]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Rollup merge of #69005 - ecstatic-morse:unified-dataflow-graphviz, r=wesleywiser
[rust.git] / src / librustc_typeck / collect.rs
1 // ignore-tidy-filelength
2
3 //! "Collection" is the process of determining the type and other external
4 //! details of each item in Rust. Collection is specifically concerned
5 //! with *inter-procedural* things -- for example, for a function
6 //! definition, collection will figure out the type and signature of the
7 //! function, but it will not visit the *body* of the function in any way,
8 //! nor examine type annotations on local variables (that's the job of
9 //! type *checking*).
10 //!
11 //! Collecting is ultimately defined by a bundle of queries that
12 //! inquire after various facts about the items in the crate (e.g.,
13 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
14 //! for the full set.
15 //!
16 //! At present, however, we do run collection across all items in the
17 //! crate as a kind of pass. This should eventually be factored away.
18
19 use crate::astconv::{AstConv, Bounds, SizedByDefault};
20 use crate::check::intrinsic::intrinsic_operation_unsafety;
21 use crate::constrained_generic_params as cgp;
22 use crate::lint;
23 use crate::middle::resolve_lifetime as rl;
24 use crate::middle::weak_lang_items;
25 use rustc::hir::map::blocks::FnLikeNode;
26 use rustc::hir::map::Map;
27 use rustc::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
28 use rustc::mir::mono::Linkage;
29 use rustc::session::parse::feature_err;
30 use rustc::traits;
31 use rustc::ty::query::Providers;
32 use rustc::ty::subst::GenericArgKind;
33 use rustc::ty::subst::{InternalSubsts, Subst};
34 use rustc::ty::util::Discr;
35 use rustc::ty::util::IntTypeExt;
36 use rustc::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, WithConstness};
37 use rustc::ty::{ReprOptions, ToPredicate};
38 use rustc_attr::{list_contains_name, mark_used, InlineAttr, OptimizeAttr};
39 use rustc_data_structures::captures::Captures;
40 use rustc_data_structures::fx::FxHashMap;
41 use rustc_errors::{struct_span_err, Applicability, StashKey};
42 use rustc_hir as hir;
43 use rustc_hir::def::{CtorKind, DefKind, Res};
44 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
45 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
46 use rustc_hir::{GenericParamKind, Node, Unsafety};
47 use rustc_span::symbol::{kw, sym, Symbol};
48 use rustc_span::{Span, DUMMY_SP};
49 use rustc_target::spec::abi;
50 use syntax::ast;
51 use syntax::ast::{Ident, MetaItemKind};
52
53 struct OnlySelfBounds(bool);
54
55 ///////////////////////////////////////////////////////////////////////////
56 // Main entry point
57
58 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
59     tcx.hir().visit_item_likes_in_module(
60         module_def_id,
61         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
62     );
63 }
64
65 pub fn provide(providers: &mut Providers<'_>) {
66     *providers = Providers {
67         type_of,
68         generics_of,
69         predicates_of,
70         predicates_defined_on,
71         explicit_predicates_of,
72         super_predicates_of,
73         type_param_predicates,
74         trait_def,
75         adt_def,
76         fn_sig,
77         impl_trait_ref,
78         impl_polarity,
79         is_foreign_item,
80         static_mutability,
81         codegen_fn_attrs,
82         collect_mod_item_types,
83         ..*providers
84     };
85 }
86
87 ///////////////////////////////////////////////////////////////////////////
88
89 /// Context specific to some particular item. This is what implements
90 /// `AstConv`. It has information about the predicates that are defined
91 /// on the trait. Unfortunately, this predicate information is
92 /// available in various different forms at various points in the
93 /// process. So we can't just store a pointer to e.g., the AST or the
94 /// parsed ty form, we have to be more flexible. To this end, the
95 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
96 /// `get_type_parameter_bounds` requests, drawing the information from
97 /// the AST (`hir::Generics`), recursively.
98 pub struct ItemCtxt<'tcx> {
99     tcx: TyCtxt<'tcx>,
100     item_def_id: DefId,
101 }
102
103 ///////////////////////////////////////////////////////////////////////////
104
105 #[derive(Default)]
106 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
107
108 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
109     type Map = Map<'v>;
110
111     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
112         NestedVisitorMap::None
113     }
114     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
115         if let hir::TyKind::Infer = t.kind {
116             self.0.push(t.span);
117         }
118         intravisit::walk_ty(self, t)
119     }
120 }
121
122 struct CollectItemTypesVisitor<'tcx> {
123     tcx: TyCtxt<'tcx>,
124 }
125
126 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
127 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
128 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
129 crate fn placeholder_type_error(
130     tcx: TyCtxt<'tcx>,
131     span: Span,
132     generics: &[hir::GenericParam<'_>],
133     placeholder_types: Vec<Span>,
134     suggest: bool,
135 ) {
136     if placeholder_types.is_empty() {
137         return;
138     }
139     // This is the whitelist of possible parameter names that we might suggest.
