]> git.lizzy.rs Git - rust.git/blob - src/libsyntax/ext/tt/macro_rules.rs
Make it an incompatibility lint for now
[rust.git] / src / libsyntax / ext / tt / macro_rules.rs
1 use crate::{ast, attr};
2 use crate::edition::Edition;
3 use crate::errors::FatalError;
4 use crate::ext::base::{DummyResult, ExtCtxt, MacResult, SyntaxExtension};
5 use crate::ext::base::{NormalTT, TTMacroExpander};
6 use crate::ext::expand::{AstFragment, AstFragmentKind};
7 use crate::ext::tt::macro_parser::{Success, Error, Failure};
8 use crate::ext::tt::macro_parser::{MatchedSeq, MatchedNonterminal};
9 use crate::ext::tt::macro_parser::{parse, parse_failure_msg};
10 use crate::ext::tt::quoted;
11 use crate::ext::tt::transcribe::transcribe;
12 use crate::feature_gate::Features;
13 use crate::parse::{Directory, ParseSess};
14 use crate::parse::parser::Parser;
15 use crate::parse::token::{self, NtTT};
16 use crate::parse::token::Token::*;
17 use crate::symbol::Symbol;
18 use crate::tokenstream::{DelimSpan, TokenStream, TokenTree};
19
20 use syntax_pos::{Span, DUMMY_SP, symbol::Ident};
21 use log::debug;
22
23 use rustc_data_structures::fx::{FxHashMap};
24 use std::borrow::Cow;
25 use std::collections::hash_map::Entry;
26
27 use rustc_data_structures::sync::Lrc;
28 use crate::errors::Applicability;
29
30 const VALID_FRAGMENT_NAMES_MSG: &str = "valid fragment specifiers are \
31     `ident`, `block`, `stmt`, `expr`, `pat`, `ty`, `lifetime`, `literal`, \
32     `path`, `meta`, `tt`, `item` and `vis`";
33
34 pub struct ParserAnyMacro<'a> {
35     parser: Parser<'a>,
36
37     /// Span of the expansion site of the macro this parser is for
38     site_span: Span,
39     /// The ident of the macro we're parsing
40     macro_ident: ast::Ident,
41     arm_span: Span,
42 }
43
44 impl<'a> ParserAnyMacro<'a> {
45     pub fn make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment {
46         let ParserAnyMacro { site_span, macro_ident, ref mut parser, arm_span } = *self;
47         let fragment = panictry!(parser.parse_ast_fragment(kind, true).map_err(|mut e| {
48             if parser.token == token::Eof && e.message().ends_with(", found `<eof>`") {
49                 if !e.span.is_dummy() {  // early end of macro arm (#52866)
50                     e.replace_span_with(parser.sess.source_map().next_point(parser.span));
51                 }
52                 let msg = &e.message[0];
53                 e.message[0] = (
54                     format!(
55                         "macro expansion ends with an incomplete expression: {}",
56                         msg.0.replace(", found `<eof>`", ""),
57                     ),
58                     msg.1,
59                 );
60             }
61             if e.span.is_dummy() {  // Get around lack of span in error (#30128)
62                 e.replace_span_with(site_span);
63                 if parser.sess.source_map().span_to_filename(arm_span).is_real() {
64                     e.span_label(arm_span, "in this macro arm");
65                 }
66             } else if !parser.sess.source_map().span_to_filename(parser.span).is_real() {
67                 e.span_label(site_span, "in this macro invocation");
68             }
69             e
70         }));
71
72         // We allow semicolons at the end of expressions -- e.g., the semicolon in
73         // `macro_rules! m { () => { panic!(); } }` isn't parsed by `.parse_expr()`,
74         // but `m!()` is allowed in expression positions (cf. issue #34706).
75         if kind == AstFragmentKind::Expr && parser.token == token::Semi {
76             parser.bump();
77         }
78
79         // Make sure we don't have any tokens left to parse so we don't silently drop anything.
80         let path = ast::Path::from_ident(macro_ident.with_span_pos(site_span));
81         parser.ensure_complete_parse(&path, kind.name(), site_span);
82         fragment
83     }
84 }
85
86 struct MacroRulesMacroExpander {
87     name: ast::Ident,
88     lhses: Vec<quoted::TokenTree>,
89     rhses: Vec<quoted::TokenTree>,
90     valid: bool,
91 }
92
93 impl TTMacroExpander for MacroRulesMacroExpander {
94     fn expand<'cx>(
95         &self,
96         cx: &'cx mut ExtCtxt<'_>,
97         sp: Span,
98         input: TokenStream,
99         def_span: Option<Span>,
100     ) -> Box<dyn MacResult+'cx> {
101         if !self.valid {
102             return DummyResult::any(sp);
103         }
104         generic_extension(cx,
105                           sp,
106                           def_span,
107                           self.name,
108                           input,
109                           &self.lhses,
110                           &self.rhses)
111     }
112 }
113
114 fn trace_macros_note(cx: &mut ExtCtxt<'_>, sp: Span, message: String) {
115     let sp = sp.macro_backtrace().last().map(|trace| trace.call_site).unwrap_or(sp);
116     cx.expansions.entry(sp).or_default().push(message);
117 }
118
119 /// Given `lhses` and `rhses`, this is the new macro we create
120 fn generic_extension<'cx>(cx: &'cx mut ExtCtxt<'_>,
121                           sp: Span,
122                           def_span: Option<Span>,
123                           name: ast::Ident,
124                           arg: TokenStream,
125                           lhses: &[quoted::TokenTree],
126                           rhses: &[quoted::TokenTree])
127                           -> Box<dyn MacResult+'cx> {
128     if cx.trace_macros() {
129         trace_macros_note(cx, sp, format!("expanding `{}! {{ {} }}`", name, arg));
130     }
131
132     // Which arm's failure should we report? (the one furthest along)
133     let mut best_fail_spot = DUMMY_SP;
134     let mut best_fail_tok = None;
135     let mut best_fail_text = None;
136
137     for (i, lhs) in lhses.iter().enumerate() { // try each arm's matchers
138         let lhs_tt = match *lhs {
139             quoted::TokenTree::Delimited(_, ref delim) => &delim.tts[..],
140             _ => cx.span_bug(sp, "malformed macro lhs")
141         };
142
143         match TokenTree::parse(cx, lhs_tt, arg.clone()) {
144             Success(named_matches) => {
145                 let rhs = match rhses[i] {
146                     // ignore delimiters
147                     quoted::TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
148                     _ => cx.span_bug(sp, "malformed macro rhs"),
149                 };
150                 let arm_span = rhses[i].span();
151
152                 let rhs_spans = rhs.iter().map(|t| t.span()).collect::<Vec<_>>();
153                 // rhs has holes ( `$id` and `$(...)` that need filled)
154                 let mut tts = transcribe(cx, Some(named_matches), rhs);
155
156                 // Replace all the tokens for the corresponding positions in the macro, to maintain
157                 // proper positions in error reporting, while maintaining the macro_backtrace.
