]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Track constness while lowering bounds
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::check::intrinsic::intrinsic_operation_unsafety;
19 use crate::constrained_generic_params as cgp;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::hir::map::blocks::FnLikeNode;
24 use rustc::hir::map::Map;
25 use rustc::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
26 use rustc::mir::mono::Linkage;
27 use rustc::session::parse::feature_err;
28 use rustc::traits;
29 use rustc::ty::query::Providers;
30 use rustc::ty::subst::GenericArgKind;
31 use rustc::ty::subst::{InternalSubsts, Subst};
32 use rustc::ty::util::Discr;
33 use rustc::ty::util::IntTypeExt;
34 use rustc::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, WithConstness};
35 use rustc::ty::{ReprOptions, ToPredicate};
36 use rustc_data_structures::captures::Captures;
37 use rustc_data_structures::fx::FxHashMap;
38 use rustc_errors::{struct_span_err, Applicability, StashKey};
39 use rustc_hir as hir;
40 use rustc_hir::def::{CtorKind, DefKind, Res};
41 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
42 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
43 use rustc_hir::{GenericParamKind, Node, Unsafety};
44 use rustc_span::symbol::{kw, sym, Symbol};
45 use rustc_span::{Span, DUMMY_SP};
46 use rustc_target::spec::abi;
47 use syntax::ast;
48 use syntax::ast::{Ident, MetaItemKind};
49 use syntax::attr::{list_contains_name, mark_used, InlineAttr, OptimizeAttr};
50
51 use rustc_error_codes::*;
52
53 struct OnlySelfBounds(bool);
54
55 ///////////////////////////////////////////////////////////////////////////
56 // Main entry point
57
58 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
59     tcx.hir().visit_item_likes_in_module(
60         module_def_id,
61         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
62     );
63 }
64
65 pub fn provide(providers: &mut Providers<'_>) {
66     *providers = Providers {
67         type_of,
68         generics_of,
69         predicates_of,
70         predicates_defined_on,
71         explicit_predicates_of,
72         super_predicates_of,
73         type_param_predicates,
74         trait_def,
75         adt_def,
76         fn_sig,
77         impl_trait_ref,
78         impl_polarity,
79         is_foreign_item,
80         static_mutability,
81         codegen_fn_attrs,
82         collect_mod_item_types,
83         ..*providers
84     };
85 }
86
87 ///////////////////////////////////////////////////////////////////////////
88
89 /// Context specific to some particular item. This is what implements
90 /// `AstConv`. It has information about the predicates that are defined
91 /// on the trait. Unfortunately, this predicate information is
92 /// available in various different forms at various points in the
93 /// process. So we can't just store a pointer to e.g., the AST or the
94 /// parsed ty form, we have to be more flexible. To this end, the
95 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
96 /// `get_type_parameter_bounds` requests, drawing the information from
97 /// the AST (`hir::Generics`), recursively.
98 pub struct ItemCtxt<'tcx> {
99     tcx: TyCtxt<'tcx>,
100     item_def_id: DefId,
101 }
102
103 ///////////////////////////////////////////////////////////////////////////
104
105 #[derive(Default)]
106 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
107
108 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
109     type Map = Map<'v>;
110
111     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
112         NestedVisitorMap::None
113     }
114     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
115         if let hir::TyKind::Infer = t.kind {
116             self.0.push(t.span);
117         }
118         intravisit::walk_ty(self, t)
119     }
120 }
121
122 struct CollectItemTypesVisitor<'tcx> {
123     tcx: TyCtxt<'tcx>,
124 }
125
126 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
127 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
128 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
129 crate fn placeholder_type_error(
130     tcx: TyCtxt<'tcx>,
131     span: Span,
132     generics: &[hir::GenericParam<'_>],
133     placeholder_types: Vec<Span>,
134     suggest: bool,
135 ) {
136     if placeholder_types.is_empty() {
137         return;
138     }
139     // This is the whitelist of possible parameter names that we might suggest.
140     let possible_names = ["T", "K", "L", "A", "B", "C"];
141     let used_names = generics
142         .iter()
143         .filter_map(|p| match p.name {
144             hir::ParamName::Plain(ident) => Some(ident.name),
145             _ => None,
146         })
147         .collect::<Vec<_>>();
148
149     let type_name = possible_names
150         .iter()
151         .find(|n| !used_names.contains(&Symbol::intern(n)))
152         .unwrap_or(&"ParamName");
153
154     let mut sugg: Vec<_> =
155         placeholder_types.iter().map(|sp| (*sp, type_name.to_string())).collect();
156     if generics.is_empty() {
157         sugg.push((span, format!("<{}>", type_name)));
158     } else if let Some(arg) = generics.iter().find(|arg| match arg.name {
159         hir::ParamName::Plain(Ident { name: kw::Underscore, .. }) => true,
160         _ => false,
161     }) {
162         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
163         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
164         sugg.push((arg.span, format!("{}", type_name)));
165     } else {
166         sugg.push((
167             generics.iter().last().unwrap().span.shrink_to_hi(),
168             format!(", {}", type_name),
169         ));
170     }
171     let mut err = bad_placeholder_type(tcx, placeholder_types);
172     if suggest {
173         err.multipart_suggestion(
174             "use type parameters instead",
175             sugg,
176             Applicability::HasPlaceholders,
177         );
178     }
179     err.emit();
180 }
181
182 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
183     let (generics, suggest) = match &item.kind {
184         hir::ItemKind::Union(_, generics)
185         | hir::ItemKind::Enum(_, generics)
186         | hir::ItemKind::TraitAlias(generics, _)
187         | hir::ItemKind::Trait(_, _, generics, ..)
188         | hir::ItemKind::Impl { generics, .. }
189         | hir::ItemKind::Struct(_, generics) => (generics, true),
190         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
191         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
192         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
193         _ => return,
194     };
195
196     let mut visitor = PlaceholderHirTyCollector::default();
197     visitor.visit_item(item);
198
199     placeholder_type_error(tcx, generics.span, &generics.params[..], visitor.0, suggest);
200 }
201
202 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
203     type Map = Map<'tcx>;
204
205     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
206         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
207     }
208
209     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
210         convert_item(self.tcx, item.hir_id);
211         reject_placeholder_type_signatures_in_item(self.tcx, item);
212         intravisit::walk_item(self, item);
213     }
214
215     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
216         for param in generics.params {
217             match param.kind {
218                 hir::GenericParamKind::Lifetime { .. } => {}
219                 hir::GenericParamKind::Type { default: Some(_), .. } => {
220                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
221                     self.tcx.type_of(def_id);
222                 }
223                 hir::GenericParamKind::Type { .. } => {}
224                 hir::GenericParamKind::Const { .. } => {
225                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
226                     self.tcx.type_of(def_id);
227                 }
228             }
229         }
230         intravisit::walk_generics(self, generics);
231     }
232
233     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
234         if let hir::ExprKind::Closure(..) = expr.kind {
235             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
236             self.tcx.generics_of(def_id);
237             self.tcx.type_of(def_id);
238         }
239         intravisit::walk_expr(self, expr);
240     }
241
242     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
243         convert_trait_item(self.tcx, trait_item.hir_id);
244         intravisit::walk_trait_item(self, trait_item);
245     }
246
247     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
248         convert_impl_item(self.tcx, impl_item.hir_id);
249         intravisit::walk_impl_item(self, impl_item);
250     }
251 }
252
253 ///////////////////////////////////////////////////////////////////////////
254 // Utility types and common code for the above passes.
255
256 fn bad_placeholder_type(
257     tcx: TyCtxt<'tcx>,
258     mut spans: Vec<Span>,
259 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
260     spans.sort();
261     let mut err = struct_span_err!(
262         tcx.sess,
263         spans.clone(),
264         E0121,
265         "the type placeholder `_` is not allowed within types on item signatures",
266     );
267     for span in spans {
268         err.span_label(span, "not allowed in type signatures");
269     }
270     err
271 }
272
273 impl ItemCtxt<'tcx> {
274     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
275         ItemCtxt { tcx, item_def_id }
276     }
277
278     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty<'tcx>) -> Ty<'tcx> {
279         AstConv::ast_ty_to_ty(self, ast_ty)
280     }
281 }
282
283 impl AstConv<'tcx> for ItemCtxt<'tcx> {
284     fn tcx(&self) -> TyCtxt<'tcx> {
285         self.tcx
286     }
287
288     fn item_def_id(&self) -> Option<DefId> {
289         Some(self.item_def_id)
290     }
291
292     fn default_constness_for_trait_bounds(&self) -> ast::Constness {
293         // FIXME: refactor this into a method
294         let hir_id = self
295             .tcx
296             .hir()
297             .as_local_hir_id(self.item_def_id)
298             .expect("Non-local call to local provider is_const_fn");
299
300         let node = self.tcx.hir().get(hir_id);
301         if let Some(fn_like) = FnLikeNode::from_node(node) {
302             fn_like.constness()
303         } else {
304             ast::Constness::NotConst
305         }
306     }
307
308     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
309         self.tcx.at(span).type_param_predicates((self.item_def_id, def_id))
310     }
311
312     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
313         None
314     }
315
316     fn allow_ty_infer(&self) -> bool {
317         false
318     }
319
320     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
321         self.tcx().sess.delay_span_bug(span, "bad placeholder type");
322         self.tcx().types.err
323     }
324
325     fn ct_infer(
326         &self,
327         _: Ty<'tcx>,
328         _: Option<&ty::GenericParamDef>,
329         span: Span,
330     ) -> &'tcx Const<'tcx> {
331         bad_placeholder_type(self.tcx(), vec![span]).emit();
332
333         self.tcx().consts.err
334     }
335
336     fn projected_ty_from_poly_trait_ref(
337         &self,
338         span: Span,
339         item_def_id: DefId,
340         item_segment: &hir::PathSegment<'_>,
341         poly_trait_ref: ty::PolyTraitRef<'tcx>,
342     ) -> Ty<'tcx> {
343         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
344             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
345                 self,
346                 self.tcx,
347                 span,
348                 item_def_id,
349                 item_segment,
350                 trait_ref.substs,
351             );
352             self.tcx().mk_projection(item_def_id, item_substs)
353         } else {
354             // There are no late-bound regions; we can just ignore the binder.
355             struct_span_err!(
356                 self.tcx().sess,
357                 span,
358                 E0212,
359                 "cannot extract an associated type from a higher-ranked trait bound \
360                  in this context"
361             )
362             .emit();
363             self.tcx().types.err
364         }
365     }
366
367     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
368         // Types in item signatures are not normalized to avoid undue dependencies.
369         ty
370     }
371
372     fn set_tainted_by_errors(&self) {
373         // There's no obvious place to track this, so just let it go.
374     }
375
376     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
377         // There's no place to record types from signatures?
378     }
379 }
380
381 /// Returns the predicates defined on `item_def_id` of the form
382 /// `X: Foo` where `X` is the type parameter `def_id`.
383 fn type_param_predicates(
384     tcx: TyCtxt<'_>,
385     (item_def_id, def_id): (DefId, DefId),
386 ) -> ty::GenericPredicates<'_> {
387     use rustc_hir::*;
388
389     // In the AST, bounds can derive from two places. Either
390     // written inline like `<T: Foo>` or in a where-clause like
391     // `where T: Foo`.
392
393     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
394     let param_owner = tcx.hir().ty_param_owner(param_id);
395     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
396     let generics = tcx.generics_of(param_owner_def_id);
397     let index = generics.param_def_id_to_index[&def_id];
398     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
399
400     // Don't look for bounds where the type parameter isn't in scope.