140     let possible_names = ["T", "K", "L", "A", "B", "C"];
141     let used_names = generics
142         .iter()
143         .filter_map(|p| match p.name {
144             hir::ParamName::Plain(ident) => Some(ident.name),
145             _ => None,
146         })
147         .collect::<Vec<_>>();
148
149     let type_name = possible_names
150         .iter()
151         .find(|n| !used_names.contains(&Symbol::intern(n)))
152         .unwrap_or(&"ParamName");
153
154     let mut sugg: Vec<_> =
155         placeholder_types.iter().map(|sp| (*sp, type_name.to_string())).collect();
156     if generics.is_empty() {
157         sugg.push((span, format!("<{}>", type_name)));
158     } else if let Some(arg) = generics.iter().find(|arg| match arg.name {
159         hir::ParamName::Plain(Ident { name: kw::Underscore, .. }) => true,
160         _ => false,
161     }) {
162         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
163         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
164         sugg.push((arg.span, format!("{}", type_name)));
165     } else {
166         sugg.push((
167             generics.iter().last().unwrap().span.shrink_to_hi(),
168             format!(", {}", type_name),
169         ));
170     }
171     let mut err = bad_placeholder_type(tcx, placeholder_types);
172     if suggest {
173         err.multipart_suggestion(
174             "use type parameters instead",
175             sugg,
176             Applicability::HasPlaceholders,
177         );
178     }
179     err.emit();
180 }
181
182 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
183     let (generics, suggest) = match &item.kind {
184         hir::ItemKind::Union(_, generics)
185         | hir::ItemKind::Enum(_, generics)
186         | hir::ItemKind::TraitAlias(generics, _)
187         | hir::ItemKind::Trait(_, _, generics, ..)
188         | hir::ItemKind::Impl { generics, .. }
189         | hir::ItemKind::Struct(_, generics) => (generics, true),
190         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
191         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
192         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
193         _ => return,
194     };
195
196     let mut visitor = PlaceholderHirTyCollector::default();
197     visitor.visit_item(item);
198
199     placeholder_type_error(tcx, generics.span, &generics.params[..], visitor.0, suggest);
200 }
201
202 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
203     type Map = Map<'tcx>;
204
205     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
206         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
207     }
208
209     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
210         convert_item(self.tcx, item.hir_id);
211         reject_placeholder_type_signatures_in_item(self.tcx, item);
212         intravisit::walk_item(self, item);
213     }
214
215     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
216         for param in generics.params {
217             match param.kind {
218                 hir::GenericParamKind::Lifetime { .. } => {}
219                 hir::GenericParamKind::Type { default: Some(_), .. } => {
220                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
221                     self.tcx.type_of(def_id);
222                 }
223                 hir::GenericParamKind::Type { .. } => {}
224                 hir::GenericParamKind::Const { .. } => {
225                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
226                     self.tcx.type_of(def_id);
227                 }
228             }
229         }
230         intravisit::walk_generics(self, generics);
231     }
232
233     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
234         if let hir::ExprKind::Closure(..) = expr.kind {
235             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
236             self.tcx.generics_of(def_id);
237             self.tcx.type_of(def_id);
238         }
239         intravisit::walk_expr(self, expr);
240     }
241
242     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
243         convert_trait_item(self.tcx, trait_item.hir_id);
244         intravisit::walk_trait_item(self, trait_item);
245     }
246
247     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
248         convert_impl_item(self.tcx, impl_item.hir_id);
249         intravisit::walk_impl_item(self, impl_item);
250     }
251 }
252
253 ///////////////////////////////////////////////////////////////////////////
254 // Utility types and common code for the above passes.
