]> git.lizzy.rs Git - rust.git/blob - src/librustdoc/clean/auto_trait.rs
Rollup merge of #103648 - jyn514:no-preview, r=Mark-Simulacrum
[rust.git] / src / librustdoc / clean / auto_trait.rs
1 use rustc_data_structures::fx::FxHashSet;
2 use rustc_hir as hir;
3 use rustc_hir::lang_items::LangItem;
4 use rustc_middle::ty::{self, Region, RegionVid, TypeFoldable, TypeSuperFoldable};
5 use rustc_trait_selection::traits::auto_trait::{self, AutoTraitResult};
6 use thin_vec::ThinVec;
7
8 use std::fmt::Debug;
9
10 use super::*;
11
12 #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
13 enum RegionTarget<'tcx> {
14     Region(Region<'tcx>),
15     RegionVid(RegionVid),
16 }
17
18 #[derive(Default, Debug, Clone)]
19 struct RegionDeps<'tcx> {
20     larger: FxHashSet<RegionTarget<'tcx>>,
21     smaller: FxHashSet<RegionTarget<'tcx>>,
22 }
23
24 pub(crate) struct AutoTraitFinder<'a, 'tcx> {
25     pub(crate) cx: &'a mut core::DocContext<'tcx>,
26 }
27
28 impl<'a, 'tcx> AutoTraitFinder<'a, 'tcx>
29 where
30     'tcx: 'a, // should be an implied bound; rustc bug #98852.
31 {
32     pub(crate) fn new(cx: &'a mut core::DocContext<'tcx>) -> Self {
33         AutoTraitFinder { cx }
34     }
35
36     fn generate_for_trait(
37         &mut self,
38         ty: Ty<'tcx>,
39         trait_def_id: DefId,
40         param_env: ty::ParamEnv<'tcx>,
41         item_def_id: DefId,
42         f: &auto_trait::AutoTraitFinder<'tcx>,
43         // If this is set, show only negative trait implementations, not positive ones.
44         discard_positive_impl: bool,
45     ) -> Option<Item> {
46         let tcx = self.cx.tcx;
47         let trait_ref = tcx.mk_trait_ref(trait_def_id, [ty]);
48         if !self.cx.generated_synthetics.insert((ty, trait_def_id)) {
49             debug!("get_auto_trait_impl_for({:?}): already generated, aborting", trait_ref);
50             return None;
51         }
52
53         let result = f.find_auto_trait_generics(ty, param_env, trait_def_id, |info| {
54             let region_data = info.region_data;
55
56             let names_map = tcx
57                 .generics_of(item_def_id)
58                 .params
59                 .iter()
60                 .filter_map(|param| match param.kind {
61                     ty::GenericParamDefKind::Lifetime => Some(param.name),
62                     _ => None,
63                 })
64                 .map(|name| (name, Lifetime(name)))
65                 .collect();
66             let lifetime_predicates = Self::handle_lifetimes(&region_data, &names_map);
67             let new_generics = self.param_env_to_generics(
68                 item_def_id,
69                 info.full_user_env,
70                 lifetime_predicates,
71                 info.vid_to_region,
72             );
73
74             debug!(
75                 "find_auto_trait_generics(item_def_id={:?}, trait_def_id={:?}): \
76                     finished with {:?}",
77                 item_def_id, trait_def_id, new_generics
78             );
79
80             new_generics
81         });
82
83         let polarity;
84         let new_generics = match result {
85             AutoTraitResult::PositiveImpl(new_generics) => {
86                 polarity = ty::ImplPolarity::Positive;
87                 if discard_positive_impl {
88                     return None;
89                 }
90                 new_generics
91             }
92             AutoTraitResult::NegativeImpl => {
93                 polarity = ty::ImplPolarity::Negative;
94
95                 // For negative impls, we use the generic params, but *not* the predicates,
96                 // from the original type. Otherwise, the displayed impl appears to be a
97                 // conditional negative impl, when it's really unconditional.
98                 //
99                 // For example, consider the struct Foo<T: Copy>(*mut T). Using
100                 // the original predicates in our impl would cause us to generate
101                 // `impl !Send for Foo<T: Copy>`, which makes it appear that Foo
102                 // implements Send where T is not copy.
103                 //
104                 // Instead, we generate `impl !Send for Foo<T>`, which better
105                 // expresses the fact that `Foo<T>` never implements `Send`,
106                 // regardless of the choice of `T`.
