]> git.lizzy.rs Git - rust.git/blob - src/librustdoc/clean/auto_trait.rs
498fa25836c95cc42cc5b03954e8fdcab3642e1e
[rust.git] / src / librustdoc / clean / auto_trait.rs
1 use rustc_data_structures::fx::FxHashSet;
2 use rustc_hir as hir;
3 use rustc_hir::lang_items;
4 use rustc_middle::ty::{self, Region, RegionVid, TypeFoldable};
5 use rustc_trait_selection::traits::auto_trait::{self, AutoTraitResult};
6
7 use std::fmt::Debug;
8
9 use super::*;
10
11 #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
12 enum RegionTarget<'tcx> {
13     Region(Region<'tcx>),
14     RegionVid(RegionVid),
15 }
16
17 #[derive(Default, Debug, Clone)]
18 struct RegionDeps<'tcx> {
19     larger: FxHashSet<RegionTarget<'tcx>>,
20     smaller: FxHashSet<RegionTarget<'tcx>>,
21 }
22
23 pub struct AutoTraitFinder<'a, 'tcx> {
24     pub cx: &'a core::DocContext<'tcx>,
25     pub f: auto_trait::AutoTraitFinder<'tcx>,
26 }
27
28 impl<'a, 'tcx> AutoTraitFinder<'a, 'tcx> {
29     pub fn new(cx: &'a core::DocContext<'tcx>) -> Self {
30         let f = auto_trait::AutoTraitFinder::new(cx.tcx);
31
32         AutoTraitFinder { cx, f }
33     }
34
35     // FIXME(eddyb) figure out a better way to pass information about
36     // parametrization of `ty` than `param_env_def_id`.
37     pub fn get_auto_trait_impls(&self, ty: Ty<'tcx>, param_env_def_id: DefId) -> Vec<Item> {
38         let param_env = self.cx.tcx.param_env(param_env_def_id);
39
40         debug!("get_auto_trait_impls({:?})", ty);
41         let auto_traits = self.cx.auto_traits.iter().cloned();
42         auto_traits
43             .filter_map(|trait_def_id| {
44                 let trait_ref = ty::TraitRef {
45                     def_id: trait_def_id,
46                     substs: self.cx.tcx.mk_substs_trait(ty, &[]),
47                 };
48                 if !self.cx.generated_synthetics.borrow_mut().insert((ty, trait_def_id)) {
49                     debug!("get_auto_trait_impl_for({:?}): already generated, aborting", trait_ref);
50                     return None;
51                 }
52
53                 let result =
54                     self.f.find_auto_trait_generics(ty, param_env, trait_def_id, |infcx, info| {
55                         let region_data = info.region_data;
56
57                         let names_map = self
58                             .cx
59                             .tcx
60                             .generics_of(param_env_def_id)
61                             .params
62                             .iter()
63                             .filter_map(|param| match param.kind {
64                                 ty::GenericParamDefKind::Lifetime => Some(param.name.to_string()),
65                                 _ => None,
66                             })
67                             .map(|name| (name.clone(), Lifetime(name)))
68                             .collect();
69                         let lifetime_predicates = self.handle_lifetimes(&region_data, &names_map);
70                         let new_generics = self.param_env_to_generics(
71                             infcx.tcx,
72                             param_env_def_id,
73                             info.full_user_env,
74                             lifetime_predicates,
75                             info.vid_to_region,
76                         );
77
78                         debug!(
79                             "find_auto_trait_generics(param_env_def_id={:?}, trait_def_id={:?}): \
80                             finished with {:?}",
81                             param_env_def_id, trait_def_id, new_generics
82                         );
83
84                         new_generics
85                     });
86
87                 let polarity;
88                 let new_generics = match result {
89                     AutoTraitResult::PositiveImpl(new_generics) => {
90                         polarity = None;
91                         new_generics
92                     }
93                     AutoTraitResult::NegativeImpl => {
94                         polarity = Some(ImplPolarity::Negative);
95
96                         // For negative impls, we use the generic params, but *not* the predicates,
97                         // from the original type. Otherwise, the displayed impl appears to be a
98                         // conditional negative impl, when it's really unconditional.
99                         //
100                         // For example, consider the struct Foo<T: Copy>(*mut T). Using
101                         // the original predicates in our impl would cause us to generate
102                         // `impl !Send for Foo<T: Copy>`, which makes it appear that Foo
103                         // implements Send where T is not copy.