401     let parent =
402         if item_def_id == param_owner_def_id { None } else { tcx.generics_of(item_def_id).parent };
403
404     let mut result = parent
405         .map(|parent| {
406             let icx = ItemCtxt::new(tcx, parent);
407             icx.get_type_parameter_bounds(DUMMY_SP, def_id)
408         })
409         .unwrap_or_default();
410     let mut extend = None;
411
412     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
413     let ast_generics = match tcx.hir().get(item_hir_id) {
414         Node::TraitItem(item) => &item.generics,
415
416         Node::ImplItem(item) => &item.generics,
417
418         Node::Item(item) => {
419             match item.kind {
420                 ItemKind::Fn(.., ref generics, _)
421                 | ItemKind::Impl { ref generics, .. }
422                 | ItemKind::TyAlias(_, ref generics)
423                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
424                 | ItemKind::Enum(_, ref generics)
425                 | ItemKind::Struct(_, ref generics)
426                 | ItemKind::Union(_, ref generics) => generics,
427                 ItemKind::Trait(_, _, ref generics, ..) => {
428                     // Implied `Self: Trait` and supertrait bounds.
429                     if param_id == item_hir_id {
430                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
431                         extend =
432                             Some((identity_trait_ref.without_const().to_predicate(), item.span));
433                     }
434                     generics
435                 }
436                 _ => return result,
437             }
438         }
439
440         Node::ForeignItem(item) => match item.kind {
441             ForeignItemKind::Fn(_, _, ref generics) => generics,
442             _ => return result,
443         },
444
445         _ => return result,
446     };
447
448     let icx = ItemCtxt::new(tcx, item_def_id);
449     let extra_predicates = extend.into_iter().chain(
450         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
451             .into_iter()
452             .filter(|(predicate, _)| match predicate {
453                 ty::Predicate::Trait(ref data, _) => data.skip_binder().self_ty().is_param(index),
454                 _ => false,
455             }),
456     );
457     result.predicates =
458         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
459     result
460 }
461
462 impl ItemCtxt<'tcx> {
463     /// Finds bounds from `hir::Generics`. This requires scanning through the
464     /// AST. We do this to avoid having to convert *all* the bounds, which
465     /// would create artificial cycles. Instead, we can only convert the
466     /// bounds for a type parameter `X` if `X::Foo` is used.
467     fn type_parameter_bounds_in_generics(
468         &self,
469         ast_generics: &'tcx hir::Generics<'tcx>,
470         param_id: hir::HirId,
471         ty: Ty<'tcx>,
472         only_self_bounds: OnlySelfBounds,
473     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
474         let constness = self.default_constness_for_trait_bounds();
475         let from_ty_params = ast_generics
476             .params
477             .iter()
478             .filter_map(|param| match param.kind {
479                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
480                 _ => None,
481             })
482             .flat_map(|bounds| bounds.iter())
483             .flat_map(|b| predicates_from_bound(self, ty, b, constness));
484
485         let from_where_clauses = ast_generics
486             .where_clause
487             .predicates
488             .iter()
489             .filter_map(|wp| match *wp {
490                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
491                 _ => None,
492             })
493             .flat_map(|bp| {
494                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
495                     Some(ty)
496                 } else if !only_self_bounds.0 {
497                     Some(self.to_ty(&bp.bounded_ty))
498                 } else {
499                     None
500                 };
501                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
502             })
503             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
504
505         from_ty_params.chain(from_where_clauses).collect()
506     }
507 }
508
509 /// Tests whether this is the AST for a reference to the type
510 /// parameter with ID `param_id`. We use this so as to avoid running
511 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
512 /// conversion of the type to avoid inducing unnecessary cycles.
513 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
514     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
515         match path.res {
516             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
517                 def_id == tcx.hir().local_def_id(param_id)
518             }
519             _ => false,
520         }
521     } else {
522         false
523     }
524 }
525
526 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
527     let it = tcx.hir().expect_item(item_id);
528     debug!("convert: item {} with id {}", it.ident, it.hir_id);
529     let def_id = tcx.hir().local_def_id(item_id);
530     match it.kind {
531         // These don't define types.
532         hir::ItemKind::ExternCrate(_)
533         | hir::ItemKind::Use(..)
534         | hir::ItemKind::Mod(_)
535         | hir::ItemKind::GlobalAsm(_) => {}
536         hir::ItemKind::ForeignMod(ref foreign_mod) => {
537             for item in foreign_mod.items {
538                 let def_id = tcx.hir().local_def_id(item.hir_id);
539                 tcx.generics_of(def_id);
540                 tcx.type_of(def_id);
541                 tcx.predicates_of(def_id);
542                 if let hir::ForeignItemKind::Fn(..) = item.kind {
543                     tcx.fn_sig(def_id);
544                 }
545             }
546         }
547         hir::ItemKind::Enum(ref enum_definition, _) => {
548             tcx.generics_of(def_id);
549             tcx.type_of(def_id);
550             tcx.predicates_of(def_id);
551             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
552         }
553         hir::ItemKind::Impl { .. } => {
554             tcx.generics_of(def_id);
555             tcx.type_of(def_id);
556             tcx.impl_trait_ref(def_id);
557             tcx.predicates_of(def_id);
558         }
559         hir::ItemKind::Trait(..) => {
560             tcx.generics_of(def_id);
561             tcx.trait_def(def_id);
562             tcx.at(it.span).super_predicates_of(def_id);
563             tcx.predicates_of(def_id);
564         }
565         hir::ItemKind::TraitAlias(..) => {
566             tcx.generics_of(def_id);
567             tcx.at(it.span).super_predicates_of(def_id);
568             tcx.predicates_of(def_id);
569         }
570         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
571             tcx.generics_of(def_id);
572             tcx.type_of(def_id);
573             tcx.predicates_of(def_id);
574
575             for f in struct_def.fields() {
576                 let def_id = tcx.hir().local_def_id(f.hir_id);
577                 tcx.generics_of(def_id);
578                 tcx.type_of(def_id);
579                 tcx.predicates_of(def_id);
580             }
581
582             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
583                 convert_variant_ctor(tcx, ctor_hir_id);
584             }
585         }
586
587         // Desugared from `impl Trait`, so visited by the function's return type.
588         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
589
590         hir::ItemKind::OpaqueTy(..)
591         | hir::ItemKind::TyAlias(..)
592         | hir::ItemKind::Static(..)
593         | hir::ItemKind::Const(..)
594         | hir::ItemKind::Fn(..) => {
595             tcx.generics_of(def_id);
596             tcx.type_of(def_id);
597             tcx.predicates_of(def_id);
598             if let hir::ItemKind::Fn(..) = it.kind {
599                 tcx.fn_sig(def_id);
600             }
601         }
602     }
603 }
604
605 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
606     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
607     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
608     tcx.generics_of(def_id);
609
610     match trait_item.kind {
611         hir::TraitItemKind::Const(..)
612         | hir::TraitItemKind::Type(_, Some(_))
613         | hir::TraitItemKind::Method(..) => {
614             tcx.type_of(def_id);
615             if let hir::TraitItemKind::Method(..) = trait_item.kind {
616                 tcx.fn_sig(def_id);
617             }
618         }
619
620         hir::TraitItemKind::Type(_, None) => {}
621     };
622
623     tcx.predicates_of(def_id);
624 }
625
626 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
627     let def_id = tcx.hir().local_def_id(impl_item_id);
628     tcx.generics_of(def_id);
629     tcx.type_of(def_id);
630     tcx.predicates_of(def_id);
631     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).kind {
632         tcx.fn_sig(def_id);
633     }
634 }
635
636 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
637     let def_id = tcx.hir().local_def_id(ctor_id);
638     tcx.generics_of(def_id);
639     tcx.type_of(def_id);
640     tcx.predicates_of(def_id);
641 }
642
643 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
644     let def = tcx.adt_def(def_id);
645     let repr_type = def.repr.discr_type();
646     let initial = repr_type.initial_discriminant(tcx);
647     let mut prev_discr = None::<Discr<'_>>;
648
649     // fill the discriminant values and field types
650     for variant in variants {
651         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
652         prev_discr = Some(
653             if let Some(ref e) = variant.disr_expr {
654                 let expr_did = tcx.hir().local_def_id(e.hir_id);
655                 def.eval_explicit_discr(tcx, expr_did)
656             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
657                 Some(discr)
658             } else {
659                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
660                     .span_label(
661                         variant.span,
662                         format!("overflowed on value after {}", prev_discr.unwrap()),
663                     )
664                     .note(&format!(
665                         "explicitly set `{} = {}` if that is desired outcome",
666                         variant.ident, wrapped_discr
667                     ))
668                     .emit();
669                 None
670             }
671             .unwrap_or(wrapped_discr),
672         );
673
674         for f in variant.data.fields() {
675             let def_id = tcx.hir().local_def_id(f.hir_id);
676             tcx.generics_of(def_id);
677             tcx.type_of(def_id);
678             tcx.predicates_of(def_id);
679         }
680
681         // Convert the ctor, if any. This also registers the variant as
682         // an item.
683         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
684             convert_variant_ctor(tcx, ctor_hir_id);
685         }
686     }
687 }
688
689 fn convert_variant(
690     tcx: TyCtxt<'_>,
691     variant_did: Option<DefId>,
692     ctor_did: Option<DefId>,
693     ident: Ident,
694     discr: ty::VariantDiscr,
695     def: &hir::VariantData<'_>,
696     adt_kind: ty::AdtKind,
697     parent_did: DefId,
698 ) -> ty::VariantDef {
699     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
700     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
701     let fields = def
702         .fields()
703         .iter()
704         .map(|f| {
705             let fid = tcx.hir().local_def_id(f.hir_id);
706             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
707             if let Some(prev_span) = dup_span {
708                 struct_span_err!(
709                     tcx.sess,
710                     f.span,
711                     E0124,
712                     "field `{}` is already declared",
713                     f.ident
714                 )
715                 .span_label(f.span, "field already declared")
716                 .span_label(prev_span, format!("`{}` first declared here", f.ident))
717                 .emit();
718             } else {
719                 seen_fields.insert(f.ident.modern(), f.span);
720             }
721
722             ty::FieldDef {
723                 did: fid,
724                 ident: f.ident,
725                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
726             }
727         })
728         .collect();
729     let recovered = match def {
730         hir::VariantData::Struct(_, r) => *r,
731         _ => false,
732     };
733     ty::VariantDef::new(
734         tcx,
735         ident,
736         variant_did,
737         ctor_did,
738         discr,
739         fields,
740         CtorKind::from_hir(def),
741         adt_kind,
742         parent_did,
743         recovered,
744     )
745 }
746
747 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
748     use rustc_hir::*;
749
750     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
751     let item = match tcx.hir().get(hir_id) {
752         Node::Item(item) => item,
753         _ => bug!(),
754     };
755
756     let repr = ReprOptions::new(tcx, def_id);
757     let (kind, variants) = match item.kind {
758         ItemKind::Enum(ref def, _) => {
759             let mut distance_from_explicit = 0;
760             let variants = def
761                 .variants
762                 .iter()
763                 .map(|v| {
764                     let variant_did = Some(tcx.hir().local_def_id(v.id));
765                     let ctor_did =
766                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
767
768                     let discr = if let Some(ref e) = v.disr_expr {
769                         distance_from_explicit = 0;
770                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
771                     } else {
772                         ty::VariantDiscr::Relative(distance_from_explicit)
773                     };
774                     distance_from_explicit += 1;
775
776                     convert_variant(
777                         tcx,
778                         variant_did,
779                         ctor_did,
780                         v.ident,
781                         discr,
782                         &v.data,
783                         AdtKind::Enum,
784                         def_id,
785                     )
786                 })
787                 .collect();
788
789             (AdtKind::Enum, variants)
790         }
791         ItemKind::Struct(ref def, _) => {
792             let variant_did = None;
793             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
794
795             let variants = std::iter::once(convert_variant(
796                 tcx,
797                 variant_did,
798                 ctor_did,
799                 item.ident,
800                 ty::VariantDiscr::Relative(0),
801                 def,
802                 AdtKind::Struct,
803                 def_id,
804             ))
805             .collect();
806
807             (AdtKind::Struct, variants)
808         }
809         ItemKind::Union(ref def, _) => {
810             let variant_did = None;
811             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
812
813             let variants = std::iter::once(convert_variant(
814                 tcx,
815                 variant_did,
816                 ctor_did,
817                 item.ident,
818                 ty::VariantDiscr::Relative(0),
819                 def,
820                 AdtKind::Union,
821                 def_id,
822             ))
823             .collect();
824
825             (AdtKind::Union, variants)
826         }
827         _ => bug!(),
828     };
829     tcx.alloc_adt_def(def_id, kind, variants, repr)
830 }
831
832 /// Ensures that the super-predicates of the trait with a `DefId`
833 /// of `trait_def_id` are converted and stored. This also ensures that
834 /// the transitive super-predicates are converted.
