ()> {
509         debug!("commit_expr {:?}", e);
510         if let ExprPath(..) = e.node {
511             // might be unit-struct construction; check for recoverableinput error.
512             let expected = edible.iter()
513                 .cloned()
514                 .chain(inedible.iter().cloned())
515                 .collect::<Vec<_>>();
516             self.check_for_erroneous_unit_struct_expecting(&expected[..]);
517         }
518         self.expect_one_of(edible, inedible)
519     }
520
521     pub fn commit_expr_expecting(&mut self, e: &Expr, edible: token::Token) -> PResult<'a, ()> {
522         self.commit_expr(e, &[edible], &[])
523     }
524
525     /// Commit to parsing a complete statement `s`, which expects to be
526     /// followed by some token from the set edible + inedible.  Check
527     /// for recoverable input errors, discarding erroneous characters.
528     pub fn commit_stmt(&mut self, edible: &[token::Token],
529                        inedible: &[token::Token]) -> PResult<'a, ()> {
530         if self.last_token
531                .as_ref()
532                .map_or(false, |t| t.is_ident() || t.is_path()) {
533             let expected = edible.iter()
534                 .cloned()
535                 .chain(inedible.iter().cloned())
536                 .collect::<Vec<_>>();
537             self.check_for_erroneous_unit_struct_expecting(&expected);
538         }
539         self.expect_one_of(edible, inedible)
540     }
541
542     pub fn commit_stmt_expecting(&mut self, edible: token::Token) -> PResult<'a, ()> {
543         self.commit_stmt(&[edible], &[])
544     }
545
546     /// returns the span of expr, if it was not interpolated or the span of the interpolated token
547     fn interpolated_or_expr_span(&self,
548                                  expr: PResult<'a, P<Expr>>)
549                                  -> PResult<'a, (Span, P<Expr>)> {
550         expr.map(|e| {
551             if self.last_token_interpolated {
552                 (self.last_span, e)
553             } else {
554                 (e.span, e)
555             }
556         })
557     }
558
559     pub fn parse_ident(&mut self) -> PResult<'a, ast::Ident> {
560         self.check_strict_keywords();
561         self.check_reserved_keywords();
562         match self.token {
563             token::Ident(i, _) => {
564                 self.bump();
565                 Ok(i)
566             }
567             token::Interpolated(token::NtIdent(..)) => {
568                 self.bug("ident interpolation not converted to real token");
569             }
570             _ => {
571                 let token_str = self.this_token_to_string();
572                 Err(self.fatal(&format!("expected ident, found `{}`",
573                                     token_str)))
574             }
575         }
576     }
577
578     pub fn parse_ident_or_self_type(&mut self) -> PResult<'a, ast::Ident> {
579         if self.is_self_type_ident() {
580             self.expect_self_type_ident()
581         } else {
582             self.parse_ident()
583         }
584     }
585
586     pub fn parse_path_list_item(&mut self) -> PResult<'a, ast::PathListItem> {
587         let lo = self.span.lo;
588         let node = if self.eat_keyword(keywords::SelfValue) {
589             let rename = try!(self.parse_rename());
590             ast::PathListMod { id: ast::DUMMY_NODE_ID, rename: rename }
591         } else {
592             let ident = try!(self.parse_ident());
593             let rename = try!(self.parse_rename());
594             ast::PathListIdent { name: ident, rename: rename, id: ast::DUMMY_NODE_ID }
595         };
596         let hi = self.last_span.hi;
597         Ok(spanned(lo, hi, node))
598     }
599
600     /// Check if the next token is `tok`, and return `true` if so.
601     ///
602     /// This method is will automatically add `tok` to `expected_tokens` if `tok` is not
603     /// encountered.
604     pub fn check(&mut self, tok: &token::Token) -> bool {
605         let is_present = self.token == *tok;
606         if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); }
607         is_present
608     }
609
610     /// Consume token 'tok' if it exists. Returns true if the given
611     /// token was present, false otherwise.
612     pub fn eat(&mut self, tok: &token::Token) -> bool {
613         let is_present = self.check(tok);
614         if is_present { self.bump() }
615         is_present
616     }
617
618     pub fn check_keyword(&mut self, kw: keywords::Keyword) -> bool {
619         self.expected_tokens.push(TokenType::Keyword(kw));
620         self.token.is_keyword(kw)
621     }
622
623     /// If the next token is the given keyword, eat it and return
624     /// true. Otherwise, return false.
625     pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> bool {
626         if self.check_keyword(kw) {
627             self.bump();
628             true
629         } else {
630             false
631         }
632     }
633
634     pub fn eat_keyword_noexpect(&mut self, kw: keywords::Keyword) -> bool {
635         if self.token.is_keyword(kw) {
636             self.bump();
637             true
638         } else {
639             false
640         }
641     }
642
643     /// If the given word is not a keyword, signal an error.
644     /// If the next token is not the given word, signal an error.
645     /// Otherwise, eat it.
646     pub fn expect_keyword(&mut self, kw: keywords::Keyword) -> PResult<'a, ()> {
647         if !self.eat_keyword(kw) {
648             self.unexpected()
649         } else {
650             Ok(())
651         }
652     }
653
654     /// Signal an error if the given string is a strict keyword
655     pub fn check_strict_keywords(&mut self) {
656         if self.token.is_strict_keyword() {
657             let token_str = self.this_token_to_string();
658             let span = self.span;
659             self.span_err(span,
660                           &format!("expected identifier, found keyword `{}`",
661                                   token_str));
662         }
663     }
664
665     /// Signal an error if the current token is a reserved keyword
666     pub fn check_reserved_keywords(&mut self) {
667         if self.token.is_reserved_keyword() {
668             let token_str = self.this_token_to_string();
669             self.fatal(&format!("`{}` is a reserved keyword", token_str)).emit()
670         }
671     }
672
673     /// Expect and consume an `&`. If `&&` is seen, replace it with a single
674     /// `&` and continue. If an `&` is not seen, signal an error.
675     fn expect_and(&mut self) -> PResult<'a, ()> {
676         self.expected_tokens.push(TokenType::Token(token::BinOp(token::And)));
677         match self.token {
678             token::BinOp(token::And) => {
679                 self.bump();
680                 Ok(())
681             }
682             token::AndAnd => {
683                 let span = self.span;
684                 let lo = span.lo + BytePos(1);
685                 Ok(self.replace_token(token::BinOp(token::And), lo, span.hi))
686             }
687             _ => self.unexpected()
688         }
689     }
690
691     pub fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) {
692         match suffix {
693             None => {/* everything ok */}
694             Some(suf) => {
695                 let text = suf.as_str();
696                 if text.is_empty() {
697                     self.span_bug(sp, "found empty literal suffix in Some")
698                 }
699                 self.span_err(sp, &*format!("{} with a suffix is invalid", kind));
700             }
701         }
702     }
703
704
705     /// Attempt to consume a `<`. If `<<` is seen, replace it with a single
706     /// `<` and continue. If a `<` is not seen, return false.
707     ///
708     /// This is meant to be used when parsing generics on a path to get the
709     /// starting token.
710     fn eat_lt(&mut self) -> bool {
711         self.expected_tokens.push(TokenType::Token(token::Lt));
712         match self.token {
713             token::Lt => {
714                 self.bump();
715                 true
716             }
717             token::BinOp(token::Shl) => {
718                 let span = self.span;
719                 let lo = span.lo + BytePos(1);
720                 self.replace_token(token::Lt, lo, span.hi);
721                 true
722             }
723             _ => false,
724         }
725     }
726
727     fn expect_lt(&mut self) -> PResult<'a, ()> {
728         if !self.eat_lt() {
729             self.unexpected()
730         } else {
731             Ok(())
732         }
733     }
734
735     /// Expect and consume a GT. if a >> is seen, replace it
736     /// with a single > and continue. If a GT is not seen,
737     /// signal an error.
738     pub fn expect_gt(&mut self) -> PResult<'a, ()> {
739         self.expected_tokens.push(TokenType::Token(token::Gt));
740         match self.token {
741             token::Gt => {
742                 self.bump();
743                 Ok(())
744             }
745             token::BinOp(token::Shr) => {
746                 let span = self.span;
747                 let lo = span.lo + BytePos(1);
748                 Ok(self.replace_token(token::Gt, lo, span.hi))
749             }
750             token::BinOpEq(token::Shr) => {
751                 let span = self.span;
752                 let lo = span.lo + BytePos(1);
753                 Ok(self.replace_token(token::Ge, lo, span.hi))
754             }
755             token::Ge => {
756                 let span = self.span;
757                 let lo = span.lo + BytePos(1);
758                 Ok(self.replace_token(token::Eq, lo, span.hi))
759             }
760             _ => {
761                 let gt_str = Parser::token_to_string(&token::Gt);
762                 let this_token_str = self.this_token_to_string();
763                 Err(self.fatal(&format!("expected `{}`, found `{}`",
764                                    gt_str,
765                                    this_token_str)))
766             }
767         }
768     }
769
770     pub fn parse_seq_to_before_gt_or_return<T, F>(&mut self,
771                                                   sep: Option<token::Token>,
772                                                   mut f: F)
773                                                   -> PResult<'a, (P<[T]>, bool)>
774         where F: FnMut(&mut Parser<'a>) -> PResult<'a, Option<T>>,
775     {
776         let mut v = Vec::new();
777         // This loop works by alternating back and forth between parsing types
778         // and commas.  For example, given a string `A, B,>`, the parser would
779         // first parse `A`, then a comma, then `B`, then a comma. After that it
780         // would encounter a `>` and stop. This lets the parser handle trailing
781         // commas in generic parameters, because it can stop either after
782         // parsing a type or after parsing a comma.
783         for i in 0.. {
784             if self.check(&token::Gt)
785                 || self.token == token::BinOp(token::Shr)
786                 || self.token == token::Ge
787                 || self.token == token::BinOpEq(token::Shr) {
788                 break;
789             }
790
791             if i % 2 == 0 {
792                 match try!(f(self)) {
793                     Some(result) => v.push(result),
794                     None => return Ok((P::from_vec(v), true))
795                 }
796             } else {
797                 if let Some(t) = sep.as_ref() {
798                     try!(self.expect(t));
799                 }
800
801             }
802         }
803         return Ok((P::from_vec(v), false));
804     }
805
806     /// Parse a sequence bracketed by '<' and '>', stopping
807     /// before the '>'.
808     pub fn parse_seq_to_before_gt<T, F>(&mut self,
809                                         sep: Option<token::Token>,
810                                         mut f: F)
811                                         -> PResult<'a, P<[T]>> where
812         F: FnMut(&mut Parser<'a>) -> PResult<'a, T>,
813     {
814         let (result, returned) = try!(self.parse_seq_to_before_gt_or_return(sep,
815                                                     |p| Ok(Some(try!(f(p))))));
816         assert!(!returned);
817         return Ok(result);
818     }
819
820     pub fn parse_seq_to_gt<T, F>(&mut self,
821                                  sep: Option<token::Token>,
822                                  f: F)
823                                  -> PResult<'a, P<[T]>> where
824         F: FnMut(&mut Parser<'a>) -> PResult<'a, T>,
825     {
826         let v = try!(self.parse_seq_to_before_gt(sep, f));
827         try!(self.expect_gt());
828         return Ok(v);
829     }
830
831     pub fn parse_seq_to_gt_or_return<T, F>(&mut self,
832                                            sep: Option<token::Token>,
833                                            f: F)
834                                            -> PResult<'a, (P<[T]>, bool)> where
835         F: FnMut(&mut Parser<'a>) -> PResult<'a, Option<T>>,
836     {
837         let (v, returned) = try!(self.parse_seq_to_before_gt_or_return(sep, f));
838         if !returned {
839             try!(self.expect_gt());
840         }
841         return Ok((v, returned));
842     }
843
844     /// Parse a sequence, including the closing delimiter. The function
845     /// f must consume tokens until reaching the next separator or
846     /// closing bracket.
847     pub fn parse_seq_to_end<T, F>(&mut self,
848                                   ket: &token::Token,
849                                   sep: SeqSep,
850                                   f: F)
851                                   -> PResult<'a, Vec<T>> where
852         F: FnMut(&mut Parser<'a>) -> PResult<'a,  T>,
853     {
854         let val = try!(self.parse_seq_to_before_end(ket, sep, f));
855         self.bump();
856         Ok(val)
857     }
858
859     /// Parse a sequence, not including the closing delimiter. The function
860     /// f must consume tokens until reaching the next separator or
861     /// closing bracket.
862     pub fn parse_seq_to_before_end<T, F>(&mut self,
863                                          ket: &token::Token,
864                                          sep: SeqSep,
865                                          mut f: F)
866                                          -> PResult<'a, Vec<T>> where
867         F: FnMut(&mut Parser<'a>) -> PResult<'a,  T>,
868     {
869         let mut first: bool = true;
870         let mut v = vec!();
871         while self.token != *ket {
872             match sep.sep {
873               Some(ref t) => {
874                 if first { first = false; }
875                 else { try!(self.expect(t)); }
876               }
877               _ => ()
878             }
879             if sep.trailing_sep_allowed && self.check(ket) { break; }
880             v.push(try!(f(self)));
881         }
882         return Ok(v);
883     }
884
885     /// Parse a sequence, including the closing delimiter. The function
886     /// f must consume tokens until reaching the next separator or
887     /// closing bracket.
888     pub fn parse_unspanned_seq<T, F>(&mut self,
889                                      bra: &token::Token,
890                                      ket: &token::Token,
891                                      sep: SeqSep,
892                                      f: F)
893                                      -> PResult<'a, Vec<T>> where
894         F: FnMut(&mut Parser<'a>) -> PResult<'a,  T>,
895     {
896         try!(self.expect(bra));
897         let result = try!(self.parse_seq_to_before_end(ket, sep, f));
898         self.bump();
899         Ok(result)
900     }
901
902     /// Parse a sequence parameter of enum variant. For consistency purposes,
903     /// these should not be empty.
904     pub fn parse_enum_variant_seq<T, F>(&mut self,
905                                         bra: &token::Token,
906                                         ket: &token::Token,
907                                         sep: SeqSep,
908                                         f: F)
909                                         -> PResult<'a, Vec<T>> where
910         F: FnMut(&mut Parser<'a>) -> PResult<'a,  T>,
911     {
912         let result = try!(self.parse_unspanned_seq(bra, ket, sep, f));
913         if result.is_empty() {
914             let last_span = self.last_span;
915             self.span_err(last_span,
916             "nullary enum variants are written with no trailing `( )`");
917         }
918         Ok(result)
919     }
920
921     // NB: Do not use this function unless you actually plan to place the
922     // spanned list in the AST.
923     pub fn parse_seq<T, F>(&mut self,
924                            bra: &token::Token,
925                            ket: &token::Token,
926                            sep: SeqSep,
927                            f: F)
928                            -> PResult<'a, Spanned<Vec<T>>> where
929         F: FnMut(&mut Parser<'a>) -> PResult<'a,  T>,
930     {
931         let lo = self.span.lo;
932         try!(self.expect(bra));
933         let result = try!(self.parse_seq_to_before_end(ket, sep, f));
934         let hi = self.span.hi;
935         self.bump();
936         Ok(spanned(lo, hi, result))
937     }
938
939     /// Advance the parser by one token
940     pub fn bump(&mut self) {
941         self.last_span = self.span;
942         // Stash token for error recovery (sometimes; clone is not necessarily cheap).
943         self.last_token = if self.token.is_ident() ||
944                           self.token.is_path() ||
945                           self.token == token::Comma {
946             Some(Box::new(self.token.clone()))
947         } else {
948             None
949         };
950         self.last_token_interpolated = self.token.is_interpolated();
951         let next = if self.buffer_start == self.buffer_end {
952             self.reader.real_token()
953         } else {
954             // Avoid token copies with `replace`.
955             let buffer_start = self.buffer_start as usize;
956             let next_index = (buffer_start + 1) & 3;
957             self.buffer_start = next_index as isize;
958
959             let placeholder = TokenAndSpan {
960                 tok: token::Underscore,
961                 sp: self.span,
962             };
963             mem::replace(&mut self.buffer[buffer_start], placeholder)
964         };
965         self.span = next.sp;
966         self.token = next.tok;
967         self.tokens_consumed += 1;
968         self.expected_tokens.clear();
969         // check after each token
970         self.check_unknown_macro_variable();
971     }
972
973     /// Advance the parser by one token and return the bumped token.
974     pub fn bump_and_get(&mut self) -> token::Token {
975         let old_token = mem::replace(&mut self.token, token::Underscore);
976         self.bump();
977         old_token
978     }
979
980     /// EFFECT: replace the current token and span with the given one
981     pub fn replace_token(&mut self,
982                          next: token::Token,
983                          lo: BytePos,
984                          hi: BytePos) {
985         self.last_span = mk_sp(self.span.lo, lo);
986         self.token = next;
987         self.span = mk_sp(lo, hi);
988     }
989     pub fn buffer_length(&mut self) -> isize {
990         if self.buffer_start <= self.buffer_end {
991             return self.buffer_end - self.buffer_start;
992         }
993         return (4 - self.buffer_start) + self.buffer_end;
994     }
995     pub fn look_ahead<R, F>(&mut self, distance: usize, f: F) -> R where
996         F: FnOnce(&token::Token) -> R,
997     {
998         let dist = distance as isize;
999         while self.buffer_length() < dist {
1000             self.buffer[self.buffer_end as usize] = self.reader.real_token();
1001             self.buffer_end = (self.buffer_end + 1) & 3;
1002         }
1003         f(&self.buffer[((self.buffer_start + dist - 1) & 3) as usize].tok)
1004     }
1005     pub fn fatal(&self, m: &str) -> DiagnosticBuilder<'a> {
1006         self.sess.span_diagnostic.struct_span_fatal(self.span, m)
1007     }
1008     pub fn span_fatal(&self, sp: Span, m: &str) -> DiagnosticBuilder<'a> {
1009         self.sess.span_diagnostic.struct_span_fatal(sp, m)
1010     }
1011     pub fn span_fatal_help(&self, sp: Span, m: &str, help: &str) -> DiagnosticBuilder<'a> {
1012         let mut err = self.sess.span_diagnostic.struct_span_fatal(sp, m);
1013         err.fileline_help(sp, help);
1014         err
1015     }
1016     pub fn bug(&self, m: &str) -> ! {
1017         self.sess.span_diagnostic.span_bug(self.span, m)
1018     }
1019     pub fn warn(&self, m: &str) {
1020         self.sess.span_diagnostic.span_warn(self.span, m)
1021     }
1022     pub fn span_warn(&self, sp: Span, m: &str) {
1023         self.sess.span_diagnostic.span_warn(sp, m)
1024     }
1025     pub fn span_err(&self, sp: Span, m: &str) {
1026         self.sess.span_diagnostic.span_err(sp, m)
1027     }
1028     pub fn span_bug(&self, sp: Span, m: &str) -> ! {
1029         self.sess.span_diagnostic.span_bug(sp, m)
1030     }
1031     pub fn abort_if_errors(&self) {
1032         self.sess.span_diagnostic.abort_if_errors();
1033     }
1034
1035     pub fn diagnostic(&self) -> &'a errors::Handler {
1036         &self.sess.span_diagnostic
1037     }
1038
1039     pub fn id_to_interned_str(&mut self, id: Ident) -> InternedString {
1040         id.name.as_str()
1041     }
1042
1043     /// Is the current token one of the keywords that signals a bare function
1044     /// type?
1045     pub fn token_is_bare_fn_keyword(&mut self) -> bool {
1046         self.check_keyword(keywords::Fn) ||
1047             self.check_keyword(keywords::Unsafe) ||
1048             self.check_keyword(keywords::Extern)
1049     }
1050
1051     pub fn get_lifetime(&mut self) -> ast::Ident {
1052         match self.token {
1053             token::Lifetime(ref ident) => *ident,
1054             _ => self.bug("not a lifetime"),
1055         }
1056     }
1057
1058     pub fn parse_for_in_type(&mut self) -> PResult<'a, Ty_> {
1059         /*
1060         Parses whatever can come after a `for` keyword in a type.
1061         The `for` has already been consumed.
1062
1063         Deprecated:
1064
1065         - for <'lt> |S| -> T
1066
1067         Eventually:
1068
1069         - for <'lt> [unsafe] [extern "ABI"] fn (S) -> T
1070         - for <'lt> path::foo(a, b)
1071
1072         */
1073
1074         // parse <'lt>
1075         let lo = self.span.lo;
1076
1077         let lifetime_defs = try!(self.parse_late_bound_lifetime_defs());
1078
1079         // examine next token to decide to do
1080         if self.token_is_bare_fn_keyword() {
1081             self.parse_ty_bare_fn(lifetime_defs)
1082         } else {
1083             let hi = self.span.hi;
1084             let trait_ref = try!(self.parse_trait_ref());
1085             let poly_trait_ref = ast::PolyTraitRef { bound_lifetimes: lifetime_defs,
1086                                                      trait_ref: trait_ref,
1087                                                      span: mk_sp(lo, hi)};
1088             let other_bounds = if self.eat(&token::BinOp(token::Plus)) {
1089                 try!(self.parse_ty_param_bounds(BoundParsingMode::Bare))
1090             } else {
1091                 P::empty()
1092             };
1093             let all_bounds =
1094                 Some(TraitTyParamBound(poly_trait_ref, TraitBoundModifier::None)).into_iter()
1095                 .chain(other_bounds.into_vec())
1096                 .collect();
1097             Ok(ast::TyPolyTraitRef(all_bounds))
1098         }
1099     }
1100
1101     pub fn parse_ty_path(&mut self) -> PResult<'a, Ty_> {
1102         Ok(TyPath(None, try!(self.parse_path(LifetimeAndTypesWithoutColons))))
1103     }
1104
1105     /// parse a TyBareFn type:
1106     pub fn parse_ty_bare_fn(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> PResult<'a, Ty_> {
1107         /*
1108
1109         [unsafe] [extern "ABI"] fn <'lt> (S) -> T
1110          ^~~~^           ^~~~^     ^~~~^ ^~^    ^
1111            |               |         |    |     |
1112            |               |         |    |   Return type
1113            |               |         |  Argument types
1114            |               |     Lifetimes
1115            |              ABI
1116         Function Style
1117         */
1118
1119         let unsafety = try!(self.parse_unsafety());
1120         let abi = if self.eat_keyword(keywords::Extern) {
1121             try!(self.parse_opt_abi()).unwrap_or(abi::C)
1122         } else {
1123             abi::Rust
1124         };
1125
1126         try!(self.expect_keyword(keywords::Fn));
1127         let (inputs, variadic) = try!(self.parse_fn_args(false, true));
1128         let ret_ty = try!(self.parse_ret_ty());
1129         let decl = P(FnDecl {
1130             inputs: inputs,
1131             output: ret_ty,
1132             variadic: variadic
1133         });
1134         Ok(TyBareFn(P(BareFnTy {
1135             abi: abi,
1136             unsafety: unsafety,
1137             lifetimes: lifetime_defs,
1138             decl: decl
1139         })))
1140     }
1141
1142     /// Parses an obsolete closure kind (`&:`, `&mut:`, or `:`).
1143     pub fn parse_obsolete_closure_kind(&mut self) -> PResult<'a, ()> {
1144          let lo = self.span.lo;
1145         if
1146             self.check(&token::BinOp(token::And)) &&
1147             self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) &&
1148             self.look_ahead(2, |t| *t == token::Colon)
1149         {
1150             self.bump();
1151             self.bump();
1152             self.bump();
1153         } else if
1154             self.token == token::BinOp(token::And) &&
1155             self.look_ahead(1, |t| *t == token::Colon)
1156         {
1157             self.bump();
1158             self.bump();
1159         } else if
1160             self.eat(&token::Colon)
1161         {
1162             /* nothing */
1163         } else {
1164             return Ok(());
1165         }
1166
1167         let span = mk_sp(lo, self.span.hi);
1168         self.obsolete(span, ObsoleteSyntax::ClosureKind);
1169         Ok(())
1170     }
1171
1172     pub fn parse_unsafety(&mut self) -> PResult<'a, Unsafety> {
1173         if self.eat_keyword(keywords::Unsafe) {
1174             return Ok(Unsafety::Unsafe);
1175         } else {
1176             return Ok(Unsafety::Normal);
1177         }
1178     }
1179
1180     /// Parse the items in a trait declaration
1181     pub fn parse_trait_items(&mut self) -> PResult<'a,  Vec<P<TraitItem>>> {
1182         self.parse_unspanned_seq(
1183             &token::OpenDelim(token::Brace),
1184             &token::CloseDelim(token::Brace),
1185             seq_sep_none(),
1186             |p| -> PResult<'a, P<TraitItem>> {
1187             maybe_whole!(no_clone p, NtTraitItem);
1188             let mut attrs = try!(p.parse_outer_attributes());
1189             let lo = p.span.lo;
1190
1191             let (name, node) = if p.eat_keyword(keywords::Type) {
1192                 let TyParam {ident, bounds, default, ..} = try!(p.parse_ty_param());
1193                 try!(p.expect(&token::Semi));
1194                 (ident, TypeTraitItem(bounds, default))
1195             } else if p.is_const_item() {
1196                 try!(p.expect_keyword(keywords::Const));
1197                 let ident = try!(p.parse_ident());
1198                 try!(p.expect(&token::Colon));
1199                 let ty = try!(p.parse_ty_sum());
1200                 let default = if p.check(&token::Eq) {
1201                     p.bump();
1202                     let expr = try!(p.parse_expr());
1203                     try!(p.commit_expr_expecting(&expr, token::Semi));
1204                     Some(expr)
1205                 } else {
1206                     try!(p.expect(&token::Semi));
1207                     None
1208                 };
1209                 (ident, ConstTraitItem(ty, default))
1210             } else {
1211                 let (constness, unsafety, abi) = try!(p.parse_fn_front_matter());
1212
1213                 let ident = try!(p.parse_ident());
1214                 let mut generics = try!(p.parse_generics());
1215
1216                 let (explicit_self, d) = try!(p.parse_fn_decl_with_self(|p: &mut Parser<'a>|{
1217                     // This is somewhat dubious; We don't want to allow
1218                     // argument names to be left off if there is a
1219                     // definition...