104                         //
105                         // Instead, we generate `impl !Send for Foo<T>`, which better
106                         // expresses the fact that `Foo<T>` never implements `Send`,
107                         // regardless of the choice of `T`.
108                         let params = (
109                             self.cx.tcx.generics_of(param_env_def_id),
110                             ty::GenericPredicates::default(),
111                         )
112                             .clean(self.cx)
113                             .params;
114
115                         Generics { params, where_predicates: Vec::new() }
116                     }
117                     AutoTraitResult::ExplicitImpl => return None,
118                 };
119
120                 Some(Item {
121                     source: Span::empty(),
122                     name: None,
123                     attrs: Default::default(),
124                     visibility: Inherited,
125                     def_id: self.cx.next_def_id(param_env_def_id.krate),
126                     stability: None,
127                     deprecation: None,
128                     inner: ImplItem(Impl {
129                         unsafety: hir::Unsafety::Normal,
130                         generics: new_generics,
131                         provided_trait_methods: Default::default(),
132                         trait_: Some(trait_ref.clean(self.cx).get_trait_type().unwrap()),
133                         for_: ty.clean(self.cx),
134                         items: Vec::new(),
135                         polarity,
136                         synthetic: true,
137                         blanket_impl: None,
138                     }),
139                 })
140             })
141             .collect()
142     }
143
144     fn get_lifetime(
145         &self,
146         region: Region<'_>,
147         names_map: &FxHashMap<String, Lifetime>,
148     ) -> Lifetime {
149         self.region_name(region)
150             .map(|name| {
151                 names_map.get(&name).unwrap_or_else(|| {
152                     panic!("Missing lifetime with name {:?} for {:?}", name, region)
153                 })
154             })
155             .unwrap_or(&Lifetime::statik())
156             .clone()
157     }
158
159     fn region_name(&self, region: Region<'_>) -> Option<String> {
160         match region {
161             &ty::ReEarlyBound(r) => Some(r.name.to_string()),
162             _ => None,
163         }
164     }
165
166     // This method calculates two things: Lifetime constraints of the form 'a: 'b,
167     // and region constraints of the form ReVar: 'a
168     //
169     // This is essentially a simplified version of lexical_region_resolve. However,
170     // handle_lifetimes determines what *needs be* true in order for an impl to hold.
171     // lexical_region_resolve, along with much of the rest of the compiler, is concerned
172     // with determining if a given set up constraints/predicates *are* met, given some
173     // starting conditions (e.g., user-provided code). For this reason, it's easier
174     // to perform the calculations we need on our own, rather than trying to make
175     // existing inference/solver code do what we want.
176     fn handle_lifetimes<'cx>(
177         &self,
178         regions: &RegionConstraintData<'cx>,
179         names_map: &FxHashMap<String, Lifetime>,
180     ) -> Vec<WherePredicate> {
181         // Our goal is to 'flatten' the list of constraints by eliminating
182         // all intermediate RegionVids. At the end, all constraints should
183         // be between Regions (aka region variables). This gives us the information
184         // we need to create the Generics.
185         let mut finished: FxHashMap<_, Vec<_>> = Default::default();
186
187         let mut vid_map: FxHashMap<RegionTarget<'_>, RegionDeps<'_>> = Default::default();
188
189         // Flattening is done in two parts. First, we insert all of the constraints
190         // into a map. Each RegionTarget (either a RegionVid or a Region) maps
191         // to its smaller and larger regions. Note that 'larger' regions correspond
192         // to sub-regions in Rust code (e.g., in 'a: 'b, 'a is the larger region).
193         for constraint in regions.constraints.keys() {
194             match constraint {
195                 &Constraint::VarSubVar(r1, r2) => {
196                     {
197                         let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
198                         deps1.larger.insert(RegionTarget::RegionVid(r2));
199                     }
200
201                     let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
202                     deps2.smaller.insert(RegionTarget::RegionVid(r1));
203                 }
204                 &Constraint::RegSubVar(region, vid) => {
205                     let deps = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
206                     deps.smaller.insert(RegionTarget::Region(region));
207                 }
208                 &Constraint::VarSubReg(vid, region) => {
209                     let deps = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
210                     deps.larger.insert(RegionTarget::Region(region));
211                 }
212                 &Constraint::RegSubReg(r1, r2) => {
213                     // The constraint is already in the form that we want, so we're done with it
214                     // Desired order is 'larger, smaller', so flip then
215                     if self.region_name(r1) != self.region_name(r2) {
216                         finished
217                             .entry(self.region_name(r2).expect("no region_name found"))
218                             .or_default()
219                             .push(r1);
220                     }
221                 }
222             }
223         }
224
225         // Here, we 'flatten' the map one element at a time.
