]> git.lizzy.rs Git - rust.git/blob - src/libsyntax/parse/parser/expr.rs
pre-expansion gate type_ascription
[rust.git] / src / libsyntax / parse / parser / expr.rs
1 use super::{Parser, PResult, Restrictions, PrevTokenKind, TokenType, PathStyle, BlockMode};
2 use super::{SemiColonMode, SeqSep, TokenExpectType};
3 use super::pat::{GateOr, PARAM_EXPECTED};
4 use super::diagnostics::Error;
5
6 use crate::parse::literal::LitError;
7
8 use crate::ast::{
9     self, DUMMY_NODE_ID, Attribute, AttrStyle, Ident, CaptureBy, BlockCheckMode,
10     Expr, ExprKind, RangeLimits, Label, Movability, IsAsync, Arm, Ty, TyKind,
11     FunctionRetTy, Param, FnDecl, BinOpKind, BinOp, UnOp, Mac, AnonConst, Field, Lit,
12 };
13 use crate::maybe_recover_from_interpolated_ty_qpath;
14 use crate::parse::classify;
15 use crate::parse::token::{self, Token, TokenKind};
16 use crate::print::pprust;
17 use crate::ptr::P;
18 use crate::source_map::{self, Span};
19 use crate::symbol::{kw, sym};
20 use crate::util::parser::{AssocOp, Fixity, prec_let_scrutinee_needs_par};
21
22 use errors::Applicability;
23 use syntax_pos::Symbol;
24 use std::mem;
25 use rustc_data_structures::thin_vec::ThinVec;
26
27 /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
28 /// dropped into the token stream, which happens while parsing the result of
29 /// macro expansion). Placement of these is not as complex as I feared it would
30 /// be. The important thing is to make sure that lookahead doesn't balk at
31 /// `token::Interpolated` tokens.
32 macro_rules! maybe_whole_expr {
33     ($p:expr) => {
34         if let token::Interpolated(nt) = &$p.token.kind {
35             match &**nt {
36                 token::NtExpr(e) | token::NtLiteral(e) => {
37                     let e = e.clone();
38                     $p.bump();
39                     return Ok(e);
40                 }
41                 token::NtPath(path) => {
42                     let path = path.clone();
43                     $p.bump();
44                     return Ok($p.mk_expr(
45                         $p.token.span, ExprKind::Path(None, path), ThinVec::new()
46                     ));
47                 }
48                 token::NtBlock(block) => {
49                     let block = block.clone();
50                     $p.bump();
51                     return Ok($p.mk_expr(
52                         $p.token.span, ExprKind::Block(block, None), ThinVec::new()
53                     ));
54                 }
55                 // N.B., `NtIdent(ident)` is normalized to `Ident` in `fn bump`.
56                 _ => {},
57             };
58         }
59     }
60 }
61
62 #[derive(Debug)]
63 pub(super) enum LhsExpr {
64     NotYetParsed,
65     AttributesParsed(ThinVec<Attribute>),
66     AlreadyParsed(P<Expr>),
67 }
68
69 impl From<Option<ThinVec<Attribute>>> for LhsExpr {
70     /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
71     /// and `None` into `LhsExpr::NotYetParsed`.
72     ///
73     /// This conversion does not allocate.
74     fn from(o: Option<ThinVec<Attribute>>) -> Self {
75         if let Some(attrs) = o {
76             LhsExpr::AttributesParsed(attrs)
77         } else {
78             LhsExpr::NotYetParsed
79         }
80     }
81 }
82
83 impl From<P<Expr>> for LhsExpr {
84     /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
85     ///
86     /// This conversion does not allocate.
87     fn from(expr: P<Expr>) -> Self {
88         LhsExpr::AlreadyParsed(expr)
89     }
90 }
91
92 impl<'a> Parser<'a> {
93     /// Parses an expression.
94     #[inline]
95     pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
96         self.parse_expr_res(Restrictions::empty(), None)
97     }
98
99     fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
100         self.parse_paren_comma_seq(|p| {
101             match p.parse_expr() {
102                 Ok(expr) => Ok(expr),
103                 Err(mut err) => match p.token.kind {
104                     token::Ident(name, false)
105                     if name == kw::Underscore && p.look_ahead(1, |t| {
106                         t == &token::Comma
107                     }) => {
108                         // Special-case handling of `foo(_, _, _)`
109                         err.emit();
110                         let sp = p.token.span;
111                         p.bump();
112                         Ok(p.mk_expr(sp, ExprKind::Err, ThinVec::new()))
113                     }
114                     _ => Err(err),
115                 },
116             }
117         }).map(|(r, _)| r)
118     }
119
120     /// Parses an expression, subject to the given restrictions.
121     #[inline]
122     pub(super) fn parse_expr_res(
123         &mut self,
124         r: Restrictions,
125         already_parsed_attrs: Option<ThinVec<Attribute>>
126     ) -> PResult<'a, P<Expr>> {
127         self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
128     }
129
130     /// Parses an associative expression.
131     ///
132     /// This parses an expression accounting for associativity and precedence of the operators in
133     /// the expression.
134     #[inline]
135     fn parse_assoc_expr(
136         &mut self,
137         already_parsed_attrs: Option<ThinVec<Attribute>>,
138     ) -> PResult<'a, P<Expr>> {
139         self.parse_assoc_expr_with(0, already_parsed_attrs.into())
140     }
141
142     /// Parses an associative expression with operators of at least `min_prec` precedence.
143     pub(super) fn parse_assoc_expr_with(
144         &mut self,
145         min_prec: usize,
146         lhs: LhsExpr,
147     ) -> PResult<'a, P<Expr>> {
148         let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
149             expr
150         } else {
151             let attrs = match lhs {
152                 LhsExpr::AttributesParsed(attrs) => Some(attrs),
153                 _ => None,
154             };
155             if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
156                 return self.parse_prefix_range_expr(attrs);
157             } else {
158                 self.parse_prefix_expr(attrs)?
159             }
160         };
161         let last_type_ascription_set = self.last_type_ascription.is_some();
162
163         match (self.expr_is_complete(&lhs), AssocOp::from_token(&self.token)) {
164             (true, None) => {
165                 self.last_type_ascription = None;
166                 // Semi-statement forms are odd. See https://github.com/rust-lang/rust/issues/29071
167                 return Ok(lhs);
168             }
169             (false, _) => {} // continue parsing the expression
170             // An exhaustive check is done in the following block, but these are checked first
171             // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
172             // want to keep their span info to improve diagnostics in these cases in a later stage.
173             (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
174             (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
175             (true, Some(AssocOp::LAnd)) | // `{ 42 } &&x` (#61475)
176             (true, Some(AssocOp::Add)) // `{ 42 } + 42
177             // If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
178             // `if x { a } else { b } && if y { c } else { d }`
179             if !self.look_ahead(1, |t| t.is_reserved_ident()) => {
180                 self.last_type_ascription = None;
181                 // These cases are ambiguous and can't be identified in the parser alone
182                 let sp = self.sess.source_map().start_point(self.token.span);
183                 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
184                 return Ok(lhs);
185             }
186             (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => {
187                 self.last_type_ascription = None;
188                 return Ok(lhs);
189             }
190             (true, Some(_)) => {
191                 // We've found an expression that would be parsed as a statement, but the next
192                 // token implies this should be parsed as an expression.
193                 // For example: `if let Some(x) = x { x } else { 0 } / 2`
194                 let mut err = self.struct_span_err(self.token.span, &format!(
195                     "expected expression, found `{}`",
196                     pprust::token_to_string(&self.token),
197                 ));
198                 err.span_label(self.token.span, "expected expression");
199                 self.sess.expr_parentheses_needed(
200                     &mut err,
201                     lhs.span,
202                     Some(pprust::expr_to_string(&lhs),
203                 ));
204                 err.emit();
205             }
206         }
207         self.expected_tokens.push(TokenType::Operator);
208         while let Some(op) = AssocOp::from_token(&self.token) {
209
210             // Adjust the span for interpolated LHS to point to the `$lhs` token and not to what
211             // it refers to. Interpolated identifiers are unwrapped early and never show up here
212             // as `PrevTokenKind::Interpolated` so if LHS is a single identifier we always process
213             // it as "interpolated", it doesn't change the answer for non-interpolated idents.
214             let lhs_span = match (self.prev_token_kind, &lhs.kind) {
215                 (PrevTokenKind::Interpolated, _) => self.prev_span,
216                 (PrevTokenKind::Ident, &ExprKind::Path(None, ref path))
217                     if path.segments.len() == 1 => self.prev_span,
218                 _ => lhs.span,
219             };
220
221             let cur_op_span = self.token.span;
222             let restrictions = if op.is_assign_like() {
223                 self.restrictions & Restrictions::NO_STRUCT_LITERAL
224             } else {
225                 self.restrictions
226             };
227             let prec = op.precedence();
228             if prec < min_prec {
229                 break;
230             }
231             // Check for deprecated `...` syntax
232             if self.token == token::DotDotDot && op == AssocOp::DotDotEq {
233                 self.err_dotdotdot_syntax(self.token.span);
234             }
235
236             if self.token == token::LArrow {
237                 self.err_larrow_operator(self.token.span);
238             }
239
240             self.bump();
241             if op.is_comparison() {
242                 if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
243                     return Ok(expr);
244                 }
245             }
246             // Special cases:
247             if op == AssocOp::As {
248                 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
249                 continue
250             } else if op == AssocOp::Colon {
251                 let maybe_path = self.could_ascription_be_path(&lhs.kind);
252                 self.last_type_ascription = Some((self.prev_span, maybe_path));
253
254                 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
255                 self.sess.gated_spans.type_ascription.borrow_mut().push(lhs.span);
256                 continue
257             } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
258                 // If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
259                 // generalise it to the Fixity::None code.