1220                     p.parse_arg_general(false)
1221                 }));
1222
1223                 generics.where_clause = try!(p.parse_where_clause());
1224                 let sig = ast::MethodSig {
1225                     unsafety: unsafety,
1226                     constness: constness,
1227                     decl: d,
1228                     generics: generics,
1229                     abi: abi,
1230                     explicit_self: explicit_self,
1231                 };
1232
1233                 let body = match p.token {
1234                   token::Semi => {
1235                     p.bump();
1236                     debug!("parse_trait_methods(): parsing required method");
1237                     None
1238                   }
1239                   token::OpenDelim(token::Brace) => {
1240                     debug!("parse_trait_methods(): parsing provided method");
1241                     let (inner_attrs, body) =
1242                         try!(p.parse_inner_attrs_and_block());
1243                     attrs.extend(inner_attrs.iter().cloned());
1244                     Some(body)
1245                   }
1246
1247                   _ => {
1248                       let token_str = p.this_token_to_string();
1249                       return Err(p.fatal(&format!("expected `;` or `{{`, found `{}`",
1250                                        token_str)[..]))
1251                   }
1252                 };
1253                 (ident, ast::MethodTraitItem(sig, body))
1254             };
1255
1256             Ok(P(TraitItem {
1257                 id: ast::DUMMY_NODE_ID,
1258                 ident: name,
1259                 attrs: attrs,
1260                 node: node,
1261                 span: mk_sp(lo, p.last_span.hi),
1262             }))
1263         })
1264     }
1265
1266     /// Parse a possibly mutable type
1267     pub fn parse_mt(&mut self) -> PResult<'a, MutTy> {
1268         let mutbl = try!(self.parse_mutability());
1269         let t = try!(self.parse_ty());
1270         Ok(MutTy { ty: t, mutbl: mutbl })
1271     }
1272
1273     /// Parse optional return type [ -> TY ] in function decl
1274     pub fn parse_ret_ty(&mut self) -> PResult<'a, FunctionRetTy> {
1275         if self.eat(&token::RArrow) {
1276             if self.eat(&token::Not) {
1277                 Ok(NoReturn(self.last_span))
1278             } else {
1279                 Ok(Return(try!(self.parse_ty())))
1280             }
1281         } else {
1282             let pos = self.span.lo;
1283             Ok(DefaultReturn(mk_sp(pos, pos)))
1284         }
1285     }
1286
1287     /// Parse a type in a context where `T1+T2` is allowed.
1288     pub fn parse_ty_sum(&mut self) -> PResult<'a, P<Ty>> {
1289         let lo = self.span.lo;
1290         let lhs = try!(self.parse_ty());
1291
1292         if !self.eat(&token::BinOp(token::Plus)) {
1293             return Ok(lhs);
1294         }
1295
1296         let bounds = try!(self.parse_ty_param_bounds(BoundParsingMode::Bare));
1297
1298         // In type grammar, `+` is treated like a binary operator,
1299         // and hence both L and R side are required.
1300         if bounds.is_empty() {
1301             let last_span = self.last_span;
1302             self.span_err(last_span,
1303                           "at least one type parameter bound \
1304                           must be specified");
1305         }
1306
1307         let sp = mk_sp(lo, self.last_span.hi);
1308         let sum = ast::TyObjectSum(lhs, bounds);
1309         Ok(P(Ty {id: ast::DUMMY_NODE_ID, node: sum, span: sp}))
1310     }
1311
1312     /// Parse a type.
1313     pub fn parse_ty(&mut self) -> PResult<'a, P<Ty>> {
1314         maybe_whole!(no_clone self, NtTy);
1315
1316         let lo = self.span.lo;
1317
1318         let t = if self.check(&token::OpenDelim(token::Paren)) {
1319             self.bump();
1320
1321             // (t) is a parenthesized ty
1322             // (t,) is the type of a tuple with only one field,
1323             // of type t
1324             let mut ts = vec![];
1325             let mut last_comma = false;
1326             while self.token != token::CloseDelim(token::Paren) {
1327                 ts.push(try!(self.parse_ty_sum()));
1328                 if self.check(&token::Comma) {
1329                     last_comma = true;
1330                     self.bump();
1331                 } else {
1332                     last_comma = false;
1333                     break;
1334                 }
1335             }
1336
1337             try!(self.expect(&token::CloseDelim(token::Paren)));
1338             if ts.len() == 1 && !last_comma {
1339                 TyParen(ts.into_iter().nth(0).unwrap())
1340             } else {
1341                 TyTup(ts)
1342             }
1343         } else if self.check(&token::BinOp(token::Star)) {
1344             // STAR POINTER (bare pointer?)
1345             self.bump();
1346             TyPtr(try!(self.parse_ptr()))
1347         } else if self.check(&token::OpenDelim(token::Bracket)) {
1348             // VECTOR
1349             try!(self.expect(&token::OpenDelim(token::Bracket)));
1350             let t = try!(self.parse_ty_sum());
1351
1352             // Parse the `; e` in `[ i32; e ]`
1353             // where `e` is a const expression
1354             let t = match try!(self.maybe_parse_fixed_length_of_vec()) {
1355                 None => TyVec(t),
1356                 Some(suffix) => TyFixedLengthVec(t, suffix)
1357             };
1358             try!(self.expect(&token::CloseDelim(token::Bracket)));
1359             t
1360         } else if self.check(&token::BinOp(token::And)) ||
1361                   self.token == token::AndAnd {
1362             // BORROWED POINTER
1363             try!(self.expect_and());
1364             try!(self.parse_borrowed_pointee())
1365         } else if self.check_keyword(keywords::For) {
1366             try!(self.parse_for_in_type())
1367         } else if self.token_is_bare_fn_keyword() {
1368             // BARE FUNCTION
1369             try!(self.parse_ty_bare_fn(Vec::new()))
1370         } else if self.eat_keyword_noexpect(keywords::Typeof) {
1371             // TYPEOF
1372             // In order to not be ambiguous, the type must be surrounded by parens.
1373             try!(self.expect(&token::OpenDelim(token::Paren)));
1374             let e = try!(self.parse_expr());
1375             try!(self.expect(&token::CloseDelim(token::Paren)));
1376             TyTypeof(e)
1377         } else if self.eat_lt() {
1378
1379             let (qself, path) =
1380                  try!(self.parse_qualified_path(NoTypesAllowed));
1381
1382             TyPath(Some(qself), path)
1383         } else if self.check(&token::ModSep) ||
1384                   self.token.is_ident() ||
1385                   self.token.is_path() {
1386             let path = try!(self.parse_path(LifetimeAndTypesWithoutColons));
1387             if self.check(&token::Not) {
1388                 // MACRO INVOCATION
1389                 self.bump();
1390                 let delim = try!(self.expect_open_delim());
1391                 let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
1392                                                      seq_sep_none(),
1393                                                      |p| p.parse_token_tree()));
1394                 let hi = self.span.hi;
1395                 TyMac(spanned(lo, hi, Mac_ { path: path, tts: tts, ctxt: EMPTY_CTXT }))
1396             } else {
1397                 // NAMED TYPE
1398                 TyPath(None, path)
1399             }
1400         } else if self.eat(&token::Underscore) {
1401             // TYPE TO BE INFERRED
1402             TyInfer
1403         } else {
1404             let this_token_str = self.this_token_to_string();
1405             let msg = format!("expected type, found `{}`", this_token_str);
1406             return Err(self.fatal(&msg[..]));
1407         };
1408
1409         let sp = mk_sp(lo, self.last_span.hi);
1410         Ok(P(Ty {id: ast::DUMMY_NODE_ID, node: t, span: sp}))
1411     }
1412
1413     pub fn parse_borrowed_pointee(&mut self) -> PResult<'a, Ty_> {
1414         // look for `&'lt` or `&'foo ` and interpret `foo` as the region name:
1415         let opt_lifetime = try!(self.parse_opt_lifetime());
1416
1417         let mt = try!(self.parse_mt());
1418         return Ok(TyRptr(opt_lifetime, mt));
1419     }
1420
1421     pub fn parse_ptr(&mut self) -> PResult<'a, MutTy> {
1422         let mutbl = if self.eat_keyword(keywords::Mut) {
1423             MutMutable
1424         } else if self.eat_keyword(keywords::Const) {
1425             MutImmutable
1426         } else {
1427             let span = self.last_span;
1428             self.span_err(span,
1429                           "bare raw pointers are no longer allowed, you should \
1430                            likely use `*mut T`, but otherwise `*T` is now \
1431                            known as `*const T`");
1432             MutImmutable
1433         };
1434         let t = try!(self.parse_ty());
1435         Ok(MutTy { ty: t, mutbl: mutbl })
1436     }
1437
1438     pub fn is_named_argument(&mut self) -> bool {
1439         let offset = match self.token {
1440             token::BinOp(token::And) => 1,
1441             token::AndAnd => 1,
1442             _ if self.token.is_keyword(keywords::Mut) => 1,
1443             _ => 0
1444         };
1445
1446         debug!("parser is_named_argument offset:{}", offset);
1447
1448         if offset == 0 {
1449             is_plain_ident_or_underscore(&self.token)
1450                 && self.look_ahead(1, |t| *t == token::Colon)
1451         } else {
1452             self.look_ahead(offset, |t| is_plain_ident_or_underscore(t))
1453                 && self.look_ahead(offset + 1, |t| *t == token::Colon)
1454         }
1455     }
1456
1457     /// This version of parse arg doesn't necessarily require
1458     /// identifier names.
1459     pub fn parse_arg_general(&mut self, require_name: bool) -> PResult<'a, Arg> {
1460         maybe_whole!(no_clone self, NtArg);
1461
1462         let pat = if require_name || self.is_named_argument() {
1463             debug!("parse_arg_general parse_pat (require_name:{})",
1464                    require_name);
1465             let pat = try!(self.parse_pat());
1466
1467             try!(self.expect(&token::Colon));
1468             pat
1469         } else {
1470             debug!("parse_arg_general ident_to_pat");
1471             ast_util::ident_to_pat(ast::DUMMY_NODE_ID,
1472                                    self.last_span,
1473                                    special_idents::invalid)
1474         };
1475
1476         let t = try!(self.parse_ty_sum());
1477
1478         Ok(Arg {
1479             ty: t,
1480             pat: pat,
1481             id: ast::DUMMY_NODE_ID,
1482         })
1483     }
1484
1485     /// Parse a single function argument
1486     pub fn parse_arg(&mut self) -> PResult<'a, Arg> {
1487         self.parse_arg_general(true)
1488     }
1489
1490     /// Parse an argument in a lambda header e.g. |arg, arg|
1491     pub fn parse_fn_block_arg(&mut self) -> PResult<'a, Arg> {
1492         let pat = try!(self.parse_pat());
1493         let t = if self.eat(&token::Colon) {
1494             try!(self.parse_ty_sum())
1495         } else {
1496             P(Ty {
1497                 id: ast::DUMMY_NODE_ID,
1498                 node: TyInfer,
1499                 span: mk_sp(self.span.lo, self.span.hi),
1500             })
1501         };
1502         Ok(Arg {
1503             ty: t,
1504             pat: pat,
1505             id: ast::DUMMY_NODE_ID
1506         })
1507     }
1508
1509     pub fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<'a, Option<P<ast::Expr>>> {
1510         if self.check(&token::Semi) {
1511             self.bump();
1512             Ok(Some(try!(self.parse_expr())))
1513         } else {
1514             Ok(None)
1515         }
1516     }
1517
1518     /// Matches token_lit = LIT_INTEGER | ...
1519     pub fn lit_from_token(&self, tok: &token::Token) -> PResult<'a, Lit_> {
1520         match *tok {
1521             token::Interpolated(token::NtExpr(ref v)) => {
1522                 match v.node {
1523                     ExprLit(ref lit) => { Ok(lit.node.clone()) }
1524                     _ => { return self.unexpected_last(tok); }
1525                 }
1526             }
1527             token::Literal(lit, suf) => {
1528                 let (suffix_illegal, out) = match lit {
1529                     token::Byte(i) => (true, LitByte(parse::byte_lit(&i.as_str()).0)),
1530                     token::Char(i) => (true, LitChar(parse::char_lit(&i.as_str()).0)),
1531
1532                     // there are some valid suffixes for integer and
1533                     // float literals, so all the handling is done
1534                     // internally.
1535                     token::Integer(s) => {
1536                         (false, parse::integer_lit(&s.as_str(),
1537                                                    suf.as_ref().map(|s| s.as_str()),
1538                                                    &self.sess.span_diagnostic,
1539                                                    self.last_span))
1540                     }
1541                     token::Float(s) => {
1542                         (false, parse::float_lit(&s.as_str(),
1543                                                  suf.as_ref().map(|s| s.as_str()),
1544                                                   &self.sess.span_diagnostic,
1545                                                  self.last_span))
1546                     }
1547
1548                     token::Str_(s) => {
1549                         (true,
1550                          LitStr(token::intern_and_get_ident(&parse::str_lit(&s.as_str())),
1551                                 ast::CookedStr))
1552                     }
1553                     token::StrRaw(s, n) => {
1554                         (true,
1555                          LitStr(
1556                             token::intern_and_get_ident(&parse::raw_str_lit(&s.as_str())),
1557                             ast::RawStr(n)))
1558                     }
1559                     token::ByteStr(i) =>
1560                         (true, LitByteStr(parse::byte_str_lit(&i.as_str()))),
1561                     token::ByteStrRaw(i, _) =>
1562                         (true,
1563                          LitByteStr(Rc::new(i.to_string().into_bytes()))),
1564                 };
1565
1566                 if suffix_illegal {
1567                     let sp = self.last_span;
1568                     self.expect_no_suffix(sp, &*format!("{} literal", lit.short_name()), suf)
1569                 }
1570
1571                 Ok(out)
1572             }
1573             _ => { return self.unexpected_last(tok); }
1574         }
1575     }
1576
1577     /// Matches lit = true | false | token_lit
1578     pub fn parse_lit(&mut self) -> PResult<'a, Lit> {
1579         let lo = self.span.lo;
1580         let lit = if self.eat_keyword(keywords::True) {
1581             LitBool(true)
1582         } else if self.eat_keyword(keywords::False) {
1583             LitBool(false)
1584         } else {
1585             let token = self.bump_and_get();
1586             let lit = try!(self.lit_from_token(&token));
1587             lit
1588         };
1589         Ok(codemap::Spanned { node: lit, span: mk_sp(lo, self.last_span.hi) })
1590     }
1591
1592     /// matches '-' lit | lit
1593     pub fn parse_pat_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
1594         let minus_lo = self.span.lo;
1595         let minus_present = self.eat(&token::BinOp(token::Minus));
1596         let lo = self.span.lo;
1597         let literal = P(try!(self.parse_lit()));
1598         let hi = self.last_span.hi;
1599         let expr = self.mk_expr(lo, hi, ExprLit(literal), None);
1600
1601         if minus_present {
1602             let minus_hi = self.last_span.hi;
1603             let unary = self.mk_unary(UnNeg, expr);
1604             Ok(self.mk_expr(minus_lo, minus_hi, unary, None))
1605         } else {
1606             Ok(expr)
1607         }
1608     }
1609
1610     /// Parses qualified path.
1611     ///
1612     /// Assumes that the leading `<` has been parsed already.
1613     ///
1614     /// Qualifed paths are a part of the universal function call
1615     /// syntax (UFCS).
1616     ///
1617     /// `qualified_path = <type [as trait_ref]>::path`
1618     ///
1619     /// See `parse_path` for `mode` meaning.
1620     ///
1621     /// # Examples:
1622     ///
1623     /// `<T as U>::a`
1624     /// `<T as U>::F::a::<S>`
1625     pub fn parse_qualified_path(&mut self, mode: PathParsingMode)
1626                                 -> PResult<'a, (QSelf, ast::Path)> {
1627         let span = self.last_span;
1628         let self_type = try!(self.parse_ty_sum());
1629         let mut path = if self.eat_keyword(keywords::As) {
1630             try!(self.parse_path(LifetimeAndTypesWithoutColons))
1631         } else {
1632             ast::Path {
1633                 span: span,
1634                 global: false,
1635                 segments: vec![]
1636             }
1637         };
1638
1639         let qself = QSelf {
1640             ty: self_type,
1641             position: path.segments.len()
1642         };
1643
1644         try!(self.expect(&token::Gt));
1645         try!(self.expect(&token::ModSep));
1646
1647         let segments = match mode {
1648             LifetimeAndTypesWithoutColons => {
1649                 try!(self.parse_path_segments_without_colons())
1650             }
1651             LifetimeAndTypesWithColons => {
1652                 try!(self.parse_path_segments_with_colons())
1653             }
1654             NoTypesAllowed => {
1655                 try!(self.parse_path_segments_without_types())
1656             }
1657         };
1658         path.segments.extend(segments);
1659
1660         path.span.hi = self.last_span.hi;
1661
1662         Ok((qself, path))
1663     }
1664
1665     /// Parses a path and optional type parameter bounds, depending on the
1666     /// mode. The `mode` parameter determines whether lifetimes, types, and/or
1667     /// bounds are permitted and whether `::` must precede type parameter
1668     /// groups.
1669     pub fn parse_path(&mut self, mode: PathParsingMode) -> PResult<'a, ast::Path> {
1670         // Check for a whole path...
1671         let found = match self.token {
1672             token::Interpolated(token::NtPath(_)) => Some(self.bump_and_get()),
1673             _ => None,
1674         };
1675         if let Some(token::Interpolated(token::NtPath(path))) = found {
1676             return Ok(*path);
1677         }
1678
1679         let lo = self.span.lo;
1680         let is_global = self.eat(&token::ModSep);
1681
1682         // Parse any number of segments and bound sets. A segment is an
1683         // identifier followed by an optional lifetime and a set of types.
1684         // A bound set is a set of type parameter bounds.
1685         let segments = match mode {
1686             LifetimeAndTypesWithoutColons => {
1687                 try!(self.parse_path_segments_without_colons())
1688             }
1689             LifetimeAndTypesWithColons => {
1690                 try!(self.parse_path_segments_with_colons())
1691             }
1692             NoTypesAllowed => {
1693                 try!(self.parse_path_segments_without_types())
1694             }
1695         };
1696
1697         // Assemble the span.
1698         let span = mk_sp(lo, self.last_span.hi);
1699
1700         // Assemble the result.
1701         Ok(ast::Path {
1702             span: span,
1703             global: is_global,
1704             segments: segments,
1705         })
1706     }
1707
1708     /// Examples:
1709     /// - `a::b<T,U>::c<V,W>`
1710     /// - `a::b<T,U>::c(V) -> W`
1711     /// - `a::b<T,U>::c(V)`
1712     pub fn parse_path_segments_without_colons(&mut self) -> PResult<'a, Vec<ast::PathSegment>> {
1713         let mut segments = Vec::new();
1714         loop {
1715             // First, parse an identifier.
1716             let identifier = try!(self.parse_ident_or_self_type());
1717
1718             // Parse types, optionally.
1719             let parameters = if self.eat_lt() {
1720                 let (lifetimes, types, bindings) = try!(self.parse_generic_values_after_lt());
1721
1722                 ast::PathParameters::AngleBracketed(ast::AngleBracketedParameterData {
1723                     lifetimes: lifetimes,
1724                     types: P::from_vec(types),
1725                     bindings: P::from_vec(bindings),
1726                 })
1727             } else if self.eat(&token::OpenDelim(token::Paren)) {
1728                 let lo = self.last_span.lo;
1729
1730                 let inputs = try!(self.parse_seq_to_end(
1731                     &token::CloseDelim(token::Paren),
1732                     seq_sep_trailing_allowed(token::Comma),
1733                     |p| p.parse_ty_sum()));
1734
1735                 let output_ty = if self.eat(&token::RArrow) {
1736                     Some(try!(self.parse_ty()))
1737                 } else {
1738                     None
1739                 };
1740
1741                 let hi = self.last_span.hi;
1742
1743                 ast::PathParameters::Parenthesized(ast::ParenthesizedParameterData {
1744                     span: mk_sp(lo, hi),
1745                     inputs: inputs,
1746                     output: output_ty,
1747                 })
1748             } else {
1749                 ast::PathParameters::none()
1750             };
1751
1752             // Assemble and push the result.
1753             segments.push(ast::PathSegment { identifier: identifier,
1754                                              parameters: parameters });
1755
1756             // Continue only if we see a `::`
1757             if !self.eat(&token::ModSep) {
1758                 return Ok(segments);
1759             }
1760         }
1761     }
1762
1763     /// Examples:
1764     /// - `a::b::<T,U>::c`
1765     pub fn parse_path_segments_with_colons(&mut self) -> PResult<'a, Vec<ast::PathSegment>> {
1766         let mut segments = Vec::new();
1767         loop {
1768             // First, parse an identifier.
1769             let identifier = try!(self.parse_ident_or_self_type());
1770
1771             // If we do not see a `::`, stop.
1772             if !self.eat(&token::ModSep) {
1773                 segments.push(ast::PathSegment {
1774                     identifier: identifier,
1775                     parameters: ast::PathParameters::none()
1776                 });
1777                 return Ok(segments);
1778             }
1779
1780             // Check for a type segment.
1781             if self.eat_lt() {
1782                 // Consumed `a::b::<`, go look for types
1783                 let (lifetimes, types, bindings) = try!(self.parse_generic_values_after_lt());
1784                 let parameters = ast::AngleBracketedParameterData {
1785                     lifetimes: lifetimes,
1786                     types: P::from_vec(types),
1787                     bindings: P::from_vec(bindings),
1788                 };
1789                 segments.push(ast::PathSegment {
1790                     identifier: identifier,
1791                     parameters: ast::PathParameters::AngleBracketed(parameters),
1792                 });
1793
1794                 // Consumed `a::b::<T,U>`, check for `::` before proceeding
1795                 if !self.eat(&token::ModSep) {
1796                     return Ok(segments);
1797                 }
1798             } else {
1799                 // Consumed `a::`, go look for `b`
1800                 segments.push(ast::PathSegment {
1801                     identifier: identifier,
1802                     parameters: ast::PathParameters::none(),
1803                 });
1804             }
1805         }
1806     }
1807
1808
1809     /// Examples:
1810     /// - `a::b::c`
1811     pub fn parse_path_segments_without_types(&mut self) -> PResult<'a, Vec<ast::PathSegment>> {
1812         let mut segments = Vec::new();
1813         loop {
1814             // First, parse an identifier.
1815             let identifier = try!(self.parse_ident_or_self_type());
1816
1817             // Assemble and push the result.
1818             segments.push(ast::PathSegment {
1819                 identifier: identifier,
1820                 parameters: ast::PathParameters::none()
1821             });
1822
1823             // If we do not see a `::`, stop.
1824             if !self.eat(&token::ModSep) {
1825                 return Ok(segments);
1826             }
1827         }
1828     }
1829
1830     /// parses 0 or 1 lifetime
1831     pub fn parse_opt_lifetime(&mut self) -> PResult<'a, Option<ast::Lifetime>> {
1832         match self.token {
1833             token::Lifetime(..) => {
1834                 Ok(Some(try!(self.parse_lifetime())))
1835             }
1836             _ => {
1837                 Ok(None)
1838             }
1839         }
1840     }
1841
1842     /// Parses a single lifetime
1843     /// Matches lifetime = LIFETIME
1844     pub fn parse_lifetime(&mut self) -> PResult<'a, ast::Lifetime> {
1845         match self.token {
1846             token::Lifetime(i) => {
1847                 let span = self.span;
1848                 self.bump();
1849                 return Ok(ast::Lifetime {
1850                     id: ast::DUMMY_NODE_ID,
1851                     span: span,
1852                     name: i.name
1853                 });
1854             }
1855             _ => {
1856                 return Err(self.fatal("expected a lifetime name"));
1857             }
1858         }
1859     }
1860
1861     /// Parses `lifetime_defs = [ lifetime_defs { ',' lifetime_defs } ]` where `lifetime_def  =
1862     /// lifetime [':' lifetimes]`
1863     pub fn parse_lifetime_defs(&mut self) -> PResult<'a, Vec<ast::LifetimeDef>> {
1864
1865         let mut res = Vec::new();
1866         loop {
1867             match self.token {
1868                 token::Lifetime(_) => {
1869                     let lifetime = try!(self.parse_lifetime());
1870                     let bounds =
1871                         if self.eat(&token::Colon) {
1872                             try!(self.parse_lifetimes(token::BinOp(token::Plus)))
1873                         } else {
1874                             Vec::new()
1875                         };
1876                     res.push(ast::LifetimeDef { lifetime: lifetime,
1877                                                 bounds: bounds });
1878                 }
1879
1880                 _ => {
1881                     return Ok(res);
1882                 }
1883             }
1884
1885             match self.token {
1886                 token::Comma => { self.bump();}
1887                 token::Gt => { return Ok(res); }
1888                 token::BinOp(token::Shr) => { return Ok(res); }
1889                 _ => {
1890                     let this_token_str = self.this_token_to_string();
1891                     let msg = format!("expected `,` or `>` after lifetime \
1892                                       name, found `{}`",
1893                                       this_token_str);
1894                     return Err(self.fatal(&msg[..]));
1895                 }
1896             }
1897         }
1898     }
1899
1900     /// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes ) actually, it matches the empty
1901     /// one too, but putting that in there messes up the grammar....
1902     ///
1903     /// Parses zero or more comma separated lifetimes. Expects each lifetime to be followed by
1904     /// either a comma or `>`.  Used when parsing type parameter lists, where we expect something
1905     /// like `<'a, 'b, T>`.