226         // All of the element's sub and super regions are connected
227         // to each other. For example, if we have a graph that looks like this:
228         //
229         // (A, B) - C - (D, E)
230         // Where (A, B) are subregions, and (D,E) are super-regions
231         //
232         // then after deleting 'C', the graph will look like this:
233         //  ... - A - (D, E ...)
234         //  ... - B - (D, E, ...)
235         //  (A, B, ...) - D - ...
236         //  (A, B, ...) - E - ...
237         //
238         //  where '...' signifies the existing sub and super regions of an entry
239         //  When two adjacent ty::Regions are encountered, we've computed a final
240         //  constraint, and add it to our list. Since we make sure to never re-add
241         //  deleted items, this process will always finish.
242         while !vid_map.is_empty() {
243             let target = *vid_map.keys().next().expect("Keys somehow empty");
244             let deps = vid_map.remove(&target).expect("Entry somehow missing");
245
246             for smaller in deps.smaller.iter() {
247                 for larger in deps.larger.iter() {
248                     match (smaller, larger) {
249                         (&RegionTarget::Region(r1), &RegionTarget::Region(r2)) => {
250                             if self.region_name(r1) != self.region_name(r2) {
251                                 finished
252                                     .entry(self.region_name(r2).expect("no region name found"))
253                                     .or_default()
254                                     .push(r1) // Larger, smaller
255                             }
256                         }
257                         (&RegionTarget::RegionVid(_), &RegionTarget::Region(_)) => {
258                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
259                                 let smaller_deps = v.into_mut();
260                                 smaller_deps.larger.insert(*larger);
261                                 smaller_deps.larger.remove(&target);
262                             }
263                         }
264                         (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
265                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
266                                 let deps = v.into_mut();
267                                 deps.smaller.insert(*smaller);
268                                 deps.smaller.remove(&target);
269                             }
270                         }
271                         (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
272                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
273                                 let smaller_deps = v.into_mut();
274                                 smaller_deps.larger.insert(*larger);
275                                 smaller_deps.larger.remove(&target);
276                             }
277
278                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
279                                 let larger_deps = v.into_mut();
280                                 larger_deps.smaller.insert(*smaller);
281                                 larger_deps.smaller.remove(&target);
282                             }
283                         }
284                     }
285                 }
286             }
287         }
288
289         let lifetime_predicates = names_map
290             .iter()
291             .flat_map(|(name, lifetime)| {
292                 let empty = Vec::new();
293                 let bounds: FxHashSet<GenericBound> = finished
294                     .get(name)
295                     .unwrap_or(&empty)
296                     .iter()
297                     .map(|region| GenericBound::Outlives(self.get_lifetime(region, names_map)))
298                     .collect();
299
300                 if bounds.is_empty() {
301                     return None;
302                 }
303                 Some(WherePredicate::RegionPredicate {
304                     lifetime: lifetime.clone(),
305                     bounds: bounds.into_iter().collect(),
306                 })
307             })
308             .collect();
309
310         lifetime_predicates
311     }
312
313     fn extract_for_generics(
314         &self,
315         tcx: TyCtxt<'tcx>,
316         pred: ty::Predicate<'tcx>,
317     ) -> FxHashSet<GenericParamDef> {
318         let regions = match pred.ignore_quantifiers().skip_binder().kind() {
319             &ty::PredicateKind::Trait(poly_trait_pred, _) => {
320                 tcx.collect_referenced_late_bound_regions(&ty::Binder::bind(poly_trait_pred))
321             }
322             &ty::PredicateKind::Projection(poly_proj_pred) => {
323                 tcx.collect_referenced_late_bound_regions(&ty::Binder::bind(poly_proj_pred))
324             }
325             _ => return FxHashSet::default(),
326         };
327
328         regions
329             .into_iter()
330             .filter_map(|br| {
331                 match br {
332                     // We only care about named late bound regions, as we need to add them
333                     // to the 'for<>' section
334                     ty::BrNamed(_, name) => Some(GenericParamDef {
335                         name: name.to_string(),
336                         kind: GenericParamDefKind::Lifetime,
337                     }),
338                     _ => None,
339                 }
340             })
341             .collect()
342     }
343
344     fn make_final_bounds(
345         &self,