835 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
836     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
837     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
838
839     let item = match tcx.hir().get(trait_hir_id) {
840         Node::Item(item) => item,
841         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
842     };
843
844     let (generics, bounds) = match item.kind {
845         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
846         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
847         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
848     };
849
850     let icx = ItemCtxt::new(tcx, trait_def_id);
851
852     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
853     let self_param_ty = tcx.types.self_param;
854     let superbounds1 =
855         AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
856
857     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
858
859     // Convert any explicit superbounds in the where-clause,
860     // e.g., `trait Foo where Self: Bar`.
861     // In the case of trait aliases, however, we include all bounds in the where-clause,
862     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
863     // as one of its "superpredicates".
864     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
865     let superbounds2 = icx.type_parameter_bounds_in_generics(
866         generics,
867         item.hir_id,
868         self_param_ty,
869         OnlySelfBounds(!is_trait_alias),
870     );
871
872     // Combine the two lists to form the complete set of superbounds:
873     let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
874
875     // Now require that immediate supertraits are converted,
876     // which will, in turn, reach indirect supertraits.
877     for &(pred, span) in superbounds {
878         debug!("superbound: {:?}", pred);
879         if let ty::Predicate::Trait(bound, _) = pred {
880             tcx.at(span).super_predicates_of(bound.def_id());
881         }
882     }
883
884     ty::GenericPredicates { parent: None, predicates: superbounds }
885 }
886
887 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
888     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
889     let item = tcx.hir().expect_item(hir_id);
890
891     let (is_auto, unsafety) = match item.kind {
892         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
893         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
894         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
895     };
896
897     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
898     if paren_sugar && !tcx.features().unboxed_closures {
899         tcx.sess
900             .struct_span_err(
901                 item.span,
902                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
903              which traits can use parenthetical notation",
904             )
905             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
906             .emit();
907     }
908
909     let is_marker = tcx.has_attr(def_id, sym::marker);
910     let def_path_hash = tcx.def_path_hash(def_id);
911     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
912     tcx.arena.alloc(def)
913 }
914
915 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
916     struct LateBoundRegionsDetector<'tcx> {
917         tcx: TyCtxt<'tcx>,
918         outer_index: ty::DebruijnIndex,
919         has_late_bound_regions: Option<Span>,
920     }
921
922     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
923         type Map = Map<'tcx>;
924
925         fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
926             NestedVisitorMap::None
927         }
928
929         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
930             if self.has_late_bound_regions.is_some() {
931                 return;
932             }
933             match ty.kind {
934                 hir::TyKind::BareFn(..) => {
935                     self.outer_index.shift_in(1);
936                     intravisit::walk_ty(self, ty);
937                     self.outer_index.shift_out(1);
938                 }
939                 _ => intravisit::walk_ty(self, ty),
940             }
941         }
942
943         fn visit_poly_trait_ref(
944             &mut self,
945             tr: &'tcx hir::PolyTraitRef<'tcx>,
946             m: hir::TraitBoundModifier,
947         ) {
948             if self.has_late_bound_regions.is_some() {
949                 return;
950             }
951             self.outer_index.shift_in(1);
952             intravisit::walk_poly_trait_ref(self, tr, m);
953             self.outer_index.shift_out(1);
954         }
955
956         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
957             if self.has_late_bound_regions.is_some() {
958                 return;
959             }
960
961             match self.tcx.named_region(lt.hir_id) {
962                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
963                 Some(rl::Region::LateBound(debruijn, _, _))
964                 | Some(rl::Region::LateBoundAnon(debruijn, _))
965                     if debruijn < self.outer_index => {}
966                 Some(rl::Region::LateBound(..))
967                 | Some(rl::Region::LateBoundAnon(..))
968                 | Some(rl::Region::Free(..))
969                 | None => {
970                     self.has_late_bound_regions = Some(lt.span);
971                 }
972             }
973         }
974     }
975
976     fn has_late_bound_regions<'tcx>(
977         tcx: TyCtxt<'tcx>,
978         generics: &'tcx hir::Generics<'tcx>,
979         decl: &'tcx hir::FnDecl<'tcx>,
980     ) -> Option<Span> {
981         let mut visitor = LateBoundRegionsDetector {
982             tcx,
983             outer_index: ty::INNERMOST,
984             has_late_bound_regions: None,
985         };
986         for param in generics.params {
987             if let GenericParamKind::Lifetime { .. } = param.kind {
988                 if tcx.is_late_bound(param.hir_id) {
989                     return Some(param.span);
990                 }
991             }
992         }
993         visitor.visit_fn_decl(decl);
994         visitor.has_late_bound_regions
995     }
996
997     match node {
998         Node::TraitItem(item) => match item.kind {
999             hir::TraitItemKind::Method(ref sig, _) => {
1000                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1001             }
1002             _ => None,
1003         },
1004         Node::ImplItem(item) => match item.kind {
1005             hir::ImplItemKind::Method(ref sig, _) => {
1006                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1007             }
1008             _ => None,
1009         },
1010         Node::ForeignItem(item) => match item.kind {
1011             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1012                 has_late_bound_regions(tcx, generics, fn_decl)
1013             }
1014             _ => None,
1015         },
1016         Node::Item(item) => match item.kind {
1017             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1018                 has_late_bound_regions(tcx, generics, &sig.decl)
1019             }
1020             _ => None,
1021         },
1022         _ => None,
1023     }
1024 }
1025
1026 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
1027     use rustc_hir::*;
1028
1029     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1030
1031     let node = tcx.hir().get(hir_id);
1032     let parent_def_id = match node {
1033         Node::ImplItem(_)
1034         | Node::TraitItem(_)
1035         | Node::Variant(_)
1036         | Node::Ctor(..)
1037         | Node::Field(_) => {
1038             let parent_id = tcx.hir().get_parent_item(hir_id);
1039             Some(tcx.hir().local_def_id(parent_id))
1040         }
1041         // FIXME(#43408) enable this always when we get lazy normalization.
1042         Node::AnonConst(_) => {
1043             // HACK(eddyb) this provides the correct generics when
1044             // `feature(const_generics)` is enabled, so that const expressions
1045             // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1046             if tcx.features().const_generics {
1047                 let parent_id = tcx.hir().get_parent_item(hir_id);
1048                 Some(tcx.hir().local_def_id(parent_id))
1049             } else {
1050                 None
1051             }
1052         }
1053         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1054             Some(tcx.closure_base_def_id(def_id))
1055         }
1056         Node::Item(item) => match item.kind {
1057             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => impl_trait_fn,
1058             _ => None,
1059         },
1060         _ => None,
1061     };
1062
1063     let mut opt_self = None;
1064     let mut allow_defaults = false;
1065
1066     let no_generics = hir::Generics::empty();
1067     let ast_generics = match node {
1068         Node::TraitItem(item) => &item.generics,
1069
1070         Node::ImplItem(item) => &item.generics,
1071
1072         Node::Item(item) => {
1073             match item.kind {
1074                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl { ref generics, .. } => generics,
1075
1076                 ItemKind::TyAlias(_, ref generics)
1077                 | ItemKind::Enum(_, ref generics)
1078                 | ItemKind::Struct(_, ref generics)
1079                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1080                 | ItemKind::Union(_, ref generics) => {
1081                     allow_defaults = true;
1082                     generics
1083                 }
1084
1085                 ItemKind::Trait(_, _, ref generics, ..)
1086                 | ItemKind::TraitAlias(ref generics, ..) => {
1087                     // Add in the self type parameter.
1088                     //
1089                     // Something of a hack: use the node id for the trait, also as
1090                     // the node id for the Self type parameter.
1091                     let param_id = item.hir_id;
1092
1093                     opt_self = Some(ty::GenericParamDef {
1094                         index: 0,
1095                         name: kw::SelfUpper,
1096                         def_id: tcx.hir().local_def_id(param_id),
1097                         pure_wrt_drop: false,
1098                         kind: ty::GenericParamDefKind::Type {
1099                             has_default: false,
1100                             object_lifetime_default: rl::Set1::Empty,
1101                             synthetic: None,
1102                         },
1103                     });
1104
1105                     allow_defaults = true;
1106                     generics
1107                 }
1108
1109                 _ => &no_generics,
1110             }
1111         }
1112
1113         Node::ForeignItem(item) => match item.kind {
1114             ForeignItemKind::Static(..) => &no_generics,
1115             ForeignItemKind::Fn(_, _, ref generics) => generics,
1116             ForeignItemKind::Type => &no_generics,
1117         },
1118
1119         _ => &no_generics,
1120     };
1121
1122     let has_self = opt_self.is_some();
1123     let mut parent_has_self = false;
1124     let mut own_start = has_self as u32;
1125     let parent_count = parent_def_id.map_or(0, |def_id| {
1126         let generics = tcx.generics_of(def_id);
1127         assert_eq!(has_self, false);
1128         parent_has_self = generics.has_self;
1129         own_start = generics.count() as u32;
1130         generics.parent_count + generics.params.len()
1131     });
1132
1133     let mut params: Vec<_> = opt_self.into_iter().collect();
1134
1135     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1136     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1137         name: param.name.ident().name,
1138         index: own_start + i as u32,
1139         def_id: tcx.hir().local_def_id(param.hir_id),
1140         pure_wrt_drop: param.pure_wrt_drop,
1141         kind: ty::GenericParamDefKind::Lifetime,
1142     }));
1143
1144     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1145
1146     // Now create the real type parameters.
1147     let type_start = own_start - has_self as u32 + params.len() as u32;
1148     let mut i = 0;
1149     params.extend(ast_generics.params.iter().filter_map(|param| {
1150         let kind = match param.kind {
1151             GenericParamKind::Type { ref default, synthetic, .. } => {
1152                 if !allow_defaults && default.is_some() {
1153                     if !tcx.features().default_type_parameter_fallback {
1154                         tcx.lint_hir(
1155                             lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1156                             param.hir_id,
1157                             param.span,
1158                             &format!(
1159                                 "defaults for type parameters are only allowed in \
1160                                         `struct`, `enum`, `type`, or `trait` definitions."