1906     pub fn parse_lifetimes(&mut self, sep: token::Token) -> PResult<'a, Vec<ast::Lifetime>> {
1907
1908         let mut res = Vec::new();
1909         loop {
1910             match self.token {
1911                 token::Lifetime(_) => {
1912                     res.push(try!(self.parse_lifetime()));
1913                 }
1914                 _ => {
1915                     return Ok(res);
1916                 }
1917             }
1918
1919             if self.token != sep {
1920                 return Ok(res);
1921             }
1922
1923             self.bump();
1924         }
1925     }
1926
1927     /// Parse mutability declaration (mut/const/imm)
1928     pub fn parse_mutability(&mut self) -> PResult<'a, Mutability> {
1929         if self.eat_keyword(keywords::Mut) {
1930             Ok(MutMutable)
1931         } else {
1932             Ok(MutImmutable)
1933         }
1934     }
1935
1936     /// Parse ident COLON expr
1937     pub fn parse_field(&mut self) -> PResult<'a, Field> {
1938         let lo = self.span.lo;
1939         let i = try!(self.parse_ident());
1940         let hi = self.last_span.hi;
1941         try!(self.expect(&token::Colon));
1942         let e = try!(self.parse_expr());
1943         Ok(ast::Field {
1944             ident: spanned(lo, hi, i),
1945             span: mk_sp(lo, e.span.hi),
1946             expr: e,
1947         })
1948     }
1949
1950     pub fn mk_expr(&mut self, lo: BytePos, hi: BytePos,
1951                    node: Expr_, attrs: ThinAttributes) -> P<Expr> {
1952         P(Expr {
1953             id: ast::DUMMY_NODE_ID,
1954             node: node,
1955             span: mk_sp(lo, hi),
1956             attrs: attrs,
1957         })
1958     }
1959
1960     pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::Expr_ {
1961         ExprUnary(unop, expr)
1962     }
1963
1964     pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
1965         ExprBinary(binop, lhs, rhs)
1966     }
1967
1968     pub fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::Expr_ {
1969         ExprCall(f, args)
1970     }
1971
1972     fn mk_method_call(&mut self,
1973                       ident: ast::SpannedIdent,
1974                       tps: Vec<P<Ty>>,
1975                       args: Vec<P<Expr>>)
1976                       -> ast::Expr_ {
1977         ExprMethodCall(ident, tps, args)
1978     }
1979
1980     pub fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::Expr_ {
1981         ExprIndex(expr, idx)
1982     }
1983
1984     pub fn mk_range(&mut self,
1985                     start: Option<P<Expr>>,
1986                     end: Option<P<Expr>>)
1987                     -> ast::Expr_ {
1988         ExprRange(start, end)
1989     }
1990
1991     pub fn mk_field(&mut self, expr: P<Expr>, ident: ast::SpannedIdent) -> ast::Expr_ {
1992         ExprField(expr, ident)
1993     }
1994
1995     pub fn mk_tup_field(&mut self, expr: P<Expr>, idx: codemap::Spanned<usize>) -> ast::Expr_ {
1996         ExprTupField(expr, idx)
1997     }
1998
1999     pub fn mk_assign_op(&mut self, binop: ast::BinOp,
2000                         lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
2001         ExprAssignOp(binop, lhs, rhs)
2002     }
2003
2004     pub fn mk_mac_expr(&mut self, lo: BytePos, hi: BytePos,
2005                        m: Mac_, attrs: ThinAttributes) -> P<Expr> {
2006         P(Expr {
2007             id: ast::DUMMY_NODE_ID,
2008             node: ExprMac(codemap::Spanned {node: m, span: mk_sp(lo, hi)}),
2009             span: mk_sp(lo, hi),
2010             attrs: attrs,
2011         })
2012     }
2013
2014     pub fn mk_lit_u32(&mut self, i: u32, attrs: ThinAttributes) -> P<Expr> {
2015         let span = &self.span;
2016         let lv_lit = P(codemap::Spanned {
2017             node: LitInt(i as u64, ast::UnsignedIntLit(TyU32)),
2018             span: *span
2019         });
2020
2021         P(Expr {
2022             id: ast::DUMMY_NODE_ID,
2023             node: ExprLit(lv_lit),
2024             span: *span,
2025             attrs: attrs,
2026         })
2027     }
2028
2029     fn expect_open_delim(&mut self) -> PResult<'a, token::DelimToken> {
2030         self.expected_tokens.push(TokenType::Token(token::Gt));
2031         match self.token {
2032             token::OpenDelim(delim) => {
2033                 self.bump();
2034                 Ok(delim)
2035             },
2036             _ => Err(self.fatal("expected open delimiter")),
2037         }
2038     }
2039
2040     /// At the bottom (top?) of the precedence hierarchy,
2041     /// parse things like parenthesized exprs,
2042     /// macros, return, etc.
2043     ///
2044     /// NB: This does not parse outer attributes,
2045     ///     and is private because it only works
2046     ///     correctly if called from parse_dot_or_call_expr().
2047     fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
2048         maybe_whole_expr!(self);
2049
2050         // Outer attributes are already parsed and will be
2051         // added to the return value after the fact.
2052         //
2053         // Therefore, prevent sub-parser from parsing
2054         // attributes by giving them a empty "already parsed" list.
2055         let mut attrs = None;
2056
2057         let lo = self.span.lo;
2058         let mut hi = self.span.hi;
2059
2060         let ex: Expr_;
2061
2062         // Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr().
2063         match self.token {
2064             token::OpenDelim(token::Paren) => {
2065                 self.bump();
2066
2067                 let attrs = try!(self.parse_inner_attributes())
2068                     .into_thin_attrs()
2069                     .prepend(attrs);
2070
2071                 // (e) is parenthesized e
2072                 // (e,) is a tuple with only one field, e
2073                 let mut es = vec![];
2074                 let mut trailing_comma = false;
2075                 while self.token != token::CloseDelim(token::Paren) {
2076                     es.push(try!(self.parse_expr()));
2077                     try!(self.commit_expr(&**es.last().unwrap(), &[],
2078                                      &[token::Comma, token::CloseDelim(token::Paren)]));
2079                     if self.check(&token::Comma) {
2080                         trailing_comma = true;
2081
2082                         self.bump();
2083                     } else {
2084                         trailing_comma = false;
2085                         break;
2086                     }
2087                 }
2088                 self.bump();
2089
2090                 hi = self.last_span.hi;
2091                 return if es.len() == 1 && !trailing_comma {
2092                     Ok(self.mk_expr(lo, hi, ExprParen(es.into_iter().nth(0).unwrap()), attrs))
2093                 } else {
2094                     Ok(self.mk_expr(lo, hi, ExprTup(es), attrs))
2095                 }
2096             },
2097             token::OpenDelim(token::Brace) => {
2098                 return self.parse_block_expr(lo, DefaultBlock, attrs);
2099             },
2100             token::BinOp(token::Or) |  token::OrOr => {
2101                 let lo = self.span.lo;
2102                 return self.parse_lambda_expr(lo, CaptureByRef, attrs);
2103             },
2104             token::Ident(id @ ast::Ident {
2105                             name: token::SELF_KEYWORD_NAME,
2106                             ctxt: _
2107                          }, token::Plain) => {
2108                 self.bump();
2109                 let path = ast_util::ident_to_path(mk_sp(lo, hi), id);
2110                 ex = ExprPath(None, path);
2111                 hi = self.last_span.hi;
2112             }
2113             token::OpenDelim(token::Bracket) => {
2114                 self.bump();
2115
2116                 let inner_attrs = try!(self.parse_inner_attributes())
2117                     .into_thin_attrs();
2118                 attrs.update(|attrs| attrs.append(inner_attrs));
2119
2120                 if self.check(&token::CloseDelim(token::Bracket)) {
2121                     // Empty vector.
2122                     self.bump();
2123                     ex = ExprVec(Vec::new());
2124                 } else {
2125                     // Nonempty vector.
2126                     let first_expr = try!(self.parse_expr());
2127                     if self.check(&token::Semi) {
2128                         // Repeating array syntax: [ 0; 512 ]
2129                         self.bump();
2130                         let count = try!(self.parse_expr());
2131                         try!(self.expect(&token::CloseDelim(token::Bracket)));
2132                         ex = ExprRepeat(first_expr, count);
2133                     } else if self.check(&token::Comma) {
2134                         // Vector with two or more elements.
2135                         self.bump();
2136                         let remaining_exprs = try!(self.parse_seq_to_end(
2137                             &token::CloseDelim(token::Bracket),
2138                             seq_sep_trailing_allowed(token::Comma),
2139                             |p| Ok(try!(p.parse_expr()))
2140                                 ));
2141                         let mut exprs = vec!(first_expr);
2142                         exprs.extend(remaining_exprs);
2143                         ex = ExprVec(exprs);
2144                     } else {
2145                         // Vector with one element.
2146                         try!(self.expect(&token::CloseDelim(token::Bracket)));
2147                         ex = ExprVec(vec!(first_expr));
2148                     }
2149                 }
2150                 hi = self.last_span.hi;
2151             }
2152             _ => {
2153                 if self.eat_lt() {
2154                     let (qself, path) =
2155                         try!(self.parse_qualified_path(LifetimeAndTypesWithColons));
2156                     hi = path.span.hi;
2157                     return Ok(self.mk_expr(lo, hi, ExprPath(Some(qself), path), attrs));
2158                 }
2159                 if self.eat_keyword(keywords::Move) {
2160                     let lo = self.last_span.lo;
2161                     return self.parse_lambda_expr(lo, CaptureByValue, attrs);
2162                 }
2163                 if self.eat_keyword(keywords::If) {
2164                     return self.parse_if_expr(attrs);
2165                 }
2166                 if self.eat_keyword(keywords::For) {
2167                     let lo = self.last_span.lo;
2168                     return self.parse_for_expr(None, lo, attrs);
2169                 }
2170                 if self.eat_keyword(keywords::While) {
2171                     let lo = self.last_span.lo;
2172                     return self.parse_while_expr(None, lo, attrs);
2173                 }
2174                 if self.token.is_lifetime() {
2175                     let lifetime = self.get_lifetime();
2176                     let lo = self.span.lo;
2177                     self.bump();
2178                     try!(self.expect(&token::Colon));
2179                     if self.eat_keyword(keywords::While) {
2180                         return self.parse_while_expr(Some(lifetime), lo, attrs)
2181                     }
2182                     if self.eat_keyword(keywords::For) {
2183                         return self.parse_for_expr(Some(lifetime), lo, attrs)
2184                     }
2185                     if self.eat_keyword(keywords::Loop) {
2186                         return self.parse_loop_expr(Some(lifetime), lo, attrs)
2187                     }
2188                     return Err(self.fatal("expected `while`, `for`, or `loop` after a label"))
2189                 }
2190                 if self.eat_keyword(keywords::Loop) {
2191                     let lo = self.last_span.lo;
2192                     return self.parse_loop_expr(None, lo, attrs);
2193                 }
2194                 if self.eat_keyword(keywords::Continue) {
2195                     let ex = if self.token.is_lifetime() {
2196                         let ex = ExprAgain(Some(Spanned{
2197                             node: self.get_lifetime(),
2198                             span: self.span
2199                         }));
2200                         self.bump();
2201                         ex
2202                     } else {
2203                         ExprAgain(None)
2204                     };
2205                     let hi = self.last_span.hi;
2206                     return Ok(self.mk_expr(lo, hi, ex, attrs));
2207                 }
2208                 if self.eat_keyword(keywords::Match) {
2209                     return self.parse_match_expr(attrs);
2210                 }
2211                 if self.eat_keyword(keywords::Unsafe) {
2212                     return self.parse_block_expr(
2213                         lo,
2214                         UnsafeBlock(ast::UserProvided),
2215                         attrs);
2216                 }
2217                 if self.eat_keyword(keywords::Return) {
2218                     if self.token.can_begin_expr() {
2219                         let e = try!(self.parse_expr());
2220                         hi = e.span.hi;
2221                         ex = ExprRet(Some(e));
2222                     } else {
2223                         ex = ExprRet(None);
2224                     }
2225                 } else if self.eat_keyword(keywords::Break) {
2226                     if self.token.is_lifetime() {
2227                         ex = ExprBreak(Some(Spanned {
2228                             node: self.get_lifetime(),
2229                             span: self.span
2230                         }));
2231                         self.bump();
2232                     } else {
2233                         ex = ExprBreak(None);
2234                     }
2235                     hi = self.last_span.hi;
2236                 } else if self.token.is_keyword(keywords::Let) {
2237                     // Catch this syntax error here, instead of in `check_strict_keywords`, so
2238                     // that we can explicitly mention that let is not to be used as an expression
2239                     let mut db = self.fatal("expected expression, found statement (`let`)");
2240                     db.note("variable declaration using `let` is a statement");
2241                     return Err(db);
2242                 } else if self.check(&token::ModSep) ||
2243                         self.token.is_ident() &&
2244                         !self.check_keyword(keywords::True) &&
2245                         !self.check_keyword(keywords::False) {
2246                     let pth =
2247                         try!(self.parse_path(LifetimeAndTypesWithColons));
2248
2249                     // `!`, as an operator, is prefix, so we know this isn't that
2250                     if self.check(&token::Not) {
2251                         // MACRO INVOCATION expression
2252                         self.bump();
2253
2254                         let delim = try!(self.expect_open_delim());
2255                         let tts = try!(self.parse_seq_to_end(
2256                             &token::CloseDelim(delim),
2257                             seq_sep_none(),
2258                             |p| p.parse_token_tree()));
2259                         let hi = self.last_span.hi;
2260
2261                         return Ok(self.mk_mac_expr(lo,
2262                                                    hi,
2263                                                    Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT },
2264                                                    attrs));
2265                     }
2266                     if self.check(&token::OpenDelim(token::Brace)) {
2267                         // This is a struct literal, unless we're prohibited
2268                         // from parsing struct literals here.
2269                         let prohibited = self.restrictions.contains(
2270                             Restrictions::RESTRICTION_NO_STRUCT_LITERAL
2271                         );
2272                         if !prohibited {
2273                             // It's a struct literal.
2274                             self.bump();
2275                             let mut fields = Vec::new();
2276                             let mut base = None;
2277
2278                             let attrs = attrs.append(
2279                                 try!(self.parse_inner_attributes())
2280                                     .into_thin_attrs());
2281
2282                             while self.token != token::CloseDelim(token::Brace) {
2283                                 if self.eat(&token::DotDot) {
2284                                     base = Some(try!(self.parse_expr()));
2285                                     break;
2286                                 }
2287
2288                                 fields.push(try!(self.parse_field()));
2289                                 try!(self.commit_expr(&*fields.last().unwrap().expr,
2290                                                  &[token::Comma],
2291                                                  &[token::CloseDelim(token::Brace)]));
2292                             }
2293
2294                             hi = self.span.hi;
2295                             try!(self.expect(&token::CloseDelim(token::Brace)));
2296                             ex = ExprStruct(pth, fields, base);
2297                             return Ok(self.mk_expr(lo, hi, ex, attrs));
2298                         }
2299                     }
2300
2301                     hi = pth.span.hi;
2302                     ex = ExprPath(None, pth);
2303                 } else {
2304                     // other literal expression
2305                     let lit = try!(self.parse_lit());
2306                     hi = lit.span.hi;
2307                     ex = ExprLit(P(lit));
2308                 }
2309             }
2310         }
2311
2312         return Ok(self.mk_expr(lo, hi, ex, attrs));
2313     }
2314
2315     fn parse_or_use_outer_attributes(&mut self,
2316                                      already_parsed_attrs: Option<ThinAttributes>)
2317                                      -> PResult<'a, ThinAttributes> {
2318         if let Some(attrs) = already_parsed_attrs {
2319             Ok(attrs)
2320         } else {
2321             self.parse_outer_attributes().map(|a| a.into_thin_attrs())
2322         }
2323     }
2324
2325     /// Parse a block or unsafe block
2326     pub fn parse_block_expr(&mut self, lo: BytePos, blk_mode: BlockCheckMode,
2327                             attrs: ThinAttributes)
2328                             -> PResult<'a, P<Expr>> {
2329
2330         let outer_attrs = attrs;
2331         try!(self.expect(&token::OpenDelim(token::Brace)));
2332
2333         let inner_attrs = try!(self.parse_inner_attributes()).into_thin_attrs();
2334         let attrs = outer_attrs.append(inner_attrs);
2335
2336         let blk = try!(self.parse_block_tail(lo, blk_mode));
2337         return Ok(self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk), attrs));
2338     }
2339
2340     /// parse a.b or a(13) or a[4] or just a
2341     pub fn parse_dot_or_call_expr(&mut self,
2342                                   already_parsed_attrs: Option<ThinAttributes>)
2343                                   -> PResult<'a, P<Expr>> {
2344         let attrs = try!(self.parse_or_use_outer_attributes(already_parsed_attrs));
2345
2346         let b = self.parse_bottom_expr();
2347         let (span, b) = try!(self.interpolated_or_expr_span(b));
2348         self.parse_dot_or_call_expr_with(b, span.lo, attrs)
2349     }
2350
2351     pub fn parse_dot_or_call_expr_with(&mut self,
2352                                        e0: P<Expr>,
2353                                        lo: BytePos,
2354                                        attrs: ThinAttributes)
2355                                        -> PResult<'a, P<Expr>> {
2356         // Stitch the list of outer attributes onto the return value.
2357         // A little bit ugly, but the best way given the current code
2358         // structure
2359         self.parse_dot_or_call_expr_with_(e0, lo)
2360         .map(|expr|
2361             expr.map(|mut expr| {
2362                 expr.attrs.update(|a| a.prepend(attrs));
2363                 match expr.node {
2364                     ExprIf(..) | ExprIfLet(..) => {
2365                         if !expr.attrs.as_attr_slice().is_empty() {
2366                             // Just point to the first attribute in there...
2367                             let span = expr.attrs.as_attr_slice()[0].span;
2368
2369                             self.span_err(span,
2370                                 "attributes are not yet allowed on `if` \
2371                                 expressions");
2372                         }
2373                     }
2374                     _ => {}
2375                 }
2376                 expr
2377             })
2378         )
2379     }
2380
2381     // Assuming we have just parsed `.foo` (i.e., a dot and an ident), continue
2382     // parsing into an expression.
2383     fn parse_dot_suffix(&mut self,
2384                         ident: Ident,
2385                         ident_span: Span,
2386                         self_value: P<Expr>,
2387                         lo: BytePos)
2388                         -> PResult<'a, P<Expr>> {
2389         let (_, tys, bindings) = if self.eat(&token::ModSep) {
2390             try!(self.expect_lt());
2391             try!(self.parse_generic_values_after_lt())
2392         } else {
2393             (Vec::new(), Vec::new(), Vec::new())
2394         };
2395
2396         if !bindings.is_empty() {
2397             let last_span = self.last_span;
2398             self.span_err(last_span, "type bindings are only permitted on trait paths");
2399         }
2400
2401         Ok(match self.token {
2402             // expr.f() method call.
2403             token::OpenDelim(token::Paren) => {
2404                 let mut es = try!(self.parse_unspanned_seq(
2405                     &token::OpenDelim(token::Paren),
2406                     &token::CloseDelim(token::Paren),
2407                     seq_sep_trailing_allowed(token::Comma),
2408                     |p| Ok(try!(p.parse_expr()))
2409                 ));
2410                 let hi = self.last_span.hi;
2411
2412                 es.insert(0, self_value);
2413                 let id = spanned(ident_span.lo, ident_span.hi, ident);
2414                 let nd = self.mk_method_call(id, tys, es);
2415                 self.mk_expr(lo, hi, nd, None)
2416             }
2417             // Field access.
2418             _ => {
2419                 if !tys.is_empty() {
2420                     let last_span = self.last_span;
2421                     self.span_err(last_span,
2422                                   "field expressions may not \
2423                                    have type parameters");
2424                 }
2425
2426                 let id = spanned(ident_span.lo, ident_span.hi, ident);
2427                 let field = self.mk_field(self_value, id);
2428                 self.mk_expr(lo, ident_span.hi, field, None)
2429             }
2430         })
2431     }
2432
2433     fn parse_dot_or_call_expr_with_(&mut self, e0: P<Expr>, lo: BytePos) -> PResult<'a, P<Expr>> {
2434         let mut e = e0;
2435         let mut hi;
2436         loop {
2437             // expr.f
2438             if self.eat(&token::Dot) {
2439                 match self.token {
2440                   token::Ident(i, _) => {
2441                     let dot_pos = self.last_span.hi;
2442                     hi = self.span.hi;
2443                     self.bump();
2444
2445                     e = try!(self.parse_dot_suffix(i, mk_sp(dot_pos, hi), e, lo));
2446                   }
2447                   token::Literal(token::Integer(n), suf) => {
2448                     let sp = self.span;
2449
2450                     // A tuple index may not have a suffix
2451                     self.expect_no_suffix(sp, "tuple index", suf);
2452
2453                     let dot = self.last_span.hi;
2454                     hi = self.span.hi;
2455                     self.bump();
2456
2457                     let index = n.as_str().parse::<usize>().ok();
2458                     match index {
2459                         Some(n) => {
2460                             let id = spanned(dot, hi, n);
2461                             let field = self.mk_tup_field(e, id);
2462                             e = self.mk_expr(lo, hi, field, None);
2463                         }
2464                         None => {
2465                             let last_span = self.last_span;
2466                             self.span_err(last_span, "invalid tuple or tuple struct index");
2467                         }
2468                     }
2469                   }
2470                   token::Literal(token::Float(n), _suf) => {
2471                     self.bump();
2472                     let last_span = self.last_span;
2473                     let fstr = n.as_str();
2474                     let mut err = self.diagnostic().struct_span_err(last_span,
2475                         &format!("unexpected token: `{}`", n.as_str()));
2476                     if fstr.chars().all(|x| "0123456789.".contains(x)) {
2477                         let float = match fstr.parse::<f64>().ok() {
2478                             Some(f) => f,
2479                             None => continue,
2480                         };
2481                         err.fileline_help(last_span,
2482                             &format!("try parenthesizing the first index; e.g., `(foo.{}){}`",
2483                                     float.trunc() as usize,
2484                                     format!(".{}", fstr.splitn(2, ".").last().unwrap())));
2485                     }
2486                     return Err(err);
2487
2488                   }
2489                   _ => {
2490                     // FIXME Could factor this out into non_fatal_unexpected or something.
2491                     let actual = self.this_token_to_string();
2492                     self.span_err(self.span, &format!("unexpected token: `{}`", actual));
2493
2494                     let dot_pos = self.last_span.hi;
2495                     e = try!(self.parse_dot_suffix(special_idents::invalid,
2496                                                    mk_sp(dot_pos, dot_pos),
2497                                                    e, lo));
2498                   }
2499                 }
2500                 continue;
2501             }
2502             if self.expr_is_complete(&*e) { break; }
2503             match self.token {
2504               // expr(...)
2505               token::OpenDelim(token::Paren) => {
2506                 let es = try!(self.parse_unspanned_seq(
2507                     &token::OpenDelim(token::Paren),
2508                     &token::CloseDelim(token::Paren),
2509                     seq_sep_trailing_allowed(token::Comma),
2510                     |p| Ok(try!(p.parse_expr()))
2511                 ));
2512                 hi = self.last_span.hi;
2513
2514                 let nd = self.mk_call(e, es);
2515                 e = self.mk_expr(lo, hi, nd, None);
2516               }
2517
2518               // expr[...]
2519               // Could be either an index expression or a slicing expression.
2520               token::OpenDelim(token::Bracket) => {
2521                 self.bump();
2522                 let ix = try!(self.parse_expr());
2523                 hi = self.span.hi;
2524                 try!(self.commit_expr_expecting(&*ix, token::CloseDelim(token::Bracket)));
2525                 let index = self.mk_index(e, ix);
2526                 e = self.mk_expr(lo, hi, index, None)
2527               }
2528               _ => return Ok(e)
2529             }
2530         }
2531         return Ok(e);
2532     }
2533
2534     // Parse unquoted tokens after a `$` in a token tree
2535     fn parse_unquoted(&mut self) -> PResult<'a, TokenTree> {
2536         let mut sp = self.span;
2537         let (name, namep) = match self.token {
2538             token::Dollar => {
2539                 self.bump();
2540
2541                 if self.token == token::OpenDelim(token::Paren) {
2542                     let Spanned { node: seq, span: seq_span } = try!(self.parse_seq(
2543                         &token::OpenDelim(token::Paren),
2544                         &token::CloseDelim(token::Paren),
2545                         seq_sep_none(),
2546                         |p| p.parse_token_tree()
2547                     ));
2548                     let (sep, repeat) = try!(self.parse_sep_and_kleene_op());
2549                     let name_num = macro_parser::count_names(&seq);
2550                     return Ok(TokenTree::Sequence(mk_sp(sp.lo, seq_span.hi),
2551                                       Rc::new(SequenceRepetition {
2552                                           tts: seq,
2553                                           separator: sep,
2554                                           op: repeat,
2555                                           num_captures: name_num
2556                                       })));
2557                 } else if self.token.is_keyword_allow_following_colon(keywords::Crate) {
2558                     self.bump();
2559                     return Ok(TokenTree::Token(sp, SpecialVarNt(SpecialMacroVar::CrateMacroVar)));
2560                 } else {
2561                     sp = mk_sp(sp.lo, self.span.hi);
2562                     let namep = match self.token { token::Ident(_, p) => p, _ => token::Plain };
2563                     let name = try!(self.parse_ident());
2564                     (name, namep)
2565                 }
2566             }
2567             token::SubstNt(name, namep) => {
2568                 self.bump();
2569                 (name, namep)
2570             }
2571             _ => unreachable!()
2572         };
2573         // continue by trying to parse the `:ident` after `$name`
2574         if self.token == token::Colon && self.look_ahead(1, |t| t.is_ident() &&
2575                                                                 !t.is_strict_keyword() &&
2576                                                                 !t.is_reserved_keyword()) {
2577             self.bump();
2578             sp = mk_sp(sp.lo, self.span.hi);
2579             let kindp = match self.token { token::Ident(_, p) => p, _ => token::Plain };
2580             let nt_kind = try!(self.parse_ident());
2581             Ok(TokenTree::Token(sp, MatchNt(name, nt_kind, namep, kindp)))
2582         } else {
2583             Ok(TokenTree::Token(sp, SubstNt(name, namep)))
2584         }
2585     }
2586
2587     pub fn check_unknown_macro_variable(&mut self) {
2588         if self.quote_depth == 0 {
2589             match self.token {
2590                 token::SubstNt(name, _) =>
2591                     self.fatal(&format!("unknown macro variable `{}`", name)).emit(),
2592                 _ => {}
2593             }
2594         }
2595     }
2596
2597     /// Parse an optional separator followed by a Kleene-style
2598     /// repetition token (+ or *).
2599     pub fn parse_sep_and_kleene_op(&mut self)
2600                                    -> PResult<'a, (Option<token::Token>, ast::KleeneOp)> {
2601         fn parse_kleene_op<'a>(parser: &mut Parser<'a>) -> PResult<'a,  Option<ast::KleeneOp>> {
2602             match parser.token {
2603                 token::BinOp(token::Star) => {
2604                     parser.bump();
2605                     Ok(Some(ast::ZeroOrMore))
2606                 },
2607                 token::BinOp(token::Plus) => {
2608                     parser.bump();
2609                     Ok(Some(ast::OneOrMore))
2610                 },
2611                 _ => Ok(None)
2612             }
2613         };
2614
2615         match try!(parse_kleene_op(self)) {
2616             Some(kleene_op) => return Ok((None, kleene_op)),
2617             None => {}
2618         }
2619
2620         let separator = self.bump_and_get();
2621         match try!(parse_kleene_op(self)) {
2622             Some(zerok) => Ok((Some(separator), zerok)),
2623             None => return Err(self.fatal("expected `*` or `+`"))
2624         }
2625     }
2626
2627     /// parse a single token tree from the input.