346         ty_to_bounds: FxHashMap<Type, FxHashSet<GenericBound>>,
347         ty_to_fn: FxHashMap<Type, (Option<PolyTrait>, Option<Type>)>,
348         lifetime_to_bounds: FxHashMap<Lifetime, FxHashSet<GenericBound>>,
349     ) -> Vec<WherePredicate> {
350         ty_to_bounds
351             .into_iter()
352             .flat_map(|(ty, mut bounds)| {
353                 if let Some(data) = ty_to_fn.get(&ty) {
354                     let (poly_trait, output) =
355                         (data.0.as_ref().expect("as_ref failed").clone(), data.1.as_ref().cloned());
356                     let new_ty = match &poly_trait.trait_ {
357                         &Type::ResolvedPath {
358                             ref path,
359                             ref param_names,
360                             ref did,
361                             ref is_generic,
362                         } => {
363                             let mut new_path = path.clone();
364                             let last_segment =
365                                 new_path.segments.pop().expect("segments were empty");
366
367                             let (old_input, old_output) = match last_segment.args {
368                                 GenericArgs::AngleBracketed { args, .. } => {
369                                     let types = args
370                                         .iter()
371                                         .filter_map(|arg| match arg {
372                                             GenericArg::Type(ty) => Some(ty.clone()),
373                                             _ => None,
374                                         })
375                                         .collect();
376                                     (types, None)
377                                 }
378                                 GenericArgs::Parenthesized { inputs, output, .. } => {
379                                     (inputs, output)
380                                 }
381                             };
382
383                             if old_output.is_some() && old_output != output {
384                                 panic!(
385                                     "Output mismatch for {:?} {:?} {:?}",
386                                     ty, old_output, data.1
387                                 );
388                             }
389
390                             let new_params =
391                                 GenericArgs::Parenthesized { inputs: old_input, output };
392
393                             new_path
394                                 .segments
395                                 .push(PathSegment { name: last_segment.name, args: new_params });
396
397                             Type::ResolvedPath {
398                                 path: new_path,
399                                 param_names: param_names.clone(),
400                                 did: *did,
401                                 is_generic: *is_generic,
402                             }
403                         }
404                         _ => panic!("Unexpected data: {:?}, {:?}", ty, data),
405                     };
406                     bounds.insert(GenericBound::TraitBound(
407                         PolyTrait { trait_: new_ty, generic_params: poly_trait.generic_params },
408                         hir::TraitBoundModifier::None,
409                     ));
410                 }
411                 if bounds.is_empty() {
412                     return None;
413                 }
414
415                 let mut bounds_vec = bounds.into_iter().collect();
416                 self.sort_where_bounds(&mut bounds_vec);
417
418                 Some(WherePredicate::BoundPredicate { ty, bounds: bounds_vec })
419             })
420             .chain(
421                 lifetime_to_bounds.into_iter().filter(|&(_, ref bounds)| !bounds.is_empty()).map(
422                     |(lifetime, bounds)| {
423                         let mut bounds_vec = bounds.into_iter().collect();
424                         self.sort_where_bounds(&mut bounds_vec);
425                         WherePredicate::RegionPredicate { lifetime, bounds: bounds_vec }
426                     },
427                 ),
428             )
429             .collect()
430     }
431
432     // Converts the calculated ParamEnv and lifetime information to a clean::Generics, suitable for
433     // display on the docs page. Cleaning the Predicates produces sub-optimal WherePredicate's,
434     // so we fix them up:
435     //
436     // * Multiple bounds for the same type are coalesced into one: e.g., 'T: Copy', 'T: Debug'
437     // becomes 'T: Copy + Debug'
438     // * Fn bounds are handled specially - instead of leaving it as 'T: Fn(), <T as Fn::Output> =
439     // K', we use the dedicated syntax 'T: Fn() -> K'
440     // * We explcitly add a '?Sized' bound if we didn't find any 'Sized' predicates for a type
441     fn param_env_to_generics(
442         &self,
443         tcx: TyCtxt<'tcx>,
444         param_env_def_id: DefId,
445         param_env: ty::ParamEnv<'tcx>,
446         mut existing_predicates: Vec<WherePredicate>,
447         vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
448     ) -> Generics {
449         debug!(
450             "param_env_to_generics(param_env_def_id={:?}, param_env={:?}, \
451              existing_predicates={:?})",
452             param_env_def_id, param_env, existing_predicates
453         );
454
455         // The `Sized` trait must be handled specially, since we only display it when