1161                             ),
1162                         );
1163                     }
1164                 }
1165
1166                 ty::GenericParamDefKind::Type {
1167                     has_default: default.is_some(),
1168                     object_lifetime_default: object_lifetime_defaults
1169                         .as_ref()
1170                         .map_or(rl::Set1::Empty, |o| o[i]),
1171                     synthetic,
1172                 }
1173             }
1174             GenericParamKind::Const { .. } => ty::GenericParamDefKind::Const,
1175             _ => return None,
1176         };
1177
1178         let param_def = ty::GenericParamDef {
1179             index: type_start + i as u32,
1180             name: param.name.ident().name,
1181             def_id: tcx.hir().local_def_id(param.hir_id),
1182             pure_wrt_drop: param.pure_wrt_drop,
1183             kind,
1184         };
1185         i += 1;
1186         Some(param_def)
1187     }));
1188
1189     // provide junk type parameter defs - the only place that
1190     // cares about anything but the length is instantiation,
1191     // and we don't do that for closures.
1192     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1193         let dummy_args = if gen.is_some() {
1194             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1195         } else {
1196             &["<closure_kind>", "<closure_signature>"][..]
1197         };
1198
1199         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1200             index: type_start + i as u32,
1201             name: Symbol::intern(arg),
1202             def_id,
1203             pure_wrt_drop: false,
1204             kind: ty::GenericParamDefKind::Type {
1205                 has_default: false,
1206                 object_lifetime_default: rl::Set1::Empty,
1207                 synthetic: None,
1208             },
1209         }));
1210
1211         if let Some(upvars) = tcx.upvars(def_id) {
1212             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1213                 ty::GenericParamDef {
1214                     index: type_start + i,
1215                     name: Symbol::intern("<upvar>"),
1216                     def_id,
1217                     pure_wrt_drop: false,
1218                     kind: ty::GenericParamDefKind::Type {
1219                         has_default: false,
1220                         object_lifetime_default: rl::Set1::Empty,
1221                         synthetic: None,
1222                     },
1223                 }
1224             }));
1225         }
1226     }
1227
1228     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1229
1230     tcx.arena.alloc(ty::Generics {
1231         parent: parent_def_id,
1232         parent_count,
1233         params,
1234         param_def_id_to_index,
1235         has_self: has_self || parent_has_self,
1236         has_late_bound_regions: has_late_bound_regions(tcx, node),
1237     })
1238 }
1239
1240 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1241     struct_span_err!(
1242         tcx.sess,
1243         span,
1244         E0202,
1245         "associated types are not yet supported in inherent impls (see #8995)"
1246     )
1247     .emit();
1248 }
1249
1250 fn infer_placeholder_type(
1251     tcx: TyCtxt<'_>,
1252     def_id: DefId,
1253     body_id: hir::BodyId,
1254     span: Span,
1255     item_ident: Ident,
1256 ) -> Ty<'_> {
1257     let ty = tcx.diagnostic_only_typeck_tables_of(def_id).node_type(body_id.hir_id);
1258
1259     // If this came from a free `const` or `static mut?` item,
1260     // then the user may have written e.g. `const A = 42;`.
1261     // In this case, the parser has stashed a diagnostic for
1262     // us to improve in typeck so we do that now.
1263     match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
1264         Some(mut err) => {
1265             // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
1266             // We are typeck and have the real type, so remove that and suggest the actual type.
1267             err.suggestions.clear();
1268             err.span_suggestion(
1269                 span,
1270                 "provide a type for the item",
1271                 format!("{}: {}", item_ident, ty),
1272                 Applicability::MachineApplicable,
1273             )
1274             .emit();
1275         }
1276         None => {
1277             let mut diag = bad_placeholder_type(tcx, vec![span]);
1278             if ty != tcx.types.err {
1279                 diag.span_suggestion(
1280                     span,
1281                     "replace `_` with the correct type",
1282                     ty.to_string(),
1283                     Applicability::MaybeIncorrect,
1284                 );
1285             }
1286             diag.emit();
1287         }
1288     }
1289
1290     ty
1291 }
1292
1293 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1294     use rustc_hir::*;
1295
1296     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1297
1298     let icx = ItemCtxt::new(tcx, def_id);
1299
1300     match tcx.hir().get(hir_id) {
1301         Node::TraitItem(item) => match item.kind {
1302             TraitItemKind::Method(..) => {
1303                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1304                 tcx.mk_fn_def(def_id, substs)
1305             }
1306             TraitItemKind::Const(ref ty, body_id) => body_id
1307                 .and_then(|body_id| {
1308                     if is_suggestable_infer_ty(ty) {
1309                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
1310                     } else {
1311                         None
1312                     }
1313                 })
1314                 .unwrap_or_else(|| icx.to_ty(ty)),
1315             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1316             TraitItemKind::Type(_, None) => {
1317                 span_bug!(item.span, "associated type missing default");
1318             }
1319         },
1320
1321         Node::ImplItem(item) => match item.kind {
1322             ImplItemKind::Method(..) => {
1323                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1324                 tcx.mk_fn_def(def_id, substs)
1325             }
1326             ImplItemKind::Const(ref ty, body_id) => {
1327                 if is_suggestable_infer_ty(ty) {
1328                     infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1329                 } else {
1330                     icx.to_ty(ty)
1331                 }
1332             }
1333             ImplItemKind::OpaqueTy(_) => {
1334                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1335                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1336                 }
1337
1338                 find_opaque_ty_constraints(tcx, def_id)
1339             }
1340             ImplItemKind::TyAlias(ref ty) => {
1341                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1342                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1343                 }
1344
1345                 icx.to_ty(ty)
1346             }
1347         },
1348
1349         Node::Item(item) => {
1350             match item.kind {
1351                 ItemKind::Static(ref ty, .., body_id) | ItemKind::Const(ref ty, body_id) => {
1352                     if is_suggestable_infer_ty(ty) {
1353                         infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1354                     } else {
1355                         icx.to_ty(ty)
1356                     }
1357                 }
1358                 ItemKind::TyAlias(ref self_ty, _) | ItemKind::Impl { ref self_ty, .. } => {
1359                     icx.to_ty(self_ty)
1360                 }
1361                 ItemKind::Fn(..) => {
1362                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1363                     tcx.mk_fn_def(def_id, substs)
1364                 }
1365                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1366                     let def = tcx.adt_def(def_id);
1367                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1368                     tcx.mk_adt(def, substs)
1369                 }
1370                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: None, .. }) => {
1371                     find_opaque_ty_constraints(tcx, def_id)
1372                 }
1373                 // Opaque types desugared from `impl Trait`.
1374                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(owner), .. }) => {
1375                     tcx.typeck_tables_of(owner)
1376                         .concrete_opaque_types
1377                         .get(&def_id)
1378                         .map(|opaque| opaque.concrete_type)
1379                         .unwrap_or_else(|| {
1380                             // This can occur if some error in the
1381                             // owner fn prevented us from populating
1382                             // the `concrete_opaque_types` table.
1383                             tcx.sess.delay_span_bug(
1384                                 DUMMY_SP,
1385                                 &format!(
1386                                     "owner {:?} has no opaque type for {:?} in its tables",
1387                                     owner, def_id,
1388                                 ),
1389                             );
1390                             tcx.types.err
1391                         })
1392                 }
1393                 ItemKind::Trait(..)
1394                 | ItemKind::TraitAlias(..)
1395                 | ItemKind::Mod(..)
1396                 | ItemKind::ForeignMod(..)
1397                 | ItemKind::GlobalAsm(..)
1398                 | ItemKind::ExternCrate(..)
1399                 | ItemKind::Use(..) => {
1400                     span_bug!(
1401                         item.span,
1402                         "compute_type_of_item: unexpected item type: {:?}",
1403                         item.kind
1404                     );
1405                 }
1406             }
1407         }
1408
1409         Node::ForeignItem(foreign_item) => match foreign_item.kind {
1410             ForeignItemKind::Fn(..) => {
1411                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1412                 tcx.mk_fn_def(def_id, substs)
1413             }
1414             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1415             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1416         },
1417
1418         Node::Ctor(&ref def) | Node::Variant(hir::Variant { data: ref def, .. }) => match *def {
1419             VariantData::Unit(..) | VariantData::Struct(..) => {
1420                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1421             }
1422             VariantData::Tuple(..) => {
1423                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1424                 tcx.mk_fn_def(def_id, substs)
1425             }
1426         },
1427
1428         Node::Field(field) => icx.to_ty(&field.ty),
1429
1430         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) => {
1431             if gen.is_some() {
1432                 return tcx.typeck_tables_of(def_id).node_type(hir_id);
1433             }
1434
1435             let substs = InternalSubsts::identity_for_item(tcx, def_id);
1436             tcx.mk_closure(def_id, substs)
1437         }
1438
1439         Node::AnonConst(_) => {
1440             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1441             match parent_node {
1442                 Node::Ty(&hir::Ty { kind: hir::TyKind::Array(_, ref constant), .. })
1443                 | Node::Ty(&hir::Ty { kind: hir::TyKind::Typeof(ref constant), .. })
1444                 | Node::Expr(&hir::Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1445                     if constant.hir_id == hir_id =>
1446                 {
1447                     tcx.types.usize
1448                 }
1449
1450                 Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => {
1451                     tcx.adt_def(tcx.hir().get_parent_did(hir_id)).repr.discr_type().to_ty(tcx)
1452                 }
1453
1454                 Node::Ty(&hir::Ty { kind: hir::TyKind::Path(_), .. })
1455                 | Node::Expr(&hir::Expr { kind: ExprKind::Struct(..), .. })
1456                 | Node::Expr(&hir::Expr { kind: ExprKind::Path(_), .. })
1457                 | Node::TraitRef(..) => {
1458                     let path = match parent_node {
1459                         Node::Ty(&hir::Ty {
1460                             kind: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1461                             ..
1462                         })
1463                         | Node::Expr(&hir::Expr {
1464                             kind: ExprKind::Path(QPath::Resolved(_, ref path)),
1465                             ..
1466                         }) => Some(&**path),
1467                         Node::Expr(&hir::Expr { kind: ExprKind::Struct(ref path, ..), .. }) => {
1468                             if let QPath::Resolved(_, ref path) = **path {
1469                                 Some(&**path)
1470                             } else {
1471                                 None
1472                             }
1473                         }
1474                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1475                         _ => None,
1476                     };
1477
1478                     if let Some(path) = path {
1479                         let arg_index = path
1480                             .segments
1481                             .iter()
1482                             .filter_map(|seg| seg.args.as_ref())
1483                             .map(|generic_args| generic_args.args.as_ref())
1484                             .find_map(|args| {
1485                                 args.iter()
1486                                     .filter(|arg| arg.is_const())
1487                                     .enumerate()
1488                                     .filter(|(_, arg)| arg.id() == hir_id)
1489                                     .map(|(index, _)| index)
1490                                     .next()
1491                             })
1492                             .unwrap_or_else(|| {
1493                                 bug!("no arg matching AnonConst in path");
1494                             });
1495
1496                         // We've encountered an `AnonConst` in some path, so we need to
1497                         // figure out which generic parameter it corresponds to and return
1498                         // the relevant type.
1499                         let generics = match path.res {
1500                             Res::Def(DefKind::Ctor(..), def_id) => {
1501                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1502                             }
1503                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1504                             Res::Err => return tcx.types.err,
1505                             res => {
1506                                 tcx.sess.delay_span_bug(
1507                                     DUMMY_SP,
1508                                     &format!("unexpected const parent path def {:?}", res,),
1509                                 );
1510                                 return tcx.types.err;
1511                             }
1512                         };
1513
1514                         generics
1515                             .params
1516                             .iter()
1517                             .filter(|param| {
1518                                 if let ty::GenericParamDefKind::Const = param.kind {
1519                                     true
1520                                 } else {
1521                                     false
1522                                 }
1523                             })
1524                             .nth(arg_index)
1525                             .map(|param| tcx.type_of(param.def_id))
1526                             // This is no generic parameter associated with the arg. This is
1527                             // probably from an extra arg where one is not needed.