158                 if rhs_spans.len() == tts.len() {
159                     tts = tts.map_enumerated(|i, mut tt| {
160                         let mut sp = rhs_spans[i];
161                         sp = sp.with_ctxt(tt.span().ctxt());
162                         tt.set_span(sp);
163                         tt
164                     });
165                 }
166
167                 if cx.trace_macros() {
168                     trace_macros_note(cx, sp, format!("to `{}`", tts));
169                 }
170
171                 let directory = Directory {
172                     path: Cow::from(cx.current_expansion.module.directory.as_path()),
173                     ownership: cx.current_expansion.directory_ownership,
174                 };
175                 let mut p = Parser::new(cx.parse_sess(), tts, Some(directory), true, false);
176                 p.root_module_name = cx.current_expansion.module.mod_path.last()
177                     .map(|id| id.as_str().to_string());
178
179                 p.process_potential_macro_variable();
180                 // Let the context choose how to interpret the result.
181                 // Weird, but useful for X-macros.
182                 return Box::new(ParserAnyMacro {
183                     parser: p,
184
185                     // Pass along the original expansion site and the name of the macro
186                     // so we can print a useful error message if the parse of the expanded
187                     // macro leaves unparsed tokens.
188                     site_span: sp,
189                     macro_ident: name,
190                     arm_span,
191                 })
192             }
193             Failure(sp, tok, t) => if sp.lo() >= best_fail_spot.lo() {
194                 best_fail_spot = sp;
195                 best_fail_tok = Some(tok);
196                 best_fail_text = Some(t);
197             },
198             Error(err_sp, ref msg) => {
199                 cx.span_fatal(err_sp.substitute_dummy(sp), &msg[..])
200             }
201         }
202     }
203
204     let best_fail_msg = parse_failure_msg(best_fail_tok.expect("ran no matchers"));
205     let span = best_fail_spot.substitute_dummy(sp);
206     let mut err = cx.struct_span_err(span, &best_fail_msg);
207     err.span_label(span, best_fail_text.unwrap_or(&best_fail_msg));
208     if let Some(sp) = def_span {
209         if cx.source_map().span_to_filename(sp).is_real() && !sp.is_dummy() {
210             err.span_label(cx.source_map().def_span(sp), "when calling this macro");
211         }
212     }
213
214     // Check whether there's a missing comma in this macro call, like `println!("{}" a);`
215     if let Some((arg, comma_span)) = arg.add_comma() {
216         for lhs in lhses { // try each arm's matchers
217             let lhs_tt = match *lhs {
218                 quoted::TokenTree::Delimited(_, ref delim) => &delim.tts[..],
219                 _ => continue,
220             };
221             match TokenTree::parse(cx, lhs_tt, arg.clone()) {
222                 Success(_) => {
223                     if comma_span.is_dummy() {
224                         err.note("you might be missing a comma");
225                     } else {
226                         err.span_suggestion_short(
227                             comma_span,
228                             "missing comma here",
229                             ", ".to_string(),
230                             Applicability::MachineApplicable,
231                         );
232                     }
233                 }
234                 _ => {}
235             }
236         }
237     }
238     err.emit();
239     cx.trace_macros_diag();
240     DummyResult::any(sp)
241 }
242
243 // Note that macro-by-example's input is also matched against a token tree:
244 //                   $( $lhs:tt => $rhs:tt );+
245 //
246 // Holy self-referential!
247
248 /// Converts a `macro_rules!` invocation into a syntax extension.
249 pub fn compile(
250     sess: &ParseSess,
251     features: &Features,
252     def: &ast::Item,
253     edition: Edition
254 ) -> SyntaxExtension {
255     let lhs_nm = ast::Ident::with_empty_ctxt(Symbol::gensym("lhs"));
256     let rhs_nm = ast::Ident::with_empty_ctxt(Symbol::gensym("rhs"));
257
258     // Parse the macro_rules! invocation
259     let body = match def.node {
260         ast::ItemKind::MacroDef(ref body) => body,
261         _ => unreachable!(),
262     };
263
264     // The pattern that macro_rules matches.
265     // The grammar for macro_rules! is:
266     // $( $lhs:tt => $rhs:tt );+
267     // ...quasiquoting this would be nice.