456         // it is *not* required (i.e., '?Sized')
457         let sized_trait = self.cx.tcx.require_lang_item(lang_items::SizedTraitLangItem, None);
458
459         let mut replacer = RegionReplacer { vid_to_region: &vid_to_region, tcx };
460
461         let orig_bounds: FxHashSet<_> =
462             self.cx.tcx.param_env(param_env_def_id).caller_bounds().iter().collect();
463         let clean_where_predicates = param_env
464             .caller_bounds()
465             .iter()
466             .filter(|p| {
467                 !orig_bounds.contains(p)
468                     || match p.ignore_quantifiers().skip_binder().kind() {
469                         ty::PredicateKind::Trait(pred, _) => pred.def_id() == sized_trait,
470                         _ => false,
471                     }
472             })
473             .map(|p| {
474                 let replaced = p.fold_with(&mut replacer);
475                 (replaced, replaced.clean(self.cx))
476             });
477
478         let mut generic_params =
479             (tcx.generics_of(param_env_def_id), tcx.explicit_predicates_of(param_env_def_id))
480                 .clean(self.cx)
481                 .params;
482
483         let mut has_sized = FxHashSet::default();
484         let mut ty_to_bounds: FxHashMap<_, FxHashSet<_>> = Default::default();
485         let mut lifetime_to_bounds: FxHashMap<_, FxHashSet<_>> = Default::default();
486         let mut ty_to_traits: FxHashMap<Type, FxHashSet<Type>> = Default::default();
487
488         let mut ty_to_fn: FxHashMap<Type, (Option<PolyTrait>, Option<Type>)> = Default::default();
489
490         for (orig_p, p) in clean_where_predicates {
491             if p.is_none() {
492                 continue;
493             }
494             let p = p.unwrap();
495             match p {
496                 WherePredicate::BoundPredicate { ty, mut bounds } => {
497                     // Writing a projection trait bound of the form
498                     // <T as Trait>::Name : ?Sized
499                     // is illegal, because ?Sized bounds can only
500                     // be written in the (here, nonexistent) definition
501                     // of the type.
502                     // Therefore, we make sure that we never add a ?Sized
503                     // bound for projections
504                     if let Type::QPath { .. } = ty {
505                         has_sized.insert(ty.clone());
506                     }
507
508                     if bounds.is_empty() {
509                         continue;
510                     }
511
512                     let mut for_generics = self.extract_for_generics(tcx, orig_p);
513
514                     assert!(bounds.len() == 1);
515                     let mut b = bounds.pop().expect("bounds were empty");
516
517                     if b.is_sized_bound(self.cx) {
518                         has_sized.insert(ty.clone());
519                     } else if !b
520                         .get_trait_type()
521                         .and_then(|t| {
522                             ty_to_traits
523                                 .get(&ty)
524                                 .map(|bounds| bounds.contains(&strip_type(t.clone())))
525                         })
526                         .unwrap_or(false)
527                     {
528                         // If we've already added a projection bound for the same type, don't add
529                         // this, as it would be a duplicate
530
531                         // Handle any 'Fn/FnOnce/FnMut' bounds specially,
532                         // as we want to combine them with any 'Output' qpaths
533                         // later
534
535                         let is_fn = match &mut b {
536                             &mut GenericBound::TraitBound(ref mut p, _) => {
537                                 // Insert regions into the for_generics hash map first, to ensure
538                                 // that we don't end up with duplicate bounds (e.g., for<'b, 'b>)
539                                 for_generics.extend(p.generic_params.clone());
540                                 p.generic_params = for_generics.into_iter().collect();
541                                 self.is_fn_ty(tcx, &p.trait_)
542                             }
543                             _ => false,
544                         };
545
546                         let poly_trait = b.get_poly_trait().expect("Cannot get poly trait");
547
548                         if is_fn {
549                             ty_to_fn
550                                 .entry(ty.clone())
551                                 .and_modify(|e| *e = (Some(poly_trait.clone()), e.1.clone()))
552                                 .or_insert(((Some(poly_trait.clone())), None));
553
554                             ty_to_bounds.entry(ty.clone()).or_default();
555                         } else {
556                             ty_to_bounds.entry(ty.clone()).or_default().insert(b.clone());
557                         }
558                     }
559                 }
560                 WherePredicate::RegionPredicate { lifetime, bounds } => {
561                     lifetime_to_bounds.entry(lifetime).or_default().extend(bounds);
562                 }
563                 WherePredicate::EqPredicate { lhs, rhs } => {
564                     match lhs {
565                         Type::QPath { name: ref left_name, ref self_type, ref trait_ } => {
566                             let ty = &*self_type;
567                             match **trait_ {