107                 let raw_generics = clean_ty_generics(
108                     self.cx,
109                     tcx.generics_of(item_def_id),
110                     ty::GenericPredicates::default(),
111                 );
112                 let params = raw_generics.params;
113
114                 Generics { params, where_predicates: ThinVec::new() }
115             }
116             AutoTraitResult::ExplicitImpl => return None,
117         };
118
119         Some(Item {
120             name: None,
121             attrs: Default::default(),
122             item_id: ItemId::Auto { trait_: trait_def_id, for_: item_def_id },
123             kind: Box::new(ImplItem(Box::new(Impl {
124                 unsafety: hir::Unsafety::Normal,
125                 generics: new_generics,
126                 trait_: Some(clean_trait_ref_with_bindings(self.cx, trait_ref, ThinVec::new())),
127                 for_: clean_middle_ty(ty, self.cx, None),
128                 items: Vec::new(),
129                 polarity,
130                 kind: ImplKind::Auto,
131             }))),
132             cfg: None,
133             inline_stmt_id: None,
134         })
135     }
136
137     pub(crate) fn get_auto_trait_impls(&mut self, item_def_id: DefId) -> Vec<Item> {
138         let tcx = self.cx.tcx;
139         let param_env = tcx.param_env(item_def_id);
140         let ty = tcx.type_of(item_def_id);
141         let f = auto_trait::AutoTraitFinder::new(tcx);
142
143         debug!("get_auto_trait_impls({:?})", ty);
144         let auto_traits: Vec<_> = self.cx.auto_traits.iter().copied().collect();
145         let mut auto_traits: Vec<Item> = auto_traits
146             .into_iter()
147             .filter_map(|trait_def_id| {
148                 self.generate_for_trait(ty, trait_def_id, param_env, item_def_id, &f, false)
149             })
150             .collect();
151         // We are only interested in case the type *doesn't* implement the Sized trait.
152         if !ty.is_sized(tcx, param_env) {
153             // In case `#![no_core]` is used, `sized_trait` returns nothing.
154             if let Some(item) = tcx.lang_items().sized_trait().and_then(|sized_trait_did| {
155                 self.generate_for_trait(ty, sized_trait_did, param_env, item_def_id, &f, true)
156             }) {
157                 auto_traits.push(item);
158             }
159         }
160         auto_traits
161     }
162
163     fn get_lifetime(region: Region<'_>, names_map: &FxHashMap<Symbol, Lifetime>) -> Lifetime {
164         region_name(region)
165             .map(|name| {
166                 names_map.get(&name).unwrap_or_else(|| {
167                     panic!("Missing lifetime with name {:?} for {:?}", name.as_str(), region)
168                 })
169             })
170             .unwrap_or(&Lifetime::statik())
171             .clone()
172     }
173
174     /// This method calculates two things: Lifetime constraints of the form `'a: 'b`,
175     /// and region constraints of the form `RegionVid: 'a`
176     ///
177     /// This is essentially a simplified version of lexical_region_resolve. However,
178     /// handle_lifetimes determines what *needs be* true in order for an impl to hold.
179     /// lexical_region_resolve, along with much of the rest of the compiler, is concerned
180     /// with determining if a given set up constraints/predicates *are* met, given some
181     /// starting conditions (e.g., user-provided code). For this reason, it's easier
182     /// to perform the calculations we need on our own, rather than trying to make
183     /// existing inference/solver code do what we want.
184     fn handle_lifetimes<'cx>(
185         regions: &RegionConstraintData<'cx>,
186         names_map: &FxHashMap<Symbol, Lifetime>,
187     ) -> ThinVec<WherePredicate> {
188         // Our goal is to 'flatten' the list of constraints by eliminating
189         // all intermediate RegionVids. At the end, all constraints should
190         // be between Regions (aka region variables). This gives us the information
191         // we need to create the Generics.
192         let mut finished: FxHashMap<_, Vec<_>> = Default::default();
193
194         let mut vid_map: FxHashMap<RegionTarget<'_>, RegionDeps<'_>> = Default::default();
195
196         // Flattening is done in two parts. First, we insert all of the constraints
197         // into a map. Each RegionTarget (either a RegionVid or a Region) maps
198         // to its smaller and larger regions. Note that 'larger' regions correspond
199         // to sub-regions in Rust code (e.g., in 'a: 'b, 'a is the larger region).