1528                             .unwrap_or(tcx.types.err)
1529                     } else {
1530                         tcx.sess.delay_span_bug(
1531                             DUMMY_SP,
1532                             &format!("unexpected const parent path {:?}", parent_node,),
1533                         );
1534                         return tcx.types.err;
1535                     }
1536                 }
1537
1538                 x => {
1539                     tcx.sess.delay_span_bug(
1540                         DUMMY_SP,
1541                         &format!("unexpected const parent in type_of_def_id(): {:?}", x),
1542                     );
1543                     tcx.types.err
1544                 }
1545             }
1546         }
1547
1548         Node::GenericParam(param) => match &param.kind {
1549             hir::GenericParamKind::Type { default: Some(ref ty), .. } => icx.to_ty(ty),
1550             hir::GenericParamKind::Const { ty: ref hir_ty, .. } => {
1551                 let ty = icx.to_ty(hir_ty);
1552                 if !tcx.features().const_compare_raw_pointers {
1553                     let err = match ty.peel_refs().kind {
1554                         ty::FnPtr(_) => Some("function pointers"),
1555                         ty::RawPtr(_) => Some("raw pointers"),
1556                         _ => None,
1557                     };
1558                     if let Some(unsupported_type) = err {
1559                         feature_err(
1560                             &tcx.sess.parse_sess,
1561                             sym::const_compare_raw_pointers,
1562                             hir_ty.span,
1563                             &format!(
1564                                 "using {} as const generic parameters is unstable",
1565                                 unsupported_type
1566                             ),
1567                         )
1568                         .emit();
1569                     };
1570                 }
1571                 if traits::search_for_structural_match_violation(param.hir_id, param.span, tcx, ty)
1572                     .is_some()
1573                 {
1574                     struct_span_err!(
1575                         tcx.sess,
1576                         hir_ty.span,
1577                         E0741,
1578                         "the types of const generic parameters must derive `PartialEq` and `Eq`",
1579                     )
1580                     .span_label(
1581                         hir_ty.span,
1582                         format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
1583                     )
1584                     .emit();
1585                 }
1586                 ty
1587             }
1588             x => bug!("unexpected non-type Node::GenericParam: {:?}", x),
1589         },
1590
1591         x => {
1592             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1593         }
1594     }
1595 }
1596
1597 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1598     use rustc_hir::{ImplItem, Item, TraitItem};
1599
1600     debug!("find_opaque_ty_constraints({:?})", def_id);
1601
1602     struct ConstraintLocator<'tcx> {
1603         tcx: TyCtxt<'tcx>,
1604         def_id: DefId,
1605         // (first found type span, actual type, mapping from the opaque type's generic
1606         // parameters to the concrete type's generic parameters)
1607         //
1608         // The mapping is an index for each use site of a generic parameter in the concrete type
1609         //
1610         // The indices index into the generic parameters on the opaque type.
1611         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1612     }
1613
1614     impl ConstraintLocator<'tcx> {
1615         fn check(&mut self, def_id: DefId) {
1616             // Don't try to check items that cannot possibly constrain the type.
1617             if !self.tcx.has_typeck_tables(def_id) {
1618                 debug!(
1619                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1620                     self.def_id, def_id,
1621                 );
1622                 return;
1623             }
1624             let ty = self.tcx.typeck_tables_of(def_id).concrete_opaque_types.get(&self.def_id);
1625             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1626                 debug!(
1627                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1628                     self.def_id, def_id, ty,
1629                 );
1630
1631                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1632                 let span = self.tcx.def_span(def_id);
1633                 // used to quickly look up the position of a generic parameter
1634                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1635                 // Skipping binder is ok, since we only use this to find generic parameters and
1636                 // their positions.
1637                 for (idx, subst) in substs.iter().enumerate() {
1638                     if let GenericArgKind::Type(ty) = subst.unpack() {
1639                         if let ty::Param(p) = ty.kind {
1640                             if index_map.insert(p, idx).is_some() {
1641                                 // There was already an entry for `p`, meaning a generic parameter
1642                                 // was used twice.
1643                                 self.tcx.sess.span_err(
1644                                     span,
1645                                     &format!(
1646                                         "defining opaque type use restricts opaque \
1647                                          type by using the generic parameter `{}` twice",
1648                                         p,
1649                                     ),
1650                                 );
1651                                 return;
1652                             }
1653                         } else {
1654                             self.tcx.sess.delay_span_bug(
1655                                 span,
1656                                 &format!(
1657                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1658                                     concrete_type, substs,
1659                                 ),
1660                             );
1661                         }
1662                     }
1663                 }
1664                 // Compute the index within the opaque type for each generic parameter used in
1665                 // the concrete type.
1666                 let indices = concrete_type
1667                     .subst(self.tcx, substs)
1668                     .walk()
1669                     .filter_map(|t| match &t.kind {
1670                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1671                         _ => None,
1672                     })
1673                     .collect();
1674                 let is_param = |ty: Ty<'_>| match ty.kind {
1675                     ty::Param(_) => true,
1676                     _ => false,
1677                 };
1678                 let bad_substs: Vec<_> =
1679                     substs.types().enumerate().filter(|(_, ty)| !is_param(ty)).collect();
1680                 if !bad_substs.is_empty() {
1681                     let identity_substs = InternalSubsts::identity_for_item(self.tcx, self.def_id);
1682                     for (i, bad_subst) in bad_substs {
1683                         self.tcx.sess.span_err(
1684                             span,
1685                             &format!(
1686                                 "defining opaque type use does not fully define opaque type: \
1687                             generic parameter `{}` is specified as concrete type `{}`",
1688                                 identity_substs.type_at(i),
1689                                 bad_subst
1690                             ),
1691                         );
1692                     }
1693                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1694                     let mut ty = concrete_type.walk().fuse();
1695                     let mut p_ty = prev_ty.walk().fuse();
1696                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
1697                         // Type parameters are equal to any other type parameter for the purpose of
1698                         // concrete type equality, as it is possible to obtain the same type just
1699                         // by passing matching parameters to a function.
1700                         (ty::Param(_), ty::Param(_)) => true,
1701                         _ => t == p,
1702                     });
1703                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1704                         debug!("find_opaque_ty_constraints: span={:?}", span);
1705                         // Found different concrete types for the opaque type.
1706                         let mut err = self.tcx.sess.struct_span_err(
1707                             span,
1708                             "concrete type differs from previous defining opaque type use",
1709                         );
1710                         err.span_label(
1711                             span,
1712                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1713                         );
1714                         err.span_note(prev_span, "previous use here");
1715                         err.emit();
1716                     } else if indices != *prev_indices {
1717                         // Found "same" concrete types, but the generic parameter order differs.
1718                         let mut err = self.tcx.sess.struct_span_err(
1719                             span,
1720                             "concrete type's generic parameters differ from previous defining use",
1721                         );
1722                         use std::fmt::Write;
1723                         let mut s = String::new();
1724                         write!(s, "expected [").unwrap();
1725                         let list = |s: &mut String, indices: &Vec<usize>| {
1726                             let mut indices = indices.iter().cloned();
1727                             if let Some(first) = indices.next() {
1728                                 write!(s, "`{}`", substs[first]).unwrap();
1729                                 for i in indices {
1730                                     write!(s, ", `{}`", substs[i]).unwrap();
1731                                 }
1732                             }
1733                         };
1734                         list(&mut s, prev_indices);
1735                         write!(s, "], got [").unwrap();
1736                         list(&mut s, &indices);
1737                         write!(s, "]").unwrap();
1738                         err.span_label(span, s);
1739                         err.span_note(prev_span, "previous use here");
1740                         err.emit();
1741                     }
1742                 } else {
1743                     self.found = Some((span, concrete_type, indices));
1744                 }
1745             } else {
1746                 debug!(
1747                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1748                     self.def_id, def_id,
1749                 );
1750             }
1751         }
1752     }
1753
1754     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1755         type Map = Map<'tcx>;
1756
1757         fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<'_, Self::Map> {
1758             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1759         }
1760         fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
1761             debug!("find_existential_constraints: visiting {:?}", it);
1762             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1763             // The opaque type itself or its children are not within its reveal scope.
1764             if def_id != self.def_id {
1765                 self.check(def_id);
1766                 intravisit::walk_item(self, it);
1767             }
1768         }
1769         fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
1770             debug!("find_existential_constraints: visiting {:?}", it);
1771             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1772             // The opaque type itself or its children are not within its reveal scope.
1773             if def_id != self.def_id {
1774                 self.check(def_id);
1775                 intravisit::walk_impl_item(self, it);
1776             }
1777         }
1778         fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
1779             debug!("find_existential_constraints: visiting {:?}", it);
1780             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1781             self.check(def_id);
1782             intravisit::walk_trait_item(self, it);
1783         }
1784     }
1785
1786     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1787     let scope = tcx.hir().get_defining_scope(hir_id);
1788     let mut locator = ConstraintLocator { def_id, tcx, found: None };
1789
1790     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1791
1792     if scope == hir::CRATE_HIR_ID {
1793         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1794     } else {
1795         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1796         match tcx.hir().get(scope) {
1797             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1798             // This allows our visitor to process the defining item itself, causing
1799             // it to pick up any 'sibling' defining uses.
1800             //
1801             // For example, this code:
1802             // ```
1803             // fn foo() {
1804             //     type Blah = impl Debug;
1805             //     let my_closure = || -> Blah { true };
1806             // }
1807             // ```
1808             //
1809             // requires us to explicitly process `foo()` in order
1810             // to notice the defining usage of `Blah`.
1811             Node::Item(ref it) => locator.visit_item(it),
1812             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1813             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1814             other => bug!("{:?} is not a valid scope for an opaque type item", other),
1815         }
1816     }
1817
1818     match locator.found {
1819         Some((_, ty, _)) => ty,
1820         None => {
1821             let span = tcx.def_span(def_id);
1822             tcx.sess.span_err(span, "could not find defining uses");
1823             tcx.types.err
1824         }
1825     }
1826 }
1827
1828 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1829     generic_args
1830         .iter()
1831         .filter_map(|arg| match arg {
1832             hir::GenericArg::Type(ty) => Some(ty),
1833             _ => None,
1834         })
1835         .any(is_suggestable_infer_ty)
1836 }
1837
1838 /// Whether `ty` is a type with `_` placeholders that can be infered. Used in diagnostics only to
1839 /// use inference to provide suggestions for the appropriate type if possible.
1840 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1841     use hir::TyKind::*;
1842     match &ty.kind {
1843         Infer => true,
1844         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1845         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1846         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1847         Def(_, generic_args) => are_suggestable_generic_args(generic_args),
1848         Path(hir::QPath::TypeRelative(ty, segment)) => {
1849             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.generic_args().args)
1850         }
1851         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1852             ty_opt.map_or(false, is_suggestable_infer_ty)
1853                 || segments
1854                     .iter()
1855                     .any(|segment| are_suggestable_generic_args(segment.generic_args().args))
1856         }
1857         _ => false,
1858     }
1859 }
1860
1861 pub fn get_infer_ret_ty(output: &'hir hir::FunctionRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1862     if let hir::FunctionRetTy::Return(ref ty) = output {
1863         if is_suggestable_infer_ty(ty) {
1864             return Some(&**ty);
1865         }
1866     }
1867     None
1868 }
1869
1870 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1871     use rustc_hir::Node::*;
1872     use rustc_hir::*;
1873
1874     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1875
1876     let icx = ItemCtxt::new(tcx, def_id);
1877
1878     match tcx.hir().get(hir_id) {
1879         TraitItem(hir::TraitItem {
1880             kind: TraitItemKind::Method(sig, TraitMethod::Provided(_)),
1881             ident,
1882             generics,
1883             ..