2628     pub fn parse_token_tree(&mut self) -> PResult<'a, TokenTree> {
2629         // FIXME #6994: currently, this is too eager. It
2630         // parses token trees but also identifies TokenType::Sequence's
2631         // and token::SubstNt's; it's too early to know yet
2632         // whether something will be a nonterminal or a seq
2633         // yet.
2634         maybe_whole!(deref self, NtTT);
2635
2636         // this is the fall-through for the 'match' below.
2637         // invariants: the current token is not a left-delimiter,
2638         // not an EOF, and not the desired right-delimiter (if
2639         // it were, parse_seq_to_before_end would have prevented
2640         // reaching this point.
2641         fn parse_non_delim_tt_tok<'b>(p: &mut Parser<'b>) -> PResult<'b,  TokenTree> {
2642             maybe_whole!(deref p, NtTT);
2643             match p.token {
2644                 token::CloseDelim(_) => {
2645                     let token_str = p.this_token_to_string();
2646                     let mut err = p.fatal(
2647                         &format!("incorrect close delimiter: `{}`", token_str));
2648                     // This is a conservative error: only report the last unclosed delimiter. The
2649                     // previous unclosed delimiters could actually be closed! The parser just hasn't
2650                     // gotten to them yet.
2651                     if let Some(&sp) = p.open_braces.last() {
2652                         err.span_note(sp, "unclosed delimiter");
2653                     };
2654                     Err(err)
2655                 },
2656                 /* we ought to allow different depths of unquotation */
2657                 token::Dollar | token::SubstNt(..) if p.quote_depth > 0 => {
2658                     p.parse_unquoted()
2659                 }
2660                 _ => {
2661                     Ok(TokenTree::Token(p.span, p.bump_and_get()))
2662                 }
2663             }
2664         }
2665
2666         match self.token {
2667             token::Eof => {
2668                 let open_braces = self.open_braces.clone();
2669                 let mut err: DiagnosticBuilder<'a> =
2670                     self.fatal("this file contains an un-closed delimiter");
2671                 for sp in &open_braces {
2672                     err.span_help(*sp, "did you mean to close this delimiter?");
2673                 }
2674                 return Err(err);
2675             },
2676             token::OpenDelim(delim) => {
2677                 // The span for beginning of the delimited section
2678                 let pre_span = self.span;
2679
2680                 // Parse the open delimiter.
2681                 self.open_braces.push(self.span);
2682                 let open_span = self.span;
2683                 self.bump();
2684
2685                 // Parse the token trees within the delimiters
2686                 let tts = try!(self.parse_seq_to_before_end(
2687                     &token::CloseDelim(delim),
2688                     seq_sep_none(),
2689                     |p| p.parse_token_tree()
2690                 ));
2691
2692                 // Parse the close delimiter.
2693                 let close_span = self.span;
2694                 self.bump();
2695                 self.open_braces.pop().unwrap();
2696
2697                 // Expand to cover the entire delimited token tree
2698                 let span = Span { hi: close_span.hi, ..pre_span };
2699
2700                 Ok(TokenTree::Delimited(span, Rc::new(Delimited {
2701                     delim: delim,
2702                     open_span: open_span,
2703                     tts: tts,
2704                     close_span: close_span,
2705                 })))
2706             },
2707             _ => parse_non_delim_tt_tok(self),
2708         }
2709     }
2710
2711     // parse a stream of tokens into a list of TokenTree's,
2712     // up to EOF.
2713     pub fn parse_all_token_trees(&mut self) -> PResult<'a, Vec<TokenTree>> {
2714         let mut tts = Vec::new();
2715         while self.token != token::Eof {
2716             tts.push(try!(self.parse_token_tree()));
2717         }
2718         Ok(tts)
2719     }
2720
2721     /// Parse a prefix-unary-operator expr
2722     pub fn parse_prefix_expr(&mut self,
2723                              already_parsed_attrs: Option<ThinAttributes>)
2724                              -> PResult<'a, P<Expr>> {
2725         let attrs = try!(self.parse_or_use_outer_attributes(already_parsed_attrs));
2726         let lo = self.span.lo;
2727         let hi;
2728         // Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr()
2729         let ex = match self.token {
2730             token::Not => {
2731                 self.bump();
2732                 let e = self.parse_prefix_expr(None);
2733                 let (span, e) = try!(self.interpolated_or_expr_span(e));
2734                 hi = span.hi;
2735                 self.mk_unary(UnNot, e)
2736             }
2737             token::BinOp(token::Minus) => {
2738                 self.bump();
2739                 let e = self.parse_prefix_expr(None);
2740                 let (span, e) = try!(self.interpolated_or_expr_span(e));
2741                 hi = span.hi;
2742                 self.mk_unary(UnNeg, e)
2743             }
2744             token::BinOp(token::Star) => {
2745                 self.bump();
2746                 let e = self.parse_prefix_expr(None);
2747                 let (span, e) = try!(self.interpolated_or_expr_span(e));
2748                 hi = span.hi;
2749                 self.mk_unary(UnDeref, e)
2750             }
2751             token::BinOp(token::And) | token::AndAnd => {
2752                 try!(self.expect_and());
2753                 let m = try!(self.parse_mutability());
2754                 let e = self.parse_prefix_expr(None);
2755                 let (span, e) = try!(self.interpolated_or_expr_span(e));
2756                 hi = span.hi;
2757                 ExprAddrOf(m, e)
2758             }
2759             token::Ident(..) if self.token.is_keyword(keywords::In) => {
2760                 self.bump();
2761                 let place = try!(self.parse_expr_res(
2762                     Restrictions::RESTRICTION_NO_STRUCT_LITERAL,
2763                     None,
2764                 ));
2765                 let blk = try!(self.parse_block());
2766                 let span = blk.span;
2767                 hi = span.hi;
2768                 let blk_expr = self.mk_expr(span.lo, span.hi, ExprBlock(blk),
2769                                             None);
2770                 ExprInPlace(place, blk_expr)
2771             }
2772             token::Ident(..) if self.token.is_keyword(keywords::Box) => {
2773                 self.bump();
2774                 let e = self.parse_prefix_expr(None);
2775                 let (span, e) = try!(self.interpolated_or_expr_span(e));
2776                 hi = span.hi;
2777                 ExprBox(e)
2778             }
2779             _ => return self.parse_dot_or_call_expr(Some(attrs))
2780         };
2781         return Ok(self.mk_expr(lo, hi, ex, attrs));
2782     }
2783
2784     /// Parse an associative expression
2785     ///
2786     /// This parses an expression accounting for associativity and precedence of the operators in
2787     /// the expression.
2788     pub fn parse_assoc_expr(&mut self,
2789                             already_parsed_attrs: Option<ThinAttributes>)
2790                             -> PResult<'a, P<Expr>> {
2791         self.parse_assoc_expr_with(0, already_parsed_attrs.into())
2792     }
2793
2794     /// Parse an associative expression with operators of at least `min_prec` precedence
2795     pub fn parse_assoc_expr_with(&mut self,
2796                                  min_prec: usize,
2797                                  lhs: LhsExpr)
2798                                  -> PResult<'a, P<Expr>> {
2799         let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
2800             expr
2801         } else {
2802             let attrs = match lhs {
2803                 LhsExpr::AttributesParsed(attrs) => Some(attrs),
2804                 _ => None,
2805             };
2806             if self.token == token::DotDot {
2807                 return self.parse_prefix_range_expr(attrs);
2808             } else {
2809                 try!(self.parse_prefix_expr(attrs))
2810             }
2811         };
2812
2813
2814         if self.expr_is_complete(&*lhs) {
2815             // Semi-statement forms are odd. See https://github.com/rust-lang/rust/issues/29071
2816             return Ok(lhs);
2817         }
2818         self.expected_tokens.push(TokenType::Operator);
2819         while let Some(op) = AssocOp::from_token(&self.token) {
2820
2821             let lhs_span = if self.last_token_interpolated {
2822                 self.last_span
2823             } else {
2824                 lhs.span
2825             };
2826
2827             let cur_op_span = self.span;
2828             let restrictions = if op.is_assign_like() {
2829                 self.restrictions & Restrictions::RESTRICTION_NO_STRUCT_LITERAL
2830             } else {
2831                 self.restrictions
2832             };
2833             if op.precedence() < min_prec {
2834                 break;
2835             }
2836             self.bump();
2837             if op.is_comparison() {
2838                 self.check_no_chained_comparison(&*lhs, &op);
2839             }
2840             // Special cases:
2841             if op == AssocOp::As {
2842                 let rhs = try!(self.parse_ty());
2843                 lhs = self.mk_expr(lhs_span.lo, rhs.span.hi,
2844                                    ExprCast(lhs, rhs), None);
2845                 continue
2846             } else if op == AssocOp::Colon {
2847                 let rhs = try!(self.parse_ty());
2848                 lhs = self.mk_expr(lhs_span.lo, rhs.span.hi,
2849                                    ExprType(lhs, rhs), None);
2850                 continue
2851             } else if op == AssocOp::DotDot {
2852                     // If we didn’t have to handle `x..`, it would be pretty easy to generalise
2853                     // it to the Fixity::None code.
2854                     //
2855                     // We have 2 alternatives here: `x..y` and `x..` The other two variants are
2856                     // handled with `parse_prefix_range_expr` call above.
2857                     let rhs = if self.is_at_start_of_range_notation_rhs() {
2858                         let rhs = self.parse_assoc_expr_with(op.precedence() + 1,
2859                                                              LhsExpr::NotYetParsed);
2860                         match rhs {
2861                             Ok(e) => Some(e),
2862                             Err(mut e) => {
2863                                 e.cancel();
2864                                 None
2865                             }
2866                         }
2867                     } else {
2868                         None
2869                     };
2870                     let (lhs_span, rhs_span) = (lhs_span, if let Some(ref x) = rhs {
2871                         x.span
2872                     } else {
2873                         cur_op_span
2874                     });
2875                     let r = self.mk_range(Some(lhs), rhs);
2876                     lhs = self.mk_expr(lhs_span.lo, rhs_span.hi, r, None);
2877                     break
2878             }
2879
2880             let rhs = try!(match op.fixity() {
2881                 Fixity::Right => self.with_res(
2882                     restrictions - Restrictions::RESTRICTION_STMT_EXPR,
2883                     |this| {
2884                         this.parse_assoc_expr_with(op.precedence(),
2885                             LhsExpr::NotYetParsed)
2886                 }),
2887                 Fixity::Left => self.with_res(
2888                     restrictions - Restrictions::RESTRICTION_STMT_EXPR,
2889                     |this| {
2890                         this.parse_assoc_expr_with(op.precedence() + 1,
2891                             LhsExpr::NotYetParsed)
2892                 }),
2893                 // We currently have no non-associative operators that are not handled above by
2894                 // the special cases. The code is here only for future convenience.
2895                 Fixity::None => self.with_res(
2896                     restrictions - Restrictions::RESTRICTION_STMT_EXPR,
2897                     |this| {
2898                         this.parse_assoc_expr_with(op.precedence() + 1,
2899                             LhsExpr::NotYetParsed)
2900                 }),
2901             });
2902
2903             lhs = match op {
2904                 AssocOp::Add | AssocOp::Subtract | AssocOp::Multiply | AssocOp::Divide |
2905                 AssocOp::Modulus | AssocOp::LAnd | AssocOp::LOr | AssocOp::BitXor |
2906                 AssocOp::BitAnd | AssocOp::BitOr | AssocOp::ShiftLeft | AssocOp::ShiftRight |
2907                 AssocOp::Equal | AssocOp::Less | AssocOp::LessEqual | AssocOp::NotEqual |
2908                 AssocOp::Greater | AssocOp::GreaterEqual => {
2909                     let ast_op = op.to_ast_binop().unwrap();
2910                     let (lhs_span, rhs_span) = (lhs_span, rhs.span);
2911                     let binary = self.mk_binary(codemap::respan(cur_op_span, ast_op), lhs, rhs);
2912                     self.mk_expr(lhs_span.lo, rhs_span.hi, binary, None)
2913                 }
2914                 AssocOp::Assign =>
2915                     self.mk_expr(lhs_span.lo, rhs.span.hi, ExprAssign(lhs, rhs), None),
2916                 AssocOp::Inplace =>
2917                     self.mk_expr(lhs_span.lo, rhs.span.hi, ExprInPlace(lhs, rhs), None),
2918                 AssocOp::AssignOp(k) => {
2919                     let aop = match k {
2920                         token::Plus =>    BiAdd,
2921                         token::Minus =>   BiSub,
2922                         token::Star =>    BiMul,
2923                         token::Slash =>   BiDiv,
2924                         token::Percent => BiRem,
2925                         token::Caret =>   BiBitXor,
2926                         token::And =>     BiBitAnd,
2927                         token::Or =>      BiBitOr,
2928                         token::Shl =>     BiShl,
2929                         token::Shr =>     BiShr
2930                     };
2931                     let (lhs_span, rhs_span) = (lhs_span, rhs.span);
2932                     let aopexpr = self.mk_assign_op(codemap::respan(cur_op_span, aop), lhs, rhs);
2933                     self.mk_expr(lhs_span.lo, rhs_span.hi, aopexpr, None)
2934                 }
2935                 AssocOp::As | AssocOp::Colon | AssocOp::DotDot => {
2936                     self.bug("As, Colon or DotDot branch reached")
2937                 }
2938             };
2939
2940             if op.fixity() == Fixity::None { break }
2941         }
2942         Ok(lhs)
2943     }
2944
2945     /// Produce an error if comparison operators are chained (RFC #558).
2946     /// We only need to check lhs, not rhs, because all comparison ops
2947     /// have same precedence and are left-associative
2948     fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: &AssocOp) {
2949         debug_assert!(outer_op.is_comparison());
2950         match lhs.node {
2951             ExprBinary(op, _, _) if op.node.is_comparison() => {
2952                 // respan to include both operators
2953                 let op_span = mk_sp(op.span.lo, self.span.hi);
2954                 let mut err = self.diagnostic().struct_span_err(op_span,
2955                     "chained comparison operators require parentheses");
2956                 if op.node == BiLt && *outer_op == AssocOp::Greater {
2957                     err.fileline_help(op_span,
2958                         "use `::<...>` instead of `<...>` if you meant to specify type arguments");
2959                 }
2960                 err.emit();
2961             }
2962             _ => {}
2963         }
2964     }
2965
2966     /// Parse prefix-forms of range notation: `..expr` and `..`
2967     fn parse_prefix_range_expr(&mut self,
2968                                already_parsed_attrs: Option<ThinAttributes>)
2969                                -> PResult<'a, P<Expr>> {
2970         debug_assert!(self.token == token::DotDot);
2971         let attrs = try!(self.parse_or_use_outer_attributes(already_parsed_attrs));
2972         let lo = self.span.lo;
2973         let mut hi = self.span.hi;
2974         self.bump();
2975         let opt_end = if self.is_at_start_of_range_notation_rhs() {
2976             // RHS must be parsed with more associativity than DotDot.
2977             let next_prec = AssocOp::from_token(&token::DotDot).unwrap().precedence() + 1;
2978             Some(try!(self.parse_assoc_expr_with(next_prec,
2979                                                  LhsExpr::NotYetParsed)
2980             .map(|x|{
2981                 hi = x.span.hi;
2982                 x
2983             })))
2984          } else {
2985             None
2986         };
2987         let r = self.mk_range(None, opt_end);
2988         Ok(self.mk_expr(lo, hi, r, attrs))
2989     }
2990
2991     fn is_at_start_of_range_notation_rhs(&self) -> bool {
2992         if self.token.can_begin_expr() {
2993             // parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
2994             if self.token == token::OpenDelim(token::Brace) {
2995                 return !self.restrictions.contains(Restrictions::RESTRICTION_NO_STRUCT_LITERAL);
2996             }
2997             true
2998         } else {
2999             false
3000         }
3001     }
3002
3003     /// Parse an 'if' or 'if let' expression ('if' token already eaten)
3004     pub fn parse_if_expr(&mut self, attrs: ThinAttributes) -> PResult<'a, P<Expr>> {
3005         if self.check_keyword(keywords::Let) {
3006             return self.parse_if_let_expr(attrs);
3007         }
3008         let lo = self.last_span.lo;
3009         let cond = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3010         let thn = try!(self.parse_block());
3011         let mut els: Option<P<Expr>> = None;
3012         let mut hi = thn.span.hi;
3013         if self.eat_keyword(keywords::Else) {
3014             let elexpr = try!(self.parse_else_expr());
3015             hi = elexpr.span.hi;
3016             els = Some(elexpr);
3017         }
3018         Ok(self.mk_expr(lo, hi, ExprIf(cond, thn, els), attrs))
3019     }
3020
3021     /// Parse an 'if let' expression ('if' token already eaten)
3022     pub fn parse_if_let_expr(&mut self, attrs: ThinAttributes)
3023                              -> PResult<'a, P<Expr>> {
3024         let lo = self.last_span.lo;
3025         try!(self.expect_keyword(keywords::Let));
3026         let pat = try!(self.parse_pat());
3027         try!(self.expect(&token::Eq));
3028         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3029         let thn = try!(self.parse_block());
3030         let (hi, els) = if self.eat_keyword(keywords::Else) {
3031             let expr = try!(self.parse_else_expr());
3032             (expr.span.hi, Some(expr))
3033         } else {
3034             (thn.span.hi, None)
3035         };
3036         Ok(self.mk_expr(lo, hi, ExprIfLet(pat, expr, thn, els), attrs))
3037     }
3038
3039     // `|args| expr`
3040     pub fn parse_lambda_expr(&mut self, lo: BytePos,
3041                              capture_clause: CaptureClause,
3042                              attrs: ThinAttributes)
3043                              -> PResult<'a, P<Expr>>
3044     {
3045         let decl = try!(self.parse_fn_block_decl());
3046         let body = match decl.output {
3047             DefaultReturn(_) => {
3048                 // If no explicit return type is given, parse any
3049                 // expr and wrap it up in a dummy block:
3050                 let body_expr = try!(self.parse_expr());
3051                 P(ast::Block {
3052                     id: ast::DUMMY_NODE_ID,
3053                     stmts: vec![],
3054                     span: body_expr.span,
3055                     expr: Some(body_expr),
3056                     rules: DefaultBlock,
3057                 })
3058             }
3059             _ => {
3060                 // If an explicit return type is given, require a
3061                 // block to appear (RFC 968).
3062                 try!(self.parse_block())
3063             }
3064         };
3065
3066         Ok(self.mk_expr(
3067             lo,
3068             body.span.hi,
3069             ExprClosure(capture_clause, decl, body), attrs))
3070     }
3071
3072     // `else` token already eaten
3073     pub fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
3074         if self.eat_keyword(keywords::If) {
3075             return self.parse_if_expr(None);
3076         } else {
3077             let blk = try!(self.parse_block());
3078             return Ok(self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk), None));
3079         }
3080     }
3081
3082     /// Parse a 'for' .. 'in' expression ('for' token already eaten)
3083     pub fn parse_for_expr(&mut self, opt_ident: Option<ast::Ident>,
3084                           span_lo: BytePos,
3085                           attrs: ThinAttributes) -> PResult<'a, P<Expr>> {
3086         // Parse: `for <src_pat> in <src_expr> <src_loop_block>`
3087
3088         let pat = try!(self.parse_pat());
3089         try!(self.expect_keyword(keywords::In));
3090         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3091         let (iattrs, loop_block) = try!(self.parse_inner_attrs_and_block());
3092         let attrs = attrs.append(iattrs.into_thin_attrs());
3093
3094         let hi = self.last_span.hi;
3095
3096         Ok(self.mk_expr(span_lo, hi,
3097                         ExprForLoop(pat, expr, loop_block, opt_ident),
3098                         attrs))
3099     }
3100
3101     /// Parse a 'while' or 'while let' expression ('while' token already eaten)
3102     pub fn parse_while_expr(&mut self, opt_ident: Option<ast::Ident>,
3103                             span_lo: BytePos,
3104                             attrs: ThinAttributes) -> PResult<'a, P<Expr>> {
3105         if self.token.is_keyword(keywords::Let) {
3106             return self.parse_while_let_expr(opt_ident, span_lo, attrs);
3107         }
3108         let cond = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3109         let (iattrs, body) = try!(self.parse_inner_attrs_and_block());
3110         let attrs = attrs.append(iattrs.into_thin_attrs());
3111         let hi = body.span.hi;
3112         return Ok(self.mk_expr(span_lo, hi, ExprWhile(cond, body, opt_ident),
3113                                attrs));
3114     }
3115
3116     /// Parse a 'while let' expression ('while' token already eaten)
3117     pub fn parse_while_let_expr(&mut self, opt_ident: Option<ast::Ident>,
3118                                 span_lo: BytePos,
3119                                 attrs: ThinAttributes) -> PResult<'a, P<Expr>> {
3120         try!(self.expect_keyword(keywords::Let));
3121         let pat = try!(self.parse_pat());
3122         try!(self.expect(&token::Eq));
3123         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3124         let (iattrs, body) = try!(self.parse_inner_attrs_and_block());
3125         let attrs = attrs.append(iattrs.into_thin_attrs());
3126         let hi = body.span.hi;
3127         return Ok(self.mk_expr(span_lo, hi, ExprWhileLet(pat, expr, body, opt_ident), attrs));
3128     }
3129
3130     // parse `loop {...}`, `loop` token already eaten
3131     pub fn parse_loop_expr(&mut self, opt_ident: Option<ast::Ident>,
3132                            span_lo: BytePos,
3133                            attrs: ThinAttributes) -> PResult<'a, P<Expr>> {
3134         let (iattrs, body) = try!(self.parse_inner_attrs_and_block());
3135         let attrs = attrs.append(iattrs.into_thin_attrs());
3136         let hi = body.span.hi;
3137         Ok(self.mk_expr(span_lo, hi, ExprLoop(body, opt_ident), attrs))
3138     }
3139
3140     // `match` token already eaten
3141     fn parse_match_expr(&mut self, attrs: ThinAttributes) -> PResult<'a, P<Expr>> {
3142         let match_span = self.last_span;
3143         let lo = self.last_span.lo;
3144         let discriminant = try!(self.parse_expr_res(
3145             Restrictions::RESTRICTION_NO_STRUCT_LITERAL, None));
3146         if let Err(mut e) = self.commit_expr_expecting(&*discriminant,
3147                                                        token::OpenDelim(token::Brace)) {
3148             if self.token == token::Token::Semi {
3149                 e.span_note(match_span, "did you mean to remove this `match` keyword?");
3150             }
3151             return Err(e)
3152         }
3153         let attrs = attrs.append(
3154             try!(self.parse_inner_attributes()).into_thin_attrs());
3155         let mut arms: Vec<Arm> = Vec::new();
3156         while self.token != token::CloseDelim(token::Brace) {
3157             arms.push(try!(self.parse_arm()));
3158         }
3159         let hi = self.span.hi;
3160         self.bump();
3161         return Ok(self.mk_expr(lo, hi, ExprMatch(discriminant, arms), attrs));
3162     }
3163
3164     pub fn parse_arm(&mut self) -> PResult<'a, Arm> {
3165         maybe_whole!(no_clone self, NtArm);
3166
3167         let attrs = try!(self.parse_outer_attributes());
3168         let pats = try!(self.parse_pats());
3169         let mut guard = None;
3170         if self.eat_keyword(keywords::If) {
3171             guard = Some(try!(self.parse_expr()));
3172         }
3173         try!(self.expect(&token::FatArrow));
3174         let expr = try!(self.parse_expr_res(Restrictions::RESTRICTION_STMT_EXPR, None));
3175
3176         let require_comma =
3177             !classify::expr_is_simple_block(&*expr)
3178             && self.token != token::CloseDelim(token::Brace);
3179
3180         if require_comma {
3181             try!(self.commit_expr(&*expr, &[token::Comma], &[token::CloseDelim(token::Brace)]));
3182         } else {
3183             self.eat(&token::Comma);
3184         }
3185
3186         Ok(ast::Arm {
3187             attrs: attrs,
3188             pats: pats,
3189             guard: guard,
3190             body: expr,
3191         })
3192     }
3193
3194     /// Parse an expression
3195     pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
3196         self.parse_expr_res(Restrictions::empty(), None)
3197     }
3198
3199     /// Evaluate the closure with restrictions in place.
3200     ///
3201     /// After the closure is evaluated, restrictions are reset.