260                 //
261                 // We have 2 alternatives here: `x..y`/`x..=y` and `x..`/`x..=` The other
262                 // two variants are handled with `parse_prefix_range_expr` call above.
263                 let rhs = if self.is_at_start_of_range_notation_rhs() {
264                     Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
265                 } else {
266                     None
267                 };
268                 let (lhs_span, rhs_span) = (lhs.span, if let Some(ref x) = rhs {
269                     x.span
270                 } else {
271                     cur_op_span
272                 });
273                 let limits = if op == AssocOp::DotDot {
274                     RangeLimits::HalfOpen
275                 } else {
276                     RangeLimits::Closed
277                 };
278
279                 let r = self.mk_range(Some(lhs), rhs, limits)?;
280                 lhs = self.mk_expr(lhs_span.to(rhs_span), r, ThinVec::new());
281                 break
282             }
283
284             let fixity = op.fixity();
285             let prec_adjustment = match fixity {
286                 Fixity::Right => 0,
287                 Fixity::Left => 1,
288                 // We currently have no non-associative operators that are not handled above by
289                 // the special cases. The code is here only for future convenience.
290                 Fixity::None => 1,
291             };
292             let rhs = self.with_res(
293                 restrictions - Restrictions::STMT_EXPR,
294                 |this| this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
295             )?;
296
297             // Make sure that the span of the parent node is larger than the span of lhs and rhs,
298             // including the attributes.
299             let lhs_span = lhs
300                 .attrs
301                 .iter()
302                 .filter(|a| a.style == AttrStyle::Outer)
303                 .next()
304                 .map_or(lhs_span, |a| a.span);
305             let span = lhs_span.to(rhs.span);
306             lhs = match op {
307                 AssocOp::Add | AssocOp::Subtract | AssocOp::Multiply | AssocOp::Divide |
308                 AssocOp::Modulus | AssocOp::LAnd | AssocOp::LOr | AssocOp::BitXor |
309                 AssocOp::BitAnd | AssocOp::BitOr | AssocOp::ShiftLeft | AssocOp::ShiftRight |
310                 AssocOp::Equal | AssocOp::Less | AssocOp::LessEqual | AssocOp::NotEqual |
311                 AssocOp::Greater | AssocOp::GreaterEqual => {
312                     let ast_op = op.to_ast_binop().unwrap();
313                     let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
314                     self.mk_expr(span, binary, ThinVec::new())
315                 }
316                 AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs), ThinVec::new()),
317                 AssocOp::AssignOp(k) => {
318                     let aop = match k {
319                         token::Plus =>    BinOpKind::Add,
320                         token::Minus =>   BinOpKind::Sub,
321                         token::Star =>    BinOpKind::Mul,
322                         token::Slash =>   BinOpKind::Div,
323                         token::Percent => BinOpKind::Rem,
324                         token::Caret =>   BinOpKind::BitXor,
325                         token::And =>     BinOpKind::BitAnd,
326                         token::Or =>      BinOpKind::BitOr,
327                         token::Shl =>     BinOpKind::Shl,
328                         token::Shr =>     BinOpKind::Shr,
329                     };
330                     let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
331                     self.mk_expr(span, aopexpr, ThinVec::new())
332                 }
333                 AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
334                     self.bug("AssocOp should have been handled by special case")
335                 }
336             };
337
338             if let Fixity::None = fixity { break }
339         }
340         if last_type_ascription_set {
341             self.last_type_ascription = None;
342         }
343         Ok(lhs)
344     }
345
346     /// Checks if this expression is a successfully parsed statement.
347     fn expr_is_complete(&self, e: &Expr) -> bool {
348         self.restrictions.contains(Restrictions::STMT_EXPR) &&
349             !classify::expr_requires_semi_to_be_stmt(e)
350     }
351
352     fn is_at_start_of_range_notation_rhs(&self) -> bool {
353         if self.token.can_begin_expr() {
354             // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
355             if self.token == token::OpenDelim(token::Brace) {
356                 return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
357             }
358             true
359         } else {
360             false
361         }
362     }
363
364     /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
365     fn parse_prefix_range_expr(
366         &mut self,
367         already_parsed_attrs: Option<ThinVec<Attribute>>
368     ) -> PResult<'a, P<Expr>> {
369         // Check for deprecated `...` syntax.
370         if self.token == token::DotDotDot {
371             self.err_dotdotdot_syntax(self.token.span);
372         }
373
374         debug_assert!([token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
375                       "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
376                       self.token);
377         let tok = self.token.clone();
378         let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
379         let lo = self.token.span;
380         let mut hi = self.token.span;
381         self.bump();
382         let opt_end = if self.is_at_start_of_range_notation_rhs() {
383             // RHS must be parsed with more associativity than the dots.
384             let next_prec = AssocOp::from_token(&tok).unwrap().precedence() + 1;
385             Some(self.parse_assoc_expr_with(next_prec, LhsExpr::NotYetParsed)
386                 .map(|x| {
387                     hi = x.span;
388                     x
389                 })?)
390         } else {
391             None
392         };
393         let limits = if tok == token::DotDot {
394             RangeLimits::HalfOpen
395         } else {
396             RangeLimits::Closed
397         };
398
399         let r = self.mk_range(None, opt_end, limits)?;
400         Ok(self.mk_expr(lo.to(hi), r, attrs))
401     }
402
403     /// Parses a prefix-unary-operator expr.
404     fn parse_prefix_expr(
405         &mut self,
406         already_parsed_attrs: Option<ThinVec<Attribute>>
407     ) -> PResult<'a, P<Expr>> {
408         let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
409         let lo = self.token.span;
410         // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
411         let (hi, ex) = match self.token.kind {
412             token::Not => {
413                 self.bump();
414                 let e = self.parse_prefix_expr(None);
415                 let (span, e) = self.interpolated_or_expr_span(e)?;
416                 (lo.to(span), self.mk_unary(UnOp::Not, e))
417             }
418             // Suggest `!` for bitwise negation when encountering a `~`
419             token::Tilde => {
420                 self.bump();
421                 let e = self.parse_prefix_expr(None);
422                 let (span, e) = self.interpolated_or_expr_span(e)?;
423                 let span_of_tilde = lo;
424                 self.struct_span_err(span_of_tilde, "`~` cannot be used as a unary operator")
425                     .span_suggestion_short(
426                         span_of_tilde,
427                         "use `!` to perform bitwise not",
428                         "!".to_owned(),
429                         Applicability::MachineApplicable
430                     )
431                     .emit();
432                 (lo.to(span), self.mk_unary(UnOp::Not, e))
433             }
434             token::BinOp(token::Minus) => {
435                 self.bump();
436                 let e = self.parse_prefix_expr(None);
437                 let (span, e) = self.interpolated_or_expr_span(e)?;
438                 (lo.to(span), self.mk_unary(UnOp::Neg, e))
439             }
440             token::BinOp(token::Star) => {
441                 self.bump();
442                 let e = self.parse_prefix_expr(None);
443                 let (span, e) = self.interpolated_or_expr_span(e)?;
444                 (lo.to(span), self.mk_unary(UnOp::Deref, e))
445             }
446             token::BinOp(token::And) | token::AndAnd => {
447                 self.expect_and()?;
448                 let m = self.parse_mutability();
449                 let e = self.parse_prefix_expr(None);
450                 let (span, e) = self.interpolated_or_expr_span(e)?;
451                 (lo.to(span), ExprKind::AddrOf(m, e))
452             }
453             token::Ident(..) if self.token.is_keyword(kw::Box) => {
454                 self.bump();
455                 let e = self.parse_prefix_expr(None);
456                 let (span, e) = self.interpolated_or_expr_span(e)?;
457                 let span = lo.to(span);
458                 self.sess.gated_spans.box_syntax.borrow_mut().push(span);
459                 (span, ExprKind::Box(e))
460             }
461             token::Ident(..) if self.token.is_ident_named(sym::not) => {
462                 // `not` is just an ordinary identifier in Rust-the-language,
463                 // but as `rustc`-the-compiler, we can issue clever diagnostics
464                 // for confused users who really want to say `!`
465                 let token_cannot_continue_expr = |t: &Token| match t.kind {
466                     // These tokens can start an expression after `!`, but
467                     // can't continue an expression after an ident
468                     token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
469                     token::Literal(..) | token::Pound => true,
470                     _ => t.is_whole_expr(),
471                 };
472                 let cannot_continue_expr = self.look_ahead(1, token_cannot_continue_expr);
473                 if cannot_continue_expr {
474                     self.bump();
475                     // Emit the error ...