268     // These spans won't matter, anyways
269     let argument_gram = vec![
270         quoted::TokenTree::Sequence(DelimSpan::dummy(), Lrc::new(quoted::SequenceRepetition {
271             tts: vec![
272                 quoted::TokenTree::MetaVarDecl(DUMMY_SP, lhs_nm, ast::Ident::from_str("tt")),
273                 quoted::TokenTree::Token(DUMMY_SP, token::FatArrow),
274                 quoted::TokenTree::MetaVarDecl(DUMMY_SP, rhs_nm, ast::Ident::from_str("tt")),
275             ],
276             separator: Some(if body.legacy { token::Semi } else { token::Comma }),
277             op: quoted::KleeneOp::OneOrMore,
278             num_captures: 2,
279         })),
280         // to phase into semicolon-termination instead of semicolon-separation
281         quoted::TokenTree::Sequence(DelimSpan::dummy(), Lrc::new(quoted::SequenceRepetition {
282             tts: vec![quoted::TokenTree::Token(DUMMY_SP, token::Semi)],
283             separator: None,
284             op: quoted::KleeneOp::ZeroOrMore,
285             num_captures: 0
286         })),
287     ];
288
289     let argument_map = match parse(sess, body.stream(), &argument_gram, None, true) {
290         Success(m) => m,
291         Failure(sp, tok, t) => {
292             let s = parse_failure_msg(tok);
293             let sp = sp.substitute_dummy(def.span);
294             let mut err = sess.span_diagnostic.struct_span_fatal(sp, &s);
295             err.span_label(sp, t);
296             err.emit();
297             FatalError.raise();
298         }
299         Error(sp, s) => {
300             sess.span_diagnostic.span_fatal(sp.substitute_dummy(def.span), &s).raise();
301         }
302     };
303
304     let mut valid = true;
305
306     // Extract the arguments:
307     let lhses = match *argument_map[&lhs_nm] {
308         MatchedSeq(ref s, _) => {
309             s.iter().map(|m| {
310                 if let MatchedNonterminal(ref nt) = *m {
311                     if let NtTT(ref tt) = **nt {
312                         let tt = quoted::parse(
313                             tt.clone().into(),
314                             true,
315                             sess,
316                             features,
317                             &def.attrs,
318                             edition,
319                             def.id,
320                         )
321                         .pop()
322                         .unwrap();
323                         valid &= check_lhs_nt_follows(sess, features, &def.attrs, &tt);
324                         return tt;
325                     }
326                 }
327                 sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
328             }).collect::<Vec<quoted::TokenTree>>()
329         }
330         _ => sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
331     };
332
333     let rhses = match *argument_map[&rhs_nm] {
334         MatchedSeq(ref s, _) => {
335             s.iter().map(|m| {
336                 if let MatchedNonterminal(ref nt) = *m {
337                     if let NtTT(ref tt) = **nt {
338                         return quoted::parse(
339                             tt.clone().into(),
340                             false,
341                             sess,
342                             features,
343                             &def.attrs,
344                             edition,
345                             def.id,
346                         ).pop()
347                          .unwrap();
348                     }
349                 }
350                 sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
351             }).collect::<Vec<quoted::TokenTree>>()
352         }
353         _ => sess.span_diagnostic.span_bug(def.span, "wrong-structured rhs")
354     };
355
356     for rhs in &rhses {
357         valid &= check_rhs(sess, rhs);
358     }
359
360     // don't abort iteration early, so that errors for multiple lhses can be reported
361     for lhs in &lhses {
362         valid &= check_lhs_no_empty_seq(sess, &[lhs.clone()]);
363         valid &= check_lhs_duplicate_matcher_bindings(
364             sess,
365             &[lhs.clone()],
366             &mut FxHashMap::default(),
367             def.id
368         );
369     }
370
371     let expander: Box<_> = Box::new(MacroRulesMacroExpander {
372         name: def.ident,
373         lhses,
374         rhses,
375         valid,
376     });
377
378     if body.legacy {
379         let allow_internal_unstable = attr::contains_name(&def.attrs, "allow_internal_unstable");
380         let allow_internal_unsafe = attr::contains_name(&def.attrs, "allow_internal_unsafe");
381         let mut local_inner_macros = false;
382         if let Some(macro_export) = attr::find_by_name(&def.attrs, "macro_export") {
383             if let Some(l) = macro_export.meta_item_list() {
384                 local_inner_macros = attr::list_contains_name(&l, "local_inner_macros");
385             }
386         }
387
388         let unstable_feature = attr::find_stability(&sess,
389                                                     &def.attrs, def.span).and_then(|stability| {
390             if let attr::StabilityLevel::Unstable { issue, .. } = stability.level {
391                 Some((stability.feature, issue))
392             } else {
393                 None
394             }
395         });
396
397         NormalTT {
398             expander,
399             def_info: Some((def.id, def.span)),
400             allow_internal_unstable,
401             allow_internal_unsafe,
402             local_inner_macros,
403             unstable_feature,
404             edition,
405         }
406     } else {
407         let is_transparent = attr::contains_name(&def.attrs, "rustc_transparent_macro");
408
409         SyntaxExtension::DeclMacro {
410             expander,
411             def_info: Some((def.id, def.span)),
412             is_transparent,
413             edition,
414         }
415     }
416 }
417
418 fn check_lhs_nt_follows(sess: &ParseSess,
419                         features: &Features,
420                         attrs: &[ast::Attribute],
421                         lhs: &quoted::TokenTree) -> bool {
422     // lhs is going to be like TokenTree::Delimited(...), where the
423     // entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
424     if let quoted::TokenTree::Delimited(_, ref tts) = *lhs {
425         check_matcher(sess, features, attrs, &tts.tts)
426     } else {
427         let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
428         sess.span_diagnostic.span_err(lhs.span(), msg);
429         false
430     }
431     // we don't abort on errors on rejection, the driver will do that for us
432     // after parsing/expansion. we can report every error in every macro this way.