200         for constraint in regions.constraints.keys() {
201             match *constraint {
202                 Constraint::VarSubVar(r1, r2) => {
203                     {
204                         let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
205                         deps1.larger.insert(RegionTarget::RegionVid(r2));
206                     }
207
208                     let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
209                     deps2.smaller.insert(RegionTarget::RegionVid(r1));
210                 }
211                 Constraint::RegSubVar(region, vid) => {
212                     let deps = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
213                     deps.smaller.insert(RegionTarget::Region(region));
214                 }
215                 Constraint::VarSubReg(vid, region) => {
216                     let deps = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
217                     deps.larger.insert(RegionTarget::Region(region));
218                 }
219                 Constraint::RegSubReg(r1, r2) => {
220                     // The constraint is already in the form that we want, so we're done with it
221                     // Desired order is 'larger, smaller', so flip then
222                     if region_name(r1) != region_name(r2) {
223                         finished
224                             .entry(region_name(r2).expect("no region_name found"))
225                             .or_default()
226                             .push(r1);
227                     }
228                 }
229             }
230         }
231
232         // Here, we 'flatten' the map one element at a time.
233         // All of the element's sub and super regions are connected
234         // to each other. For example, if we have a graph that looks like this:
235         //
236         // (A, B) - C - (D, E)
237         // Where (A, B) are subregions, and (D,E) are super-regions
238         //
239         // then after deleting 'C', the graph will look like this:
240         //  ... - A - (D, E ...)
241         //  ... - B - (D, E, ...)
242         //  (A, B, ...) - D - ...
243         //  (A, B, ...) - E - ...
244         //
245         //  where '...' signifies the existing sub and super regions of an entry
246         //  When two adjacent ty::Regions are encountered, we've computed a final
247         //  constraint, and add it to our list. Since we make sure to never re-add
248         //  deleted items, this process will always finish.
249         while !vid_map.is_empty() {
250             let target = *vid_map.keys().next().expect("Keys somehow empty");
251             let deps = vid_map.remove(&target).expect("Entry somehow missing");
252
253             for smaller in deps.smaller.iter() {
254                 for larger in deps.larger.iter() {
255                     match (smaller, larger) {
256                         (&RegionTarget::Region(r1), &RegionTarget::Region(r2)) => {
257                             if region_name(r1) != region_name(r2) {
258                                 finished
259                                     .entry(region_name(r2).expect("no region name found"))
260                                     .or_default()
261                                     .push(r1) // Larger, smaller
262                             }
263                         }
264                         (&RegionTarget::RegionVid(_), &RegionTarget::Region(_)) => {
265                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
266                                 let smaller_deps = v.into_mut();
267                                 smaller_deps.larger.insert(*larger);
268                                 smaller_deps.larger.remove(&target);
269                             }
270                         }
271                         (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
272                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
273                                 let deps = v.into_mut();
274                                 deps.smaller.insert(*smaller);
275                                 deps.smaller.remove(&target);
276                             }
277                         }
278                         (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
279                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
280                                 let smaller_deps = v.into_mut();
281                                 smaller_deps.larger.insert(*larger);
282                                 smaller_deps.larger.remove(&target);
283                             }
284
285                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
286                                 let larger_deps = v.into_mut();
287                                 larger_deps.smaller.insert(*smaller);
288                                 larger_deps.smaller.remove(&target);
289                             }
290                         }
291                     }
292                 }
293             }
294         }
295
296         let lifetime_predicates = names_map
297             .iter()
298             .flat_map(|(name, lifetime)| {
299                 let empty = Vec::new();
300                 let bounds: FxHashSet<GenericBound> = finished
301                     .get(name)
302                     .unwrap_or(&empty)
303                     .iter()
304                     .map(|region| GenericBound::Outlives(Self::get_lifetime(*region, names_map)))
305                     .collect();
306
307                 if bounds.is_empty() {
308                     return None;
309                 }
310                 Some(WherePredicate::RegionPredicate {
311                     lifetime: lifetime.clone(),
312                     bounds: bounds.into_iter().collect(),
313                 })
314             })
315             .collect();