476                     self.struct_span_err(
477                         self.token.span,
478                         &format!("unexpected {} after identifier",self.this_token_descr())
479                     )
480                     .span_suggestion_short(
481                         // Span the `not` plus trailing whitespace to avoid
482                         // trailing whitespace after the `!` in our suggestion
483                         self.sess.source_map()
484                             .span_until_non_whitespace(lo.to(self.token.span)),
485                         "use `!` to perform logical negation",
486                         "!".to_owned(),
487                         Applicability::MachineApplicable
488                     )
489                     .emit();
490                     // â€”and recover! (just as if we were in the block
491                     // for the `token::Not` arm)
492                     let e = self.parse_prefix_expr(None);
493                     let (span, e) = self.interpolated_or_expr_span(e)?;
494                     (lo.to(span), self.mk_unary(UnOp::Not, e))
495                 } else {
496                     return self.parse_dot_or_call_expr(Some(attrs));
497                 }
498             }
499             _ => { return self.parse_dot_or_call_expr(Some(attrs)); }
500         };
501         return Ok(self.mk_expr(lo.to(hi), ex, attrs));
502     }
503
504     /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
505     fn interpolated_or_expr_span(
506         &self,
507         expr: PResult<'a, P<Expr>>,
508     ) -> PResult<'a, (Span, P<Expr>)> {
509         expr.map(|e| {
510             if self.prev_token_kind == PrevTokenKind::Interpolated {
511                 (self.prev_span, e)
512             } else {
513                 (e.span, e)
514             }
515         })
516     }
517
518     fn parse_assoc_op_cast(&mut self, lhs: P<Expr>, lhs_span: Span,
519                            expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind)
520                            -> PResult<'a, P<Expr>> {
521         let mk_expr = |this: &mut Self, rhs: P<Ty>| {
522             this.mk_expr(lhs_span.to(rhs.span), expr_kind(lhs, rhs), ThinVec::new())
523         };
524
525         // Save the state of the parser before parsing type normally, in case there is a
526         // LessThan comparison after this cast.
527         let parser_snapshot_before_type = self.clone();
528         match self.parse_ty_no_plus() {
529             Ok(rhs) => {
530                 Ok(mk_expr(self, rhs))
531             }
532             Err(mut type_err) => {
533                 // Rewind to before attempting to parse the type with generics, to recover
534                 // from situations like `x as usize < y` in which we first tried to parse
535                 // `usize < y` as a type with generic arguments.
536                 let parser_snapshot_after_type = self.clone();
537                 mem::replace(self, parser_snapshot_before_type);
538
539                 match self.parse_path(PathStyle::Expr) {
540                     Ok(path) => {
541                         let (op_noun, op_verb) = match self.token.kind {
542                             token::Lt => ("comparison", "comparing"),
543                             token::BinOp(token::Shl) => ("shift", "shifting"),
544                             _ => {
545                                 // We can end up here even without `<` being the next token, for
546                                 // example because `parse_ty_no_plus` returns `Err` on keywords,
547                                 // but `parse_path` returns `Ok` on them due to error recovery.
548                                 // Return original error and parser state.
549                                 mem::replace(self, parser_snapshot_after_type);
550                                 return Err(type_err);
551                             }
552                         };
553
554                         // Successfully parsed the type path leaving a `<` yet to parse.
555                         type_err.cancel();
556
557                         // Report non-fatal diagnostics, keep `x as usize` as an expression
558                         // in AST and continue parsing.
559                         let msg = format!(
560                             "`<` is interpreted as a start of generic arguments for `{}`, not a {}",
561                             pprust::path_to_string(&path),
562                             op_noun,
563                         );
564                         let span_after_type = parser_snapshot_after_type.token.span;
565                         let expr = mk_expr(self, P(Ty {
566                             span: path.span,
567                             kind: TyKind::Path(None, path),
568                             id: DUMMY_NODE_ID,
569                         }));
570
571                         let expr_str = self.span_to_snippet(expr.span)
572                             .unwrap_or_else(|_| pprust::expr_to_string(&expr));
573
574                         self.struct_span_err(self.token.span, &msg)
575                             .span_label(
576                                 self.look_ahead(1, |t| t.span).to(span_after_type),
577                                 "interpreted as generic arguments"
578                             )
579                             .span_label(self.token.span, format!("not interpreted as {}", op_noun))
580                             .span_suggestion(
581                                 expr.span,
582                                 &format!("try {} the cast value", op_verb),
583                                 format!("({})", expr_str),
584                                 Applicability::MachineApplicable,
585                             )
586                             .emit();
587
588                         Ok(expr)
589                     }
590                     Err(mut path_err) => {
591                         // Couldn't parse as a path, return original error and parser state.
592                         path_err.cancel();
593                         mem::replace(self, parser_snapshot_after_type);
594                         Err(type_err)
595                     }
596                 }
597             }
598         }
599     }
600
601     /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
602     fn parse_dot_or_call_expr(
603         &mut self,
604         already_parsed_attrs: Option<ThinVec<Attribute>>,
605     ) -> PResult<'a, P<Expr>> {
606         let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
607
608         let b = self.parse_bottom_expr();
609         let (span, b) = self.interpolated_or_expr_span(b)?;
610         self.parse_dot_or_call_expr_with(b, span, attrs)
611     }
612
613     pub(super) fn parse_dot_or_call_expr_with(
614         &mut self,
615         e0: P<Expr>,
616         lo: Span,
617         mut attrs: ThinVec<Attribute>,
618     ) -> PResult<'a, P<Expr>> {
619         // Stitch the list of outer attributes onto the return value.
620         // A little bit ugly, but the best way given the current code
621         // structure
622         self.parse_dot_or_call_expr_with_(e0, lo).map(|expr|
623             expr.map(|mut expr| {
624                 attrs.extend::<Vec<_>>(expr.attrs.into());
625                 expr.attrs = attrs;
626                 match expr.kind {
627                     ExprKind::If(..) if !expr.attrs.is_empty() => {
628                         // Just point to the first attribute in there...
629                         let span = expr.attrs[0].span;
630                         self.span_err(span, "attributes are not yet allowed on `if` expressions");
631                     }
632                     _ => {}
633                 }
634                 expr
635             })
636         )
637     }
638
639     fn parse_dot_or_call_expr_with_(&mut self, e0: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
640         let mut e = e0;
641         let mut hi;
642         loop {
643             // expr?
644             while self.eat(&token::Question) {
645                 let hi = self.prev_span;
646                 e = self.mk_expr(lo.to(hi), ExprKind::Try(e), ThinVec::new());
647             }
648
649             // expr.f
650             if self.eat(&token::Dot) {
651                 match self.token.kind {
652                     token::Ident(..) => {
653                         e = self.parse_dot_suffix(e, lo)?;
654                     }
655                     token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
656                         let span = self.token.span;
657                         self.bump();
658                         let field = ExprKind::Field(e, Ident::new(symbol, span));
659                         e = self.mk_expr(lo.to(span), field, ThinVec::new());
660
661                         self.expect_no_suffix(span, "a tuple index", suffix);
662                     }
663                     token::Literal(token::Lit { kind: token::Float, symbol, .. }) => {
664                       self.bump();
665                       let fstr = symbol.as_str();
666                       let msg = format!("unexpected token: `{}`", symbol);
667                       let mut err = self.diagnostic().struct_span_err(self.prev_span, &msg);
668                       err.span_label(self.prev_span, "unexpected token");
669                       if fstr.chars().all(|x| "0123456789.".contains(x)) {
670                           let float = match fstr.parse::<f64>().ok() {
671                               Some(f) => f,
672                               None => continue,
673                           };
674                           let sugg = pprust::to_string(|s| {
675                               s.popen();
676                               s.print_expr(&e);
677                               s.s.word( ".");
678                               s.print_usize(float.trunc() as usize);
679                               s.pclose();
680                               s.s.word(".");
681                               s.s.word(fstr.splitn(2, ".").last().unwrap().to_string())
682                           });
683                           err.span_suggestion(
684                               lo.to(self.prev_span),
685                               "try parenthesizing the first index",
686                               sugg,
687                               Applicability::MachineApplicable
688                           );
689                       }
690                       return Err(err);
691
692                     }
693                     _ => {
694                         // FIXME Could factor this out into non_fatal_unexpected or something.
695                         let actual = self.this_token_to_string();
696                         self.span_err(self.token.span, &format!("unexpected token: `{}`", actual));
697                     }
698                 }
699                 continue;
700             }
701             if self.expr_is_complete(&e) { break; }
702             match self.token.kind {
703                 // expr(...)
704                 token::OpenDelim(token::Paren) => {
705                     let seq = self.parse_paren_expr_seq().map(|es| {
706                         let nd = self.mk_call(e, es);
707                         let hi = self.prev_span;
708                         self.mk_expr(lo.to(hi), nd, ThinVec::new())
709                     });
710                     e = self.recover_seq_parse_error(token::Paren, lo, seq);
711                 }
712
713                 // expr[...]
714                 // Could be either an index expression or a slicing expression.