255
256 fn bad_placeholder_type(
257     tcx: TyCtxt<'tcx>,
258     mut spans: Vec<Span>,
259 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
260     spans.sort();
261     let mut err = struct_span_err!(
262         tcx.sess,
263         spans.clone(),
264         E0121,
265         "the type placeholder `_` is not allowed within types on item signatures",
266     );
267     for span in spans {
268         err.span_label(span, "not allowed in type signatures");
269     }
270     err
271 }
272
273 impl ItemCtxt<'tcx> {
274     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
275         ItemCtxt { tcx, item_def_id }
276     }
277
278     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty<'tcx>) -> Ty<'tcx> {
279         AstConv::ast_ty_to_ty(self, ast_ty)
280     }
281 }
282
283 impl AstConv<'tcx> for ItemCtxt<'tcx> {
284     fn tcx(&self) -> TyCtxt<'tcx> {
285         self.tcx
286     }
287
288     fn item_def_id(&self) -> Option<DefId> {
289         Some(self.item_def_id)
290     }
291
292     fn default_constness_for_trait_bounds(&self) -> ast::Constness {
293         // FIXME: refactor this into a method
294         let hir_id = self
295             .tcx
296             .hir()
297             .as_local_hir_id(self.item_def_id)
298             .expect("Non-local call to local provider is_const_fn");
299
300         let node = self.tcx.hir().get(hir_id);
301         if let Some(fn_like) = FnLikeNode::from_node(node) {
302             fn_like.constness()
303         } else {
304             ast::Constness::NotConst
305         }
306     }
307
308     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
309         self.tcx.at(span).type_param_predicates((self.item_def_id, def_id))
310     }
311
312     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
313         None
314     }
315
316     fn allow_ty_infer(&self) -> bool {
317         false
318     }
319
320     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
321         self.tcx().sess.delay_span_bug(span, "bad placeholder type");
322         self.tcx().types.err
323     }
324
325     fn ct_infer(
326         &self,
327         _: Ty<'tcx>,
328         _: Option<&ty::GenericParamDef>,
329         span: Span,
330     ) -> &'tcx Const<'tcx> {
331         bad_placeholder_type(self.tcx(), vec![span]).emit();
332
333         self.tcx().consts.err
334     }
335
336     fn projected_ty_from_poly_trait_ref(
337         &self,
338         span: Span,
339         item_def_id: DefId,
340         item_segment: &hir::PathSegment<'_>,
341         poly_trait_ref: ty::PolyTraitRef<'tcx>,
342     ) -> Ty<'tcx> {
343         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
344             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
345                 self,
346                 self.tcx,
347                 span,
348                 item_def_id,
349                 item_segment,
350                 trait_ref.substs,
351             );
352             self.tcx().mk_projection(item_def_id, item_substs)
353         } else {
354             // There are no late-bound regions; we can just ignore the binder.
355             struct_span_err!(
356                 self.tcx().sess,
357                 span,
358                 E0212,
359                 "cannot extract an associated type from a higher-ranked trait bound \
360                  in this context"
361             )
362             .emit();
363             self.tcx().types.err
364         }
365     }
366
367     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
368         // Types in item signatures are not normalized to avoid undue dependencies.
369         ty
370     }
371
372     fn set_tainted_by_errors(&self) {
373         // There's no obvious place to track this, so just let it go.
374     }
375
376     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
377         // There's no place to record types from signatures?
378     }
379 }
380
381 /// Returns the predicates defined on `item_def_id` of the form
382 /// `X: Foo` where `X` is the type parameter `def_id`.
383 fn type_param_predicates(
384     tcx: TyCtxt<'_>,
385     (item_def_id, def_id): (DefId, DefId),
386 ) -> ty::GenericPredicates<'_> {
387     use rustc_hir::*;
388
389     // In the AST, bounds can derive from two places. Either
390     // written inline like `<T: Foo>` or in a where-clause like
391     // `where T: Foo`.
392
393     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
394     let param_owner = tcx.hir().ty_param_owner(param_id);
395     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
396     let generics = tcx.generics_of(param_owner_def_id);
397     let index = generics.param_def_id_to_index[&def_id];
398     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
399
400     // Don't look for bounds where the type parameter isn't in scope.