568                                 Type::ResolvedPath {
569                                     path: ref trait_path,
570                                     ref param_names,
571                                     ref did,
572                                     ref is_generic,
573                                 } => {
574                                     let mut new_trait_path = trait_path.clone();
575
576                                     if self.is_fn_ty(tcx, trait_) && left_name == FN_OUTPUT_NAME {
577                                         ty_to_fn
578                                             .entry(*ty.clone())
579                                             .and_modify(|e| *e = (e.0.clone(), Some(rhs.clone())))
580                                             .or_insert((None, Some(rhs)));
581                                         continue;
582                                     }
583
584                                     let args = &mut new_trait_path
585                                         .segments
586                                         .last_mut()
587                                         .expect("segments were empty")
588                                         .args;
589
590                                     match args {
591                                         // Convert somethiung like '<T as Iterator::Item> = u8'
592                                         // to 'T: Iterator<Item=u8>'
593                                         GenericArgs::AngleBracketed {
594                                             ref mut bindings, ..
595                                         } => {
596                                             bindings.push(TypeBinding {
597                                                 name: left_name.clone(),
598                                                 kind: TypeBindingKind::Equality { ty: rhs },
599                                             });
600                                         }
601                                         GenericArgs::Parenthesized { .. } => {
602                                             existing_predicates.push(WherePredicate::EqPredicate {
603                                                 lhs: lhs.clone(),
604                                                 rhs,
605                                             });
606                                             continue; // If something other than a Fn ends up
607                                             // with parenthesis, leave it alone
608                                         }
609                                     }
610
611                                     let bounds = ty_to_bounds.entry(*ty.clone()).or_default();
612
613                                     bounds.insert(GenericBound::TraitBound(
614                                         PolyTrait {
615                                             trait_: Type::ResolvedPath {
616                                                 path: new_trait_path,
617                                                 param_names: param_names.clone(),
618                                                 did: *did,
619                                                 is_generic: *is_generic,
620                                             },
621                                             generic_params: Vec::new(),
622                                         },
623                                         hir::TraitBoundModifier::None,
624                                     ));
625
626                                     // Remove any existing 'plain' bound (e.g., 'T: Iterator`) so
627                                     // that we don't see a
628                                     // duplicate bound like `T: Iterator + Iterator<Item=u8>`
629                                     // on the docs page.
630                                     bounds.remove(&GenericBound::TraitBound(
631                                         PolyTrait {
632                                             trait_: *trait_.clone(),
633                                             generic_params: Vec::new(),
634                                         },
635                                         hir::TraitBoundModifier::None,
636                                     ));
637                                     // Avoid creating any new duplicate bounds later in the outer
638                                     // loop
639                                     ty_to_traits
640                                         .entry(*ty.clone())
641                                         .or_default()
642                                         .insert(*trait_.clone());
643                                 }
644                                 _ => panic!(
645                                     "Unexpected trait {:?} for {:?}",
646                                     trait_, param_env_def_id,
647                                 ),
648                             }
649                         }
650                         _ => panic!("Unexpected LHS {:?} for {:?}", lhs, param_env_def_id),
651                     }
652                 }
653             };
654         }
655
656         let final_bounds = self.make_final_bounds(ty_to_bounds, ty_to_fn, lifetime_to_bounds);
657
658         existing_predicates.extend(final_bounds);
659
660         for param in generic_params.iter_mut() {
661             match param.kind {
662                 GenericParamDefKind::Type { ref mut default, ref mut bounds, .. } => {
663                     // We never want something like `impl<T=Foo>`.