316
317         lifetime_predicates
318     }
319
320     fn extract_for_generics(&self, pred: ty::Predicate<'tcx>) -> FxHashSet<GenericParamDef> {
321         let bound_predicate = pred.kind();
322         let tcx = self.cx.tcx;
323         let regions = match bound_predicate.skip_binder() {
324             ty::PredicateKind::Trait(poly_trait_pred) => {
325                 tcx.collect_referenced_late_bound_regions(&bound_predicate.rebind(poly_trait_pred))
326             }
327             ty::PredicateKind::Projection(poly_proj_pred) => {
328                 tcx.collect_referenced_late_bound_regions(&bound_predicate.rebind(poly_proj_pred))
329             }
330             _ => return FxHashSet::default(),
331         };
332
333         regions
334             .into_iter()
335             .filter_map(|br| {
336                 match br {
337                     // We only care about named late bound regions, as we need to add them
338                     // to the 'for<>' section
339                     ty::BrNamed(_, name) => Some(GenericParamDef::lifetime(name)),
340                     _ => None,
341                 }
342             })
343             .collect()
344     }
345
346     fn make_final_bounds(
347         &self,
348         ty_to_bounds: FxHashMap<Type, FxHashSet<GenericBound>>,
349         ty_to_fn: FxHashMap<Type, (PolyTrait, Option<Type>)>,
350         lifetime_to_bounds: FxHashMap<Lifetime, FxHashSet<GenericBound>>,
351     ) -> Vec<WherePredicate> {
352         ty_to_bounds
353             .into_iter()
354             .flat_map(|(ty, mut bounds)| {
355                 if let Some((ref poly_trait, ref output)) = ty_to_fn.get(&ty) {
356                     let mut new_path = poly_trait.trait_.clone();
357                     let last_segment = new_path.segments.pop().expect("segments were empty");
358
359                     let (old_input, old_output) = match last_segment.args {
360                         GenericArgs::AngleBracketed { args, .. } => {
361                             let types = args
362                                 .iter()
363                                 .filter_map(|arg| match arg {
364                                     GenericArg::Type(ty) => Some(ty.clone()),
365                                     _ => None,
366                                 })
367                                 .collect();
368                             (types, None)
369                         }
370                         GenericArgs::Parenthesized { inputs, output } => (inputs, output),
371                     };
372
373                     let output = output.as_ref().cloned().map(Box::new);
374                     if old_output.is_some() && old_output != output {
375                         panic!("Output mismatch for {:?} {:?} {:?}", ty, old_output, output);
376                     }
377
378                     let new_params = GenericArgs::Parenthesized { inputs: old_input, output };
379
380                     new_path
381                         .segments
382                         .push(PathSegment { name: last_segment.name, args: new_params });
383
384                     bounds.insert(GenericBound::TraitBound(
385                         PolyTrait {
386                             trait_: new_path,
387                             generic_params: poly_trait.generic_params.clone(),
388                         },
389                         hir::TraitBoundModifier::None,
390                     ));
391                 }
392                 if bounds.is_empty() {
393                     return None;
394                 }
395
396                 let mut bounds_vec = bounds.into_iter().collect();
397                 self.sort_where_bounds(&mut bounds_vec);
398
399                 Some(WherePredicate::BoundPredicate {
400                     ty,
401                     bounds: bounds_vec,
402                     bound_params: Vec::new(),
403                 })
404             })
405             .chain(
406                 lifetime_to_bounds.into_iter().filter(|&(_, ref bounds)| !bounds.is_empty()).map(
407                     |(lifetime, bounds)| {
408                         let mut bounds_vec = bounds.into_iter().collect();
409                         self.sort_where_bounds(&mut bounds_vec);
410                         WherePredicate::RegionPredicate { lifetime, bounds: bounds_vec }
411                     },
412                 ),
413             )
414             .collect()
415     }
416
417     /// Converts the calculated `ParamEnv` and lifetime information to a [`clean::Generics`](Generics), suitable for
418     /// display on the docs page. Cleaning the `Predicates` produces sub-optimal [`WherePredicate`]s,
419     /// so we fix them up:
420     ///
421     /// * Multiple bounds for the same type are coalesced into one: e.g., `T: Copy`, `T: Debug`
422     /// becomes `T: Copy + Debug`
423     /// * `Fn` bounds are handled specially - instead of leaving it as `T: Fn(), <T as Fn::Output> =
424     /// K`, we use the dedicated syntax `T: Fn() -> K`
425     /// * We explicitly add a `?Sized` bound if we didn't find any `Sized` predicates for a type
426     fn param_env_to_generics(
427         &mut self,
428         item_def_id: DefId,
429         param_env: ty::ParamEnv<'tcx>,
430         mut existing_predicates: ThinVec<WherePredicate>,
431         vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
432     ) -> Generics {
433         debug!(
434             "param_env_to_generics(item_def_id={:?}, param_env={:?}, \
435              existing_predicates={:?})",
436             item_def_id, param_env, existing_predicates
437         );
438
439         let tcx = self.cx.tcx;
440
441         // The `Sized` trait must be handled specially, since we only display it when
442         // it is *not* required (i.e., '?Sized')
443         let sized_trait = tcx.require_lang_item(LangItem::Sized, None);