433 }
434
435 /// Check that the lhs contains no repetition which could match an empty token
436 /// tree, because then the matcher would hang indefinitely.
437 fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[quoted::TokenTree]) -> bool {
438     use quoted::TokenTree;
439     for tt in tts {
440         match *tt {
441             TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => (),
442             TokenTree::Delimited(_, ref del) => if !check_lhs_no_empty_seq(sess, &del.tts) {
443                 return false;
444             },
445             TokenTree::Sequence(span, ref seq) => {
446                 if seq.separator.is_none() && seq.tts.iter().all(|seq_tt| {
447                     match *seq_tt {
448                         TokenTree::MetaVarDecl(_, _, id) => id.name == "vis",
449                         TokenTree::Sequence(_, ref sub_seq) =>
450                             sub_seq.op == quoted::KleeneOp::ZeroOrMore
451                             || sub_seq.op == quoted::KleeneOp::ZeroOrOne,
452                         _ => false,
453                     }
454                 }) {
455                     let sp = span.entire();
456                     sess.span_diagnostic.span_err(sp, "repetition matches empty token tree");
457                     return false;
458                 }
459                 if !check_lhs_no_empty_seq(sess, &seq.tts) {
460                     return false;
461                 }
462             }
463         }
464     }
465
466     true
467 }
468
469 /// Check that the LHS contains no duplicate matcher bindings. e.g. `$a:expr, $a:expr` would be
470 /// illegal, since it would be ambiguous which `$a` to use if we ever needed to.
471 fn check_lhs_duplicate_matcher_bindings(
472     sess: &ParseSess,
473     tts: &[quoted::TokenTree],
474     metavar_names: &mut FxHashMap<Ident, Span>,
475     node_id: ast::NodeId,
476 ) -> bool {
477     use self::quoted::TokenTree;
478     use crate::early_buffered_lints::BufferedEarlyLintId;
479     for tt in tts {
480         match *tt {
481             TokenTree::MetaVarDecl(span, name, _kind) => {
482                 if let Some(&prev_span) = metavar_names.get(&name) {
483                     // FIXME(mark-i-m): in a few cycles, make this a hard error.
484                     // sess.span_diagnostic
485                     //     .struct_span_err(span, "duplicate matcher binding")
486                     //     .span_note(prev_span, "previous declaration was here")
487                     //     .emit();
488                     sess.buffer_lint(
489                         BufferedEarlyLintId::DuplicateMacroMatcherBindingName,
490                         crate::source_map::MultiSpan::from(vec![prev_span, span]),
491                         node_id,
492                         "duplicate matcher binding"
493                     );
494                     return false;
495                 } else {
496                     metavar_names.insert(name, span);
497                 }
498             }
499             TokenTree::Delimited(_, ref del) => {
500                 if !check_lhs_duplicate_matcher_bindings(sess, &del.tts, metavar_names, node_id) {
501                     return false;
502                 }
503             },
504             TokenTree::Sequence(_, ref seq) => {
505                 if !check_lhs_duplicate_matcher_bindings(sess, &seq.tts, metavar_names, node_id) {
506                     return false;
507                 }
508             }
509             _ => {}
510         }
511     }
512
513     true
514 }
515
516 fn check_rhs(sess: &ParseSess, rhs: &quoted::TokenTree) -> bool {
517     match *rhs {
518         quoted::TokenTree::Delimited(..) => return true,
519         _ => sess.span_diagnostic.span_err(rhs.span(), "macro rhs must be delimited")
520     }
521     false
522 }
523
524 fn check_matcher(sess: &ParseSess,
525                  features: &Features,
526                  attrs: &[ast::Attribute],
527                  matcher: &[quoted::TokenTree]) -> bool {
528     let first_sets = FirstSets::new(matcher);
529     let empty_suffix = TokenSet::empty();
530     let err = sess.span_diagnostic.err_count();
531     check_matcher_core(sess, features, attrs, &first_sets, matcher, &empty_suffix);
532     err == sess.span_diagnostic.err_count()
533 }
534
535 // `The FirstSets` for a matcher is a mapping from subsequences in the
536 // matcher to the FIRST set for that subsequence.
537 //
538 // This mapping is partially precomputed via a backwards scan over the
539 // token trees of the matcher, which provides a mapping from each
540 // repetition sequence to its *first* set.
541 //
542 // (Hypothetically, sequences should be uniquely identifiable via their
543 // spans, though perhaps that is false, e.g., for macro-generated macros
544 // that do not try to inject artificial span information. My plan is
545 // to try to catch such cases ahead of time and not include them in
546 // the precomputed mapping.)
547 struct FirstSets {
548     // this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
549     // span in the original matcher to the First set for the inner sequence `tt ...`.
550     //
551     // If two sequences have the same span in a matcher, then map that
552     // span to None (invalidating the mapping here and forcing the code to
553     // use a slow path).
554     first: FxHashMap<Span, Option<TokenSet>>,
555 }
556
557 impl FirstSets {
558     fn new(tts: &[quoted::TokenTree]) -> FirstSets {
559         use quoted::TokenTree;
560
561         let mut sets = FirstSets { first: FxHashMap::default() };
562         build_recur(&mut sets, tts);
563         return sets;
564
565         // walks backward over `tts`, returning the FIRST for `tts`
566         // and updating `sets` at the same time for all sequence
567         // substructure we find within `tts`.