1884         })
1885         | ImplItem(hir::ImplItem { kind: ImplItemKind::Method(sig, _), ident, generics, .. })
1886         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1887             match get_infer_ret_ty(&sig.decl.output) {
1888                 Some(ty) => {
1889                     let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1890                     let mut visitor = PlaceholderHirTyCollector::default();
1891                     visitor.visit_ty(ty);
1892                     let mut diag = bad_placeholder_type(tcx, visitor.0);
1893                     let ret_ty = fn_sig.output();
1894                     if ret_ty != tcx.types.err {
1895                         diag.span_suggestion(
1896                             ty.span,
1897                             "replace with the correct return type",
1898                             ret_ty.to_string(),
1899                             Applicability::MaybeIncorrect,
1900                         );
1901                     }
1902                     diag.emit();
1903                     ty::Binder::bind(fn_sig)
1904                 }
1905                 None => AstConv::ty_of_fn(
1906                     &icx,
1907                     sig.header.unsafety,
1908                     sig.header.abi,
1909                     &sig.decl,
1910                     &generics.params[..],
1911                     Some(ident.span),
1912                 ),
1913             }
1914         }
1915
1916         TraitItem(hir::TraitItem {
1917             kind: TraitItemKind::Method(FnSig { header, decl }, _),
1918             ident,
1919             generics,
1920             ..
1921         }) => AstConv::ty_of_fn(
1922             &icx,
1923             header.unsafety,
1924             header.abi,
1925             decl,
1926             &generics.params[..],
1927             Some(ident.span),
1928         ),
1929
1930         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(ref fn_decl, _, _), .. }) => {
1931             let abi = tcx.hir().get_foreign_abi(hir_id);
1932             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1933         }
1934
1935         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1936             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1937             let inputs =
1938                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1939             ty::Binder::bind(tcx.mk_fn_sig(
1940                 inputs,
1941                 ty,
1942                 false,
1943                 hir::Unsafety::Normal,
1944                 abi::Abi::Rust,
1945             ))
1946         }
1947
1948         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1949             // Closure signatures are not like other function
1950             // signatures and cannot be accessed through `fn_sig`. For
1951             // example, a closure signature excludes the `self`
1952             // argument. In any case they are embedded within the
1953             // closure type as part of the `ClosureSubsts`.
1954             //
1955             // To get
1956             // the signature of a closure, you should use the
1957             // `closure_sig` method on the `ClosureSubsts`:
1958             //
1959             //    closure_substs.sig(def_id, tcx)
1960             //
1961             // or, inside of an inference context, you can use
1962             //
1963             //    infcx.closure_sig(def_id, closure_substs)
1964             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1965         }
1966
1967         x => {
1968             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1969         }
1970     }
1971 }
1972
1973 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1974     let icx = ItemCtxt::new(tcx, def_id);
1975
1976     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1977     match tcx.hir().expect_item(hir_id).kind {
1978         hir::ItemKind::Impl { ref of_trait, .. } => of_trait.as_ref().map(|ast_trait_ref| {
1979             let selfty = tcx.type_of(def_id);
1980             AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1981         }),
1982         _ => bug!(),
1983     }
1984 }
1985
1986 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1987     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1988     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1989     let item = tcx.hir().expect_item(hir_id);
1990     match &item.kind {
1991         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Negative, .. } => {
1992             if is_rustc_reservation {
1993                 tcx.sess.span_err(item.span, "reservation impls can't be negative");
1994             }
1995             ty::ImplPolarity::Negative
1996         }
1997         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Positive, of_trait: None, .. } => {
1998             if is_rustc_reservation {
1999                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
2000             }
2001             ty::ImplPolarity::Positive
2002         }
2003         hir::ItemKind::Impl {
2004             polarity: hir::ImplPolarity::Positive, of_trait: Some(_), ..
2005         } => {
2006             if is_rustc_reservation {
2007                 ty::ImplPolarity::Reservation
2008             } else {
2009                 ty::ImplPolarity::Positive
2010             }
2011         }
2012         ref item => bug!("impl_polarity: {:?} not an impl", item),
2013     }
2014 }
2015
2016 /// Returns the early-bound lifetimes declared in this generics
2017 /// listing. For anything other than fns/methods, this is just all
2018 /// the lifetimes that are declared. For fns or methods, we have to
2019 /// screen out those that do not appear in any where-clauses etc using
2020 /// `resolve_lifetime::early_bound_lifetimes`.
2021 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
2022     tcx: TyCtxt<'tcx>,
2023     generics: &'a hir::Generics<'a>,
2024 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
2025     generics.params.iter().filter(move |param| match param.kind {
2026         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
2027         _ => false,
2028     })
2029 }
2030
2031 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
2032 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
2033 /// inferred constraints concerning which regions outlive other regions.
2034 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2035     debug!("predicates_defined_on({:?})", def_id);
2036     let mut result = tcx.explicit_predicates_of(def_id);
2037     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
2038     let inferred_outlives = tcx.inferred_outlives_of(def_id);
2039     if !inferred_outlives.is_empty() {
2040         debug!(
2041             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
2042             def_id, inferred_outlives,
2043         );
2044         if result.predicates.is_empty() {
2045             result.predicates = inferred_outlives;
2046         } else {
2047             result.predicates = tcx
2048                 .arena
2049                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
2050         }
2051     }
2052     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2053     result
2054 }
2055
2056 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2057 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2058 /// `Self: Trait` predicates for traits.
2059 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2060     let mut result = tcx.predicates_defined_on(def_id);
2061
2062     if tcx.is_trait(def_id) {
2063         // For traits, add `Self: Trait` predicate. This is
2064         // not part of the predicates that a user writes, but it
2065         // is something that one must prove in order to invoke a
2066         // method or project an associated type.
2067         //
2068         // In the chalk setup, this predicate is not part of the
2069         // "predicates" for a trait item. But it is useful in
2070         // rustc because if you directly (e.g.) invoke a trait
2071         // method like `Trait::method(...)`, you must naturally
2072         // prove that the trait applies to the types that were
2073         // used, and adding the predicate into this list ensures
2074         // that this is done.
2075         let span = tcx.def_span(def_id);
2076         result.predicates =
2077             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2078                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(),
2079                 span,
2080             ))));
2081     }
2082     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2083     result
2084 }
2085
2086 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2087 /// N.B., this does not include any implied/inferred constraints.
2088 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2089     use rustc_data_structures::fx::FxHashSet;
2090     use rustc_hir::*;
2091
2092     debug!("explicit_predicates_of(def_id={:?})", def_id);
2093
2094     /// A data structure with unique elements, which preserves order of insertion.
2095     /// Preserving the order of insertion is important here so as not to break
2096     /// compile-fail UI tests.
2097     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
2098     struct UniquePredicates<'tcx> {
2099         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
2100         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
2101     }
2102
2103     impl<'tcx> UniquePredicates<'tcx> {
2104         fn new() -> Self {
2105             UniquePredicates { predicates: vec![], uniques: FxHashSet::default() }
2106         }
2107
2108         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
2109             if self.uniques.insert(value) {
2110                 self.predicates.push(value);
2111             }
2112         }
2113
2114         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
2115             for value in iter {
2116                 self.push(value);
2117             }
2118         }
2119     }
2120
2121     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2122     let node = tcx.hir().get(hir_id);
2123
2124     let mut is_trait = None;
2125     let mut is_default_impl_trait = None;
2126
2127     let icx = ItemCtxt::new(tcx, def_id);
2128     let constness = icx.default_constness_for_trait_bounds();
2129
2130     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
2131
2132     let mut predicates = UniquePredicates::new();
2133
2134     let ast_generics = match node {
2135         Node::TraitItem(item) => &item.generics,
2136
2137         Node::ImplItem(item) => match item.kind {
2138             ImplItemKind::OpaqueTy(ref bounds) => {
2139                 ty::print::with_no_queries(|| {
2140                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2141                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2142                     debug!(
2143                         "explicit_predicates_of({:?}): created opaque type {:?}",
2144                         def_id, opaque_ty
2145                     );
2146
2147                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2148                     let bounds = AstConv::compute_bounds(
2149                         &icx,
2150                         opaque_ty,
2151                         bounds,
2152                         SizedByDefault::Yes,
2153                         tcx.def_span(def_id),
2154                     );
2155
2156                     predicates.extend(bounds.predicates(tcx, opaque_ty));
2157                     &item.generics
2158                 })
2159             }
2160             _ => &item.generics,
2161         },
2162
2163         Node::Item(item) => {
2164             match item.kind {
2165                 ItemKind::Impl { defaultness, ref generics, .. } => {
2166                     if defaultness.is_default() {
2167                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2168                     }
2169                     generics
2170                 }
2171                 ItemKind::Fn(.., ref generics, _)
2172                 | ItemKind::TyAlias(_, ref generics)
2173                 | ItemKind::Enum(_, ref generics)
2174                 | ItemKind::Struct(_, ref generics)
2175                 | ItemKind::Union(_, ref generics) => generics,
2176
2177                 ItemKind::Trait(_, _, ref generics, .., items) => {
2178                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2179                     generics
2180                 }
2181                 ItemKind::TraitAlias(ref generics, _) => {
2182                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &[]));
2183                     generics
2184                 }
2185                 ItemKind::OpaqueTy(OpaqueTy {
2186                     ref bounds,
2187                     impl_trait_fn,
2188                     ref generics,
2189                     origin: _,
2190                 }) => {
2191                     let bounds_predicates = ty::print::with_no_queries(|| {
2192                         let substs = InternalSubsts::identity_for_item(tcx, def_id);
2193                         let opaque_ty = tcx.mk_opaque(def_id, substs);
2194
2195                         // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2196                         let bounds = AstConv::compute_bounds(
2197                             &icx,
2198                             opaque_ty,
2199                             bounds,
2200                             SizedByDefault::Yes,
2201                             tcx.def_span(def_id),
2202                         );
2203
2204                         bounds.predicates(tcx, opaque_ty)
2205                     });
2206                     if impl_trait_fn.is_some() {
2207                         // opaque types
2208                         return ty::GenericPredicates {
2209                             parent: None,
2210                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
2211                         };
2212                     } else {
2213                         // named opaque types
2214                         predicates.extend(bounds_predicates);
2215                         generics
2216                     }
2217                 }
2218
2219                 _ => NO_GENERICS,
2220             }
2221         }
2222
2223         Node::ForeignItem(item) => match item.kind {
2224             ForeignItemKind::Static(..) => NO_GENERICS,
2225             ForeignItemKind::Fn(_, _, ref generics) => generics,
2226             ForeignItemKind::Type => NO_GENERICS,
2227         },
2228
2229         _ => NO_GENERICS,
2230     };
2231
2232     let generics = tcx.generics_of(def_id);
2233     let parent_count = generics.parent_count as u32;
2234     let has_own_self = generics.has_self && parent_count == 0;
2235
2236     // Below we'll consider the bounds on the type parameters (including `Self`)
2237     // and the explicit where-clauses, but to get the full set of predicates
2238     // on a trait we need to add in the supertrait bounds and bounds found on
2239     // associated types.
2240     if let Some((_trait_ref, _)) = is_trait {
2241         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2242     }
2243
2244     // In default impls, we can assume that the self type implements
2245     // the trait. So in:
2246     //
2247     //     default impl Foo for Bar { .. }
2248     //
2249     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2250     // (see below). Recall that a default impl is not itself an impl, but rather a
2251     // set of defaults that can be incorporated into another impl.