444
445         let mut replacer = RegionReplacer { vid_to_region: &vid_to_region, tcx };
446
447         let orig_bounds: FxHashSet<_> = tcx.param_env(item_def_id).caller_bounds().iter().collect();
448         let clean_where_predicates = param_env
449             .caller_bounds()
450             .iter()
451             .filter(|p| {
452                 !orig_bounds.contains(p)
453                     || match p.kind().skip_binder() {
454                         ty::PredicateKind::Trait(pred) => pred.def_id() == sized_trait,
455                         _ => false,
456                     }
457             })
458             .map(|p| p.fold_with(&mut replacer));
459
460         let raw_generics = clean_ty_generics(
461             self.cx,
462             tcx.generics_of(item_def_id),
463             tcx.explicit_predicates_of(item_def_id),
464         );
465         let mut generic_params = raw_generics.params;
466
467         debug!("param_env_to_generics({:?}): generic_params={:?}", item_def_id, generic_params);
468
469         let mut has_sized = FxHashSet::default();
470         let mut ty_to_bounds: FxHashMap<_, FxHashSet<_>> = Default::default();
471         let mut lifetime_to_bounds: FxHashMap<_, FxHashSet<_>> = Default::default();
472         let mut ty_to_traits: FxHashMap<Type, FxHashSet<Path>> = Default::default();
473
474         let mut ty_to_fn: FxHashMap<Type, (PolyTrait, Option<Type>)> = Default::default();
475
476         // FIXME: This code shares much of the logic found in `clean_ty_generics` and
477         //        `simplify::where_clause`. Consider deduplicating it to avoid diverging
478         //        implementations.
479         //        Further, the code below does not merge (partially re-sugared) bounds like
480         //        `Tr<A = T>` & `Tr<B = U>` and it does not render higher-ranked parameters
481         //        originating from equality predicates.
482         for p in clean_where_predicates {
483             let (orig_p, p) = (p, clean_predicate(p, self.cx));
484             if p.is_none() {
485                 continue;
486             }
487             let p = p.unwrap();
488             match p {
489                 WherePredicate::BoundPredicate { ty, mut bounds, .. } => {
490                     // Writing a projection trait bound of the form
491                     // <T as Trait>::Name : ?Sized
492                     // is illegal, because ?Sized bounds can only
493                     // be written in the (here, nonexistent) definition
494                     // of the type.
495                     // Therefore, we make sure that we never add a ?Sized
496                     // bound for projections
497                     if let Type::QPath { .. } = ty {
498                         has_sized.insert(ty.clone());
499                     }
500
501                     if bounds.is_empty() {
502                         continue;
503                     }
504
505                     let mut for_generics = self.extract_for_generics(orig_p);
506
507                     assert!(bounds.len() == 1);
508                     let mut b = bounds.pop().expect("bounds were empty");
509
510                     if b.is_sized_bound(self.cx) {
511                         has_sized.insert(ty.clone());
512                     } else if !b
513                         .get_trait_path()
514                         .and_then(|trait_| {
515                             ty_to_traits
516                                 .get(&ty)
517                                 .map(|bounds| bounds.contains(&strip_path_generics(trait_)))
518                         })
519                         .unwrap_or(false)
520                     {
521                         // If we've already added a projection bound for the same type, don't add
522                         // this, as it would be a duplicate
523
524                         // Handle any 'Fn/FnOnce/FnMut' bounds specially,
525                         // as we want to combine them with any 'Output' qpaths
526                         // later
527
528                         let is_fn = match b {
529                             GenericBound::TraitBound(ref mut p, _) => {
530                                 // Insert regions into the for_generics hash map first, to ensure
531                                 // that we don't end up with duplicate bounds (e.g., for<'b, 'b>)
532                                 for_generics.extend(p.generic_params.drain(..));
533                                 p.generic_params.extend(for_generics);
534                                 self.is_fn_trait(&p.trait_)
535                             }
536                             _ => false,
537                         };
538
539                         let poly_trait = b.get_poly_trait().expect("Cannot get poly trait");
540
541                         if is_fn {
542                             ty_to_fn
543                                 .entry(ty.clone())
544                                 .and_modify(|e| *e = (poly_trait.clone(), e.1.clone()))
545                                 .or_insert(((poly_trait.clone()), None));
546
547                             ty_to_bounds.entry(ty.clone()).or_default();
548                         } else {
549                             ty_to_bounds.entry(ty.clone()).or_default().insert(b.clone());
550                         }
551                     }
552                 }
553                 WherePredicate::RegionPredicate { lifetime, bounds } => {
554                     lifetime_to_bounds.entry(lifetime).or_default().extend(bounds);
555                 }
556                 WherePredicate::EqPredicate { lhs, rhs, bound_params } => {
557                     match *lhs {
558                         Type::QPath(box QPathData {
559                             ref assoc, ref self_type, ref trait_, ..