715                 token::OpenDelim(token::Bracket) => {
716                     self.bump();
717                     let ix = self.parse_expr()?;
718                     hi = self.token.span;
719                     self.expect(&token::CloseDelim(token::Bracket))?;
720                     let index = self.mk_index(e, ix);
721                     e = self.mk_expr(lo.to(hi), index, ThinVec::new())
722                 }
723                 _ => return Ok(e)
724             }
725         }
726         return Ok(e);
727     }
728
729     /// Assuming we have just parsed `.`, continue parsing into an expression.
730     fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
731         if self.token.span.rust_2018() && self.eat_keyword(kw::Await) {
732             return self.mk_await_expr(self_arg, lo);
733         }
734
735         let segment = self.parse_path_segment(PathStyle::Expr)?;
736         self.check_trailing_angle_brackets(&segment, token::OpenDelim(token::Paren));
737
738         Ok(match self.token.kind {
739             token::OpenDelim(token::Paren) => {
740                 // Method call `expr.f()`
741                 let mut args = self.parse_paren_expr_seq()?;
742                 args.insert(0, self_arg);
743
744                 let span = lo.to(self.prev_span);
745                 self.mk_expr(span, ExprKind::MethodCall(segment, args), ThinVec::new())
746             }
747             _ => {
748                 // Field access `expr.f`
749                 if let Some(args) = segment.args {
750                     self.span_err(args.span(),
751                                   "field expressions may not have generic arguments");
752                 }
753
754                 let span = lo.to(self.prev_span);
755                 self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), ThinVec::new())
756             }
757         })
758     }
759
760     /// At the bottom (top?) of the precedence hierarchy,
761     /// Parses things like parenthesized exprs, macros, `return`, etc.
762     ///
763     /// N.B., this does not parse outer attributes, and is private because it only works
764     /// correctly if called from `parse_dot_or_call_expr()`.
765     fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
766         maybe_recover_from_interpolated_ty_qpath!(self, true);
767         maybe_whole_expr!(self);
768
769         // Outer attributes are already parsed and will be
770         // added to the return value after the fact.
771         //
772         // Therefore, prevent sub-parser from parsing
773         // attributes by giving them a empty "already-parsed" list.
774         let mut attrs = ThinVec::new();
775
776         let lo = self.token.span;
777         let mut hi = self.token.span;
778
779         let ex: ExprKind;
780
781         macro_rules! parse_lit {
782             () => {
783                 match self.parse_lit() {
784                     Ok(literal) => {
785                         hi = self.prev_span;
786                         ex = ExprKind::Lit(literal);
787                     }
788                     Err(mut err) => {
789                         err.cancel();
790                         return Err(self.expected_expression_found());
791                     }
792                 }
793             }
794         }
795
796         // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
797         match self.token.kind {
798             // This match arm is a special-case of the `_` match arm below and
799             // could be removed without changing functionality, but it's faster
800             // to have it here, especially for programs with large constants.
801             token::Literal(_) => {
802                 parse_lit!()
803             }
804             token::OpenDelim(token::Paren) => {
805                 self.bump();
806
807                 attrs.extend(self.parse_inner_attributes()?);
808
809                 // `(e)` is parenthesized `e`.
810                 // `(e,)` is a tuple with only one field, `e`.
811                 let mut es = vec![];
812                 let mut trailing_comma = false;
813                 let mut recovered = false;
814                 while self.token != token::CloseDelim(token::Paren) {
815                     es.push(match self.parse_expr() {
816                         Ok(es) => es,
817                         Err(mut err) => {
818                             // Recover from parse error in tuple list.
819                             match self.token.kind {
820                                 token::Ident(name, false)
821                                 if name == kw::Underscore && self.look_ahead(1, |t| {
822                                     t == &token::Comma
823                                 }) => {
824                                     // Special-case handling of `Foo<(_, _, _)>`
825                                     err.emit();
826                                     let sp = self.token.span;
827                                     self.bump();
828                                     self.mk_expr(sp, ExprKind::Err, ThinVec::new())
829                                 }
830                                 _ => return Ok(
831                                     self.recover_seq_parse_error(token::Paren, lo, Err(err)),
832                                 ),
833                             }
834                         }
835                     });
836                     recovered = self.expect_one_of(
837                         &[],
838                         &[token::Comma, token::CloseDelim(token::Paren)],
839                     )?;
840                     if self.eat(&token::Comma) {
841                         trailing_comma = true;
842                     } else {
843                         trailing_comma = false;
844                         break;
845                     }
846                 }
847                 if !recovered {
848                     self.bump();
849                 }
850
851                 hi = self.prev_span;
852                 ex = if es.len() == 1 && !trailing_comma {
853                     ExprKind::Paren(es.into_iter().nth(0).unwrap())
854                 } else {
855                     ExprKind::Tup(es)
856                 };
857             }
858             token::OpenDelim(token::Brace) => {
859                 return self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs);
860             }
861             token::BinOp(token::Or) | token::OrOr => {
862                 return self.parse_closure_expr(attrs);
863             }
864             token::OpenDelim(token::Bracket) => {
865                 self.bump();
866
867                 attrs.extend(self.parse_inner_attributes()?);
868
869                 if self.eat(&token::CloseDelim(token::Bracket)) {
870                     // Empty vector
871                     ex = ExprKind::Array(Vec::new());
872                 } else {
873                     // Non-empty vector
874                     let first_expr = self.parse_expr()?;
875                     if self.eat(&token::Semi) {
876                         // Repeating array syntax: `[ 0; 512 ]`
877                         let count = AnonConst {
878                             id: DUMMY_NODE_ID,
879                             value: self.parse_expr()?,
880                         };
881                         self.expect(&token::CloseDelim(token::Bracket))?;
882                         ex = ExprKind::Repeat(first_expr, count);
883                     } else if self.eat(&token::Comma) {
884                         // Vector with two or more elements
885                         let remaining_exprs = self.parse_seq_to_end(
886                             &token::CloseDelim(token::Bracket),
887                             SeqSep::trailing_allowed(token::Comma),
888                             |p| Ok(p.parse_expr()?)
889                         )?;
890                         let mut exprs = vec![first_expr];
891                         exprs.extend(remaining_exprs);
892                         ex = ExprKind::Array(exprs);
893                     } else {
894                         // Vector with one element
895                         self.expect(&token::CloseDelim(token::Bracket))?;
896                         ex = ExprKind::Array(vec![first_expr]);
897                     }
898                 }
899                 hi = self.prev_span;
900             }
901             _ => {
902                 if self.eat_lt() {
903                     let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
904                     hi = path.span;
905                     return Ok(self.mk_expr(lo.to(hi), ExprKind::Path(Some(qself), path), attrs));
906                 }
907                 if self.token.is_path_start() {
908                     let path = self.parse_path(PathStyle::Expr)?;
909
910                     // `!`, as an operator, is prefix, so we know this isn't that.
911                     if self.eat(&token::Not) {
912                         // MACRO INVOCATION expression
913                         let (delim, tts) = self.expect_delimited_token_tree()?;
914                         hi = self.prev_span;
915                         ex = ExprKind::Mac(Mac {
916                             path,
917                             tts,
918                             delim,
919                             span: lo.to(hi),
920                             prior_type_ascription: self.last_type_ascription,
921                         });
922                     } else if self.check(&token::OpenDelim(token::Brace)) {
923                         if let Some(expr) = self.maybe_parse_struct_expr(lo, &path, &attrs) {
924                             return expr;
925                         } else {
926                             hi = path.span;
927                             ex = ExprKind::Path(None, path);
928                         }
929                     } else {
930                         hi = path.span;
931                         ex = ExprKind::Path(None, path);
932                     }
933
934                     let expr = self.mk_expr(lo.to(hi), ex, attrs);
935                     return self.maybe_recover_from_bad_qpath(expr, true);
936                 }
937                 if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
938                     return self.parse_closure_expr(attrs);
939                 }
940                 if self.eat_keyword(kw::If) {
941                     return self.parse_if_expr(attrs);
942                 }
943                 if self.eat_keyword(kw::For) {
944                     let lo = self.prev_span;
945                     return self.parse_for_expr(None, lo, attrs);
946                 }
947                 if self.eat_keyword(kw::While) {
948                     let lo = self.prev_span;
949                     return self.parse_while_expr(None, lo, attrs);
950                 }
951                 if let Some(label) = self.eat_label() {
952                     let lo = label.ident.span;
953                     self.expect(&token::Colon)?;
954                     if self.eat_keyword(kw::While) {
955                         return self.parse_while_expr(Some(label), lo, attrs)
956                     }
957                     if self.eat_keyword(kw::For) {
958                         return self.parse_for_expr(Some(label), lo, attrs)
959                     }
960                     if self.eat_keyword(kw::Loop) {
961                         return self.parse_loop_expr(Some(label), lo, attrs)
962                     }
963                     if self.token == token::OpenDelim(token::Brace) {
964                         return self.parse_block_expr(Some(label),
965                                                      lo,
966                                                      BlockCheckMode::Default,
967                                                      attrs);
968                     }
969                     let msg = "expected `while`, `for`, `loop` or `{` after a label";
970                     let mut err = self.fatal(msg);
971                     err.span_label(self.token.span, msg);
972                     return Err(err);
973                 }
974                 if self.eat_keyword(kw::Loop) {
975                     let lo = self.prev_span;
976                     return self.parse_loop_expr(None, lo, attrs);
977                 }
978                 if self.eat_keyword(kw::Continue) {
979                     let label = self.eat_label();
980                     let ex = ExprKind::Continue(label);
981                     let hi = self.prev_span;
982                     return Ok(self.mk_expr(lo.to(hi), ex, attrs));
983                 }
984                 if self.eat_keyword(kw::Match) {
985                     let match_sp = self.prev_span;
986                     return self.parse_match_expr(attrs).map_err(|mut err| {
987                         err.span_label(match_sp, "while parsing this match expression");
988                         err
989                     });
990                 }
991                 if self.eat_keyword(kw::Unsafe) {
992                     return self.parse_block_expr(
993                         None,
994                         lo,
995                         BlockCheckMode::Unsafe(ast::UserProvided),
996                         attrs);
997                 }
998                 if self.is_do_catch_block() {
999                     let mut db = self.fatal("found removed `do catch` syntax");
1000                     db.help("following RFC #2388, the new non-placeholder syntax is `try`");
1001                     return Err(db);
1002                 }
1003                 if self.is_try_block() {
1004                     let lo = self.token.span;
1005                     assert!(self.eat_keyword(kw::Try));
1006                     return self.parse_try_block(lo, attrs);
1007                 }
1008
1009                 // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
1010                 let is_span_rust_2018 = self.token.span.rust_2018();
1011                 if is_span_rust_2018 && self.check_keyword(kw::Async) {
1012                     return if self.is_async_block() { // Check for `async {` and `async move {`.