568         fn build_recur(sets: &mut FirstSets, tts: &[TokenTree]) -> TokenSet {
569             let mut first = TokenSet::empty();
570             for tt in tts.iter().rev() {
571                 match *tt {
572                     TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
573                         first.replace_with(tt.clone());
574                     }
575                     TokenTree::Delimited(span, ref delimited) => {
576                         build_recur(sets, &delimited.tts[..]);
577                         first.replace_with(delimited.open_tt(span.open));
578                     }
579                     TokenTree::Sequence(sp, ref seq_rep) => {
580                         let subfirst = build_recur(sets, &seq_rep.tts[..]);
581
582                         match sets.first.entry(sp.entire()) {
583                             Entry::Vacant(vac) => {
584                                 vac.insert(Some(subfirst.clone()));
585                             }
586                             Entry::Occupied(mut occ) => {
587                                 // if there is already an entry, then a span must have collided.
588                                 // This should not happen with typical macro_rules macros,
589                                 // but syntax extensions need not maintain distinct spans,
590                                 // so distinct syntax trees can be assigned the same span.
591                                 // In such a case, the map cannot be trusted; so mark this
592                                 // entry as unusable.
593                                 occ.insert(None);
594                             }
595                         }
596
597                         // If the sequence contents can be empty, then the first
598                         // token could be the separator token itself.
599
600                         if let (Some(ref sep), true) = (seq_rep.separator.clone(),
601                                                         subfirst.maybe_empty) {
602                             first.add_one_maybe(TokenTree::Token(sp.entire(), sep.clone()));
603                         }
604
605                         // Reverse scan: Sequence comes before `first`.
606                         if subfirst.maybe_empty
607                            || seq_rep.op == quoted::KleeneOp::ZeroOrMore
608                            || seq_rep.op == quoted::KleeneOp::ZeroOrOne
609                         {
610                             // If sequence is potentially empty, then
611                             // union them (preserving first emptiness).
612                             first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
613                         } else {
614                             // Otherwise, sequence guaranteed
615                             // non-empty; replace first.
616                             first = subfirst;
617                         }
618                     }
619                 }
620             }
621
622             first
623         }
624     }
625
626     // walks forward over `tts` until all potential FIRST tokens are
627     // identified.
628     fn first(&self, tts: &[quoted::TokenTree]) -> TokenSet {
629         use quoted::TokenTree;
630
631         let mut first = TokenSet::empty();
632         for tt in tts.iter() {
633             assert!(first.maybe_empty);
634             match *tt {
635                 TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
636                     first.add_one(tt.clone());
637                     return first;
638                 }
639                 TokenTree::Delimited(span, ref delimited) => {
640                     first.add_one(delimited.open_tt(span.open));
641                     return first;
642                 }
643                 TokenTree::Sequence(sp, ref seq_rep) => {
644                     match self.first.get(&sp.entire()) {
645                         Some(&Some(ref subfirst)) => {
646
647                             // If the sequence contents can be empty, then the first
648                             // token could be the separator token itself.
649
650                             if let (Some(ref sep), true) = (seq_rep.separator.clone(),
651                                                             subfirst.maybe_empty) {
652                                 first.add_one_maybe(TokenTree::Token(sp.entire(), sep.clone()));
653                             }
654
655                             assert!(first.maybe_empty);
656                             first.add_all(subfirst);
657                             if subfirst.maybe_empty
658                                || seq_rep.op == quoted::KleeneOp::ZeroOrMore
659                                || seq_rep.op == quoted::KleeneOp::ZeroOrOne
660                             {
661                                 // continue scanning for more first
662                                 // tokens, but also make sure we
663                                 // restore empty-tracking state
664                                 first.maybe_empty = true;
665                                 continue;
666                             } else {
667                                 return first;
668                             }
669                         }
670
671                         Some(&None) => {
672                             panic!("assume all sequences have (unique) spans for now");
673                         }
674
675                         None => {
676                             panic!("We missed a sequence during FirstSets construction");
677                         }
678                     }
679                 }
680             }
681         }
682
683         // we only exit the loop if `tts` was empty or if every
684         // element of `tts` matches the empty sequence.
685         assert!(first.maybe_empty);
686         first
687     }
688 }
689
690 // A set of `quoted::TokenTree`s, which may include `TokenTree::Match`s
691 // (for macro-by-example syntactic variables). It also carries the
692 // `maybe_empty` flag; that is true if and only if the matcher can
693 // match an empty token sequence.
694 //
695 // The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
696 // which has corresponding FIRST = {$a:expr, c, d}.
697 // Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
698 //
699 // (Notably, we must allow for *-op to occur zero times.)
700 #[derive(Clone, Debug)]
701 struct TokenSet {
702     tokens: Vec<quoted::TokenTree>,
703     maybe_empty: bool,
704 }
705
706 impl TokenSet {
707     // Returns a set for the empty sequence.
708     fn empty() -> Self { TokenSet { tokens: Vec::new(), maybe_empty: true } }
709
710     // Returns the set `{ tok }` for the single-token (and thus
711     // non-empty) sequence [tok].
712     fn singleton(tok: quoted::TokenTree) -> Self {
713         TokenSet { tokens: vec![tok], maybe_empty: false }
714     }
715
716     // Changes self to be the set `{ tok }`.
717     // Since `tok` is always present, marks self as non-empty.