3202     pub fn with_res<F>(&mut self, r: Restrictions, f: F) -> PResult<'a, P<Expr>>
3203         where F: FnOnce(&mut Self) -> PResult<'a,  P<Expr>>
3204     {
3205         let old = self.restrictions;
3206         self.restrictions = r;
3207         let r = f(self);
3208         self.restrictions = old;
3209         return r;
3210
3211     }
3212
3213     /// Parse an expression, subject to the given restrictions
3214     pub fn parse_expr_res(&mut self, r: Restrictions,
3215                           already_parsed_attrs: Option<ThinAttributes>)
3216                           -> PResult<'a, P<Expr>> {
3217         self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
3218     }
3219
3220     /// Parse the RHS of a local variable declaration (e.g. '= 14;')
3221     fn parse_initializer(&mut self) -> PResult<'a, Option<P<Expr>>> {
3222         if self.check(&token::Eq) {
3223             self.bump();
3224             Ok(Some(try!(self.parse_expr())))
3225         } else {
3226             Ok(None)
3227         }
3228     }
3229
3230     /// Parse patterns, separated by '|' s
3231     fn parse_pats(&mut self) -> PResult<'a, Vec<P<Pat>>> {
3232         let mut pats = Vec::new();
3233         loop {
3234             pats.push(try!(self.parse_pat()));
3235             if self.check(&token::BinOp(token::Or)) { self.bump();}
3236             else { return Ok(pats); }
3237         };
3238     }
3239
3240     fn parse_pat_tuple_elements(&mut self) -> PResult<'a, Vec<P<Pat>>> {
3241         let mut fields = vec![];
3242         if !self.check(&token::CloseDelim(token::Paren)) {
3243             fields.push(try!(self.parse_pat()));
3244             if self.look_ahead(1, |t| *t != token::CloseDelim(token::Paren)) {
3245                 while self.eat(&token::Comma) &&
3246                       !self.check(&token::CloseDelim(token::Paren)) {
3247                     fields.push(try!(self.parse_pat()));
3248                 }
3249             }
3250             if fields.len() == 1 {
3251                 try!(self.expect(&token::Comma));
3252             }
3253         }
3254         Ok(fields)
3255     }
3256
3257     fn parse_pat_vec_elements(
3258         &mut self,
3259     ) -> PResult<'a, (Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>)> {
3260         let mut before = Vec::new();
3261         let mut slice = None;
3262         let mut after = Vec::new();
3263         let mut first = true;
3264         let mut before_slice = true;
3265
3266         while self.token != token::CloseDelim(token::Bracket) {
3267             if first {
3268                 first = false;
3269             } else {
3270                 try!(self.expect(&token::Comma));
3271
3272                 if self.token == token::CloseDelim(token::Bracket)
3273                         && (before_slice || !after.is_empty()) {
3274                     break
3275                 }
3276             }
3277
3278             if before_slice {
3279                 if self.check(&token::DotDot) {
3280                     self.bump();
3281
3282                     if self.check(&token::Comma) ||
3283                             self.check(&token::CloseDelim(token::Bracket)) {
3284                         slice = Some(P(ast::Pat {
3285                             id: ast::DUMMY_NODE_ID,
3286                             node: PatWild,
3287                             span: self.span,
3288                         }));
3289                         before_slice = false;
3290                     }
3291                     continue
3292                 }
3293             }
3294
3295             let subpat = try!(self.parse_pat());
3296             if before_slice && self.check(&token::DotDot) {
3297                 self.bump();
3298                 slice = Some(subpat);
3299                 before_slice = false;
3300             } else if before_slice {
3301                 before.push(subpat);
3302             } else {
3303                 after.push(subpat);
3304             }
3305         }
3306
3307         Ok((before, slice, after))
3308     }
3309
3310     /// Parse the fields of a struct-like pattern
3311     fn parse_pat_fields(&mut self) -> PResult<'a, (Vec<codemap::Spanned<ast::FieldPat>> , bool)> {
3312         let mut fields = Vec::new();
3313         let mut etc = false;
3314         let mut first = true;
3315         while self.token != token::CloseDelim(token::Brace) {
3316             if first {
3317                 first = false;
3318             } else {
3319                 try!(self.expect(&token::Comma));
3320                 // accept trailing commas
3321                 if self.check(&token::CloseDelim(token::Brace)) { break }
3322             }
3323
3324             let lo = self.span.lo;
3325             let hi;
3326
3327             if self.check(&token::DotDot) {
3328                 self.bump();
3329                 if self.token != token::CloseDelim(token::Brace) {
3330                     let token_str = self.this_token_to_string();
3331                     return Err(self.fatal(&format!("expected `{}`, found `{}`", "}",
3332                                        token_str)))
3333                 }
3334                 etc = true;
3335                 break;
3336             }
3337
3338             // Check if a colon exists one ahead. This means we're parsing a fieldname.
3339             let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) {
3340                 // Parsing a pattern of the form "fieldname: pat"
3341                 let fieldname = try!(self.parse_ident());
3342                 self.bump();
3343                 let pat = try!(self.parse_pat());
3344                 hi = pat.span.hi;
3345                 (pat, fieldname, false)
3346             } else {
3347                 // Parsing a pattern of the form "(box) (ref) (mut) fieldname"
3348                 let is_box = self.eat_keyword(keywords::Box);
3349                 let boxed_span_lo = self.span.lo;
3350                 let is_ref = self.eat_keyword(keywords::Ref);
3351                 let is_mut = self.eat_keyword(keywords::Mut);
3352                 let fieldname = try!(self.parse_ident());
3353                 hi = self.last_span.hi;
3354
3355                 let bind_type = match (is_ref, is_mut) {
3356                     (true, true) => BindingMode::ByRef(MutMutable),
3357                     (true, false) => BindingMode::ByRef(MutImmutable),
3358                     (false, true) => BindingMode::ByValue(MutMutable),
3359                     (false, false) => BindingMode::ByValue(MutImmutable),
3360                 };
3361                 let fieldpath = codemap::Spanned{span:self.last_span, node:fieldname};
3362                 let fieldpat = P(ast::Pat{
3363                     id: ast::DUMMY_NODE_ID,
3364                     node: PatIdent(bind_type, fieldpath, None),
3365                     span: mk_sp(boxed_span_lo, hi),
3366                 });
3367
3368                 let subpat = if is_box {
3369                     P(ast::Pat{
3370                         id: ast::DUMMY_NODE_ID,
3371                         node: PatBox(fieldpat),
3372                         span: mk_sp(lo, hi),
3373                     })
3374                 } else {
3375                     fieldpat
3376                 };
3377                 (subpat, fieldname, true)
3378             };
3379
3380             fields.push(codemap::Spanned { span: mk_sp(lo, hi),
3381                                            node: ast::FieldPat { ident: fieldname,
3382                                                                  pat: subpat,
3383                                                                  is_shorthand: is_shorthand }});
3384         }
3385         return Ok((fields, etc));
3386     }
3387
3388     fn parse_pat_range_end(&mut self) -> PResult<'a, P<Expr>> {
3389         if self.is_path_start() {
3390             let lo = self.span.lo;
3391             let (qself, path) = if self.eat_lt() {
3392                 // Parse a qualified path
3393                 let (qself, path) =
3394                     try!(self.parse_qualified_path(NoTypesAllowed));
3395                 (Some(qself), path)
3396             } else {
3397                 // Parse an unqualified path
3398                 (None, try!(self.parse_path(LifetimeAndTypesWithColons)))
3399             };
3400             let hi = self.last_span.hi;
3401             Ok(self.mk_expr(lo, hi, ExprPath(qself, path), None))
3402         } else {
3403             self.parse_pat_literal_maybe_minus()
3404         }
3405     }
3406
3407     fn is_path_start(&self) -> bool {
3408         (self.token == token::Lt || self.token == token::ModSep
3409             || self.token.is_ident() || self.token.is_path())
3410             && !self.token.is_keyword(keywords::True) && !self.token.is_keyword(keywords::False)
3411     }
3412
3413     /// Parse a pattern.
3414     pub fn parse_pat(&mut self) -> PResult<'a, P<Pat>> {
3415         maybe_whole!(self, NtPat);
3416
3417         let lo = self.span.lo;
3418         let pat;
3419         match self.token {
3420           token::Underscore => {
3421             // Parse _
3422             self.bump();
3423             pat = PatWild;
3424           }
3425           token::BinOp(token::And) | token::AndAnd => {
3426             // Parse &pat / &mut pat
3427             try!(self.expect_and());
3428             let mutbl = try!(self.parse_mutability());
3429             if let token::Lifetime(ident) = self.token {
3430                 return Err(self.fatal(&format!("unexpected lifetime `{}` in pattern", ident)));
3431             }
3432
3433             let subpat = try!(self.parse_pat());
3434             pat = PatRegion(subpat, mutbl);
3435           }
3436           token::OpenDelim(token::Paren) => {
3437             // Parse (pat,pat,pat,...) as tuple pattern
3438             self.bump();
3439             let fields = try!(self.parse_pat_tuple_elements());
3440             try!(self.expect(&token::CloseDelim(token::Paren)));
3441             pat = PatTup(fields);
3442           }
3443           token::OpenDelim(token::Bracket) => {
3444             // Parse [pat,pat,...] as slice pattern
3445             self.bump();
3446             let (before, slice, after) = try!(self.parse_pat_vec_elements());
3447             try!(self.expect(&token::CloseDelim(token::Bracket)));
3448             pat = PatVec(before, slice, after);
3449           }
3450           _ => {
3451             // At this point, token != _, &, &&, (, [
3452             if self.eat_keyword(keywords::Mut) {
3453                 // Parse mut ident @ pat
3454                 pat = try!(self.parse_pat_ident(BindingMode::ByValue(MutMutable)));
3455             } else if self.eat_keyword(keywords::Ref) {
3456                 // Parse ref ident @ pat / ref mut ident @ pat
3457                 let mutbl = try!(self.parse_mutability());
3458                 pat = try!(self.parse_pat_ident(BindingMode::ByRef(mutbl)));
3459             } else if self.eat_keyword(keywords::Box) {
3460                 // Parse box pat
3461                 let subpat = try!(self.parse_pat());
3462                 pat = PatBox(subpat);
3463             } else if self.is_path_start() {
3464                 // Parse pattern starting with a path
3465                 if self.token.is_plain_ident() && self.look_ahead(1, |t| *t != token::DotDotDot &&
3466                         *t != token::OpenDelim(token::Brace) &&
3467                         *t != token::OpenDelim(token::Paren) &&
3468                         // Contrary to its definition, a plain ident can be followed by :: in macros
3469                         *t != token::ModSep) {
3470                     // Plain idents have some extra abilities here compared to general paths
3471                     if self.look_ahead(1, |t| *t == token::Not) {
3472                         // Parse macro invocation
3473                         let ident = try!(self.parse_ident());
3474                         let ident_span = self.last_span;
3475                         let path = ident_to_path(ident_span, ident);
3476                         self.bump();
3477                         let delim = try!(self.expect_open_delim());
3478                         let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
3479                                 seq_sep_none(), |p| p.parse_token_tree()));
3480                         let mac = Mac_ { path: path, tts: tts, ctxt: EMPTY_CTXT };
3481                         pat = PatMac(codemap::Spanned {node: mac,
3482                                                        span: mk_sp(lo, self.last_span.hi)});
3483                     } else {
3484                         // Parse ident @ pat
3485                         // This can give false positives and parse nullary enums,
3486                         // they are dealt with later in resolve
3487                         pat = try!(self.parse_pat_ident(BindingMode::ByValue(MutImmutable)));
3488                     }
3489                 } else {
3490                     let (qself, path) = if self.eat_lt() {
3491                         // Parse a qualified path
3492                         let (qself, path) =
3493                             try!(self.parse_qualified_path(NoTypesAllowed));
3494                         (Some(qself), path)
3495                     } else {
3496                         // Parse an unqualified path
3497                         (None, try!(self.parse_path(LifetimeAndTypesWithColons)))
3498                     };
3499                     match self.token {
3500                       token::DotDotDot => {
3501                         // Parse range
3502                         let hi = self.last_span.hi;
3503                         let begin = self.mk_expr(lo, hi, ExprPath(qself, path), None);
3504                         self.bump();
3505                         let end = try!(self.parse_pat_range_end());
3506                         pat = PatRange(begin, end);
3507                       }
3508                       token::OpenDelim(token::Brace) => {
3509                          if qself.is_some() {
3510                             return Err(self.fatal("unexpected `{` after qualified path"));
3511                         }
3512                         // Parse struct pattern
3513                         self.bump();
3514                         let (fields, etc) = try!(self.parse_pat_fields());
3515                         self.bump();
3516                         pat = PatStruct(path, fields, etc);
3517                       }
3518                       token::OpenDelim(token::Paren) => {
3519                         if qself.is_some() {
3520                             return Err(self.fatal("unexpected `(` after qualified path"));
3521                         }
3522                         // Parse tuple struct or enum pattern
3523                         if self.look_ahead(1, |t| *t == token::DotDot) {
3524                             // This is a "top constructor only" pat
3525                             self.bump();
3526                             self.bump();
3527                             try!(self.expect(&token::CloseDelim(token::Paren)));
3528                             pat = PatEnum(path, None);
3529                         } else {
3530                             let args = try!(self.parse_enum_variant_seq(
3531                                     &token::OpenDelim(token::Paren),
3532                                     &token::CloseDelim(token::Paren),
3533                                     seq_sep_trailing_allowed(token::Comma),
3534                                     |p| p.parse_pat()));
3535                             pat = PatEnum(path, Some(args));
3536                         }
3537                       }
3538                       _ => {
3539                         pat = match qself {
3540                             // Parse qualified path
3541                             Some(qself) => PatQPath(qself, path),
3542                             // Parse nullary enum
3543                             None => PatEnum(path, Some(vec![]))
3544                         };
3545                       }
3546                     }
3547                 }
3548             } else {
3549                 // Try to parse everything else as literal with optional minus
3550                 let begin = try!(self.parse_pat_literal_maybe_minus());
3551                 if self.eat(&token::DotDotDot) {
3552                     let end = try!(self.parse_pat_range_end());
3553                     pat = PatRange(begin, end);
3554                 } else {
3555                     pat = PatLit(begin);
3556                 }
3557             }
3558           }
3559         }
3560
3561         let hi = self.last_span.hi;
3562         Ok(P(ast::Pat {
3563             id: ast::DUMMY_NODE_ID,
3564             node: pat,
3565             span: mk_sp(lo, hi),
3566         }))
3567     }
3568
3569     /// Parse ident or ident @ pat
3570     /// used by the copy foo and ref foo patterns to give a good
3571     /// error message when parsing mistakes like ref foo(a,b)
3572     fn parse_pat_ident(&mut self,
3573                        binding_mode: ast::BindingMode)
3574                        -> PResult<'a, ast::Pat_> {
3575         if !self.token.is_plain_ident() {
3576             let span = self.span;
3577             let tok_str = self.this_token_to_string();
3578             return Err(self.span_fatal(span,
3579                             &format!("expected identifier, found `{}`", tok_str)))
3580         }
3581         let ident = try!(self.parse_ident());
3582         let last_span = self.last_span;
3583         let name = codemap::Spanned{span: last_span, node: ident};
3584         let sub = if self.eat(&token::At) {
3585             Some(try!(self.parse_pat()))
3586         } else {
3587             None
3588         };
3589
3590         // just to be friendly, if they write something like
3591         //   ref Some(i)
3592         // we end up here with ( as the current token.  This shortly
3593         // leads to a parse error.  Note that if there is no explicit
3594         // binding mode then we do not end up here, because the lookahead
3595         // will direct us over to parse_enum_variant()
3596         if self.token == token::OpenDelim(token::Paren) {
3597             let last_span = self.last_span;
3598             return Err(self.span_fatal(
3599                 last_span,
3600                 "expected identifier, found enum pattern"))
3601         }
3602
3603         Ok(PatIdent(binding_mode, name, sub))
3604     }
3605
3606     /// Parse a local variable declaration
3607     fn parse_local(&mut self, attrs: ThinAttributes) -> PResult<'a, P<Local>> {
3608         let lo = self.span.lo;
3609         let pat = try!(self.parse_pat());
3610
3611         let mut ty = None;
3612         if self.eat(&token::Colon) {
3613             ty = Some(try!(self.parse_ty_sum()));
3614         }
3615         let init = try!(self.parse_initializer());
3616         Ok(P(ast::Local {
3617             ty: ty,
3618             pat: pat,
3619             init: init,
3620             id: ast::DUMMY_NODE_ID,
3621             span: mk_sp(lo, self.last_span.hi),
3622             attrs: attrs,
3623         }))
3624     }
3625
3626     /// Parse a "let" stmt
3627     fn parse_let(&mut self, attrs: ThinAttributes) -> PResult<'a, P<Decl>> {
3628         let lo = self.span.lo;
3629         let local = try!(self.parse_local(attrs));
3630         Ok(P(spanned(lo, self.last_span.hi, DeclLocal(local))))
3631     }
3632
3633     /// Parse a structure field
3634     fn parse_name_and_ty(&mut self, pr: Visibility,
3635                          attrs: Vec<Attribute> ) -> PResult<'a, StructField> {
3636         let lo = match pr {
3637             Inherited => self.span.lo,
3638             Public => self.last_span.lo,
3639         };
3640         if !self.token.is_plain_ident() {
3641             return Err(self.fatal("expected ident"));
3642         }
3643         let name = try!(self.parse_ident());
3644         try!(self.expect(&token::Colon));
3645         let ty = try!(self.parse_ty_sum());
3646         Ok(spanned(lo, self.last_span.hi, ast::StructField_ {
3647             kind: NamedField(name, pr),
3648             id: ast::DUMMY_NODE_ID,
3649             ty: ty,
3650             attrs: attrs,
3651         }))
3652     }
3653
3654     /// Emit an expected item after attributes error.
3655     fn expected_item_err(&self, attrs: &[Attribute]) {
3656         let message = match attrs.last() {
3657             Some(&Attribute { node: ast::Attribute_ { is_sugared_doc: true, .. }, .. }) => {
3658                 "expected item after doc comment"
3659             }
3660             _ => "expected item after attributes",
3661         };
3662
3663         self.span_err(self.last_span, message);
3664     }
3665
3666     /// Parse a statement. may include decl.
3667     pub fn parse_stmt(&mut self) -> PResult<'a, Option<P<Stmt>>> {
3668         Ok(try!(self.parse_stmt_()).map(P))
3669     }
3670
3671     fn parse_stmt_(&mut self) -> PResult<'a, Option<Stmt>> {
3672         maybe_whole!(Some deref self, NtStmt);
3673
3674         let attrs = try!(self.parse_outer_attributes());
3675         let lo = self.span.lo;
3676
3677         Ok(Some(if self.check_keyword(keywords::Let) {
3678             try!(self.expect_keyword(keywords::Let));
3679             let decl = try!(self.parse_let(attrs.into_thin_attrs()));
3680             let hi = decl.span.hi;
3681             let stmt = StmtDecl(decl, ast::DUMMY_NODE_ID);
3682             spanned(lo, hi, stmt)
3683         } else if self.token.is_ident()
3684             && !self.token.is_any_keyword()
3685             && self.look_ahead(1, |t| *t == token::Not) {
3686             // it's a macro invocation:
3687
3688             // Potential trouble: if we allow macros with paths instead of
3689             // idents, we'd need to look ahead past the whole path here...
3690             let pth = try!(self.parse_path(NoTypesAllowed));
3691             self.bump();
3692
3693             let id = match self.token {
3694                 token::OpenDelim(_) => token::special_idents::invalid, // no special identifier
3695                 _ => try!(self.parse_ident()),
3696             };
3697
3698             // check that we're pointing at delimiters (need to check
3699             // again after the `if`, because of `parse_ident`
3700             // consuming more tokens).
3701             let delim = match self.token {
3702                 token::OpenDelim(delim) => delim,
3703                 _ => {
3704                     // we only expect an ident if we didn't parse one
3705                     // above.
3706                     let ident_str = if id.name == token::special_idents::invalid.name {
3707                         "identifier, "
3708                     } else {
3709                         ""
3710                     };
3711                     let tok_str = self.this_token_to_string();
3712                     return Err(self.fatal(&format!("expected {}`(` or `{{`, found `{}`",
3713                                        ident_str,
3714                                        tok_str)))
3715                 },
3716             };
3717
3718             let tts = try!(self.parse_unspanned_seq(
3719                 &token::OpenDelim(delim),
3720                 &token::CloseDelim(delim),
3721                 seq_sep_none(),
3722                 |p| p.parse_token_tree()
3723             ));
3724             let hi = self.last_span.hi;
3725
3726             let style = if delim == token::Brace {
3727                 MacStmtWithBraces
3728             } else {
3729                 MacStmtWithoutBraces
3730             };
3731
3732             if id.name == token::special_idents::invalid.name {
3733                 let stmt = StmtMac(P(spanned(lo,
3734                                              hi,
3735                                              Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT })),
3736                                    style,
3737                                    attrs.into_thin_attrs());
3738                 spanned(lo, hi, stmt)
3739             } else {
3740                 // if it has a special ident, it's definitely an item
3741                 //
3742                 // Require a semicolon or braces.
3743                 if style != MacStmtWithBraces {
3744                     if !self.eat(&token::Semi) {
3745                         let last_span = self.last_span;
3746                         self.span_err(last_span,
3747                                       "macros that expand to items must \
3748                                        either be surrounded with braces or \
3749                                        followed by a semicolon");
3750                     }
3751                 }
3752                 spanned(lo, hi, StmtDecl(
3753                     P(spanned(lo, hi, DeclItem(
3754                         self.mk_item(
3755                             lo, hi, id /*id is good here*/,
3756                             ItemMac(spanned(lo, hi,
3757                                             Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT })),
3758                             Inherited, attrs)))),
3759                     ast::DUMMY_NODE_ID))
3760             }
3761         } else {
3762             // FIXME: Bad copy of attrs
3763             match try!(self.parse_item_(attrs.clone(), false, true)) {
3764                 Some(i) => {
3765                     let hi = i.span.hi;
3766                     let decl = P(spanned(lo, hi, DeclItem(i)));
3767                     spanned(lo, hi, StmtDecl(decl, ast::DUMMY_NODE_ID))
3768                 }
3769                 None => {
3770                     let unused_attrs = |attrs: &[_], s: &mut Self| {
3771                         if attrs.len() > 0 {
3772                             s.span_err(s.span,
3773                                 "expected statement after outer attribute");
3774                         }
3775                     };
3776
3777                     // Do not attempt to parse an expression if we're done here.
3778                     if self.token == token::Semi {
3779                         unused_attrs(&attrs, self);
3780                         self.bump();
3781                         return Ok(None);
3782                     }
3783
3784                     if self.token == token::CloseDelim(token::Brace) {
3785                         unused_attrs(&attrs, self);
3786                         return Ok(None);
3787                     }
3788
3789                     // Remainder are line-expr stmts.
3790                     let e = try!(self.parse_expr_res(
3791                         Restrictions::RESTRICTION_STMT_EXPR, Some(attrs.into_thin_attrs())));
3792                     let hi = e.span.hi;
3793                     let stmt = StmtExpr(e, ast::DUMMY_NODE_ID);
3794                     spanned(lo, hi, stmt)
3795                 }
3796             }
3797         }))
3798     }
3799
3800     /// Is this expression a successfully-parsed statement?
3801     fn expr_is_complete(&mut self, e: &Expr) -> bool {
3802         self.restrictions.contains(Restrictions::RESTRICTION_STMT_EXPR) &&
3803             !classify::expr_requires_semi_to_be_stmt(e)
3804     }
3805
3806     /// Parse a block. No inner attrs are allowed.
3807     pub fn parse_block(&mut self) -> PResult<'a, P<Block>> {
3808         maybe_whole!(no_clone self, NtBlock);
3809
3810         let lo = self.span.lo;
3811
3812         if !self.eat(&token::OpenDelim(token::Brace)) {
3813             let sp = self.span;
3814             let tok = self.this_token_to_string();
3815             return Err(self.span_fatal_help(sp,
3816                                  &format!("expected `{{`, found `{}`", tok),
3817                                  "place this code inside a block"));
3818         }
3819
3820         self.parse_block_tail(lo, DefaultBlock)
3821     }
3822
3823     /// Parse a block. Inner attrs are allowed.
3824     fn parse_inner_attrs_and_block(&mut self) -> PResult<'a, (Vec<Attribute>, P<Block>)> {
3825         maybe_whole!(pair_empty self, NtBlock);
3826
3827         let lo = self.span.lo;
3828         try!(self.expect(&token::OpenDelim(token::Brace)));
3829         Ok((try!(self.parse_inner_attributes()),
3830          try!(self.parse_block_tail(lo, DefaultBlock))))
3831     }
3832
3833     /// Parse the rest of a block expression or function body
3834     /// Precondition: already parsed the '{'.
3835     fn parse_block_tail(&mut self, lo: BytePos, s: BlockCheckMode) -> PResult<'a, P<Block>> {
3836         let mut stmts = vec![];
3837         let mut expr = None;
3838
3839         while !self.eat(&token::CloseDelim(token::Brace)) {
3840             let Spanned {node, span} = if let Some(s) = try!(self.parse_stmt_()) {
3841                 s
3842             } else {
3843                 // Found only `;` or `}`.
3844                 continue;
3845             };
3846             match node {
3847                 StmtExpr(e, _) => {
3848                     try!(self.handle_expression_like_statement(e, span, &mut stmts, &mut expr));
3849                 }
3850                 StmtMac(mac, MacStmtWithoutBraces, attrs) => {
3851                     // statement macro without braces; might be an
3852                     // expr depending on whether a semicolon follows
3853                     match self.token {
3854                         token::Semi => {
3855                             stmts.push(P(Spanned {
3856                                 node: StmtMac(mac, MacStmtWithSemicolon, attrs),
3857                                 span: mk_sp(span.lo, self.span.hi),
3858                             }));
3859                             self.bump();
3860                         }
3861                         _ => {
3862                             let e = self.mk_mac_expr(span.lo, span.hi,
3863                                                      mac.and_then(|m| m.node),
3864                                                      None);
3865                             let lo = e.span.lo;
3866                             let e = try!(self.parse_dot_or_call_expr_with(e, lo, attrs));
3867                             let e = try!(self.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(e)));
3868                             try!(self.handle_expression_like_statement(
3869                                 e,
3870                                 span,
3871                                 &mut stmts,
3872                                 &mut expr));
3873                         }
3874                     }
3875                 }
3876                 StmtMac(m, style, attrs) => {
3877                     // statement macro; might be an expr
3878                     match self.token {
3879                         token::Semi => {
3880                             stmts.push(P(Spanned {
3881                                 node: StmtMac(m, MacStmtWithSemicolon, attrs),
3882                                 span: mk_sp(span.lo, self.span.hi),
3883                             }));
3884                             self.bump();
3885                         }
3886                         token::CloseDelim(token::Brace) => {
3887                             // if a block ends in `m!(arg)` without
3888                             // a `;`, it must be an expr
3889                             expr = Some(self.mk_mac_expr(span.lo, span.hi,
3890                                                          m.and_then(|x| x.node),
3891                                                          attrs));
3892                         }
3893                         _ => {
3894                             stmts.push(P(Spanned {
3895                                 node: StmtMac(m, style, attrs),
3896                                 span: span
3897                             }));
3898                         }
3899                     }
3900                 }
3901                 _ => { // all other kinds of statements:
3902                     let mut hi = span.hi;
3903                     if classify::stmt_ends_with_semi(&node) {
3904                         try!(self.commit_stmt_expecting(token::Semi));
3905                         hi = self.last_span.hi;
3906                     }
3907
3908                     stmts.push(P(Spanned {
3909                         node: node,
3910                         span: mk_sp(span.lo, hi)
3911                     }));
3912                 }
3913             }
3914         }
3915
3916         Ok(P(ast::Block {
3917             stmts: stmts,
3918             expr: expr,
3919             id: ast::DUMMY_NODE_ID,
3920             rules: s,
3921             span: mk_sp(lo, self.last_span.hi),
3922         }))
3923     }
3924
3925     fn handle_expression_like_statement(
3926             &mut self,
3927             e: P<Expr>,
3928             span: Span,
3929             stmts: &mut Vec<P<Stmt>>,
3930             last_block_expr: &mut Option<P<Expr>>) -> PResult<'a, ()> {
3931         // expression without semicolon
3932         if classify::expr_requires_semi_to_be_stmt(&*e) {
3933             // Just check for errors and recover; do not eat semicolon yet.