1013                         self.parse_async_block(attrs)
1014                     } else {
1015                         self.parse_closure_expr(attrs)
1016                     };
1017                 }
1018                 if self.eat_keyword(kw::Return) {
1019                     if self.token.can_begin_expr() {
1020                         let e = self.parse_expr()?;
1021                         hi = e.span;
1022                         ex = ExprKind::Ret(Some(e));
1023                     } else {
1024                         ex = ExprKind::Ret(None);
1025                     }
1026                 } else if self.eat_keyword(kw::Break) {
1027                     let label = self.eat_label();
1028                     let e = if self.token.can_begin_expr()
1029                                && !(self.token == token::OpenDelim(token::Brace)
1030                                     && self.restrictions.contains(
1031                                            Restrictions::NO_STRUCT_LITERAL)) {
1032                         Some(self.parse_expr()?)
1033                     } else {
1034                         None
1035                     };
1036                     ex = ExprKind::Break(label, e);
1037                     hi = self.prev_span;
1038                 } else if self.eat_keyword(kw::Yield) {
1039                     if self.token.can_begin_expr() {
1040                         let e = self.parse_expr()?;
1041                         hi = e.span;
1042                         ex = ExprKind::Yield(Some(e));
1043                     } else {
1044                         ex = ExprKind::Yield(None);
1045                     }
1046
1047                     let span = lo.to(hi);
1048                     self.sess.gated_spans.yields.borrow_mut().push(span);
1049                 } else if self.eat_keyword(kw::Let) {
1050                     return self.parse_let_expr(attrs);
1051                 } else if is_span_rust_2018 && self.eat_keyword(kw::Await) {
1052                     let (await_hi, e_kind) = self.parse_incorrect_await_syntax(lo, self.prev_span)?;
1053                     hi = await_hi;
1054                     ex = e_kind;
1055                 } else {
1056                     if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
1057                         // Don't complain about bare semicolons after unclosed braces
1058                         // recovery in order to keep the error count down. Fixing the
1059                         // delimiters will possibly also fix the bare semicolon found in
1060                         // expression context. For example, silence the following error:
1061                         //
1062                         //     error: expected expression, found `;`
1063                         //      --> file.rs:2:13
1064                         //       |
1065                         //     2 |     foo(bar(;
1066                         //       |             ^ expected expression
1067                         self.bump();
1068                         return Ok(self.mk_expr(self.token.span, ExprKind::Err, ThinVec::new()));
1069                     }
1070                     parse_lit!()
1071                 }
1072             }
1073         }
1074
1075         let expr = self.mk_expr(lo.to(hi), ex, attrs);
1076         self.maybe_recover_from_bad_qpath(expr, true)
1077     }
1078
1079     /// Matches `lit = true | false | token_lit`.
1080     pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
1081         let mut recovered = None;
1082         if self.token == token::Dot {
1083             // Attempt to recover `.4` as `0.4`.
1084             recovered = self.look_ahead(1, |next_token| {
1085                 if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix })
1086                         = next_token.kind {
1087                     if self.token.span.hi() == next_token.span.lo() {
1088                         let s = String::from("0.") + &symbol.as_str();
1089                         let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
1090                         return Some(Token::new(kind, self.token.span.to(next_token.span)));
1091                     }
1092                 }
1093                 None
1094             });
1095             if let Some(token) = &recovered {
1096                 self.bump();
1097                 self.struct_span_err(token.span, "float literals must have an integer part")
1098                     .span_suggestion(
1099                         token.span,
1100                         "must have an integer part",
1101                         pprust::token_to_string(token),
1102                         Applicability::MachineApplicable,
1103                     )
1104                     .emit();
1105             }
1106         }
1107
1108         let token = recovered.as_ref().unwrap_or(&self.token);
1109         match Lit::from_token(token) {
1110             Ok(lit) => {
1111                 self.bump();
1112                 Ok(lit)
1113             }
1114             Err(LitError::NotLiteral) => {
1115                 let msg = format!("unexpected token: {}", self.this_token_descr());
1116                 Err(self.span_fatal(token.span, &msg))
1117             }
1118             Err(err) => {
1119                 let (lit, span) = (token.expect_lit(), token.span);
1120                 self.bump();
1121                 self.error_literal_from_token(err, lit, span);
1122                 // Pack possible quotes and prefixes from the original literal into
1123                 // the error literal's symbol so they can be pretty-printed faithfully.
1124                 let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
1125                 let symbol = Symbol::intern(&suffixless_lit.to_string());
1126                 let lit = token::Lit::new(token::Err, symbol, lit.suffix);
1127                 Lit::from_lit_token(lit, span).map_err(|_| unreachable!())
1128             }
1129         }
1130     }
1131
1132     fn error_literal_from_token(&self, err: LitError, lit: token::Lit, span: Span) {
1133         // Checks if `s` looks like i32 or u1234 etc.
1134         fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
1135             s.len() > 1
1136             && s.starts_with(first_chars)
1137             && s[1..].chars().all(|c| c.is_ascii_digit())
1138         }
1139
1140         let token::Lit { kind, suffix, .. } = lit;
1141         match err {
1142             // `NotLiteral` is not an error by itself, so we don't report
1143             // it and give the parser opportunity to try something else.
1144             LitError::NotLiteral => {}
1145             // `LexerError` *is* an error, but it was already reported
1146             // by lexer, so here we don't report it the second time.
1147             LitError::LexerError => {}
1148             LitError::InvalidSuffix => {
1149                 self.expect_no_suffix(
1150                     span,
1151                     &format!("{} {} literal", kind.article(), kind.descr()),
1152                     suffix,
1153                 );
1154             }
1155             LitError::InvalidIntSuffix => {
1156                 let suf = suffix.expect("suffix error with no suffix").as_str();
1157                 if looks_like_width_suffix(&['i', 'u'], &suf) {
1158                     // If it looks like a width, try to be helpful.
1159                     let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
1160                     self.struct_span_err(span, &msg)
1161                         .help("valid widths are 8, 16, 32, 64 and 128")
1162                         .emit();
1163                 } else {
1164                     let msg = format!("invalid suffix `{}` for integer literal", suf);
1165                     self.struct_span_err(span, &msg)
1166                         .span_label(span, format!("invalid suffix `{}`", suf))
1167                         .help("the suffix must be one of the integral types (`u32`, `isize`, etc)")
1168                         .emit();
1169                 }
1170             }
1171             LitError::InvalidFloatSuffix => {
1172                 let suf = suffix.expect("suffix error with no suffix").as_str();
1173                 if looks_like_width_suffix(&['f'], &suf) {
1174                     // If it looks like a width, try to be helpful.