718     fn replace_with(&mut self, tok: quoted::TokenTree) {
719         self.tokens.clear();
720         self.tokens.push(tok);
721         self.maybe_empty = false;
722     }
723
724     // Changes self to be the empty set `{}`; meant for use when
725     // the particular token does not matter, but we want to
726     // record that it occurs.
727     fn replace_with_irrelevant(&mut self) {
728         self.tokens.clear();
729         self.maybe_empty = false;
730     }
731
732     // Adds `tok` to the set for `self`, marking sequence as non-empy.
733     fn add_one(&mut self, tok: quoted::TokenTree) {
734         if !self.tokens.contains(&tok) {
735             self.tokens.push(tok);
736         }
737         self.maybe_empty = false;
738     }
739
740     // Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
741     fn add_one_maybe(&mut self, tok: quoted::TokenTree) {
742         if !self.tokens.contains(&tok) {
743             self.tokens.push(tok);
744         }
745     }
746
747     // Adds all elements of `other` to this.
748     //
749     // (Since this is a set, we filter out duplicates.)
750     //
751     // If `other` is potentially empty, then preserves the previous
752     // setting of the empty flag of `self`. If `other` is guaranteed
753     // non-empty, then `self` is marked non-empty.
754     fn add_all(&mut self, other: &Self) {
755         for tok in &other.tokens {
756             if !self.tokens.contains(tok) {
757                 self.tokens.push(tok.clone());
758             }
759         }
760         if !other.maybe_empty {
761             self.maybe_empty = false;
762         }
763     }
764 }
765
766 // Checks that `matcher` is internally consistent and that it
767 // can legally by followed by a token N, for all N in `follow`.
768 // (If `follow` is empty, then it imposes no constraint on
769 // the `matcher`.)
770 //
771 // Returns the set of NT tokens that could possibly come last in
772 // `matcher`. (If `matcher` matches the empty sequence, then
773 // `maybe_empty` will be set to true.)
774 //
775 // Requires that `first_sets` is pre-computed for `matcher`;
776 // see `FirstSets::new`.
777 fn check_matcher_core(sess: &ParseSess,
778                       features: &Features,
779                       attrs: &[ast::Attribute],
780                       first_sets: &FirstSets,
781                       matcher: &[quoted::TokenTree],
782                       follow: &TokenSet) -> TokenSet {
783     use quoted::TokenTree;
784
785     let mut last = TokenSet::empty();
786
787     // 2. For each token and suffix  [T, SUFFIX] in M:
788     // ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
789     // then ensure T can also be followed by any element of FOLLOW.
790     'each_token: for i in 0..matcher.len() {
791         let token = &matcher[i];
792         let suffix = &matcher[i+1..];
793
794         let build_suffix_first = || {
795             let mut s = first_sets.first(suffix);
796             if s.maybe_empty { s.add_all(follow); }
797             s
798         };
799
800         // (we build `suffix_first` on demand below; you can tell
801         // which cases are supposed to fall through by looking for the
802         // initialization of this variable.)
803         let suffix_first;
804
805         // First, update `last` so that it corresponds to the set
806         // of NT tokens that might end the sequence `... token`.
807         match *token {
808             TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
809                 let can_be_followed_by_any;
810                 if let Err(bad_frag) = has_legal_fragment_specifier(sess, features, attrs, token) {
811                     let msg = format!("invalid fragment specifier `{}`", bad_frag);
812                     sess.span_diagnostic.struct_span_err(token.span(), &msg)
813                         .help(VALID_FRAGMENT_NAMES_MSG)
814                         .emit();
815                     // (This eliminates false positives and duplicates
816                     // from error messages.)
817                     can_be_followed_by_any = true;
818                 } else {
819                     can_be_followed_by_any = token_can_be_followed_by_any(token);
820                 }
821
822                 if can_be_followed_by_any {
823                     // don't need to track tokens that work with any,
824                     last.replace_with_irrelevant();
825                     // ... and don't need to check tokens that can be
826                     // followed by anything against SUFFIX.
827                     continue 'each_token;
828                 } else {
829                     last.replace_with(token.clone());
830                     suffix_first = build_suffix_first();
831                 }
832             }
833             TokenTree::Delimited(span, ref d) => {
834                 let my_suffix = TokenSet::singleton(d.close_tt(span.close));
835                 check_matcher_core(sess, features, attrs, first_sets, &d.tts, &my_suffix);
836                 // don't track non NT tokens
837                 last.replace_with_irrelevant();
838
839                 // also, we don't need to check delimited sequences
840                 // against SUFFIX
841                 continue 'each_token;
842             }
843             TokenTree::Sequence(sp, ref seq_rep) => {
844                 suffix_first = build_suffix_first();
845                 // The trick here: when we check the interior, we want
846                 // to include the separator (if any) as a potential
847                 // (but not guaranteed) element of FOLLOW. So in that
848                 // case, we make a temp copy of suffix and stuff
849                 // delimiter in there.
850                 //
851                 // FIXME: Should I first scan suffix_first to see if
852                 // delimiter is already in it before I go through the
853                 // work of cloning it? But then again, this way I may
854                 // get a "tighter" span?
855                 let mut new;
856                 let my_suffix = if let Some(ref u) = seq_rep.separator {
857                     new = suffix_first.clone();
858                     new.add_one_maybe(TokenTree::Token(sp.entire(), u.clone()));
859                     &new
860                 } else {
861                     &suffix_first
862                 };
863
864                 // At this point, `suffix_first` is built, and
865                 // `my_suffix` is some TokenSet that we can use
866                 // for checking the interior of `seq_rep`.