2252     if let Some(trait_ref) = is_default_impl_trait {
2253         predicates.push((
2254             trait_ref.to_poly_trait_ref().without_const().to_predicate(),
2255             tcx.def_span(def_id),
2256         ));
2257     }
2258
2259     // Collect the region predicates that were declared inline as
2260     // well. In the case of parameters declared on a fn or method, we
2261     // have to be careful to only iterate over early-bound regions.
2262     let mut index = parent_count + has_own_self as u32;
2263     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2264         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2265             def_id: tcx.hir().local_def_id(param.hir_id),
2266             index,
2267             name: param.name.ident().name,
2268         }));
2269         index += 1;
2270
2271         match param.kind {
2272             GenericParamKind::Lifetime { .. } => {
2273                 param.bounds.iter().for_each(|bound| match bound {
2274                     hir::GenericBound::Outlives(lt) => {
2275                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2276                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2277                         predicates.push((outlives.to_predicate(), lt.span));
2278                     }
2279                     _ => bug!(),
2280                 });
2281             }
2282             _ => bug!(),
2283         }
2284     }
2285
2286     // Collect the predicates that were written inline by the user on each
2287     // type parameter (e.g., `<T: Foo>`).
2288     for param in ast_generics.params {
2289         if let GenericParamKind::Type { .. } = param.kind {
2290             let name = param.name.ident().name;
2291             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2292             index += 1;
2293
2294             let sized = SizedByDefault::Yes;
2295             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2296             predicates.extend(bounds.predicates(tcx, param_ty));
2297         }
2298     }
2299
2300     // Add in the bounds that appear in the where-clause.
2301     let where_clause = &ast_generics.where_clause;
2302     for predicate in where_clause.predicates {
2303         match predicate {
2304             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2305                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2306
2307                 // Keep the type around in a dummy predicate, in case of no bounds.
2308                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2309                 // is still checked for WF.
2310                 if bound_pred.bounds.is_empty() {
2311                     if let ty::Param(_) = ty.kind {
2312                         // This is a `where T:`, which can be in the HIR from the
2313                         // transformation that moves `?Sized` to `T`'s declaration.
2314                         // We can skip the predicate because type parameters are
2315                         // trivially WF, but also we *should*, to avoid exposing
2316                         // users who never wrote `where Type:,` themselves, to
2317                         // compiler/tooling bugs from not handling WF predicates.
2318                     } else {
2319                         let span = bound_pred.bounded_ty.span;
2320                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2321                         predicates.push((
2322                             ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)),
2323                             span,
2324                         ));
2325                     }
2326                 }
2327
2328                 for bound in bound_pred.bounds.iter() {
2329                     match bound {
2330                         &hir::GenericBound::Trait(ref poly_trait_ref, modifier) => {
2331                             let constness = match modifier {
2332                                 hir::TraitBoundModifier::MaybeConst => ast::Constness::NotConst,
2333                                 hir::TraitBoundModifier::None => constness,
2334                                 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
2335                             };
2336
2337                             let mut bounds = Bounds::default();
2338                             let _ = AstConv::instantiate_poly_trait_ref(
2339                                 &icx,
2340                                 poly_trait_ref,
2341                                 constness,
2342                                 ty,
2343                                 &mut bounds,
2344                             );
2345                             predicates.extend(bounds.predicates(tcx, ty));
2346                         }
2347
2348                         &hir::GenericBound::Outlives(ref lifetime) => {
2349                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2350                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2351                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2352                         }
2353                     }
2354                 }
2355             }
2356
2357             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2358                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2359                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2360                     let (r2, span) = match bound {
2361                         hir::GenericBound::Outlives(lt) => {
2362                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2363                         }
2364                         _ => bug!(),
2365                     };
2366                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2367
2368                     (ty::Predicate::RegionOutlives(pred), span)
2369                 }))
2370             }
2371
2372             &hir::WherePredicate::EqPredicate(..) => {
2373                 // FIXME(#20041)
2374             }
2375         }
2376     }
2377
2378     // Add predicates from associated type bounds.
2379     if let Some((self_trait_ref, trait_items)) = is_trait {
2380         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2381             associated_item_predicates(tcx, def_id, self_trait_ref, trait_item_ref)
2382         }))
2383     }
2384
2385     let mut predicates = predicates.predicates;
2386
2387     // Subtle: before we store the predicates into the tcx, we
2388     // sort them so that predicates like `T: Foo<Item=U>` come
2389     // before uses of `U`.  This avoids false ambiguity errors
2390     // in trait checking. See `setup_constraining_predicates`
2391     // for details.
2392     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2393         let self_ty = tcx.type_of(def_id);
2394         let trait_ref = tcx.impl_trait_ref(def_id);
2395         cgp::setup_constraining_predicates(
2396             tcx,
2397             &mut predicates,
2398             trait_ref,
2399             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2400         );
2401     }
2402
2403     let result = ty::GenericPredicates {
2404         parent: generics.parent,
2405         predicates: tcx.arena.alloc_from_iter(predicates),
2406     };
2407     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2408     result
2409 }
2410
2411 fn associated_item_predicates(
2412     tcx: TyCtxt<'tcx>,
2413     def_id: DefId,
2414     self_trait_ref: ty::TraitRef<'tcx>,
2415     trait_item_ref: &hir::TraitItemRef,
2416 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2417     let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2418     let item_def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
2419     let bounds = match trait_item.kind {
2420         hir::TraitItemKind::Type(ref bounds, _) => bounds,
2421         _ => return Vec::new(),
2422     };
2423
2424     let is_gat = !tcx.generics_of(item_def_id).params.is_empty();
2425
2426     let mut had_error = false;
2427
2428     let mut unimplemented_error = |arg_kind: &str| {
2429         if !had_error {
2430             tcx.sess
2431                 .struct_span_err(
2432                     trait_item.span,
2433                     &format!("{}-generic associated types are not yet implemented", arg_kind),
2434                 )
2435                 .note("for more information, see https://github.com/rust-lang/rust/issues/44265")
2436                 .emit();
2437             had_error = true;
2438         }
2439     };
2440
2441     let mk_bound_param = |param: &ty::GenericParamDef, _: &_| {
2442         match param.kind {
2443             ty::GenericParamDefKind::Lifetime => tcx
2444                 .mk_region(ty::RegionKind::ReLateBound(
2445                     ty::INNERMOST,
2446                     ty::BoundRegion::BrNamed(param.def_id, param.name),
2447                 ))
2448                 .into(),
2449             // FIXME(generic_associated_types): Use bound types and constants
2450             // once they are handled by the trait system.
2451             ty::GenericParamDefKind::Type { .. } => {
2452                 unimplemented_error("type");
2453                 tcx.types.err.into()
2454             }
2455             ty::GenericParamDefKind::Const => {
2456                 unimplemented_error("const");
2457                 tcx.consts.err.into()
2458             }
2459         }
2460     };
2461
2462     let bound_substs = if is_gat {
2463         // Given:
2464         //
2465         // trait X<'a, B, const C: usize> {
2466         //     type T<'d, E, const F: usize>: Default;
2467         // }
2468         //
2469         // We need to create predicates on the trait:
2470         //
2471         // for<'d, E, const F: usize>
2472         // <Self as X<'a, B, const C: usize>>::T<'d, E, const F: usize>: Sized + Default
2473         //
2474         // We substitute escaping bound parameters for the generic
2475         // arguments to the associated type which are then bound by
2476         // the `Binder` around the the predicate.
2477         //
2478         // FIXME(generic_associated_types): Currently only lifetimes are handled.
2479         self_trait_ref.substs.extend_to(tcx, item_def_id, mk_bound_param)
2480     } else {
2481         self_trait_ref.substs
2482     };
2483
2484     let assoc_ty = tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id), bound_substs);
2485
2486     let bounds = AstConv::compute_bounds(
2487         &ItemCtxt::new(tcx, def_id),
2488         assoc_ty,
2489         bounds,
2490         SizedByDefault::Yes,
2491         trait_item.span,
2492     );
2493
2494     let predicates = bounds.predicates(tcx, assoc_ty);
2495
2496     if is_gat {
2497         // We use shifts to get the regions that we're substituting to
2498         // be bound by the binders in the `Predicate`s rather that
2499         // escaping.
2500         let shifted_in = ty::fold::shift_vars(tcx, &predicates, 1);
2501         let substituted = shifted_in.subst(tcx, bound_substs);
2502         ty::fold::shift_out_vars(tcx, &substituted, 1)
2503     } else {
2504         predicates
2505     }
2506 }
2507
2508 /// Converts a specific `GenericBound` from the AST into a set of
2509 /// predicates that apply to the self type. A vector is returned
2510 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2511 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2512 /// and `<T as Bar>::X == i32`).
2513 fn predicates_from_bound<'tcx>(
2514     astconv: &dyn AstConv<'tcx>,
2515     param_ty: Ty<'tcx>,
2516     bound: &'tcx hir::GenericBound<'tcx>,
2517     constness: ast::Constness,
2518 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2519     match *bound {
2520         hir::GenericBound::Trait(ref tr, modifier) => {
2521             let constness = match modifier {
2522                 hir::TraitBoundModifier::Maybe => return vec![],
2523                 hir::TraitBoundModifier::MaybeConst => ast::Constness::NotConst,
2524                 hir::TraitBoundModifier::None => constness,
2525             };
2526
2527             let mut bounds = Bounds::default();
2528             let _ = astconv.instantiate_poly_trait_ref(tr, constness, param_ty, &mut bounds);
2529             bounds.predicates(astconv.tcx(), param_ty)
2530         }
2531         hir::GenericBound::Outlives(ref lifetime) => {
2532             let region = astconv.ast_region_to_region(lifetime, None);
2533             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2534             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2535         }
2536     }
2537 }
2538
2539 fn compute_sig_of_foreign_fn_decl<'tcx>(
2540     tcx: TyCtxt<'tcx>,
2541     def_id: DefId,
2542     decl: &'tcx hir::FnDecl<'tcx>,
2543     abi: abi::Abi,
2544 ) -> ty::PolyFnSig<'tcx> {
2545     let unsafety = if abi == abi::Abi::RustIntrinsic {
2546         intrinsic_operation_unsafety(&tcx.item_name(def_id).as_str())
2547     } else {
2548         hir::Unsafety::Unsafe
2549     };
2550     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl, &[], None);
2551
2552     // Feature gate SIMD types in FFI, since I am not sure that the
2553     // ABIs are handled at all correctly. -huonw
2554     if abi != abi::Abi::RustIntrinsic
2555         && abi != abi::Abi::PlatformIntrinsic
2556         && !tcx.features().simd_ffi
2557     {
2558         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2559             if ty.is_simd() {
2560                 tcx.sess
2561                     .struct_span_err(
2562                         ast_ty.span,
2563                         &format!(
2564                             "use of SIMD type `{}` in FFI is highly experimental and \
2565                             may result in invalid code",
2566                             tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2567                         ),
2568                     )
2569                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2570                     .emit();
2571             }
2572         };
2573         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2574             check(&input, ty)
2575         }
2576         if let hir::FunctionRetTy::Return(ref ty) = decl.output {
2577             check(&ty, *fty.output().skip_binder())
2578         }
2579     }
2580
2581     fty
2582 }
2583
2584 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2585     match tcx.hir().get_if_local(def_id) {
2586         Some(Node::ForeignItem(..)) => true,
2587         Some(_) => false,
2588         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2589     }
2590 }
2591
2592 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2593     match tcx.hir().get_if_local(def_id) {
2594         Some(Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. }))
2595         | Some(Node::ForeignItem(&hir::ForeignItem {
2596             kind: hir::ForeignItemKind::Static(_, mutbl),
2597             ..