560                         }) => {
561                             let ty = &*self_type;
562                             let mut new_trait = trait_.clone();
563
564                             if self.is_fn_trait(trait_) && assoc.name == sym::Output {
565                                 ty_to_fn
566                                     .entry(ty.clone())
567                                     .and_modify(|e| {
568                                         *e = (e.0.clone(), Some(rhs.ty().unwrap().clone()))
569                                     })
570                                     .or_insert((
571                                         PolyTrait {
572                                             trait_: trait_.clone(),
573                                             generic_params: Vec::new(),
574                                         },
575                                         Some(rhs.ty().unwrap().clone()),
576                                     ));
577                                 continue;
578                             }
579
580                             let args = &mut new_trait
581                                 .segments
582                                 .last_mut()
583                                 .expect("segments were empty")
584                                 .args;
585
586                             match args {
587                                 // Convert something like '<T as Iterator::Item> = u8'
588                                 // to 'T: Iterator<Item=u8>'
589                                 GenericArgs::AngleBracketed { ref mut bindings, .. } => {
590                                     bindings.push(TypeBinding {
591                                         assoc: assoc.clone(),
592                                         kind: TypeBindingKind::Equality { term: *rhs },
593                                     });
594                                 }
595                                 GenericArgs::Parenthesized { .. } => {
596                                     existing_predicates.push(WherePredicate::EqPredicate {
597                                         lhs: lhs.clone(),
598                                         rhs,
599                                         bound_params,
600                                     });
601                                     continue; // If something other than a Fn ends up
602                                     // with parentheses, leave it alone
603                                 }
604                             }
605
606                             let bounds = ty_to_bounds.entry(ty.clone()).or_default();
607
608                             bounds.insert(GenericBound::TraitBound(
609                                 PolyTrait { trait_: new_trait, generic_params: Vec::new() },
610                                 hir::TraitBoundModifier::None,
611                             ));
612
613                             // Remove any existing 'plain' bound (e.g., 'T: Iterator`) so
614                             // that we don't see a
615                             // duplicate bound like `T: Iterator + Iterator<Item=u8>`
616                             // on the docs page.
617                             bounds.remove(&GenericBound::TraitBound(
618                                 PolyTrait { trait_: trait_.clone(), generic_params: Vec::new() },
619                                 hir::TraitBoundModifier::None,
620                             ));
621                             // Avoid creating any new duplicate bounds later in the outer
622                             // loop
623                             ty_to_traits.entry(ty.clone()).or_default().insert(trait_.clone());
624                         }
625                         _ => panic!("Unexpected LHS {:?} for {:?}", lhs, item_def_id),
626                     }
627                 }
628             };
629         }
630
631         let final_bounds = self.make_final_bounds(ty_to_bounds, ty_to_fn, lifetime_to_bounds);
632
633         existing_predicates.extend(final_bounds);
634
635         for param in generic_params.iter_mut() {
636             match param.kind {
637                 GenericParamDefKind::Type { ref mut default, ref mut bounds, .. } => {
638                     // We never want something like `impl<T=Foo>`.