664                     default.take();
665                     let generic_ty = Type::Generic(param.name.clone());
666                     if !has_sized.contains(&generic_ty) {
667                         bounds.insert(0, GenericBound::maybe_sized(self.cx));
668                     }
669                 }
670                 GenericParamDefKind::Lifetime => {}
671                 GenericParamDefKind::Const { .. } => {}
672             }
673         }
674
675         self.sort_where_predicates(&mut existing_predicates);
676
677         Generics { params: generic_params, where_predicates: existing_predicates }
678     }
679
680     // Ensure that the predicates are in a consistent order. The precise
681     // ordering doesn't actually matter, but it's important that
682     // a given set of predicates always appears in the same order -
683     // both for visual consistency between 'rustdoc' runs, and to
684     // make writing tests much easier
685     #[inline]
686     fn sort_where_predicates(&self, mut predicates: &mut Vec<WherePredicate>) {
687         // We should never have identical bounds - and if we do,
688         // they're visually identical as well. Therefore, using
689         // an unstable sort is fine.
690         self.unstable_debug_sort(&mut predicates);
691     }
692
693     // Ensure that the bounds are in a consistent order. The precise
694     // ordering doesn't actually matter, but it's important that
695     // a given set of bounds always appears in the same order -
696     // both for visual consistency between 'rustdoc' runs, and to
697     // make writing tests much easier
698     #[inline]
699     fn sort_where_bounds(&self, mut bounds: &mut Vec<GenericBound>) {
700         // We should never have identical bounds - and if we do,
701         // they're visually identical as well. Therefore, using
702         // an unstable sort is fine.
703         self.unstable_debug_sort(&mut bounds);
704     }
705
706     // This might look horrendously hacky, but it's actually not that bad.
707     //
708     // For performance reasons, we use several different FxHashMaps
709     // in the process of computing the final set of where predicates.
710     // However, the iteration order of a HashMap is completely unspecified.
711     // In fact, the iteration of an FxHashMap can even vary between platforms,
712     // since FxHasher has different behavior for 32-bit and 64-bit platforms.
713     //
714     // Obviously, it's extremely undesirable for documentation rendering
715     // to be depndent on the platform it's run on. Apart from being confusing
716     // to end users, it makes writing tests much more difficult, as predicates
717     // can appear in any order in the final result.
718     //
719     // To solve this problem, we sort WherePredicates and GenericBounds
720     // by their Debug string. The thing to keep in mind is that we don't really
721     // care what the final order is - we're synthesizing an impl or bound
722     // ourselves, so any order can be considered equally valid. By sorting the
723     // predicates and bounds, however, we ensure that for a given codebase, all
724     // auto-trait impls always render in exactly the same way.
725     //
726     // Using the Debug implementation for sorting prevents us from needing to
727     // write quite a bit of almost entirely useless code (e.g., how should two
728     // Types be sorted relative to each other). It also allows us to solve the
729     // problem for both WherePredicates and GenericBounds at the same time. This
730     // approach is probably somewhat slower, but the small number of items
731     // involved (impls rarely have more than a few bounds) means that it
732     // shouldn't matter in practice.
733     fn unstable_debug_sort<T: Debug>(&self, vec: &mut Vec<T>) {
734         vec.sort_by_cached_key(|x| format!("{:?}", x))
735     }
736
737     fn is_fn_ty(&self, tcx: TyCtxt<'_>, ty: &Type) -> bool {
738         match &ty {
739             &&Type::ResolvedPath { ref did, .. } => {
740                 *did == tcx.require_lang_item(lang_items::FnTraitLangItem, None)
741                     || *did == tcx.require_lang_item(lang_items::FnMutTraitLangItem, None)
742                     || *did == tcx.require_lang_item(lang_items::FnOnceTraitLangItem, None)
743             }
744             _ => false,
745         }
746     }
747 }
748
749 // Replaces all ReVars in a type with ty::Region's, using the provided map
750 struct RegionReplacer<'a, 'tcx> {
751     vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
752     tcx: TyCtxt<'tcx>,
753 }
754
755 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
756     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
757         self.tcx
758     }
759
760     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
761         (match r {
762             &ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
763             _ => None,
764         })
765         .unwrap_or_else(|| r.super_fold_with(self))
766     }
767 }