867                 let next = check_matcher_core(sess,
868                                               features,
869                                               attrs,
870                                               first_sets,
871                                               &seq_rep.tts,
872                                               my_suffix);
873                 if next.maybe_empty {
874                     last.add_all(&next);
875                 } else {
876                     last = next;
877                 }
878
879                 // the recursive call to check_matcher_core already ran the 'each_last
880                 // check below, so we can just keep going forward here.
881                 continue 'each_token;
882             }
883         }
884
885         // (`suffix_first` guaranteed initialized once reaching here.)
886
887         // Now `last` holds the complete set of NT tokens that could
888         // end the sequence before SUFFIX. Check that every one works with `suffix`.
889         'each_last: for token in &last.tokens {
890             if let TokenTree::MetaVarDecl(_, ref name, ref frag_spec) = *token {
891                 for next_token in &suffix_first.tokens {
892                     match is_in_follow(next_token, &frag_spec.as_str()) {
893                         IsInFollow::Invalid(msg, help) => {
894                             sess.span_diagnostic.struct_span_err(next_token.span(), &msg)
895                                 .help(help).emit();
896                             // don't bother reporting every source of
897                             // conflict for a particular element of `last`.
898                             continue 'each_last;
899                         }
900                         IsInFollow::Yes => {}
901                         IsInFollow::No(ref possible) => {
902                             let may_be = if last.tokens.len() == 1 &&
903                                 suffix_first.tokens.len() == 1
904                             {
905                                 "is"
906                             } else {
907                                 "may be"
908                             };
909
910                             let sp = next_token.span();
911                             let mut err = sess.span_diagnostic.struct_span_err(
912                                 sp,
913                                 &format!("`${name}:{frag}` {may_be} followed by `{next}`, which \
914                                           is not allowed for `{frag}` fragments",
915                                          name=name,
916                                          frag=frag_spec,
917                                          next=quoted_tt_to_string(next_token),
918                                          may_be=may_be),
919                             );
920                             err.span_label(
921                                 sp,
922                                 format!("not allowed after `{}` fragments", frag_spec),
923                             );
924                             let msg = "allowed there are: ";
925                             match &possible[..] {
926                                 &[] => {}
927                                 &[t] => {
928                                     err.note(&format!(
929                                         "only {} is allowed after `{}` fragments",
930                                         t,
931                                         frag_spec,
932                                     ));
933                                 }
934                                 ts => {
935                                     err.note(&format!(
936                                         "{}{} or {}",
937                                         msg,
938                                         ts[..ts.len() - 1].iter().map(|s| *s)
939                                             .collect::<Vec<_>>().join(", "),
940                                         ts[ts.len() - 1],
941                                     ));
942                                 }
943                             }
944                             err.emit();
945                         }
946                     }
947                 }
948             }
949         }
950     }
951     last
952 }
953
954 fn token_can_be_followed_by_any(tok: &quoted::TokenTree) -> bool {
955     if let quoted::TokenTree::MetaVarDecl(_, _, frag_spec) = *tok {
956         frag_can_be_followed_by_any(&frag_spec.as_str())
957     } else {
958         // (Non NT's can always be followed by anthing in matchers.)
959         true
960     }
961 }
962
963 /// True if a fragment of type `frag` can be followed by any sort of
964 /// token.  We use this (among other things) as a useful approximation
965 /// for when `frag` can be followed by a repetition like `$(...)*` or
966 /// `$(...)+`. In general, these can be a bit tricky to reason about,
967 /// so we adopt a conservative position that says that any fragment
968 /// specifier which consumes at most one token tree can be followed by
969 /// a fragment specifier (indeed, these fragments can be followed by
970 /// ANYTHING without fear of future compatibility hazards).
971 fn frag_can_be_followed_by_any(frag: &str) -> bool {
972     match frag {
973         "item"     | // always terminated by `}` or `;`
974         "block"    | // exactly one token tree
975         "ident"    | // exactly one token tree
976         "literal"  | // exactly one token tree
977         "meta"     | // exactly one token tree
978         "lifetime" | // exactly one token tree
979         "tt" =>   // exactly one token tree
980             true,
981
982         _ =>
983             false,
984     }
985 }
986
987 enum IsInFollow {
988     Yes,
989     No(Vec<&'static str>),
990     Invalid(String, &'static str),
991 }
992
993 /// True if `frag` can legally be followed by the token `tok`. For
994 /// fragments that can consume an unbounded number of tokens, `tok`
995 /// must be within a well-defined follow set. This is intended to
996 /// guarantee future compatibility: for example, without this rule, if
997 /// we expanded `expr` to include a new binary operator, we might
998 /// break macros that were relying on that binary operator as a
999 /// separator.
1000 // when changing this do not forget to update doc/book/macros.md!
1001 fn is_in_follow(tok: &quoted::TokenTree, frag: &str) -> IsInFollow {
1002     use quoted::TokenTree;
1003
1004     if let TokenTree::Token(_, token::CloseDelim(_)) = *tok {
1005         // closing a token tree can never be matched by any fragment;
1006         // iow, we always require that `(` and `)` match, etc.