1175                     let msg = format!("invalid width `{}` for float literal", &suf[1..]);
1176                     self.struct_span_err(span, &msg)
1177                         .help("valid widths are 32 and 64")
1178                         .emit();
1179                 } else {
1180                     let msg = format!("invalid suffix `{}` for float literal", suf);
1181                     self.struct_span_err(span, &msg)
1182                         .span_label(span, format!("invalid suffix `{}`", suf))
1183                         .help("valid suffixes are `f32` and `f64`")
1184                         .emit();
1185                 }
1186             }
1187             LitError::NonDecimalFloat(base) => {
1188                 let descr = match base {
1189                     16 => "hexadecimal",
1190                     8 => "octal",
1191                     2 => "binary",
1192                     _ => unreachable!(),
1193                 };
1194                 self.struct_span_err(span, &format!("{} float literal is not supported", descr))
1195                     .span_label(span, "not supported")
1196                     .emit();
1197             }
1198             LitError::IntTooLarge => {
1199                 self.struct_span_err(span, "integer literal is too large")
1200                     .emit();
1201             }
1202         }
1203     }
1204
1205     pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
1206         if let Some(suf) = suffix {
1207             let mut err = if kind == "a tuple index"
1208                 && [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
1209             {
1210                 // #59553: warn instead of reject out of hand to allow the fix to percolate
1211                 // through the ecosystem when people fix their macros
1212                 let mut err = self.sess.span_diagnostic.struct_span_warn(
1213                     sp,
1214                     &format!("suffixes on {} are invalid", kind),
1215                 );
1216                 err.note(&format!(
1217                     "`{}` is *temporarily* accepted on tuple index fields as it was \
1218                         incorrectly accepted on stable for a few releases",
1219                     suf,
1220                 ));
1221                 err.help(
1222                     "on proc macros, you'll want to use `syn::Index::from` or \
1223                         `proc_macro::Literal::*_unsuffixed` for code that will desugar \
1224                         to tuple field access",
1225                 );
1226                 err.note(
1227                     "for more context, see https://github.com/rust-lang/rust/issues/60210",
1228                 );
1229                 err
1230             } else {
1231                 self.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
1232             };
1233             err.span_label(sp, format!("invalid suffix `{}`", suf));
1234             err.emit();
1235         }
1236     }
1237
1238     /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
1239     pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
1240         maybe_whole_expr!(self);
1241
1242         let minus_lo = self.token.span;
1243         let minus_present = self.eat(&token::BinOp(token::Minus));
1244         let lo = self.token.span;
1245         let literal = self.parse_lit()?;
1246         let hi = self.prev_span;
1247         let expr = self.mk_expr(lo.to(hi), ExprKind::Lit(literal), ThinVec::new());
1248
1249         if minus_present {
1250             let minus_hi = self.prev_span;
1251             let unary = self.mk_unary(UnOp::Neg, expr);
1252             Ok(self.mk_expr(minus_lo.to(minus_hi), unary, ThinVec::new()))
1253         } else {
1254             Ok(expr)
1255         }
1256     }
1257
1258     /// Parses a block or unsafe block.
1259     pub(super) fn parse_block_expr(
1260         &mut self,
1261         opt_label: Option<Label>,
1262         lo: Span,
1263         blk_mode: BlockCheckMode,
1264         outer_attrs: ThinVec<Attribute>,
1265     ) -> PResult<'a, P<Expr>> {
1266         if let Some(label) = opt_label {
1267             self.sess.gated_spans.label_break_value.borrow_mut().push(label.ident.span);
1268         }
1269
1270         self.expect(&token::OpenDelim(token::Brace))?;
1271
1272         let mut attrs = outer_attrs;
1273         attrs.extend(self.parse_inner_attributes()?);
1274
1275         let blk = self.parse_block_tail(lo, blk_mode)?;
1276         Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
1277     }
1278
1279     /// Parses a closure expression (e.g., `move |args| expr`).
1280     fn parse_closure_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
1281         let lo = self.token.span;
1282
1283         let movability = if self.eat_keyword(kw::Static) {
1284             Movability::Static
1285         } else {
1286             Movability::Movable
1287         };
1288
1289         let asyncness = if self.token.span.rust_2018() {
1290             self.parse_asyncness()
1291         } else {
1292             IsAsync::NotAsync
1293         };
1294         if asyncness.is_async() {
1295             // Feature-gate `async ||` closures.
1296             self.sess.gated_spans.async_closure.borrow_mut().push(self.prev_span);
1297         }
1298
1299         let capture_clause = self.parse_capture_clause();
1300         let decl = self.parse_fn_block_decl()?;
1301         let decl_hi = self.prev_span;
1302         let body = match decl.output {
1303             FunctionRetTy::Default(_) => {
1304                 let restrictions = self.restrictions - Restrictions::STMT_EXPR;
1305                 self.parse_expr_res(restrictions, None)?
1306             },
1307             _ => {
1308                 // If an explicit return type is given, require a block to appear (RFC 968).
1309                 let body_lo = self.token.span;
1310                 self.parse_block_expr(None, body_lo, BlockCheckMode::Default, ThinVec::new())?
1311             }
1312         };
1313
1314         Ok(self.mk_expr(
1315             lo.to(body.span),
1316             ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
1317             attrs))
1318     }
1319
1320     /// Parses an optional `move` prefix to a closure lke construct.
1321     fn parse_capture_clause(&mut self) -> CaptureBy {
1322         if self.eat_keyword(kw::Move) {
1323             CaptureBy::Value
1324         } else {
1325             CaptureBy::Ref
1326         }
1327     }
1328
1329     /// Parses the `|arg, arg|` header of a closure.
1330     fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
1331         let inputs_captures = {
1332             if self.eat(&token::OrOr) {
1333                 Vec::new()
1334             } else {
1335                 self.expect(&token::BinOp(token::Or))?;
1336                 let args = self.parse_seq_to_before_tokens(
1337                     &[&token::BinOp(token::Or), &token::OrOr],
1338                     SeqSep::trailing_allowed(token::Comma),
1339                     TokenExpectType::NoExpect,
1340                     |p| p.parse_fn_block_param()
1341                 )?.0;
1342                 self.expect_or()?;
1343                 args
1344             }
1345         };
1346         let output = self.parse_ret_ty(true)?;
1347
1348         Ok(P(FnDecl {
1349             inputs: inputs_captures,
1350             output,
1351         }))
1352     }
1353
1354     /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
1355     fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
1356         let lo = self.token.span;
1357         let attrs = self.parse_outer_attributes()?;
1358         let pat = self.parse_pat(PARAM_EXPECTED)?;
1359         let t = if self.eat(&token::Colon) {
1360             self.parse_ty()?
1361         } else {
1362             P(Ty {
1363                 id: DUMMY_NODE_ID,
1364                 kind: TyKind::Infer,
1365                 span: self.prev_span,
1366             })
1367         };
1368         let span = lo.to(self.token.span);
1369         Ok(Param {
1370             attrs: attrs.into(),
1371             ty: t,
1372             pat,
1373             span,
1374             id: DUMMY_NODE_ID,
1375             is_placeholder: false,
1376         })
1377     }
1378
1379     /// Parses an `if` expression (`if` token already eaten).
1380     fn parse_if_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
1381         let lo = self.prev_span;
1382         let cond = self.parse_cond_expr()?;
1383
1384         // Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
1385         // verify that the last statement is either an implicit return (no `;`) or an explicit
1386         // return. This won't catch blocks with an explicit `return`, but that would be caught by
1387         // the dead code lint.
1388         if self.eat_keyword(kw::Else) || !cond.returns() {
1389             let sp = self.sess.source_map().next_point(lo);
1390             let mut err = self.diagnostic()
1391                 .struct_span_err(sp, "missing condition for `if` expression");
1392             err.span_label(sp, "expected if condition here");
1393             return Err(err)
1394         }
1395         let not_block = self.token != token::OpenDelim(token::Brace);
1396         let thn = self.parse_block().map_err(|mut err| {
1397             if not_block {
1398                 err.span_label(lo, "this `if` statement has a condition, but no block");
1399             }
1400             err
1401         })?;
1402         let mut els: Option<P<Expr>> = None;
1403         let mut hi = thn.span;
1404         if self.eat_keyword(kw::Else) {
1405             let elexpr = self.parse_else_expr()?;
1406             hi = elexpr.span;
1407             els = Some(elexpr);
1408         }
1409         Ok(self.mk_expr(lo.to(hi), ExprKind::If(cond, thn, els), attrs))
1410     }
1411
1412     /// Parses the condition of a `if` or `while` expression.
1413     fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
1414         let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
1415
1416         if let ExprKind::Let(..) = cond.kind {
1417             // Remove the last feature gating of a `let` expression since it's stable.
1418             let last = self.sess.gated_spans.let_chains.borrow_mut().pop();
1419             debug_assert_eq!(cond.span, last.unwrap());
1420         }
1421
1422         Ok(cond)
1423     }
1424
1425     /// Parses a `let $pat = $expr` pseudo-expression.
1426     /// The `let` token has already been eaten.
1427     fn parse_let_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
1428         let lo = self.prev_span;
1429         let pat = self.parse_top_pat(GateOr::No)?;
1430         self.expect(&token::Eq)?;
1431         let expr = self.with_res(
1432             Restrictions::NO_STRUCT_LITERAL,
1433             |this| this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
1434         )?;
1435         let span = lo.to(expr.span);
1436         self.sess.gated_spans.let_chains.borrow_mut().push(span);
1437         Ok(self.mk_expr(span, ExprKind::Let(pat, expr), attrs))
1438     }
1439
1440     /// Parses an `else { ... }` expression (`else` token already eaten).
1441     fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
1442         if self.eat_keyword(kw::If) {
1443             return self.parse_if_expr(ThinVec::new());
1444         } else {
1445             let blk = self.parse_block()?;
1446             return Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None), ThinVec::new()));
1447         }
1448     }
1449
1450     /// Parses a `for ... in` expression (`for` token already eaten).