639                     default.take();
640                     let generic_ty = Type::Generic(param.name);
641                     if !has_sized.contains(&generic_ty) {
642                         bounds.insert(0, GenericBound::maybe_sized(self.cx));
643                     }
644                 }
645                 GenericParamDefKind::Lifetime { .. } => {}
646                 GenericParamDefKind::Const { ref mut default, .. } => {
647                     // We never want something like `impl<const N: usize = 10>`
648                     default.take();
649                 }
650             }
651         }
652
653         self.sort_where_predicates(&mut existing_predicates);
654
655         Generics { params: generic_params, where_predicates: existing_predicates }
656     }
657
658     /// Ensure that the predicates are in a consistent order. The precise
659     /// ordering doesn't actually matter, but it's important that
660     /// a given set of predicates always appears in the same order -
661     /// both for visual consistency between 'rustdoc' runs, and to
662     /// make writing tests much easier
663     #[inline]
664     fn sort_where_predicates(&self, predicates: &mut [WherePredicate]) {
665         // We should never have identical bounds - and if we do,
666         // they're visually identical as well. Therefore, using
667         // an unstable sort is fine.
668         self.unstable_debug_sort(predicates);
669     }
670
671     /// Ensure that the bounds are in a consistent order. The precise
672     /// ordering doesn't actually matter, but it's important that
673     /// a given set of bounds always appears in the same order -
674     /// both for visual consistency between 'rustdoc' runs, and to
675     /// make writing tests much easier
676     #[inline]
677     fn sort_where_bounds(&self, bounds: &mut Vec<GenericBound>) {
678         // We should never have identical bounds - and if we do,
679         // they're visually identical as well. Therefore, using
680         // an unstable sort is fine.
681         self.unstable_debug_sort(bounds);
682     }
683
684     /// This might look horrendously hacky, but it's actually not that bad.
685     ///
686     /// For performance reasons, we use several different FxHashMaps
687     /// in the process of computing the final set of where predicates.
688     /// However, the iteration order of a HashMap is completely unspecified.
689     /// In fact, the iteration of an FxHashMap can even vary between platforms,
690     /// since FxHasher has different behavior for 32-bit and 64-bit platforms.
691     ///
692     /// Obviously, it's extremely undesirable for documentation rendering
693     /// to be dependent on the platform it's run on. Apart from being confusing
694     /// to end users, it makes writing tests much more difficult, as predicates
695     /// can appear in any order in the final result.
696     ///
697     /// To solve this problem, we sort WherePredicates and GenericBounds
698     /// by their Debug string. The thing to keep in mind is that we don't really
699     /// care what the final order is - we're synthesizing an impl or bound
700     /// ourselves, so any order can be considered equally valid. By sorting the
701     /// predicates and bounds, however, we ensure that for a given codebase, all
702     /// auto-trait impls always render in exactly the same way.
703     ///
704     /// Using the Debug implementation for sorting prevents us from needing to
705     /// write quite a bit of almost entirely useless code (e.g., how should two
706     /// Types be sorted relative to each other). It also allows us to solve the
707     /// problem for both WherePredicates and GenericBounds at the same time. This
708     /// approach is probably somewhat slower, but the small number of items
709     /// involved (impls rarely have more than a few bounds) means that it
710     /// shouldn't matter in practice.
711     fn unstable_debug_sort<T: Debug>(&self, vec: &mut [T]) {
712         vec.sort_by_cached_key(|x| format!("{:?}", x))
713     }
714
715     fn is_fn_trait(&self, path: &Path) -> bool {
716         let tcx = self.cx.tcx;
717         let did = path.def_id();
718         did == tcx.require_lang_item(LangItem::Fn, None)
719             || did == tcx.require_lang_item(LangItem::FnMut, None)
720             || did == tcx.require_lang_item(LangItem::FnOnce, None)
721     }
722 }
723
724 fn region_name(region: Region<'_>) -> Option<Symbol> {
725     match *region {
726         ty::ReEarlyBound(r) => Some(r.name),
727         _ => None,
728     }
729 }
730
731 /// Replaces all [`ty::RegionVid`]s in a type with [`ty::Region`]s, using the provided map.
732 struct RegionReplacer<'a, 'tcx> {
733     vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
734     tcx: TyCtxt<'tcx>,
735 }
736
737 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
738     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
739         self.tcx
740     }
741
742     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
743         (match *r {
744             ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
745             _ => None,
746         })
747         .unwrap_or_else(|| r.super_fold_with(self))
748     }
749 }