2598         })) => Some(mutbl),
2599         Some(_) => None,
2600         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2601     }
2602 }
2603
2604 fn from_target_feature(
2605     tcx: TyCtxt<'_>,
2606     id: DefId,
2607     attr: &ast::Attribute,
2608     whitelist: &FxHashMap<String, Option<Symbol>>,
2609     target_features: &mut Vec<Symbol>,
2610 ) {
2611     let list = match attr.meta_item_list() {
2612         Some(list) => list,
2613         None => return,
2614     };
2615     let bad_item = |span| {
2616         let msg = "malformed `target_feature` attribute input";
2617         let code = "enable = \"..\"".to_owned();
2618         tcx.sess
2619             .struct_span_err(span, &msg)
2620             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2621             .emit();
2622     };
2623     let rust_features = tcx.features();
2624     for item in list {
2625         // Only `enable = ...` is accepted in the meta-item list.
2626         if !item.check_name(sym::enable) {
2627             bad_item(item.span());
2628             continue;
2629         }
2630
2631         // Must be of the form `enable = "..."` (a string).
2632         let value = match item.value_str() {
2633             Some(value) => value,
2634             None => {
2635                 bad_item(item.span());
2636                 continue;
2637             }
2638         };
2639
2640         // We allow comma separation to enable multiple features.
2641         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2642             // Only allow whitelisted features per platform.
2643             let feature_gate = match whitelist.get(feature) {
2644                 Some(g) => g,
2645                 None => {
2646                     let msg =
2647                         format!("the feature named `{}` is not valid for this target", feature);
2648                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2649                     err.span_label(
2650                         item.span(),
2651                         format!("`{}` is not valid for this target", feature),
2652                     );
2653                     if feature.starts_with("+") {
2654                         let valid = whitelist.contains_key(&feature[1..]);
2655                         if valid {
2656                             err.help("consider removing the leading `+` in the feature name");
2657                         }
2658                     }
2659                     err.emit();
2660                     return None;
2661                 }
2662             };
2663
2664             // Only allow features whose feature gates have been enabled.
2665             let allowed = match feature_gate.as_ref().map(|s| *s) {
2666                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2667                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2668                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2669                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2670                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2671                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2672                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2673                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2674                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2675                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2676                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2677                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2678                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2679                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2680                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2681                 Some(name) => bug!("unknown target feature gate {}", name),
2682                 None => true,
2683             };
2684             if !allowed && id.is_local() {
2685                 feature_err(
2686                     &tcx.sess.parse_sess,
2687                     feature_gate.unwrap(),
2688                     item.span(),
2689                     &format!("the target feature `{}` is currently unstable", feature),
2690                 )
2691                 .emit();
2692             }
2693             Some(Symbol::intern(feature))
2694         }));
2695     }
2696 }
2697
2698 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2699     use rustc::mir::mono::Linkage::*;
2700
2701     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2702     // applicable to variable declarations and may not really make sense for
2703     // Rust code in the first place but whitelist them anyway and trust that
2704     // the user knows what s/he's doing. Who knows, unanticipated use cases
2705     // may pop up in the future.
2706     //
2707     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2708     // and don't have to be, LLVM treats them as no-ops.
2709     match name {
2710         "appending" => Appending,
2711         "available_externally" => AvailableExternally,
2712         "common" => Common,
2713         "extern_weak" => ExternalWeak,
2714         "external" => External,
2715         "internal" => Internal,
2716         "linkonce" => LinkOnceAny,
2717         "linkonce_odr" => LinkOnceODR,
2718         "private" => Private,
2719         "weak" => WeakAny,
2720         "weak_odr" => WeakODR,
2721         _ => {
2722             let span = tcx.hir().span_if_local(def_id);
2723             if let Some(span) = span {
2724                 tcx.sess.span_fatal(span, "invalid linkage specified")
2725             } else {
2726                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2727             }
2728         }
2729     }
2730 }
2731
2732 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2733     let attrs = tcx.get_attrs(id);
2734
2735     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2736
2737     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2738
2739     let mut inline_span = None;
2740     let mut link_ordinal_span = None;
2741     for attr in attrs.iter() {
2742         if attr.check_name(sym::cold) {
2743             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2744         } else if attr.check_name(sym::rustc_allocator) {
2745             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2746         } else if attr.check_name(sym::unwind) {
2747             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2748         } else if attr.check_name(sym::ffi_returns_twice) {
2749             if tcx.is_foreign_item(id) {
2750                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2751             } else {
2752                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2753                 struct_span_err!(
2754                     tcx.sess,
2755                     attr.span,
2756                     E0724,
2757                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2758                 )
2759                 .emit();
2760             }
2761         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2762             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2763         } else if attr.check_name(sym::naked) {
2764             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2765         } else if attr.check_name(sym::no_mangle) {
2766             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2767         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2768             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2769         } else if attr.check_name(sym::no_debug) {
2770             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2771         } else if attr.check_name(sym::used) {
2772             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2773         } else if attr.check_name(sym::thread_local) {
2774             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2775         } else if attr.check_name(sym::track_caller) {
2776             if tcx.fn_sig(id).abi() != abi::Abi::Rust {
2777                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2778                     .emit();
2779             }
2780             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2781         } else if attr.check_name(sym::export_name) {
2782             if let Some(s) = attr.value_str() {
2783                 if s.as_str().contains("\0") {
2784                     // `#[export_name = ...]` will be converted to a null-terminated string,
2785                     // so it may not contain any null characters.
2786                     struct_span_err!(
2787                         tcx.sess,
2788                         attr.span,
2789                         E0648,
2790                         "`export_name` may not contain null characters"
2791                     )
2792                     .emit();
2793                 }
2794                 codegen_fn_attrs.export_name = Some(s);
2795             }
2796         } else if attr.check_name(sym::target_feature) {
2797             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2798                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2799                 tcx.sess
2800                     .struct_span_err(attr.span, msg)
2801                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2802                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2803                     .emit();
2804             }
2805             from_target_feature(tcx, id, attr, &whitelist, &mut codegen_fn_attrs.target_features);
2806         } else if attr.check_name(sym::linkage) {
2807             if let Some(val) = attr.value_str() {
2808                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2809             }
2810         } else if attr.check_name(sym::link_section) {
2811             if let Some(val) = attr.value_str() {
2812                 if val.as_str().bytes().any(|b| b == 0) {
2813                     let msg = format!(
2814                         "illegal null byte in link_section \
2815                          value: `{}`",
2816                         &val
2817                     );
2818                     tcx.sess.span_err(attr.span, &msg);
2819                 } else {
2820                     codegen_fn_attrs.link_section = Some(val);
2821                 }
2822             }
2823         } else if attr.check_name(sym::link_name) {
2824             codegen_fn_attrs.link_name = attr.value_str();
2825         } else if attr.check_name(sym::link_ordinal) {
2826             link_ordinal_span = Some(attr.span);
2827             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2828                 codegen_fn_attrs.link_ordinal = ordinal;
2829             }
2830         }
2831     }
2832
2833     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2834         if !attr.has_name(sym::inline) {
2835             return ia;
2836         }
2837         match attr.meta().map(|i| i.kind) {
2838             Some(MetaItemKind::Word) => {
2839                 mark_used(attr);
2840                 InlineAttr::Hint
2841             }
2842             Some(MetaItemKind::List(ref items)) => {
2843                 mark_used(attr);
2844                 inline_span = Some(attr.span);
2845                 if items.len() != 1 {
2846                     struct_span_err!(
2847                         tcx.sess.diagnostic(),
2848                         attr.span,
2849                         E0534,
2850                         "expected one argument"
2851                     )
2852                     .emit();
2853                     InlineAttr::None
2854                 } else if list_contains_name(&items[..], sym::always) {
2855                     InlineAttr::Always
2856                 } else if list_contains_name(&items[..], sym::never) {
2857                     InlineAttr::Never
2858                 } else {
2859                     struct_span_err!(
2860                         tcx.sess.diagnostic(),
2861                         items[0].span(),
2862                         E0535,
2863                         "invalid argument"
2864                     )
2865                     .emit();
2866
2867                     InlineAttr::None
2868                 }
2869             }
2870             Some(MetaItemKind::NameValue(_)) => ia,
2871             None => ia,
2872         }
2873     });
2874
2875     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2876         if !attr.has_name(sym::optimize) {
2877             return ia;
2878         }
2879         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
2880         match attr.meta().map(|i| i.kind) {
2881             Some(MetaItemKind::Word) => {
2882                 err(attr.span, "expected one argument");
2883                 ia
2884             }
2885             Some(MetaItemKind::List(ref items)) => {
2886                 mark_used(attr);
2887                 inline_span = Some(attr.span);
2888                 if items.len() != 1 {
2889                     err(attr.span, "expected one argument");
2890                     OptimizeAttr::None
2891                 } else if list_contains_name(&items[..], sym::size) {
2892                     OptimizeAttr::Size
2893                 } else if list_contains_name(&items[..], sym::speed) {
2894                     OptimizeAttr::Speed
2895                 } else {
2896                     err(items[0].span(), "invalid argument");
2897                     OptimizeAttr::None
2898                 }
2899             }
2900             Some(MetaItemKind::NameValue(_)) => ia,
2901             None => ia,
2902         }
2903     });
2904
2905     // If a function uses #[target_feature] it can't be inlined into general
2906     // purpose functions as they wouldn't have the right target features
2907     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2908     // respected.
2909
2910     if codegen_fn_attrs.target_features.len() > 0 {
2911         if codegen_fn_attrs.inline == InlineAttr::Always {
2912             if let Some(span) = inline_span {
2913                 tcx.sess.span_err(
2914                     span,
2915                     "cannot use `#[inline(always)]` with \
2916                      `#[target_feature]`",
2917                 );
2918             }
2919         }
2920     }
2921
2922     // Weak lang items have the same semantics as "std internal" symbols in the
2923     // sense that they're preserved through all our LTO passes and only
2924     // strippable by the linker.
2925     //
2926     // Additionally weak lang items have predetermined symbol names.
2927     if tcx.is_weak_lang_item(id) {
2928         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2929     }
2930     if let Some(name) = weak_lang_items::link_name(&attrs) {
2931         codegen_fn_attrs.export_name = Some(name);
2932         codegen_fn_attrs.link_name = Some(name);
2933     }
2934     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2935
2936     // Internal symbols to the standard library all have no_mangle semantics in
2937     // that they have defined symbol names present in the function name. This
2938     // also applies to weak symbols where they all have known symbol names.
2939     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2940         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2941     }
2942
2943     codegen_fn_attrs
2944 }
2945
2946 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2947     use syntax::ast::{Lit, LitIntType, LitKind};
2948     let meta_item_list = attr.meta_item_list();
2949     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2950     let sole_meta_list = match meta_item_list {
2951         Some([item]) => item.literal(),
2952         _ => None,
2953     };
2954     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2955         if *ordinal <= std::usize::MAX as u128 {
2956             Some(*ordinal as usize)
2957         } else {
2958             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
2959             tcx.sess
2960                 .struct_span_err(attr.span, &msg)
2961                 .note("the value may not exceed `std::usize::MAX`")
2962                 .emit();
2963             None
2964         }
2965     } else {
2966         tcx.sess
2967             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
2968             .note("an unsuffixed integer value, e.g., `1`, is expected")
2969             .emit();
2970         None
2971     }
2972 }
2973
2974 fn check_link_name_xor_ordinal(
2975     tcx: TyCtxt<'_>,
2976     codegen_fn_attrs: &CodegenFnAttrs,
2977     inline_span: Option<Span>,
2978 ) {
2979     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
2980         return;
2981     }
2982     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
2983     if let Some(span) = inline_span {
2984         tcx.sess.span_err(span, msg);
2985     } else {
2986         tcx.sess.err(msg);
2987     }
2988 }