1451     fn parse_for_expr(
1452         &mut self,
1453         opt_label: Option<Label>,
1454         span_lo: Span,
1455         mut attrs: ThinVec<Attribute>
1456     ) -> PResult<'a, P<Expr>> {
1457         // Parse: `for <src_pat> in <src_expr> <src_loop_block>`
1458
1459         // Record whether we are about to parse `for (`.
1460         // This is used below for recovery in case of `for ( $stuff ) $block`
1461         // in which case we will suggest `for $stuff $block`.
1462         let begin_paren = match self.token.kind {
1463             token::OpenDelim(token::Paren) => Some(self.token.span),
1464             _ => None,
1465         };
1466
1467         let pat = self.parse_top_pat(GateOr::Yes)?;
1468         if !self.eat_keyword(kw::In) {
1469             let in_span = self.prev_span.between(self.token.span);
1470             self.struct_span_err(in_span, "missing `in` in `for` loop")
1471                 .span_suggestion_short(
1472                     in_span,
1473                     "try adding `in` here", " in ".into(),
1474                     // has been misleading, at least in the past (closed Issue #48492)
1475                     Applicability::MaybeIncorrect
1476                 )
1477                 .emit();
1478         }
1479         let in_span = self.prev_span;
1480         self.check_for_for_in_in_typo(in_span);
1481         let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
1482
1483         let pat = self.recover_parens_around_for_head(pat, &expr, begin_paren);
1484
1485         let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
1486         attrs.extend(iattrs);
1487
1488         let hi = self.prev_span;
1489         Ok(self.mk_expr(span_lo.to(hi), ExprKind::ForLoop(pat, expr, loop_block, opt_label), attrs))
1490     }
1491
1492     /// Parses a `while` or `while let` expression (`while` token already eaten).
1493     fn parse_while_expr(
1494         &mut self,
1495         opt_label: Option<Label>,
1496         span_lo: Span,
1497         mut attrs: ThinVec<Attribute>
1498     ) -> PResult<'a, P<Expr>> {
1499         let cond = self.parse_cond_expr()?;
1500         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
1501         attrs.extend(iattrs);
1502         let span = span_lo.to(body.span);
1503         Ok(self.mk_expr(span, ExprKind::While(cond, body, opt_label), attrs))
1504     }
1505
1506     /// Parses `loop { ... }` (`loop` token already eaten).
1507     fn parse_loop_expr(
1508         &mut self,
1509         opt_label: Option<Label>,
1510         span_lo: Span,
1511         mut attrs: ThinVec<Attribute>
1512     ) -> PResult<'a, P<Expr>> {
1513         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
1514         attrs.extend(iattrs);
1515         let span = span_lo.to(body.span);
1516         Ok(self.mk_expr(span, ExprKind::Loop(body, opt_label), attrs))
1517     }
1518
1519     fn eat_label(&mut self) -> Option<Label> {
1520         if let Some(ident) = self.token.lifetime() {
1521             let span = self.token.span;
1522             self.bump();
1523             Some(Label { ident: Ident::new(ident.name, span) })
1524         } else {
1525             None
1526         }
1527     }
1528
1529     /// Parses a `match ... { ... }` expression (`match` token already eaten).
1530     fn parse_match_expr(&mut self, mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
1531         let match_span = self.prev_span;
1532         let lo = self.prev_span;
1533         let discriminant = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
1534         if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
1535             if self.token == token::Semi {
1536                 e.span_suggestion_short(
1537                     match_span,
1538                     "try removing this `match`",
1539                     String::new(),
1540                     Applicability::MaybeIncorrect // speculative
1541                 );
1542             }
1543             return Err(e)
1544         }
1545         attrs.extend(self.parse_inner_attributes()?);
1546
1547         let mut arms: Vec<Arm> = Vec::new();
1548         while self.token != token::CloseDelim(token::Brace) {
1549             match self.parse_arm() {
1550                 Ok(arm) => arms.push(arm),
1551                 Err(mut e) => {
1552                     // Recover by skipping to the end of the block.
1553                     e.emit();
1554                     self.recover_stmt();
1555                     let span = lo.to(self.token.span);
1556                     if self.token == token::CloseDelim(token::Brace) {
1557                         self.bump();
1558                     }
1559                     return Ok(self.mk_expr(span, ExprKind::Match(discriminant, arms), attrs));
1560                 }
1561             }
1562         }
1563         let hi = self.token.span;
1564         self.bump();
1565         return Ok(self.mk_expr(lo.to(hi), ExprKind::Match(discriminant, arms), attrs));
1566     }
1567
1568     pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
1569         let attrs = self.parse_outer_attributes()?;
1570         let lo = self.token.span;
1571         let pat = self.parse_top_pat(GateOr::No)?;
1572         let guard = if self.eat_keyword(kw::If) {
1573             Some(self.parse_expr()?)
1574         } else {
1575             None
1576         };
1577         let arrow_span = self.token.span;
1578         self.expect(&token::FatArrow)?;
1579         let arm_start_span = self.token.span;
1580
1581         let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None)
1582             .map_err(|mut err| {
1583                 err.span_label(arrow_span, "while parsing the `match` arm starting here");
1584                 err
1585             })?;
1586
1587         let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
1588             && self.token != token::CloseDelim(token::Brace);
1589
1590         let hi = self.token.span;
1591
1592         if require_comma {
1593             let cm = self.sess.source_map();
1594             self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)])
1595                 .map_err(|mut err| {
1596                     match (cm.span_to_lines(expr.span), cm.span_to_lines(arm_start_span)) {
1597                         (Ok(ref expr_lines), Ok(ref arm_start_lines))
1598                         if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
1599                             && expr_lines.lines.len() == 2
1600                             && self.token == token::FatArrow => {
1601                             // We check whether there's any trailing code in the parse span,
1602                             // if there isn't, we very likely have the following:
1603                             //
1604                             // X |     &Y => "y"
1605                             //   |        --    - missing comma
1606                             //   |        |
1607                             //   |        arrow_span
1608                             // X |     &X => "x"
1609                             //   |      - ^^ self.token.span
1610                             //   |      |
1611                             //   |      parsed until here as `"y" & X`
1612                             err.span_suggestion_short(
1613                                 cm.next_point(arm_start_span),
1614                                 "missing a comma here to end this `match` arm",
1615                                 ",".to_owned(),
1616                                 Applicability::MachineApplicable
1617                             );
1618                         }
1619                         _ => {
1620                             err.span_label(arrow_span,
1621                                            "while parsing the `match` arm starting here");
1622                         }
1623                     }
1624                     err
1625                 })?;
1626         } else {
1627             self.eat(&token::Comma);
1628         }
1629
1630         Ok(ast::Arm {
1631             attrs,
1632             pat,
1633             guard,
1634             body: expr,
1635             span: lo.to(hi),
1636             id: DUMMY_NODE_ID,
1637             is_placeholder: false,
1638         })
1639     }
1640
1641     /// Parses a `try {...}` expression (`try` token already eaten).
1642     fn parse_try_block(
1643         &mut self,
1644         span_lo: Span,
1645         mut attrs: ThinVec<Attribute>
1646     ) -> PResult<'a, P<Expr>> {
1647         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
1648         attrs.extend(iattrs);
1649         if self.eat_keyword(kw::Catch) {
1650             let mut error = self.struct_span_err(self.prev_span,
1651                                                  "keyword `catch` cannot follow a `try` block");
1652             error.help("try using `match` on the result of the `try` block instead");
1653             error.emit();
1654             Err(error)
1655         } else {
1656             let span = span_lo.to(body.span);
1657             self.sess.gated_spans.try_blocks.borrow_mut().push(span);
1658             Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
1659         }
1660     }
1661
1662     fn is_do_catch_block(&self) -> bool {
1663         self.token.is_keyword(kw::Do) &&
1664         self.is_keyword_ahead(1, &[kw::Catch]) &&
1665         self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace)) &&
1666         !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1667     }
1668
1669     fn is_try_block(&self) -> bool {
1670         self.token.is_keyword(kw::Try) &&
1671         self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) &&
1672         self.token.span.rust_2018() &&
1673         // Prevent `while try {} {}`, `if try {} {} else {}`, etc.
1674         !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1675     }
1676
1677     /// Parses an `async move? {...}` expression.
1678     fn parse_async_block(&mut self, mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
1679         let span_lo = self.token.span;
1680         self.expect_keyword(kw::Async)?;
1681         let capture_clause = self.parse_capture_clause();
1682         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
1683         attrs.extend(iattrs);
1684         Ok(self.mk_expr(
1685             span_lo.to(body.span),
1686             ExprKind::Async(capture_clause, DUMMY_NODE_ID, body), attrs))
1687     }
1688
1689     fn is_async_block(&self) -> bool {
1690         self.token.is_keyword(kw::Async) &&
1691         (
1692             ( // `async move {`
1693                 self.is_keyword_ahead(1, &[kw::Move]) &&
1694                 self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
1695             ) || ( // `async {`
1696                 self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
1697             )
1698         )
1699     }
1700
1701     fn maybe_parse_struct_expr(
1702         &mut self,
1703         lo: Span,
1704         path: &ast::Path,
1705         attrs: &ThinVec<Attribute>,
1706     ) -> Option<PResult<'a, P<Expr>>> {
1707         let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
1708         let certainly_not_a_block = || self.look_ahead(1, |t| t.is_ident()) && (
1709             // `{ ident, ` cannot start a block.