1007         IsInFollow::Yes
1008     } else {
1009         match frag {
1010             "item" => {
1011                 // since items *must* be followed by either a `;` or a `}`, we can
1012                 // accept anything after them
1013                 IsInFollow::Yes
1014             },
1015             "block" => {
1016                 // anything can follow block, the braces provide an easy boundary to
1017                 // maintain
1018                 IsInFollow::Yes
1019             },
1020             "stmt" | "expr"  => {
1021                 let tokens = vec!["`=>`", "`,`", "`;`"];
1022                 match *tok {
1023                     TokenTree::Token(_, ref tok) => match *tok {
1024                         FatArrow | Comma | Semi => IsInFollow::Yes,
1025                         _ => IsInFollow::No(tokens),
1026                     },
1027                     _ => IsInFollow::No(tokens),
1028                 }
1029             },
1030             "pat" => {
1031                 let tokens = vec!["`=>`", "`,`", "`=`", "`|`", "`if`", "`in`"];
1032                 match *tok {
1033                     TokenTree::Token(_, ref tok) => match *tok {
1034                         FatArrow | Comma | Eq | BinOp(token::Or) => IsInFollow::Yes,
1035                         Ident(i, false) if i.name == "if" || i.name == "in" => IsInFollow::Yes,
1036                         _ => IsInFollow::No(tokens),
1037                     },
1038                     _ => IsInFollow::No(tokens),
1039                 }
1040             },
1041             "path" | "ty" => {
1042                 let tokens = vec![
1043                     "`{`", "`[`", "`=>`", "`,`", "`>`","`=`", "`:`", "`;`", "`|`", "`as`",
1044                     "`where`",
1045                 ];
1046                 match *tok {
1047                     TokenTree::Token(_, ref tok) => match *tok {
1048                         OpenDelim(token::DelimToken::Brace) |
1049                         OpenDelim(token::DelimToken::Bracket) |
1050                         Comma | FatArrow | Colon | Eq | Gt | BinOp(token::Shr) | Semi |
1051                         BinOp(token::Or) => IsInFollow::Yes,
1052                         Ident(i, false) if i.name == "as" || i.name == "where" => IsInFollow::Yes,
1053                         _ => IsInFollow::No(tokens),
1054                     },
1055                     TokenTree::MetaVarDecl(_, _, frag) if frag.name == "block" => IsInFollow::Yes,
1056                     _ => IsInFollow::No(tokens),
1057                 }
1058             },
1059             "ident" | "lifetime" => {
1060                 // being a single token, idents and lifetimes are harmless
1061                 IsInFollow::Yes
1062             },
1063             "literal" => {
1064                 // literals may be of a single token, or two tokens (negative numbers)
1065                 IsInFollow::Yes
1066             },
1067             "meta" | "tt" => {
1068                 // being either a single token or a delimited sequence, tt is
1069                 // harmless
1070                 IsInFollow::Yes
1071             },
1072             "vis" => {
1073                 // Explicitly disallow `priv`, on the off chance it comes back.
1074                 let tokens = vec!["`,`", "an ident", "a type"];
1075                 match *tok {
1076                     TokenTree::Token(_, ref tok) => match *tok {
1077                         Comma => IsInFollow::Yes,
1078                         Ident(i, is_raw) if is_raw || i.name != "priv" => IsInFollow::Yes,
1079                         ref tok => if tok.can_begin_type() {
1080                             IsInFollow::Yes
1081                         } else {
1082                             IsInFollow::No(tokens)
1083                         }
1084                     },
1085                     TokenTree::MetaVarDecl(_, _, frag) if frag.name == "ident"
1086                                                        || frag.name == "ty"
1087                                                        || frag.name == "path" => IsInFollow::Yes,
1088                     _ => IsInFollow::No(tokens),
1089                 }
1090             },
1091             "" => IsInFollow::Yes, // keywords::Invalid
1092             _ => IsInFollow::Invalid(format!("invalid fragment specifier `{}`", frag),
1093                                      VALID_FRAGMENT_NAMES_MSG),
1094         }
1095     }
1096 }
1097
1098 fn has_legal_fragment_specifier(sess: &ParseSess,
1099                                 features: &Features,
1100                                 attrs: &[ast::Attribute],
1101                                 tok: &quoted::TokenTree) -> Result<(), String> {
1102     debug!("has_legal_fragment_specifier({:?})", tok);
1103     if let quoted::TokenTree::MetaVarDecl(_, _, ref frag_spec) = *tok {
1104         let frag_name = frag_spec.as_str();
1105         let frag_span = tok.span();
1106         if !is_legal_fragment_specifier(sess, features, attrs, &frag_name, frag_span) {
1107             return Err(frag_name.to_string());
1108         }
1109     }
1110     Ok(())
1111 }
1112
1113 fn is_legal_fragment_specifier(_sess: &ParseSess,
1114                                _features: &Features,
1115                                _attrs: &[ast::Attribute],
1116                                frag_name: &str,
1117                                _frag_span: Span) -> bool {
1118     /*
1119      * If new fragment specifiers are invented in nightly, `_sess`,
1120      * `_features`, `_attrs`, and `_frag_span` will be useful here
1121      * for checking against feature gates. See past versions of
1122      * this function.
1123      */
1124     match frag_name {
1125         "item" | "block" | "stmt" | "expr" | "pat" | "lifetime" |
1126         "path" | "ty" | "ident" | "meta" | "tt" | "vis" | "literal" |
1127         "" => true,
1128         _ => false,
1129     }
1130 }
1131
1132 fn quoted_tt_to_string(tt: &quoted::TokenTree) -> String {
1133     match *tt {
1134         quoted::TokenTree::Token(_, ref tok) => crate::print::pprust::token_to_string(tok),
1135         quoted::TokenTree::MetaVar(_, name) => format!("${}", name),
1136         quoted::TokenTree::MetaVarDecl(_, name, kind) => format!("${}:{}", name, kind),
1137         _ => panic!("unexpected quoted::TokenTree::{{Sequence or Delimited}} \
1138                      in follow set checker"),
1139     }
1140 }