3934             try!(self.commit_stmt(&[],
3935                              &[token::Semi, token::CloseDelim(token::Brace)]));
3936         }
3937
3938         match self.token {
3939             token::Semi => {
3940                 self.bump();
3941                 let span_with_semi = Span {
3942                     lo: span.lo,
3943                     hi: self.last_span.hi,
3944                     expn_id: span.expn_id,
3945                 };
3946                 stmts.push(P(Spanned {
3947                     node: StmtSemi(e, ast::DUMMY_NODE_ID),
3948                     span: span_with_semi,
3949                 }));
3950             }
3951             token::CloseDelim(token::Brace) => *last_block_expr = Some(e),
3952             _ => {
3953                 stmts.push(P(Spanned {
3954                     node: StmtExpr(e, ast::DUMMY_NODE_ID),
3955                     span: span
3956                 }));
3957             }
3958         }
3959         Ok(())
3960     }
3961
3962     // Parses a sequence of bounds if a `:` is found,
3963     // otherwise returns empty list.
3964     fn parse_colon_then_ty_param_bounds(&mut self,
3965                                         mode: BoundParsingMode)
3966                                         -> PResult<'a, TyParamBounds>
3967     {
3968         if !self.eat(&token::Colon) {
3969             Ok(P::empty())
3970         } else {
3971             self.parse_ty_param_bounds(mode)
3972         }
3973     }
3974
3975     // matches bounds    = ( boundseq )?
3976     // where   boundseq  = ( polybound + boundseq ) | polybound
3977     // and     polybound = ( 'for' '<' 'region '>' )? bound
3978     // and     bound     = 'region | trait_ref
3979     fn parse_ty_param_bounds(&mut self,
3980                              mode: BoundParsingMode)
3981                              -> PResult<'a, TyParamBounds>
3982     {
3983         let mut result = vec!();
3984         loop {
3985             let question_span = self.span;
3986             let ate_question = self.eat(&token::Question);
3987             match self.token {
3988                 token::Lifetime(lifetime) => {
3989                     if ate_question {
3990                         self.span_err(question_span,
3991                                       "`?` may only modify trait bounds, not lifetime bounds");
3992                     }
3993                     result.push(RegionTyParamBound(ast::Lifetime {
3994                         id: ast::DUMMY_NODE_ID,
3995                         span: self.span,
3996                         name: lifetime.name
3997                     }));
3998                     self.bump();
3999                 }
4000                 token::ModSep | token::Ident(..) => {
4001                     let poly_trait_ref = try!(self.parse_poly_trait_ref());
4002                     let modifier = if ate_question {
4003                         if mode == BoundParsingMode::Modified {
4004                             TraitBoundModifier::Maybe
4005                         } else {
4006                             self.span_err(question_span,
4007                                           "unexpected `?`");
4008                             TraitBoundModifier::None
4009                         }
4010                     } else {
4011                         TraitBoundModifier::None
4012                     };
4013                     result.push(TraitTyParamBound(poly_trait_ref, modifier))
4014                 }
4015                 _ => break,
4016             }
4017
4018             if !self.eat(&token::BinOp(token::Plus)) {
4019                 break;
4020             }
4021         }
4022
4023         return Ok(P::from_vec(result));
4024     }
4025
4026     /// Matches typaram = IDENT (`?` unbound)? optbounds ( EQ ty )?
4027     fn parse_ty_param(&mut self) -> PResult<'a, TyParam> {
4028         let span = self.span;
4029         let ident = try!(self.parse_ident());
4030
4031         let bounds = try!(self.parse_colon_then_ty_param_bounds(BoundParsingMode::Modified));
4032
4033         let default = if self.check(&token::Eq) {
4034             self.bump();
4035             Some(try!(self.parse_ty_sum()))
4036         } else {
4037             None
4038         };
4039
4040         Ok(TyParam {
4041             ident: ident,
4042             id: ast::DUMMY_NODE_ID,
4043             bounds: bounds,
4044             default: default,
4045             span: span,
4046         })
4047     }
4048
4049     /// Parse a set of optional generic type parameter declarations. Where
4050     /// clauses are not parsed here, and must be added later via
4051     /// `parse_where_clause()`.
4052     ///
4053     /// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
4054     ///                  | ( < lifetimes , typaramseq ( , )? > )
4055     /// where   typaramseq = ( typaram ) | ( typaram , typaramseq )
4056     pub fn parse_generics(&mut self) -> PResult<'a, ast::Generics> {
4057         maybe_whole!(self, NtGenerics);
4058
4059         if self.eat(&token::Lt) {
4060             let lifetime_defs = try!(self.parse_lifetime_defs());
4061             let mut seen_default = false;
4062             let ty_params = try!(self.parse_seq_to_gt(Some(token::Comma), |p| {
4063                 try!(p.forbid_lifetime());
4064                 let ty_param = try!(p.parse_ty_param());
4065                 if ty_param.default.is_some() {
4066                     seen_default = true;
4067                 } else if seen_default {
4068                     let last_span = p.last_span;
4069                     p.span_err(last_span,
4070                                "type parameters with a default must be trailing");
4071                 }
4072                 Ok(ty_param)
4073             }));
4074             Ok(ast::Generics {
4075                 lifetimes: lifetime_defs,
4076                 ty_params: ty_params,
4077                 where_clause: WhereClause {
4078                     id: ast::DUMMY_NODE_ID,
4079                     predicates: Vec::new(),
4080                 }
4081             })
4082         } else {
4083             Ok(ast::Generics::default())
4084         }
4085     }
4086
4087     fn parse_generic_values_after_lt(&mut self) -> PResult<'a, (Vec<ast::Lifetime>,
4088                                                             Vec<P<Ty>>,
4089                                                             Vec<P<TypeBinding>>)> {
4090         let span_lo = self.span.lo;
4091         let lifetimes = try!(self.parse_lifetimes(token::Comma));
4092
4093         let missing_comma = !lifetimes.is_empty() &&
4094                             !self.token.is_like_gt() &&
4095                             self.last_token
4096                                 .as_ref().map_or(true,
4097                                                  |x| &**x != &token::Comma);
4098
4099         if missing_comma {
4100
4101             let msg = format!("expected `,` or `>` after lifetime \
4102                               name, found `{}`",
4103                               self.this_token_to_string());
4104             let mut err = self.diagnostic().struct_span_err(self.span, &msg);
4105
4106             let span_hi = self.span.hi;
4107             let span_hi = match self.parse_ty() {
4108                 Ok(..) => self.span.hi,
4109                 Err(ref mut err) => {
4110                     err.cancel();
4111                     span_hi
4112                 }
4113             };
4114
4115             let msg = format!("did you mean a single argument type &'a Type, \
4116                               or did you mean the comma-separated arguments \
4117                               'a, Type?");
4118             err.span_note(mk_sp(span_lo, span_hi), &msg);
4119             return Err(err);
4120         }
4121
4122         // First parse types.
4123         let (types, returned) = try!(self.parse_seq_to_gt_or_return(
4124             Some(token::Comma),
4125             |p| {
4126                 try!(p.forbid_lifetime());
4127                 if p.look_ahead(1, |t| t == &token::Eq) {
4128                     Ok(None)
4129                 } else {
4130                     Ok(Some(try!(p.parse_ty_sum())))
4131                 }
4132             }
4133         ));
4134
4135         // If we found the `>`, don't continue.
4136         if !returned {
4137             return Ok((lifetimes, types.into_vec(), Vec::new()));
4138         }
4139
4140         // Then parse type bindings.
4141         let bindings = try!(self.parse_seq_to_gt(
4142             Some(token::Comma),
4143             |p| {
4144                 try!(p.forbid_lifetime());
4145                 let lo = p.span.lo;
4146                 let ident = try!(p.parse_ident());
4147                 let found_eq = p.eat(&token::Eq);
4148                 if !found_eq {
4149                     let span = p.span;
4150                     p.span_warn(span, "whoops, no =?");
4151                 }
4152                 let ty = try!(p.parse_ty());
4153                 let hi = ty.span.hi;
4154                 let span = mk_sp(lo, hi);
4155                 return Ok(P(TypeBinding{id: ast::DUMMY_NODE_ID,
4156                     ident: ident,
4157                     ty: ty,
4158                     span: span,
4159                 }));
4160             }
4161         ));
4162         Ok((lifetimes, types.into_vec(), bindings.into_vec()))
4163     }
4164
4165     fn forbid_lifetime(&mut self) -> PResult<'a, ()> {
4166         if self.token.is_lifetime() {
4167             let span = self.span;
4168             return Err(self.span_fatal(span, "lifetime parameters must be declared \
4169                                         prior to type parameters"))
4170         }
4171         Ok(())
4172     }
4173
4174     /// Parses an optional `where` clause and places it in `generics`.
4175     ///
4176     /// ```ignore
4177     /// where T : Trait<U, V> + 'b, 'a : 'b
4178     /// ```
4179     pub fn parse_where_clause(&mut self) -> PResult<'a, ast::WhereClause> {
4180         maybe_whole!(self, NtWhereClause);
4181
4182         let mut where_clause = WhereClause {
4183             id: ast::DUMMY_NODE_ID,
4184             predicates: Vec::new(),
4185         };
4186
4187         if !self.eat_keyword(keywords::Where) {
4188             return Ok(where_clause);
4189         }
4190
4191         let mut parsed_something = false;
4192         loop {
4193             let lo = self.span.lo;
4194             match self.token {
4195                 token::OpenDelim(token::Brace) => {
4196                     break
4197                 }
4198
4199                 token::Lifetime(..) => {
4200                     let bounded_lifetime =
4201                         try!(self.parse_lifetime());
4202
4203                     self.eat(&token::Colon);
4204
4205                     let bounds =
4206                         try!(self.parse_lifetimes(token::BinOp(token::Plus)));
4207
4208                     let hi = self.last_span.hi;
4209                     let span = mk_sp(lo, hi);
4210
4211                     where_clause.predicates.push(ast::WherePredicate::RegionPredicate(
4212                         ast::WhereRegionPredicate {
4213                             span: span,
4214                             lifetime: bounded_lifetime,
4215                             bounds: bounds
4216                         }
4217                     ));
4218
4219                     parsed_something = true;
4220                 }
4221
4222                 _ => {
4223                     let bound_lifetimes = if self.eat_keyword(keywords::For) {
4224                         // Higher ranked constraint.
4225                         try!(self.expect(&token::Lt));
4226                         let lifetime_defs = try!(self.parse_lifetime_defs());
4227                         try!(self.expect_gt());
4228                         lifetime_defs
4229                     } else {
4230                         vec![]
4231                     };
4232
4233                     let bounded_ty = try!(self.parse_ty());
4234
4235                     if self.eat(&token::Colon) {
4236                         let bounds = try!(self.parse_ty_param_bounds(BoundParsingMode::Bare));
4237                         let hi = self.last_span.hi;
4238                         let span = mk_sp(lo, hi);
4239
4240                         if bounds.is_empty() {
4241                             self.span_err(span,
4242                                           "each predicate in a `where` clause must have \
4243                                            at least one bound in it");
4244                         }
4245
4246                         where_clause.predicates.push(ast::WherePredicate::BoundPredicate(
4247                                 ast::WhereBoundPredicate {
4248                                     span: span,
4249                                     bound_lifetimes: bound_lifetimes,
4250                                     bounded_ty: bounded_ty,
4251                                     bounds: bounds,
4252                         }));
4253
4254                         parsed_something = true;
4255                     } else if self.eat(&token::Eq) {
4256                         // let ty = try!(self.parse_ty());
4257                         let hi = self.last_span.hi;
4258                         let span = mk_sp(lo, hi);
4259                         // where_clause.predicates.push(
4260                         //     ast::WherePredicate::EqPredicate(ast::WhereEqPredicate {
4261                         //         id: ast::DUMMY_NODE_ID,
4262                         //         span: span,
4263                         //         path: panic!("NYI"), //bounded_ty,
4264                         //         ty: ty,
4265                         // }));
4266                         // parsed_something = true;
4267                         // // FIXME(#18433)
4268                         self.span_err(span,
4269                                      "equality constraints are not yet supported \
4270                                      in where clauses (#20041)");
4271                     } else {
4272                         let last_span = self.last_span;
4273                         self.span_err(last_span,
4274                               "unexpected token in `where` clause");
4275                     }
4276                 }
4277             };
4278
4279             if !self.eat(&token::Comma) {
4280                 break
4281             }
4282         }
4283
4284         if !parsed_something {
4285             let last_span = self.last_span;
4286             self.span_err(last_span,
4287                           "a `where` clause must have at least one predicate \
4288                            in it");
4289         }
4290
4291         Ok(where_clause)
4292     }
4293
4294     fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool)
4295                      -> PResult<'a, (Vec<Arg> , bool)> {
4296         let sp = self.span;
4297         let mut args: Vec<Option<Arg>> =
4298             try!(self.parse_unspanned_seq(
4299                 &token::OpenDelim(token::Paren),
4300                 &token::CloseDelim(token::Paren),
4301                 seq_sep_trailing_allowed(token::Comma),
4302                 |p| {
4303                     if p.token == token::DotDotDot {
4304                         p.bump();
4305                         if allow_variadic {
4306                             if p.token != token::CloseDelim(token::Paren) {
4307                                 let span = p.span;
4308                                 return Err(p.span_fatal(span,
4309                                     "`...` must be last in argument list for variadic function"))
4310                             }
4311                         } else {
4312                             let span = p.span;
4313                             return Err(p.span_fatal(span,
4314                                          "only foreign functions are allowed to be variadic"))
4315                         }
4316                         Ok(None)
4317                     } else {
4318                         Ok(Some(try!(p.parse_arg_general(named_args))))
4319                     }
4320                 }
4321             ));
4322
4323         let variadic = match args.pop() {
4324             Some(None) => true,
4325             Some(x) => {
4326                 // Need to put back that last arg
4327                 args.push(x);
4328                 false
4329             }
4330             None => false
4331         };
4332
4333         if variadic && args.is_empty() {
4334             self.span_err(sp,
4335                           "variadic function must be declared with at least one named argument");
4336         }
4337
4338         let args = args.into_iter().map(|x| x.unwrap()).collect();
4339
4340         Ok((args, variadic))
4341     }
4342
4343     /// Parse the argument list and result type of a function declaration
4344     pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> PResult<'a, P<FnDecl>> {
4345
4346         let (args, variadic) = try!(self.parse_fn_args(true, allow_variadic));
4347         let ret_ty = try!(self.parse_ret_ty());
4348
4349         Ok(P(FnDecl {
4350             inputs: args,
4351             output: ret_ty,
4352             variadic: variadic
4353         }))
4354     }
4355
4356     fn is_self_ident(&mut self) -> bool {
4357         match self.token {
4358           token::Ident(id, token::Plain) => id.name == special_idents::self_.name,
4359           _ => false
4360         }
4361     }
4362
4363     fn expect_self_ident(&mut self) -> PResult<'a, ast::Ident> {
4364         match self.token {
4365             token::Ident(id, token::Plain) if id.name == special_idents::self_.name => {
4366                 self.bump();
4367                 Ok(id)
4368             },
4369             _ => {
4370                 let token_str = self.this_token_to_string();
4371                 return Err(self.fatal(&format!("expected `self`, found `{}`",
4372                                    token_str)))
4373             }
4374         }
4375     }
4376
4377     fn is_self_type_ident(&mut self) -> bool {
4378         match self.token {
4379           token::Ident(id, token::Plain) => id.name == special_idents::type_self.name,
4380           _ => false
4381         }
4382     }
4383
4384     fn expect_self_type_ident(&mut self) -> PResult<'a, ast::Ident> {
4385         match self.token {
4386             token::Ident(id, token::Plain) if id.name == special_idents::type_self.name => {
4387                 self.bump();
4388                 Ok(id)
4389             },
4390             _ => {
4391                 let token_str = self.this_token_to_string();
4392                 Err(self.fatal(&format!("expected `Self`, found `{}`",
4393                                    token_str)))
4394             }
4395         }
4396     }
4397
4398     /// Parse the argument list and result type of a function
4399     /// that may have a self type.
4400     fn parse_fn_decl_with_self<F>(&mut self,
4401                                   parse_arg_fn: F) -> PResult<'a, (ExplicitSelf, P<FnDecl>)> where
4402         F: FnMut(&mut Parser<'a>) -> PResult<'a,  Arg>,
4403     {
4404         fn maybe_parse_borrowed_explicit_self<'b>(this: &mut Parser<'b>)
4405                                                   -> PResult<'b,  ast::ExplicitSelf_> {
4406             // The following things are possible to see here:
4407             //
4408             //     fn(&mut self)
4409             //     fn(&mut self)
4410             //     fn(&'lt self)
4411             //     fn(&'lt mut self)
4412             //
4413             // We already know that the current token is `&`.
4414
4415             if this.look_ahead(1, |t| t.is_keyword(keywords::SelfValue)) {
4416                 this.bump();
4417                 Ok(SelfRegion(None, MutImmutable, try!(this.expect_self_ident())))
4418             } else if this.look_ahead(1, |t| t.is_mutability()) &&
4419                       this.look_ahead(2, |t| t.is_keyword(keywords::SelfValue)) {
4420                 this.bump();
4421                 let mutability = try!(this.parse_mutability());
4422                 Ok(SelfRegion(None, mutability, try!(this.expect_self_ident())))
4423             } else if this.look_ahead(1, |t| t.is_lifetime()) &&
4424                       this.look_ahead(2, |t| t.is_keyword(keywords::SelfValue)) {
4425                 this.bump();
4426                 let lifetime = try!(this.parse_lifetime());
4427                 Ok(SelfRegion(Some(lifetime), MutImmutable, try!(this.expect_self_ident())))
4428             } else if this.look_ahead(1, |t| t.is_lifetime()) &&
4429                       this.look_ahead(2, |t| t.is_mutability()) &&
4430                       this.look_ahead(3, |t| t.is_keyword(keywords::SelfValue)) {
4431                 this.bump();
4432                 let lifetime = try!(this.parse_lifetime());
4433                 let mutability = try!(this.parse_mutability());
4434                 Ok(SelfRegion(Some(lifetime), mutability, try!(this.expect_self_ident())))
4435             } else {
4436                 Ok(SelfStatic)
4437             }
4438         }
4439
4440         try!(self.expect(&token::OpenDelim(token::Paren)));
4441
4442         // A bit of complexity and lookahead is needed here in order to be
4443         // backwards compatible.
4444         let lo = self.span.lo;
4445         let mut self_ident_lo = self.span.lo;
4446         let mut self_ident_hi = self.span.hi;
4447
4448         let mut mutbl_self = MutImmutable;
4449         let explicit_self = match self.token {
4450             token::BinOp(token::And) => {
4451                 let eself = try!(maybe_parse_borrowed_explicit_self(self));
4452                 self_ident_lo = self.last_span.lo;
4453                 self_ident_hi = self.last_span.hi;
4454                 eself
4455             }
4456             token::BinOp(token::Star) => {
4457                 // Possibly "*self" or "*mut self" -- not supported. Try to avoid
4458                 // emitting cryptic "unexpected token" errors.
4459                 self.bump();
4460                 let _mutability = if self.token.is_mutability() {
4461                     try!(self.parse_mutability())
4462                 } else {
4463                     MutImmutable
4464                 };
4465                 if self.is_self_ident() {
4466                     let span = self.span;
4467                     self.span_err(span, "cannot pass self by raw pointer");
4468                     self.bump();
4469                 }
4470                 // error case, making bogus self ident:
4471                 SelfValue(special_idents::self_)
4472             }
4473             token::Ident(..) => {
4474                 if self.is_self_ident() {
4475                     let self_ident = try!(self.expect_self_ident());
4476
4477                     // Determine whether this is the fully explicit form, `self:
4478                     // TYPE`.
4479                     if self.eat(&token::Colon) {
4480                         SelfExplicit(try!(self.parse_ty_sum()), self_ident)
4481                     } else {
4482                         SelfValue(self_ident)
4483                     }
4484                 } else if self.token.is_mutability() &&
4485                         self.look_ahead(1, |t| t.is_keyword(keywords::SelfValue)) {
4486                     mutbl_self = try!(self.parse_mutability());
4487                     let self_ident = try!(self.expect_self_ident());
4488
4489                     // Determine whether this is the fully explicit form,
4490                     // `self: TYPE`.
4491                     if self.eat(&token::Colon) {
4492                         SelfExplicit(try!(self.parse_ty_sum()), self_ident)
4493                     } else {
4494                         SelfValue(self_ident)
4495                     }
4496                 } else {
4497                     SelfStatic
4498                 }
4499             }
4500             _ => SelfStatic,
4501         };
4502
4503         let explicit_self_sp = mk_sp(self_ident_lo, self_ident_hi);
4504
4505         // shared fall-through for the three cases below. borrowing prevents simply
4506         // writing this as a closure
4507         macro_rules! parse_remaining_arguments {
4508             ($self_id:ident) =>
4509             {
4510             // If we parsed a self type, expect a comma before the argument list.
4511             match self.token {
4512                 token::Comma => {
4513                     self.bump();
4514                     let sep = seq_sep_trailing_allowed(token::Comma);
4515                     let mut fn_inputs = try!(self.parse_seq_to_before_end(
4516                         &token::CloseDelim(token::Paren),
4517                         sep,
4518                         parse_arg_fn
4519                     ));
4520                     fn_inputs.insert(0, Arg::new_self(explicit_self_sp, mutbl_self, $self_id));
4521                     fn_inputs
4522                 }
4523                 token::CloseDelim(token::Paren) => {
4524                     vec!(Arg::new_self(explicit_self_sp, mutbl_self, $self_id))
4525                 }
4526                 _ => {
4527                     let token_str = self.this_token_to_string();
4528                     return Err(self.fatal(&format!("expected `,` or `)`, found `{}`",
4529                                        token_str)))
4530                 }
4531             }
4532             }
4533         }
4534
4535         let fn_inputs = match explicit_self {
4536             SelfStatic =>  {
4537                 let sep = seq_sep_trailing_allowed(token::Comma);
4538                 try!(self.parse_seq_to_before_end(&token::CloseDelim(token::Paren),
4539                                                   sep, parse_arg_fn))
4540             }
4541             SelfValue(id) => parse_remaining_arguments!(id),
4542             SelfRegion(_,_,id) => parse_remaining_arguments!(id),
4543             SelfExplicit(_,id) => parse_remaining_arguments!(id),
4544         };
4545
4546
4547         try!(self.expect(&token::CloseDelim(token::Paren)));
4548
4549         let hi = self.span.hi;
4550
4551         let ret_ty = try!(self.parse_ret_ty());
4552
4553         let fn_decl = P(FnDecl {
4554             inputs: fn_inputs,
4555             output: ret_ty,
4556             variadic: false
4557         });
4558
4559         Ok((spanned(lo, hi, explicit_self), fn_decl))
4560     }
4561
4562     // parse the |arg, arg| header on a lambda
4563     fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
4564         let inputs_captures = {
4565             if self.eat(&token::OrOr) {
4566                 Vec::new()
4567             } else {
4568                 try!(self.expect(&token::BinOp(token::Or)));
4569                 try!(self.parse_obsolete_closure_kind());
4570                 let args = try!(self.parse_seq_to_before_end(
4571                     &token::BinOp(token::Or),
4572                     seq_sep_trailing_allowed(token::Comma),
4573                     |p| p.parse_fn_block_arg()
4574                 ));
4575                 self.bump();
4576                 args
4577             }
4578         };
4579         let output = try!(self.parse_ret_ty());
4580
4581         Ok(P(FnDecl {
4582             inputs: inputs_captures,
4583             output: output,
4584             variadic: false
4585         }))
4586     }
4587
4588     /// Parse the name and optional generic types of a function header.
4589     fn parse_fn_header(&mut self) -> PResult<'a, (Ident, ast::Generics)> {
4590         let id = try!(self.parse_ident());
4591         let generics = try!(self.parse_generics());
4592         Ok((id, generics))
4593     }
4594
4595     fn mk_item(&mut self, lo: BytePos, hi: BytePos, ident: Ident,
4596                node: Item_, vis: Visibility,
4597                attrs: Vec<Attribute>) -> P<Item> {
4598         P(Item {
4599             ident: ident,
4600             attrs: attrs,
4601             id: ast::DUMMY_NODE_ID,
4602             node: node,
4603             vis: vis,
4604             span: mk_sp(lo, hi)
4605         })
4606     }
4607
4608     /// Parse an item-position function declaration.
4609     fn parse_item_fn(&mut self,
4610                      unsafety: Unsafety,
4611                      constness: Constness,
4612                      abi: abi::Abi)
4613                      -> PResult<'a, ItemInfo> {
4614         let (ident, mut generics) = try!(self.parse_fn_header());
4615         let decl = try!(self.parse_fn_decl(false));
4616         generics.where_clause = try!(self.parse_where_clause());
4617         let (inner_attrs, body) = try!(self.parse_inner_attrs_and_block());
4618         Ok((ident, ItemFn(decl, unsafety, constness, abi, generics, body), Some(inner_attrs)))
4619     }
4620
4621     /// true if we are looking at `const ID`, false for things like `const fn` etc
4622     pub fn is_const_item(&mut self) -> bool {
4623         self.token.is_keyword(keywords::Const) &&
4624             !self.look_ahead(1, |t| t.is_keyword(keywords::Fn)) &&
4625             !self.look_ahead(1, |t| t.is_keyword(keywords::Unsafe))
4626     }
4627
4628     /// parses all the "front matter" for a `fn` declaration, up to
4629     /// and including the `fn` keyword:
4630     ///
4631     /// - `const fn`
4632     /// - `unsafe fn`
4633     /// - `const unsafe fn`
4634     /// - `extern fn`
4635     /// - etc
4636     pub fn parse_fn_front_matter(&mut self)
4637                                  -> PResult<'a, (ast::Constness, ast::Unsafety, abi::Abi)> {
4638         let is_const_fn = self.eat_keyword(keywords::Const);
4639         let unsafety = try!(self.parse_unsafety());
4640         let (constness, unsafety, abi) = if is_const_fn {
4641             (Constness::Const, unsafety, abi::Rust)
4642         } else {
4643             let abi = if self.eat_keyword(keywords::Extern) {
4644                 try!(self.parse_opt_abi()).unwrap_or(abi::C)
4645             } else {
4646                 abi::Rust
4647             };
4648             (Constness::NotConst, unsafety, abi)
4649         };
4650         try!(self.expect_keyword(keywords::Fn));
4651         Ok((constness, unsafety, abi))
4652     }
4653
4654     /// Parse an impl item.