1710             self.look_ahead(2, |t| t == &token::Comma) ||
1711             self.look_ahead(2, |t| t == &token::Colon) && (
1712                 // `{ ident: token, ` cannot start a block.
1713                 self.look_ahead(4, |t| t == &token::Comma) ||
1714                 // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
1715                 self.look_ahead(3, |t| !t.can_begin_type())
1716             )
1717         );
1718
1719         if struct_allowed || certainly_not_a_block() {
1720             // This is a struct literal, but we don't can't accept them here.
1721             let expr = self.parse_struct_expr(lo, path.clone(), attrs.clone());
1722             if let (Ok(expr), false) = (&expr, struct_allowed) {
1723                 self.struct_span_err(
1724                     expr.span,
1725                     "struct literals are not allowed here",
1726                 )
1727                 .multipart_suggestion(
1728                     "surround the struct literal with parentheses",
1729                     vec![
1730                         (lo.shrink_to_lo(), "(".to_string()),
1731                         (expr.span.shrink_to_hi(), ")".to_string()),
1732                     ],
1733                     Applicability::MachineApplicable,
1734                 )
1735                 .emit();
1736             }
1737             return Some(expr);
1738         }
1739         None
1740     }
1741
1742     pub(super) fn parse_struct_expr(
1743         &mut self,
1744         lo: Span,
1745         pth: ast::Path,
1746         mut attrs: ThinVec<Attribute>
1747     ) -> PResult<'a, P<Expr>> {
1748         let struct_sp = lo.to(self.prev_span);
1749         self.bump();
1750         let mut fields = Vec::new();
1751         let mut base = None;
1752
1753         attrs.extend(self.parse_inner_attributes()?);
1754
1755         while self.token != token::CloseDelim(token::Brace) {
1756             if self.eat(&token::DotDot) {
1757                 let exp_span = self.prev_span;
1758                 match self.parse_expr() {
1759                     Ok(e) => {
1760                         base = Some(e);
1761                     }
1762                     Err(mut e) => {
1763                         e.emit();
1764                         self.recover_stmt();
1765                     }
1766                 }
1767                 if self.token == token::Comma {
1768                     self.struct_span_err(
1769                         exp_span.to(self.prev_span),
1770                         "cannot use a comma after the base struct",
1771                     )
1772                     .span_suggestion_short(
1773                         self.token.span,
1774                         "remove this comma",
1775                         String::new(),
1776                         Applicability::MachineApplicable
1777                     )
1778                     .note("the base struct must always be the last field")
1779                     .emit();
1780                     self.recover_stmt();
1781                 }
1782                 break;
1783             }
1784
1785             let mut recovery_field = None;
1786             if let token::Ident(name, _) = self.token.kind {
1787                 if !self.token.is_reserved_ident() && self.look_ahead(1, |t| *t == token::Colon) {
1788                     // Use in case of error after field-looking code: `S { foo: () with a }`.
1789                     recovery_field = Some(ast::Field {
1790                         ident: Ident::new(name, self.token.span),
1791                         span: self.token.span,
1792                         expr: self.mk_expr(self.token.span, ExprKind::Err, ThinVec::new()),
1793                         is_shorthand: false,
1794                         attrs: ThinVec::new(),
1795                         id: DUMMY_NODE_ID,
1796                         is_placeholder: false,
1797                     });
1798                 }
1799             }
1800             let mut parsed_field = None;
1801             match self.parse_field() {
1802                 Ok(f) => parsed_field = Some(f),
1803                 Err(mut e) => {
1804                     e.span_label(struct_sp, "while parsing this struct");
1805                     e.emit();
1806
1807                     // If the next token is a comma, then try to parse
1808                     // what comes next as additional fields, rather than
1809                     // bailing out until next `}`.
1810                     if self.token != token::Comma {
1811                         self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
1812                         if self.token != token::Comma {
1813                             break;
1814                         }
1815                     }
1816                 }
1817             }
1818
1819             match self.expect_one_of(&[token::Comma],
1820                                      &[token::CloseDelim(token::Brace)]) {
1821                 Ok(_) => if let Some(f) = parsed_field.or(recovery_field) {
1822                     // Only include the field if there's no parse error for the field name.
1823                     fields.push(f);
1824                 }
1825                 Err(mut e) => {
1826                     if let Some(f) = recovery_field {
1827                         fields.push(f);
1828                     }
1829                     e.span_label(struct_sp, "while parsing this struct");
1830                     e.emit();
1831                     self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
1832                     self.eat(&token::Comma);
1833                 }
1834             }
1835         }
1836
1837         let span = lo.to(self.token.span);
1838         self.expect(&token::CloseDelim(token::Brace))?;
1839         return Ok(self.mk_expr(span, ExprKind::Struct(pth, fields, base), attrs));
1840     }
1841
1842     /// Parses `ident (COLON expr)?`.
1843     fn parse_field(&mut self) -> PResult<'a, Field> {
1844         let attrs = self.parse_outer_attributes()?;
1845         let lo = self.token.span;
1846
1847         // Check if a colon exists one ahead. This means we're parsing a fieldname.
1848         let (fieldname, expr, is_shorthand) = if self.look_ahead(1, |t| {
1849             t == &token::Colon || t == &token::Eq
1850         }) {
1851             let fieldname = self.parse_field_name()?;
1852
1853             // Check for an equals token. This means the source incorrectly attempts to
1854             // initialize a field with an eq rather than a colon.
1855             if self.token == token::Eq {
1856                 self.diagnostic()
1857                     .struct_span_err(self.token.span, "expected `:`, found `=`")
1858                     .span_suggestion(
1859                         fieldname.span.shrink_to_hi().to(self.token.span),
1860                         "replace equals symbol with a colon",
1861                         ":".to_string(),
1862                         Applicability::MachineApplicable,
1863                     )
1864                     .emit();
1865             }
1866             self.bump(); // `:`
1867             (fieldname, self.parse_expr()?, false)
1868         } else {
1869             let fieldname = self.parse_ident_common(false)?;
1870
1871             // Mimic `x: x` for the `x` field shorthand.
1872             let path = ast::Path::from_ident(fieldname);
1873             let expr = self.mk_expr(fieldname.span, ExprKind::Path(None, path), ThinVec::new());
1874             (fieldname, expr, true)
1875         };
1876         Ok(ast::Field {
1877             ident: fieldname,
1878             span: lo.to(expr.span),
1879             expr,
1880             is_shorthand,
1881             attrs: attrs.into(),
1882             id: DUMMY_NODE_ID,
1883             is_placeholder: false,
1884         })
1885     }
1886
1887     fn err_dotdotdot_syntax(&self, span: Span) {
1888         self.struct_span_err(span, "unexpected token: `...`")
1889             .span_suggestion(
1890                 span,
1891                 "use `..` for an exclusive range", "..".to_owned(),
1892                 Applicability::MaybeIncorrect
1893             )
1894             .span_suggestion(
1895                 span,
1896                 "or `..=` for an inclusive range", "..=".to_owned(),
1897                 Applicability::MaybeIncorrect
1898             )
1899             .emit();
1900     }
1901
1902     fn err_larrow_operator(&self, span: Span) {
1903         self.struct_span_err(
1904             span,
1905             "unexpected token: `<-`"
1906         ).span_suggestion(
1907             span,
1908             "if you meant to write a comparison against a negative value, add a \
1909              space in between `<` and `-`",
1910             "< -".to_string(),
1911             Applicability::MaybeIncorrect
1912         ).emit();
1913     }
1914
1915     fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
1916         ExprKind::AssignOp(binop, lhs, rhs)
1917     }
1918
1919     fn mk_range(
1920         &self,
1921         start: Option<P<Expr>>,
1922         end: Option<P<Expr>>,
1923         limits: RangeLimits
1924     ) -> PResult<'a, ExprKind> {
1925         if end.is_none() && limits == RangeLimits::Closed {
1926             Err(self.span_fatal_err(self.token.span, Error::InclusiveRangeWithNoEnd))
1927         } else {
1928             Ok(ExprKind::Range(start, end, limits))
1929         }
1930     }
1931
1932     fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
1933         ExprKind::Unary(unop, expr)
1934     }
1935
1936     fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
1937         ExprKind::Binary(binop, lhs, rhs)
1938     }
1939
1940     fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
1941         ExprKind::Index(expr, idx)
1942     }
1943
1944     fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
1945         ExprKind::Call(f, args)
1946     }
1947
1948     fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1949         let span = lo.to(self.prev_span);
1950         let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), ThinVec::new());
1951         self.recover_from_await_method_call();
1952         Ok(await_expr)
1953     }
1954
1955     crate fn mk_expr(&self, span: Span, kind: ExprKind, attrs: ThinVec<Attribute>) -> P<Expr> {
1956         P(Expr { kind, span, attrs, id: DUMMY_NODE_ID })
1957     }
1958
1959     pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
1960         self.mk_expr(span, ExprKind::Err, ThinVec::new())
1961     }
1962 }