4655     pub fn parse_impl_item(&mut self) -> PResult<'a, P<ImplItem>> {
4656         maybe_whole!(no_clone self, NtImplItem);
4657
4658         let mut attrs = try!(self.parse_outer_attributes());
4659         let lo = self.span.lo;
4660         let vis = try!(self.parse_visibility());
4661         let (name, node) = if self.eat_keyword(keywords::Type) {
4662             let name = try!(self.parse_ident());
4663             try!(self.expect(&token::Eq));
4664             let typ = try!(self.parse_ty_sum());
4665             try!(self.expect(&token::Semi));
4666             (name, ast::ImplItemKind::Type(typ))
4667         } else if self.is_const_item() {
4668             try!(self.expect_keyword(keywords::Const));
4669             let name = try!(self.parse_ident());
4670             try!(self.expect(&token::Colon));
4671             let typ = try!(self.parse_ty_sum());
4672             try!(self.expect(&token::Eq));
4673             let expr = try!(self.parse_expr());
4674             try!(self.commit_expr_expecting(&expr, token::Semi));
4675             (name, ast::ImplItemKind::Const(typ, expr))
4676         } else {
4677             let (name, inner_attrs, node) = try!(self.parse_impl_method(vis));
4678             attrs.extend(inner_attrs);
4679             (name, node)
4680         };
4681
4682         Ok(P(ImplItem {
4683             id: ast::DUMMY_NODE_ID,
4684             span: mk_sp(lo, self.last_span.hi),
4685             ident: name,
4686             vis: vis,
4687             attrs: attrs,
4688             node: node
4689         }))
4690     }
4691
4692     fn complain_if_pub_macro(&mut self, visa: Visibility, span: Span) {
4693         match visa {
4694             Public => {
4695                 let is_macro_rules: bool = match self.token {
4696                     token::Ident(sid, _) => sid.name == intern("macro_rules"),
4697                     _ => false,
4698                 };
4699                 if is_macro_rules {
4700                     self.diagnostic().struct_span_err(span, "can't qualify macro_rules \
4701                                                              invocation with `pub`")
4702                                      .fileline_help(span, "did you mean #[macro_export]?")
4703                                      .emit();
4704                 } else {
4705                     self.diagnostic().struct_span_err(span, "can't qualify macro \
4706                                                              invocation with `pub`")
4707                                      .fileline_help(span, "try adjusting the macro to put `pub` \
4708                                                            inside the invocation")
4709                                      .emit();
4710                 }
4711             }
4712             Inherited => (),
4713         }
4714     }
4715
4716     /// Parse a method or a macro invocation in a trait impl.
4717     fn parse_impl_method(&mut self, vis: Visibility)
4718                          -> PResult<'a, (Ident, Vec<ast::Attribute>, ast::ImplItemKind)> {
4719         // code copied from parse_macro_use_or_failure... abstraction!
4720         if !self.token.is_any_keyword()
4721             && self.look_ahead(1, |t| *t == token::Not)
4722             && (self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
4723                 || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
4724             // method macro.
4725
4726             let last_span = self.last_span;
4727             self.complain_if_pub_macro(vis, last_span);
4728
4729             let lo = self.span.lo;
4730             let pth = try!(self.parse_path(NoTypesAllowed));
4731             try!(self.expect(&token::Not));
4732
4733             // eat a matched-delimiter token tree:
4734             let delim = try!(self.expect_open_delim());
4735             let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
4736                                             seq_sep_none(),
4737                                             |p| p.parse_token_tree()));
4738             let m_ = Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT };
4739             let m: ast::Mac = codemap::Spanned { node: m_,
4740                                                 span: mk_sp(lo,
4741                                                             self.last_span.hi) };
4742             if delim != token::Brace {
4743                 try!(self.expect(&token::Semi))
4744             }
4745             Ok((token::special_idents::invalid, vec![], ast::ImplItemKind::Macro(m)))
4746         } else {
4747             let (constness, unsafety, abi) = try!(self.parse_fn_front_matter());
4748             let ident = try!(self.parse_ident());
4749             let mut generics = try!(self.parse_generics());
4750             let (explicit_self, decl) = try!(self.parse_fn_decl_with_self(|p| {
4751                     p.parse_arg()
4752                 }));
4753             generics.where_clause = try!(self.parse_where_clause());
4754             let (inner_attrs, body) = try!(self.parse_inner_attrs_and_block());
4755             Ok((ident, inner_attrs, ast::ImplItemKind::Method(ast::MethodSig {
4756                 generics: generics,
4757                 abi: abi,
4758                 explicit_self: explicit_self,
4759                 unsafety: unsafety,
4760                 constness: constness,
4761                 decl: decl
4762              }, body)))
4763         }
4764     }
4765
4766     /// Parse trait Foo { ... }
4767     fn parse_item_trait(&mut self, unsafety: Unsafety) -> PResult<'a, ItemInfo> {
4768
4769         let ident = try!(self.parse_ident());
4770         let mut tps = try!(self.parse_generics());
4771
4772         // Parse supertrait bounds.
4773         let bounds = try!(self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare));
4774
4775         tps.where_clause = try!(self.parse_where_clause());
4776
4777         let meths = try!(self.parse_trait_items());
4778         Ok((ident, ItemTrait(unsafety, tps, bounds, meths), None))
4779     }
4780
4781     /// Parses items implementations variants
4782     ///    impl<T> Foo { ... }
4783     ///    impl<T> ToString for &'static T { ... }
4784     ///    impl Send for .. {}
4785     fn parse_item_impl(&mut self, unsafety: ast::Unsafety) -> PResult<'a, ItemInfo> {
4786         let impl_span = self.span;
4787
4788         // First, parse type parameters if necessary.
4789         let mut generics = try!(self.parse_generics());
4790
4791         // Special case: if the next identifier that follows is '(', don't
4792         // allow this to be parsed as a trait.
4793         let could_be_trait = self.token != token::OpenDelim(token::Paren);
4794
4795         let neg_span = self.span;
4796         let polarity = if self.eat(&token::Not) {
4797             ast::ImplPolarity::Negative
4798         } else {
4799             ast::ImplPolarity::Positive
4800         };
4801
4802         // Parse the trait.
4803         let mut ty = try!(self.parse_ty_sum());
4804
4805         // Parse traits, if necessary.
4806         let opt_trait = if could_be_trait && self.eat_keyword(keywords::For) {
4807             // New-style trait. Reinterpret the type as a trait.
4808             match ty.node {
4809                 TyPath(None, ref path) => {
4810                     Some(TraitRef {
4811                         path: (*path).clone(),
4812                         ref_id: ty.id,
4813                     })
4814                 }
4815                 _ => {
4816                     self.span_err(ty.span, "not a trait");
4817                     None
4818                 }
4819             }
4820         } else {
4821             match polarity {
4822                 ast::ImplPolarity::Negative => {
4823                     // This is a negated type implementation
4824                     // `impl !MyType {}`, which is not allowed.
4825                     self.span_err(neg_span, "inherent implementation can't be negated");
4826                 },
4827                 _ => {}
4828             }
4829             None
4830         };
4831
4832         if opt_trait.is_some() && self.eat(&token::DotDot) {
4833             if generics.is_parameterized() {
4834                 self.span_err(impl_span, "default trait implementations are not \
4835                                           allowed to have generics");
4836             }
4837
4838             try!(self.expect(&token::OpenDelim(token::Brace)));
4839             try!(self.expect(&token::CloseDelim(token::Brace)));
4840             Ok((ast_util::impl_pretty_name(&opt_trait, None),
4841              ItemDefaultImpl(unsafety, opt_trait.unwrap()), None))
4842         } else {
4843             if opt_trait.is_some() {
4844                 ty = try!(self.parse_ty_sum());
4845             }
4846             generics.where_clause = try!(self.parse_where_clause());
4847
4848             try!(self.expect(&token::OpenDelim(token::Brace)));
4849             let attrs = try!(self.parse_inner_attributes());
4850
4851             let mut impl_items = vec![];
4852             while !self.eat(&token::CloseDelim(token::Brace)) {
4853                 impl_items.push(try!(self.parse_impl_item()));
4854             }
4855
4856             Ok((ast_util::impl_pretty_name(&opt_trait, Some(&*ty)),
4857              ItemImpl(unsafety, polarity, generics, opt_trait, ty, impl_items),
4858              Some(attrs)))
4859         }
4860     }
4861
4862     /// Parse a::B<String,i32>
4863     fn parse_trait_ref(&mut self) -> PResult<'a, TraitRef> {
4864         Ok(ast::TraitRef {
4865             path: try!(self.parse_path(LifetimeAndTypesWithoutColons)),
4866             ref_id: ast::DUMMY_NODE_ID,
4867         })
4868     }
4869
4870     fn parse_late_bound_lifetime_defs(&mut self) -> PResult<'a, Vec<ast::LifetimeDef>> {
4871         if self.eat_keyword(keywords::For) {
4872             try!(self.expect(&token::Lt));
4873             let lifetime_defs = try!(self.parse_lifetime_defs());
4874             try!(self.expect_gt());
4875             Ok(lifetime_defs)
4876         } else {
4877             Ok(Vec::new())
4878         }
4879     }
4880
4881     /// Parse for<'l> a::B<String,i32>
4882     fn parse_poly_trait_ref(&mut self) -> PResult<'a, PolyTraitRef> {
4883         let lo = self.span.lo;
4884         let lifetime_defs = try!(self.parse_late_bound_lifetime_defs());
4885
4886         Ok(ast::PolyTraitRef {
4887             bound_lifetimes: lifetime_defs,
4888             trait_ref: try!(self.parse_trait_ref()),
4889             span: mk_sp(lo, self.last_span.hi),
4890         })
4891     }
4892
4893     /// Parse struct Foo { ... }
4894     fn parse_item_struct(&mut self) -> PResult<'a, ItemInfo> {
4895         let class_name = try!(self.parse_ident());
4896         let mut generics = try!(self.parse_generics());
4897
4898         // There is a special case worth noting here, as reported in issue #17904.
4899         // If we are parsing a tuple struct it is the case that the where clause
4900         // should follow the field list. Like so:
4901         //
4902         // struct Foo<T>(T) where T: Copy;
4903         //
4904         // If we are parsing a normal record-style struct it is the case
4905         // that the where clause comes before the body, and after the generics.
4906         // So if we look ahead and see a brace or a where-clause we begin
4907         // parsing a record style struct.
4908         //
4909         // Otherwise if we look ahead and see a paren we parse a tuple-style
4910         // struct.
4911
4912         let vdata = if self.token.is_keyword(keywords::Where) {
4913             generics.where_clause = try!(self.parse_where_clause());
4914             if self.eat(&token::Semi) {
4915                 // If we see a: `struct Foo<T> where T: Copy;` style decl.
4916                 VariantData::Unit(ast::DUMMY_NODE_ID)
4917             } else {
4918                 // If we see: `struct Foo<T> where T: Copy { ... }`
4919                 VariantData::Struct(try!(self.parse_record_struct_body(ParsePub::Yes)),
4920                                     ast::DUMMY_NODE_ID)
4921             }
4922         // No `where` so: `struct Foo<T>;`
4923         } else if self.eat(&token::Semi) {
4924             VariantData::Unit(ast::DUMMY_NODE_ID)
4925         // Record-style struct definition
4926         } else if self.token == token::OpenDelim(token::Brace) {
4927             VariantData::Struct(try!(self.parse_record_struct_body(ParsePub::Yes)),
4928                                 ast::DUMMY_NODE_ID)
4929         // Tuple-style struct definition with optional where-clause.
4930         } else if self.token == token::OpenDelim(token::Paren) {
4931             let body = VariantData::Tuple(try!(self.parse_tuple_struct_body(ParsePub::Yes)),
4932                                           ast::DUMMY_NODE_ID);
4933             generics.where_clause = try!(self.parse_where_clause());
4934             try!(self.expect(&token::Semi));
4935             body
4936         } else {
4937             let token_str = self.this_token_to_string();
4938             return Err(self.fatal(&format!("expected `where`, `{{`, `(`, or `;` after struct \
4939                                             name, found `{}`", token_str)))
4940         };
4941
4942         Ok((class_name, ItemStruct(vdata, generics), None))
4943     }
4944
4945     pub fn parse_record_struct_body(&mut self,
4946                                     parse_pub: ParsePub)
4947                                     -> PResult<'a, Vec<StructField>> {
4948         let mut fields = Vec::new();
4949         if self.eat(&token::OpenDelim(token::Brace)) {
4950             while self.token != token::CloseDelim(token::Brace) {
4951                 fields.push(try!(self.parse_struct_decl_field(parse_pub)));
4952             }
4953
4954             self.bump();
4955         } else {
4956             let token_str = self.this_token_to_string();
4957             return Err(self.fatal(&format!("expected `where`, or `{{` after struct \
4958                                 name, found `{}`",
4959                                 token_str)));
4960         }
4961
4962         Ok(fields)
4963     }
4964
4965     pub fn parse_tuple_struct_body(&mut self,
4966                                    parse_pub: ParsePub)
4967                                    -> PResult<'a, Vec<StructField>> {
4968         // This is the case where we find `struct Foo<T>(T) where T: Copy;`
4969         // Unit like structs are handled in parse_item_struct function
4970         let fields = try!(self.parse_unspanned_seq(
4971             &token::OpenDelim(token::Paren),
4972             &token::CloseDelim(token::Paren),
4973             seq_sep_trailing_allowed(token::Comma),
4974             |p| {
4975                 let attrs = try!(p.parse_outer_attributes());
4976                 let lo = p.span.lo;
4977                 let struct_field_ = ast::StructField_ {
4978                     kind: UnnamedField (
4979                         if parse_pub == ParsePub::Yes {
4980                             try!(p.parse_visibility())
4981                         } else {
4982                             Inherited
4983                         }
4984                     ),
4985                     id: ast::DUMMY_NODE_ID,
4986                     ty: try!(p.parse_ty_sum()),
4987                     attrs: attrs,
4988                 };
4989                 Ok(spanned(lo, p.span.hi, struct_field_))
4990             }));
4991
4992         Ok(fields)
4993     }
4994
4995     /// Parse a structure field declaration
4996     pub fn parse_single_struct_field(&mut self,
4997                                      vis: Visibility,
4998                                      attrs: Vec<Attribute> )
4999                                      -> PResult<'a, StructField> {
5000         let a_var = try!(self.parse_name_and_ty(vis, attrs));
5001         match self.token {
5002             token::Comma => {
5003                 self.bump();
5004             }
5005             token::CloseDelim(token::Brace) => {}
5006             _ => {
5007                 let span = self.span;
5008                 let token_str = self.this_token_to_string();
5009                 return Err(self.span_fatal_help(span,
5010                                      &format!("expected `,`, or `}}`, found `{}`",
5011                                              token_str),
5012                                      "struct fields should be separated by commas"))
5013             }
5014         }
5015         Ok(a_var)
5016     }
5017
5018     /// Parse an element of a struct definition
5019     fn parse_struct_decl_field(&mut self, parse_pub: ParsePub) -> PResult<'a, StructField> {
5020
5021         let attrs = try!(self.parse_outer_attributes());
5022
5023         if self.eat_keyword(keywords::Pub) {
5024             if parse_pub == ParsePub::No {
5025                 let span = self.last_span;
5026                 self.span_err(span, "`pub` is not allowed here");
5027             }
5028             return self.parse_single_struct_field(Public, attrs);
5029         }
5030
5031         return self.parse_single_struct_field(Inherited, attrs);
5032     }
5033
5034     /// Parse visibility: PUB or nothing
5035     fn parse_visibility(&mut self) -> PResult<'a, Visibility> {
5036         if self.eat_keyword(keywords::Pub) { Ok(Public) }
5037         else { Ok(Inherited) }
5038     }
5039
5040     /// Given a termination token, parse all of the items in a module
5041     fn parse_mod_items(&mut self, term: &token::Token, inner_lo: BytePos) -> PResult<'a, Mod> {
5042         let mut items = vec![];
5043         while let Some(item) = try!(self.parse_item()) {
5044             items.push(item);
5045         }
5046
5047         if !self.eat(term) {
5048             let token_str = self.this_token_to_string();
5049             return Err(self.fatal(&format!("expected item, found `{}`", token_str)));
5050         }
5051
5052         let hi = if self.span == codemap::DUMMY_SP {
5053             inner_lo
5054         } else {
5055             self.last_span.hi
5056         };
5057
5058         Ok(ast::Mod {
5059             inner: mk_sp(inner_lo, hi),
5060             items: items
5061         })
5062     }
5063
5064     fn parse_item_const(&mut self, m: Option<Mutability>) -> PResult<'a, ItemInfo> {
5065         let id = try!(self.parse_ident());
5066         try!(self.expect(&token::Colon));
5067         let ty = try!(self.parse_ty_sum());
5068         try!(self.expect(&token::Eq));
5069         let e = try!(self.parse_expr());
5070         try!(self.commit_expr_expecting(&*e, token::Semi));
5071         let item = match m {
5072             Some(m) => ItemStatic(ty, m, e),
5073             None => ItemConst(ty, e),
5074         };
5075         Ok((id, item, None))
5076     }
5077
5078     /// Parse a `mod <foo> { ... }` or `mod <foo>;` item
5079     fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> PResult<'a, ItemInfo> {
5080         let id_span = self.span;
5081         let id = try!(self.parse_ident());
5082         if self.check(&token::Semi) {
5083             self.bump();
5084             // This mod is in an external file. Let's go get it!
5085             let (m, attrs) = try!(self.eval_src_mod(id, outer_attrs, id_span));
5086             Ok((id, m, Some(attrs)))
5087         } else {
5088             self.push_mod_path(id, outer_attrs);
5089             try!(self.expect(&token::OpenDelim(token::Brace)));
5090             let mod_inner_lo = self.span.lo;
5091             let old_owns_directory = self.owns_directory;
5092             self.owns_directory = true;
5093             let attrs = try!(self.parse_inner_attributes());
5094             let m = try!(self.parse_mod_items(&token::CloseDelim(token::Brace), mod_inner_lo));
5095             self.owns_directory = old_owns_directory;
5096             self.pop_mod_path();
5097             Ok((id, ItemMod(m), Some(attrs)))
5098         }
5099     }
5100
5101     fn push_mod_path(&mut self, id: Ident, attrs: &[Attribute]) {
5102         let default_path = self.id_to_interned_str(id);
5103         let file_path = match ::attr::first_attr_value_str_by_name(attrs, "path") {
5104             Some(d) => d,
5105             None => default_path,
5106         };
5107         self.mod_path_stack.push(file_path)
5108     }
5109
5110     fn pop_mod_path(&mut self) {
5111         self.mod_path_stack.pop().unwrap();
5112     }
5113
5114     pub fn submod_path_from_attr(attrs: &[ast::Attribute], dir_path: &Path) -> Option<PathBuf> {
5115         ::attr::first_attr_value_str_by_name(attrs, "path").map(|d| dir_path.join(&*d))
5116     }
5117
5118     /// Returns either a path to a module, or .
5119     pub fn default_submod_path(id: ast::Ident, dir_path: &Path, codemap: &CodeMap) -> ModulePath
5120     {
5121         let mod_name = id.to_string();
5122         let default_path_str = format!("{}.rs", mod_name);
5123         let secondary_path_str = format!("{}/mod.rs", mod_name);
5124         let default_path = dir_path.join(&default_path_str);
5125         let secondary_path = dir_path.join(&secondary_path_str);
5126         let default_exists = codemap.file_exists(&default_path);
5127         let secondary_exists = codemap.file_exists(&secondary_path);
5128
5129         let result = match (default_exists, secondary_exists) {
5130             (true, false) => Ok(ModulePathSuccess { path: default_path, owns_directory: false }),
5131             (false, true) => Ok(ModulePathSuccess { path: secondary_path, owns_directory: true }),
5132             (false, false) => Err(ModulePathError {
5133                 err_msg: format!("file not found for module `{}`", mod_name),
5134                 help_msg: format!("name the file either {} or {} inside the directory {:?}",
5135                                   default_path_str,
5136                                   secondary_path_str,
5137                                   dir_path.display()),
5138             }),
5139             (true, true) => Err(ModulePathError {
5140                 err_msg: format!("file for module `{}` found at both {} and {}",
5141                                  mod_name,
5142                                  default_path_str,
5143                                  secondary_path_str),
5144                 help_msg: "delete or rename one of them to remove the ambiguity".to_owned(),
5145             }),
5146         };
5147
5148         ModulePath {
5149             name: mod_name,
5150             path_exists: default_exists || secondary_exists,
5151             result: result,
5152         }
5153     }
5154
5155     fn submod_path(&mut self,
5156                    id: ast::Ident,
5157                    outer_attrs: &[ast::Attribute],
5158                    id_sp: Span) -> PResult<'a, ModulePathSuccess> {
5159         let mut prefix = PathBuf::from(&self.sess.codemap().span_to_filename(self.span));
5160         prefix.pop();
5161         let mut dir_path = prefix;
5162         for part in &self.mod_path_stack {
5163             dir_path.push(&**part);
5164         }
5165
5166         if let Some(p) = Parser::submod_path_from_attr(outer_attrs, &dir_path) {
5167             return Ok(ModulePathSuccess { path: p, owns_directory: true });
5168         }
5169
5170         let paths = Parser::default_submod_path(id, &dir_path, self.sess.codemap());
5171
5172         if !self.owns_directory {
5173             let mut err = self.diagnostic().struct_span_err(id_sp,
5174                 "cannot declare a new module at this location");
5175             let this_module = match self.mod_path_stack.last() {
5176                 Some(name) => name.to_string(),
5177                 None => self.root_module_name.as_ref().unwrap().clone(),
5178             };
5179             err.span_note(id_sp,
5180                           &format!("maybe move this module `{0}` to its own directory \
5181                                      via `{0}/mod.rs`",
5182                                     this_module));
5183             if paths.path_exists {
5184                 err.span_note(id_sp,
5185                               &format!("... or maybe `use` the module `{}` instead \
5186                                         of possibly redeclaring it",
5187                                        paths.name));
5188             }
5189             return Err(err);
5190         }
5191
5192         match paths.result {
5193             Ok(succ) => Ok(succ),
5194             Err(err) => Err(self.span_fatal_help(id_sp, &err.err_msg, &err.help_msg)),
5195         }
5196     }
5197
5198     /// Read a module from a source file.
5199     fn eval_src_mod(&mut self,
5200                     id: ast::Ident,
5201                     outer_attrs: &[ast::Attribute],
5202                     id_sp: Span)
5203                     -> PResult<'a, (ast::Item_, Vec<ast::Attribute> )> {
5204         let ModulePathSuccess { path, owns_directory } = try!(self.submod_path(id,
5205                                                                                outer_attrs,
5206                                                                                id_sp));
5207
5208         self.eval_src_mod_from_path(path,
5209                                     owns_directory,
5210                                     id.to_string(),
5211                                     id_sp)
5212     }
5213
5214     fn eval_src_mod_from_path(&mut self,
5215                               path: PathBuf,
5216                               owns_directory: bool,
5217                               name: String,
5218                               id_sp: Span) -> PResult<'a, (ast::Item_, Vec<ast::Attribute> )> {
5219         let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut();
5220         match included_mod_stack.iter().position(|p| *p == path) {
5221             Some(i) => {
5222                 let mut err = String::from("circular modules: ");
5223                 let len = included_mod_stack.len();
5224                 for p in &included_mod_stack[i.. len] {
5225                     err.push_str(&p.to_string_lossy());
5226                     err.push_str(" -> ");
5227                 }
5228                 err.push_str(&path.to_string_lossy());
5229                 return Err(self.span_fatal(id_sp, &err[..]));
5230             }
5231             None => ()
5232         }
5233         included_mod_stack.push(path.clone());
5234         drop(included_mod_stack);
5235
5236         let mut p0 = new_sub_parser_from_file(self.sess,
5237                                               self.cfg.clone(),
5238                                               &path,
5239                                               owns_directory,
5240                                               Some(name),
5241                                               id_sp);
5242         let mod_inner_lo = p0.span.lo;
5243         let mod_attrs = try!(p0.parse_inner_attributes());
5244         let m0 = try!(p0.parse_mod_items(&token::Eof, mod_inner_lo));
5245         self.sess.included_mod_stack.borrow_mut().pop();
5246         Ok((ast::ItemMod(m0), mod_attrs))
5247     }
5248
5249     /// Parse a function declaration from a foreign module
5250     fn parse_item_foreign_fn(&mut self, vis: ast::Visibility, lo: BytePos,
5251                              attrs: Vec<Attribute>) -> PResult<'a, P<ForeignItem>> {
5252         try!(self.expect_keyword(keywords::Fn));
5253
5254         let (ident, mut generics) = try!(self.parse_fn_header());
5255         let decl = try!(self.parse_fn_decl(true));
5256         generics.where_clause = try!(self.parse_where_clause());
5257         let hi = self.span.hi;
5258         try!(self.expect(&token::Semi));
5259         Ok(P(ast::ForeignItem {
5260             ident: ident,
5261             attrs: attrs,
5262             node: ForeignItemFn(decl, generics),
5263             id: ast::DUMMY_NODE_ID,
5264             span: mk_sp(lo, hi),
5265             vis: vis
5266         }))
5267     }
5268
5269     /// Parse a static item from a foreign module
5270     fn parse_item_foreign_static(&mut self, vis: ast::Visibility, lo: BytePos,
5271                                  attrs: Vec<Attribute>) -> PResult<'a, P<ForeignItem>> {
5272         try!(self.expect_keyword(keywords::Static));
5273         let mutbl = self.eat_keyword(keywords::Mut);
5274
5275         let ident = try!(self.parse_ident());
5276         try!(self.expect(&token::Colon));
5277         let ty = try!(self.parse_ty_sum());
5278         let hi = self.span.hi;
5279         try!(self.expect(&token::Semi));
5280         Ok(P(ForeignItem {
5281             ident: ident,
5282             attrs: attrs,
5283             node: ForeignItemStatic(ty, mutbl),
5284             id: ast::DUMMY_NODE_ID,
5285             span: mk_sp(lo, hi),
5286             vis: vis
5287         }))
5288     }
5289
5290     /// Parse extern crate links
5291     ///
5292     /// # Examples
5293     ///
5294     /// extern crate foo;
5295     /// extern crate bar as foo;
5296     fn parse_item_extern_crate(&mut self,
5297                                lo: BytePos,
5298                                visibility: Visibility,
5299                                attrs: Vec<Attribute>)
5300                                 -> PResult<'a, P<Item>> {
5301
5302         let crate_name = try!(self.parse_ident());
5303         let (maybe_path, ident) = if let Some(ident) = try!(self.parse_rename()) {
5304             (Some(crate_name.name), ident)
5305         } else {
5306             (None, crate_name)
5307         };
5308         try!(self.expect(&token::Semi));
5309
5310         let last_span = self.last_span;
5311
5312         if visibility == ast::Public {
5313             self.span_warn(mk_sp(lo, last_span.hi),
5314                            "`pub extern crate` does not work as expected and should not be used. \
5315                             Likely to become an error. Prefer `extern crate` and `pub use`.");
5316         }
5317
5318         Ok(self.mk_item(lo,
5319                         last_span.hi,
5320                         ident,
5321                         ItemExternCrate(maybe_path),
5322                         visibility,
5323                         attrs))
5324     }
5325
5326     /// Parse `extern` for foreign ABIs
5327     /// modules.
5328     ///
5329     /// `extern` is expected to have been
5330     /// consumed before calling this method
5331     ///
5332     /// # Examples:
5333     ///
5334     /// extern "C" {}
5335     /// extern {}
5336     fn parse_item_foreign_mod(&mut self,
5337                               lo: BytePos,
5338                               opt_abi: Option<abi::Abi>,
5339                               visibility: Visibility,
5340                               mut attrs: Vec<Attribute>)
5341                               -> PResult<'a, P<Item>> {
5342         try!(self.expect(&token::OpenDelim(token::Brace)));
5343
5344         let abi = opt_abi.unwrap_or(abi::C);
5345
5346         attrs.extend(try!(self.parse_inner_attributes()));
5347
5348         let mut foreign_items = vec![];
5349         while let Some(item) = try!(self.parse_foreign_item()) {
5350             foreign_items.push(item);
5351         }
5352         try!(self.expect(&token::CloseDelim(token::Brace)));
5353
5354         let last_span = self.last_span;
5355         let m = ast::ForeignMod {
5356             abi: abi,
5357             items: foreign_items
5358         };
5359         Ok(self.mk_item(lo,
5360                      last_span.hi,
5361                      special_idents::invalid,
5362                      ItemForeignMod(m),
5363                      visibility,
5364                      attrs))
5365     }
5366
5367     /// Parse type Foo = Bar;
5368     fn parse_item_type(&mut self) -> PResult<'a, ItemInfo> {
5369         let ident = try!(self.parse_ident());
5370         let mut tps = try!(self.parse_generics());
5371         tps.where_clause = try!(self.parse_where_clause());
5372         try!(self.expect(&token::Eq));
5373         let ty = try!(self.parse_ty_sum());
5374         try!(self.expect(&token::Semi));
5375         Ok((ident, ItemTy(ty, tps), None))
5376     }
5377
5378     /// Parse the part of an "enum" decl following the '{'
5379     fn parse_enum_def(&mut self, _generics: &ast::Generics) -> PResult<'a, EnumDef> {
5380         let mut variants = Vec::new();
5381         let mut all_nullary = true;
5382         let mut any_disr = None;
5383         while self.token != token::CloseDelim(token::Brace) {
5384             let variant_attrs = try!(self.parse_outer_attributes());
5385             let vlo = self.span.lo;
5386
5387             let struct_def;
5388             let mut disr_expr = None;
5389             let ident = try!(self.parse_ident());
5390             if self.check(&token::OpenDelim(token::Brace)) {
5391                 // Parse a struct variant.
5392                 all_nullary = false;
5393                 struct_def = VariantData::Struct(try!(self.parse_record_struct_body(ParsePub::No)),
5394                                                  ast::DUMMY_NODE_ID);
5395             } else if self.check(&token::OpenDelim(token::Paren)) {
5396                 all_nullary = false;
5397                 struct_def = VariantData::Tuple(try!(self.parse_tuple_struct_body(ParsePub::No)),
5398                                                 ast::DUMMY_NODE_ID);
5399             } else if self.eat(&token::Eq) {
5400                 disr_expr = Some(try!(self.parse_expr()));
5401                 any_disr = disr_expr.as_ref().map(|expr| expr.span);
5402                 struct_def = VariantData::Unit(ast::DUMMY_NODE_ID);
5403             } else {
5404                 struct_def = VariantData::Unit(ast::DUMMY_NODE_ID);
5405             }
5406
5407             let vr = ast::Variant_ {
5408                 name: ident,
5409                 attrs: variant_attrs,
5410                 data: struct_def,
5411                 disr_expr: disr_expr,
5412             };
5413             variants.push(P(spanned(vlo, self.last_span.hi, vr)));
5414
5415             if !self.eat(&token::Comma) { break; }
5416         }
5417         try!(self.expect(&token::CloseDelim(token::Brace)));
5418         match any_disr {
5419             Some(disr_span) if !all_nullary =>
5420                 self.span_err(disr_span,
5421                     "discriminator values can only be used with a c-like enum"),
5422             _ => ()
5423         }
5424
5425         Ok(ast::EnumDef { variants: variants })
5426     }
5427
5428     /// Parse an "enum" declaration
5429     fn parse_item_enum(&mut self) -> PResult<'a, ItemInfo> {
5430         let id = try!(self.parse_ident());
5431         let mut generics = try!(self.parse_generics());
5432         generics.where_clause = try!(self.parse_where_clause());
5433         try!(self.expect(&token::OpenDelim(token::Brace)));
5434
5435         let enum_definition = try!(self.parse_enum_def(&generics));
5436         Ok((id, ItemEnum(enum_definition, generics), None))
5437     }
5438
5439     /// Parses a string as an ABI spec on an extern type or module. Consumes
5440     /// the `extern` keyword, if one is found.
5441     fn parse_opt_abi(&mut self) -> PResult<'a, Option<abi::Abi>> {
5442         match self.token {
5443             token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => {
5444                 let sp = self.span;
5445                 self.expect_no_suffix(sp, "ABI spec", suf);
5446                 self.bump();
5447                 match abi::lookup(&s.as_str()) {
5448                     Some(abi) => Ok(Some(abi)),
5449                     None => {
5450                         let last_span = self.last_span;
5451                         self.span_err(
5452                             last_span,
5453                             &format!("invalid ABI: expected one of [{}], \
5454                                      found `{}`",
5455                                     abi::all_names().join(", "),
5456                                     s));
5457                         Ok(None)
5458                     }
5459                 }
5460             }
5461
5462             _ => Ok(None),
5463         }
5464     }
5465
5466     /// Parse one of the items allowed by the flags.
5467     /// NB: this function no longer parses the items inside an
5468     /// extern crate.
5469     fn parse_item_(&mut self, attrs: Vec<Attribute>,
5470                    macros_allowed: bool, attributes_allowed: bool) -> PResult<'a, Option<P<Item>>> {
5471         let nt_item = match self.token {
5472             token::Interpolated(token::NtItem(ref item)) => {
5473                 Some((**item).clone())
5474             }
5475             _ => None
5476         };
5477         match nt_item {
5478             Some(mut item) => {
5479                 self.bump();
5480                 let mut attrs = attrs;
5481                 mem::swap(&mut item.attrs, &mut attrs);
5482                 item.attrs.extend(attrs);
5483                 return Ok(Some(P(item)));
5484             }
5485             None => {}
5486         }
5487
5488         let lo = self.span.lo;
5489
5490         let visibility = try!(self.parse_visibility());
5491
5492         if self.eat_keyword(keywords::Use) {
5493             // USE ITEM
5494             let item_ = ItemUse(try!(self.parse_view_path()));
5495             try!(self.expect(&token::Semi));
5496
5497             let last_span = self.last_span;
5498             let item = self.mk_item(lo,
5499                                     last_span.hi,
5500                                     token::special_idents::invalid,
5501                                     item_,
5502                                     visibility,
5503                                     attrs);
5504             return Ok(Some(item));
5505         }
5506
5507         if self.eat_keyword(keywords::Extern) {
5508             if self.eat_keyword(keywords::Crate) {
5509                 return Ok(Some(try!(self.parse_item_extern_crate(lo, visibility, attrs))));
5510             }
5511
5512             let opt_abi = try!(self.parse_opt_abi());
5513
5514             if self.eat_keyword(keywords::Fn) {
5515                 // EXTERN FUNCTION ITEM
5516                 let abi = opt_abi.unwrap_or(abi::C);
5517                 let (ident, item_, extra_attrs) =
5518                     try!(self.parse_item_fn(Unsafety::Normal, Constness::NotConst, abi));
5519                 let last_span = self.last_span;
5520                 let item = self.mk_item(lo,
5521                                         last_span.hi,
5522                                         ident,
5523                                         item_,
5524                                         visibility,
5525                                         maybe_append(attrs, extra_attrs));
5526                 return Ok(Some(item));
5527             } else if self.check(&token::OpenDelim(token::Brace)) {
5528                 return Ok(Some(try!(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs))));
5529             }
5530
5531             try!(self.unexpected());
5532         }
5533
5534         if self.eat_keyword(keywords::Static) {
5535             // STATIC ITEM
5536             let m = if self.eat_keyword(keywords::Mut) {MutMutable} else {MutImmutable};
5537             let (ident, item_, extra_attrs) = try!(self.parse_item_const(Some(m)));
5538             let last_span = self.last_span;
5539             let item = self.mk_item(lo,
5540                                     last_span.hi,
5541                                     ident,
5542                                     item_,
5543                                     visibility,
5544                                     maybe_append(attrs, extra_attrs));
5545             return Ok(Some(item));
5546         }
5547         if self.eat_keyword(keywords::Const) {
5548             if self.check_keyword(keywords::Fn)
5549                 || (self.check_keyword(keywords::Unsafe)
5550                     && self.look_ahead(1, |t| t.is_keyword(keywords::Fn))) {
5551                 // CONST FUNCTION ITEM
5552                 let unsafety = if self.eat_keyword(keywords::Unsafe) {
5553                     Unsafety::Unsafe
5554                 } else {
5555                     Unsafety::Normal
5556                 };
5557                 self.bump();
5558                 let (ident, item_, extra_attrs) =
5559                     try!(self.parse_item_fn(unsafety, Constness::Const, abi::Rust));
5560                 let last_span = self.last_span;
5561                 let item = self.mk_item(lo,
5562                                         last_span.hi,
5563                                         ident,
5564                                         item_,
5565                                         visibility,
5566                                         maybe_append(attrs, extra_attrs));
5567                 return Ok(Some(item));
5568             }
5569
5570             // CONST ITEM
5571             if self.eat_keyword(keywords::Mut) {
5572                 let last_span = self.last_span;
5573                 self.diagnostic().struct_span_err(last_span, "const globals cannot be mutable")
5574                                  .fileline_help(last_span, "did you mean to declare a static?")
5575                                  .emit();
5576             }
5577             let (ident, item_, extra_attrs) = try!(self.parse_item_const(None));
5578             let last_span = self.last_span;
5579             let item = self.mk_item(lo,
5580                                     last_span.hi,
5581                                     ident,
5582                                     item_,
5583                                     visibility,
5584                                     maybe_append(attrs, extra_attrs));
5585             return Ok(Some(item));
5586         }
5587         if self.check_keyword(keywords::Unsafe) &&
5588             self.look_ahead(1, |t| t.is_keyword(keywords::Trait))
5589         {
5590             // UNSAFE TRAIT ITEM
5591             try!(self.expect_keyword(keywords::Unsafe));
5592             try!(self.expect_keyword(keywords::Trait));
5593             let (ident, item_, extra_attrs) =
5594                 try!(self.parse_item_trait(ast::Unsafety::Unsafe));
5595             let last_span = self.last_span;
5596             let item = self.mk_item(lo,
5597                                     last_span.hi,
5598                                     ident,
5599                                     item_,
5600                                     visibility,
5601                                     maybe_append(attrs, extra_attrs));
5602             return Ok(Some(item));
5603         }
5604         if self.check_keyword(keywords::Unsafe) &&
5605             self.look_ahead(1, |t| t.is_keyword(keywords::Impl))
5606         {
5607             // IMPL ITEM
5608             try!(self.expect_keyword(keywords::Unsafe));
5609             try!(self.expect_keyword(keywords::Impl));
5610             let (ident, item_, extra_attrs) = try!(self.parse_item_impl(ast::Unsafety::Unsafe));
5611             let last_span = self.last_span;
5612             let item = self.mk_item(lo,
5613                                     last_span.hi,
5614                                     ident,
5615                                     item_,
5616                                     visibility,
5617                                     maybe_append(attrs, extra_attrs));
5618             return Ok(Some(item));
5619         }
5620         if self.check_keyword(keywords::Fn) {
5621             // FUNCTION ITEM
5622             self.bump();
5623             let (ident, item_, extra_attrs) =
5624                 try!(self.parse_item_fn(Unsafety::Normal, Constness::NotConst, abi::Rust));
5625             let last_span = self.last_span;
5626             let item = self.mk_item(lo,
5627                                     last_span.hi,
5628                                     ident,
5629                                     item_,
5630                                     visibility,
5631                                     maybe_append(attrs, extra_attrs));
5632             return Ok(Some(item));
5633         }
5634         if self.check_keyword(keywords::Unsafe)
5635             && self.look_ahead(1, |t| *t != token::OpenDelim(token::Brace)) {
5636             // UNSAFE FUNCTION ITEM
5637             self.bump();
5638             let abi = if self.eat_keyword(keywords::Extern) {
5639                 try!(self.parse_opt_abi()).unwrap_or(abi::C)
5640             } else {
5641                 abi::Rust
5642             };
5643             try!(self.expect_keyword(keywords::Fn));
5644             let (ident, item_, extra_attrs) =
5645                 try!(self.parse_item_fn(Unsafety::Unsafe, Constness::NotConst, abi));
5646             let last_span = self.last_span;
5647             let item = self.mk_item(lo,
5648                                     last_span.hi,
5649                                     ident,
5650                                     item_,
5651                                     visibility,
5652                                     maybe_append(attrs, extra_attrs));
5653             return Ok(Some(item));
5654         }
5655         if self.eat_keyword(keywords::Mod) {
5656             // MODULE ITEM
5657             let (ident, item_, extra_attrs) =
5658                 try!(self.parse_item_mod(&attrs[..]));
5659             let last_span = self.last_span;
5660             let item = self.mk_item(lo,
5661                                     last_span.hi,
5662                                     ident,
5663                                     item_,
5664                                     visibility,
5665                                     maybe_append(attrs, extra_attrs));
5666             return Ok(Some(item));
5667         }
5668         if self.eat_keyword(keywords::Type) {
5669             // TYPE ITEM
5670             let (ident, item_, extra_attrs) = try!(self.parse_item_type());
5671             let last_span = self.last_span;
5672             let item = self.mk_item(lo,
5673                                     last_span.hi,
5674                                     ident,
5675                                     item_,
5676                                     visibility,
5677                                     maybe_append(attrs, extra_attrs));
5678             return Ok(Some(item));
5679         }
5680         if self.eat_keyword(keywords::Enum) {
5681             // ENUM ITEM
5682             let (ident, item_, extra_attrs) = try!(self.parse_item_enum());
5683             let last_span = self.last_span;
5684             let item = self.mk_item(lo,
5685                                     last_span.hi,
5686                                     ident,
5687                                     item_,
5688                                     visibility,
5689                                     maybe_append(attrs, extra_attrs));
5690             return Ok(Some(item));
5691         }
5692         if self.eat_keyword(keywords::Trait) {
5693             // TRAIT ITEM
5694             let (ident, item_, extra_attrs) =
5695                 try!(self.parse_item_trait(ast::Unsafety::Normal));
5696             let last_span = self.last_span;
5697             let item = self.mk_item(lo,
5698                                     last_span.hi,
5699                                     ident,
5700                                     item_,
5701                                     visibility,
5702                                     maybe_append(attrs, extra_attrs));
5703             return Ok(Some(item));
5704         }
5705         if self.eat_keyword(keywords::Impl) {
5706             // IMPL ITEM
5707             let (ident, item_, extra_attrs) = try!(self.parse_item_impl(ast::Unsafety::Normal));
5708             let last_span = self.last_span;
5709             let item = self.mk_item(lo,
5710                                     last_span.hi,
5711                                     ident,
5712                                     item_,
5713                                     visibility,
5714                                     maybe_append(attrs, extra_attrs));
5715             return Ok(Some(item));
5716         }
5717         if self.eat_keyword(keywords::Struct) {
5718             // STRUCT ITEM
5719             let (ident, item_, extra_attrs) = try!(self.parse_item_struct());
5720             let last_span = self.last_span;
5721             let item = self.mk_item(lo,
5722                                     last_span.hi,
5723                                     ident,
5724                                     item_,
5725                                     visibility,
5726                                     maybe_append(attrs, extra_attrs));
5727             return Ok(Some(item));
5728         }
5729         self.parse_macro_use_or_failure(attrs,macros_allowed,attributes_allowed,lo,visibility)
5730     }
5731
5732     /// Parse a foreign item.
5733     fn parse_foreign_item(&mut self) -> PResult<'a, Option<P<ForeignItem>>> {
5734         let attrs = try!(self.parse_outer_attributes());
5735         let lo = self.span.lo;
5736         let visibility = try!(self.parse_visibility());
5737
5738         if self.check_keyword(keywords::Static) {
5739             // FOREIGN STATIC ITEM
5740             return Ok(Some(try!(self.parse_item_foreign_static(visibility, lo, attrs))));
5741         }
5742         if self.check_keyword(keywords::Fn) || self.check_keyword(keywords::Unsafe) {
5743             // FOREIGN FUNCTION ITEM
5744             return Ok(Some(try!(self.parse_item_foreign_fn(visibility, lo, attrs))));
5745         }
5746
5747         // FIXME #5668: this will occur for a macro invocation:
5748         match try!(self.parse_macro_use_or_failure(attrs, true, false, lo, visibility)) {
5749             Some(item) => {
5750                 return Err(self.span_fatal(item.span, "macros cannot expand to foreign items"));
5751             }
5752             None => Ok(None)
5753         }
5754     }
5755
5756     /// This is the fall-through for parsing items.
5757     fn parse_macro_use_or_failure(
5758         &mut self,
5759         attrs: Vec<Attribute> ,
5760         macros_allowed: bool,
5761         attributes_allowed: bool,
5762         lo: BytePos,
5763         visibility: Visibility
5764     ) -> PResult<'a, Option<P<Item>>> {
5765         if macros_allowed && !self.token.is_any_keyword()
5766                 && self.look_ahead(1, |t| *t == token::Not)
5767                 && (self.look_ahead(2, |t| t.is_plain_ident())
5768                     || self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
5769                     || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
5770             // MACRO INVOCATION ITEM
5771
5772             let last_span = self.last_span;
5773             self.complain_if_pub_macro(visibility, last_span);
5774
5775             let mac_lo = self.span.lo;
5776
5777             // item macro.
5778             let pth = try!(self.parse_path(NoTypesAllowed));
5779             try!(self.expect(&token::Not));
5780
5781             // a 'special' identifier (like what `macro_rules!` uses)
5782             // is optional. We should eventually unify invoc syntax
5783             // and remove this.
5784             let id = if self.token.is_plain_ident() {
5785                 try!(self.parse_ident())
5786             } else {
5787                 token::special_idents::invalid // no special identifier
5788             };
5789             // eat a matched-delimiter token tree:
5790             let delim = try!(self.expect_open_delim());
5791             let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
5792                                             seq_sep_none(),
5793                                             |p| p.parse_token_tree()));
5794             // single-variant-enum... :
5795             let m = Mac_ { path: pth, tts: tts, ctxt: EMPTY_CTXT };
5796             let m: ast::Mac = codemap::Spanned { node: m,
5797                                              span: mk_sp(mac_lo,
5798                                                          self.last_span.hi) };
5799
5800             if delim != token::Brace {
5801                 if !self.eat(&token::Semi) {
5802                     let last_span = self.last_span;
5803                     self.span_err(last_span,
5804                                   "macros that expand to items must either \
5805                                    be surrounded with braces or followed by \
5806                                    a semicolon");
5807                 }
5808             }
5809
5810             let item_ = ItemMac(m);
5811             let last_span = self.last_span;
5812             let item = self.mk_item(lo,
5813                                     last_span.hi,
5814                                     id,
5815                                     item_,
5816                                     visibility,
5817                                     attrs);
5818             return Ok(Some(item));
5819         }
5820
5821         // FAILURE TO PARSE ITEM
5822         match visibility {
5823             Inherited => {}
5824             Public => {
5825                 let last_span = self.last_span;
5826                 return Err(self.span_fatal(last_span, "unmatched visibility `pub`"));
5827             }
5828         }
5829
5830         if !attributes_allowed && !attrs.is_empty() {
5831             self.expected_item_err(&attrs);
5832         }
5833         Ok(None)
5834     }
5835
5836     pub fn parse_item(&mut self) -> PResult<'a, Option<P<Item>>> {
5837         let attrs = try!(self.parse_outer_attributes());
5838         self.parse_item_(attrs, true, false)
5839     }
5840
5841
5842     /// Matches view_path : MOD? non_global_path as IDENT
5843     /// | MOD? non_global_path MOD_SEP LBRACE RBRACE
5844     /// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE
5845     /// | MOD? non_global_path MOD_SEP STAR
5846     /// | MOD? non_global_path
5847     fn parse_view_path(&mut self) -> PResult<'a, P<ViewPath>> {
5848         let lo = self.span.lo;
5849
5850         // Allow a leading :: because the paths are absolute either way.
5851         // This occurs with "use $crate::..." in macros.
5852         self.eat(&token::ModSep);
5853
5854         if self.check(&token::OpenDelim(token::Brace)) {
5855             // use {foo,bar}
5856             let idents = try!(self.parse_unspanned_seq(
5857                 &token::OpenDelim(token::Brace),
5858                 &token::CloseDelim(token::Brace),
5859                 seq_sep_trailing_allowed(token::Comma),
5860                 |p| p.parse_path_list_item()));
5861             let path = ast::Path {
5862                 span: mk_sp(lo, self.span.hi),
5863                 global: false,
5864                 segments: Vec::new()
5865             };
5866             return Ok(P(spanned(lo, self.span.hi, ViewPathList(path, idents))));
5867         }
5868
5869         let first_ident = try!(self.parse_ident());
5870         let mut path = vec!(first_ident);
5871         if let token::ModSep = self.token {
5872             // foo::bar or foo::{a,b,c} or foo::*
5873             while self.check(&token::ModSep) {
5874                 self.bump();
5875
5876                 match self.token {
5877                   token::Ident(..) => {
5878                     let ident = try!(self.parse_ident());
5879                     path.push(ident);
5880                   }
5881
5882                   // foo::bar::{a,b,c}
5883                   token::OpenDelim(token::Brace) => {
5884                     let idents = try!(self.parse_unspanned_seq(
5885                         &token::OpenDelim(token::Brace),
5886                         &token::CloseDelim(token::Brace),
5887                         seq_sep_trailing_allowed(token::Comma),
5888                         |p| p.parse_path_list_item()
5889                     ));
5890                     let path = ast::Path {
5891                         span: mk_sp(lo, self.span.hi),
5892                         global: false,
5893                         segments: path.into_iter().map(|identifier| {
5894                             ast::PathSegment {
5895                                 identifier: identifier,
5896                                 parameters: ast::PathParameters::none(),
5897                             }
5898                         }).collect()
5899                     };
5900                     return Ok(P(spanned(lo, self.span.hi, ViewPathList(path, idents))));
5901                   }
5902
5903                   // foo::bar::*
5904                   token::BinOp(token::Star) => {
5905                     self.bump();
5906                     let path = ast::Path {
5907                         span: mk_sp(lo, self.span.hi),
5908                         global: false,
5909                         segments: path.into_iter().map(|identifier| {
5910                             ast::PathSegment {
5911                                 identifier: identifier,
5912                                 parameters: ast::PathParameters::none(),
5913                             }
5914                         }).collect()
5915                     };
5916                     return Ok(P(spanned(lo, self.span.hi, ViewPathGlob(path))));
5917                   }
5918
5919                   // fall-through for case foo::bar::;
5920                   token::Semi => {
5921                     self.span_err(self.span, "expected identifier or `{` or `*`, found `;`");
5922                   }
5923
5924                   _ => break
5925                 }
5926             }
5927         }
5928         let mut rename_to = path[path.len() - 1];
5929         let path = ast::Path {
5930             span: mk_sp(lo, self.last_span.hi),
5931             global: false,
5932             segments: path.into_iter().map(|identifier| {
5933                 ast::PathSegment {
5934                     identifier: identifier,
5935                     parameters: ast::PathParameters::none(),
5936                 }
5937             }).collect()
5938         };
5939         rename_to = try!(self.parse_rename()).unwrap_or(rename_to);
5940         Ok(P(spanned(lo, self.last_span.hi, ViewPathSimple(rename_to, path))))
5941     }
5942
5943     fn parse_rename(&mut self) -> PResult<'a, Option<Ident>> {
5944         if self.eat_keyword(keywords::As) {
5945             self.parse_ident().map(Some)
5946         } else {
5947             Ok(None)
5948         }
5949     }
5950
5951     /// Parses a source module as a crate. This is the main
5952     /// entry point for the parser.
5953     pub fn parse_crate_mod(&mut self) -> PResult<'a, Crate> {
5954         let lo = self.span.lo;
5955         Ok(ast::Crate {
5956             attrs: try!(self.parse_inner_attributes()),
5957             module: try!(self.parse_mod_items(&token::Eof, lo)),
5958             config: self.cfg.clone(),
5959             span: mk_sp(lo, self.span.lo),
5960             exported_macros: Vec::new(),
5961         })
5962     }
5963
5964     pub fn parse_optional_str(&mut self)
5965                               -> Option<(InternedString,
5966                                          ast::StrStyle,
5967                                          Option<ast::Name>)> {
5968         let ret = match self.token {
5969             token::Literal(token::Str_(s), suf) => {
5970                 (self.id_to_interned_str(ast::Ident::with_empty_ctxt(s)), ast::CookedStr, suf)
5971             }
5972             token::Literal(token::StrRaw(s, n), suf) => {
5973                 (self.id_to_interned_str(ast::Ident::with_empty_ctxt(s)), ast::RawStr(n), suf)
5974             }
5975             _ => return None
5976         };
5977         self.bump();
5978         Some(ret)
5979     }
5980
5981     pub fn parse_str(&mut self) -> PResult<'a, (InternedString, StrStyle)> {
5982         match self.parse_optional_str() {
5983             Some((s, style, suf)) => {
5984                 let sp = self.last_span;
5985                 self.expect_no_suffix(sp, "string literal", suf);
5986                 Ok((s, style))
5987             }
5988             _ =>  Err(self.fatal("expected string literal"))
5989         }
5990     }
5991 }