401     let parent =
402         if item_def_id == param_owner_def_id { None } else { tcx.generics_of(item_def_id).parent };
403
404     let mut result = parent
405         .map(|parent| {
406             let icx = ItemCtxt::new(tcx, parent);
407             icx.get_type_parameter_bounds(DUMMY_SP, def_id)
408         })
409         .unwrap_or_default();
410     let mut extend = None;
411
412     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
413     let ast_generics = match tcx.hir().get(item_hir_id) {
414         Node::TraitItem(item) => &item.generics,
415
416         Node::ImplItem(item) => &item.generics,
417
418         Node::Item(item) => {
419             match item.kind {
420                 ItemKind::Fn(.., ref generics, _)
421                 | ItemKind::Impl { ref generics, .. }
422                 | ItemKind::TyAlias(_, ref generics)
423                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
424                 | ItemKind::Enum(_, ref generics)
425                 | ItemKind::Struct(_, ref generics)
426                 | ItemKind::Union(_, ref generics) => generics,
427                 ItemKind::Trait(_, _, ref generics, ..) => {
428                     // Implied `Self: Trait` and supertrait bounds.
429                     if param_id == item_hir_id {
430                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
431                         extend =
432                             Some((identity_trait_ref.without_const().to_predicate(), item.span));
433                     }
434                     generics
435                 }
436                 _ => return result,
437             }
438         }
439
440         Node::ForeignItem(item) => match item.kind {
441             ForeignItemKind::Fn(_, _, ref generics) => generics,
442             _ => return result,
443         },
444
445         _ => return result,
446     };
447
448     let icx = ItemCtxt::new(tcx, item_def_id);
449     let extra_predicates = extend.into_iter().chain(
450         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
451             .into_iter()
452             .filter(|(predicate, _)| match predicate {
453                 ty::Predicate::Trait(ref data, _) => data.skip_binder().self_ty().is_param(index),
454                 _ => false,
455             }),
456     );
457     result.predicates =
458         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
459     result
460 }
461
462 impl ItemCtxt<'tcx> {
463     /// Finds bounds from `hir::Generics`. This requires scanning through the
464     /// AST. We do this to avoid having to convert *all* the bounds, which
465     /// would create artificial cycles. Instead, we can only convert the
466     /// bounds for a type parameter `X` if `X::Foo` is used.
467     fn type_parameter_bounds_in_generics(
468         &self,
469         ast_generics: &'tcx hir::Generics<'tcx>,
470         param_id: hir::HirId,
471         ty: Ty<'tcx>,
472         only_self_bounds: OnlySelfBounds,
473     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
474         let constness = self.default_constness_for_trait_bounds();
475         let from_ty_params = ast_generics
476             .params
477             .iter()
478             .filter_map(|param| match param.kind {
479                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
480                 _ => None,
481             })
482             .flat_map(|bounds| bounds.iter())
483             .flat_map(|b| predicates_from_bound(self, ty, b, constness));
484
485         let from_where_clauses = ast_generics
486             .where_clause
487             .predicates
488             .iter()
489             .filter_map(|wp| match *wp {
490                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
491                 _ => None,
492             })
493             .flat_map(|bp| {
494                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
495                     Some(ty)
496                 } else if !only_self_bounds.0 {
497                     Some(self.to_ty(&bp.bounded_ty))
498                 } else {
499                     None
500                 };
501                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
502             })
503             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
504
505         from_ty_params.chain(from_where_clauses).collect()
506     }
507 }
508
509 /// Tests whether this is the AST for a reference to the type
510 /// parameter with ID `param_id`. We use this so as to avoid running
511 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
512 /// conversion of the type to avoid inducing unnecessary cycles.
513 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
514     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
515         match path.res {
516             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
517                 def_id == tcx.hir().local_def_id(param_id)
518             }
519             _ => false,
520         }
521     } else {
522         false
523     }
524 }
525
526 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
527     let it = tcx.hir().expect_item(item_id);
528     debug!("convert: item {} with id {}", it.ident, it.hir_id);
529     let def_id = tcx.hir().local_def_id(item_id);
530     match it.kind {
531         // These don't define types.
532         hir::ItemKind::ExternCrate(_)
533         | hir::ItemKind::Use(..)
534         | hir::ItemKind::Mod(_)
535         | hir::ItemKind::GlobalAsm(_) => {}
536         hir::ItemKind::ForeignMod(ref foreign_mod) => {
537             for item in foreign_mod.items {
538                 let def_id = tcx.hir().local_def_id(item.hir_id);
539                 tcx.generics_of(def_id);
540                 tcx.type_of(def_id);
541                 tcx.predicates_of(def_id);
542                 if let hir::ForeignItemKind::Fn(..) = item.kind {
543                     tcx.fn_sig(def_id);
544                 }
545             }
546         }
547         hir::ItemKind::Enum(ref enum_definition, _) => {
548             tcx.generics_of(def_id);
549             tcx.type_of(def_id);
550             tcx.predicates_of(def_id);
551             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
552         }
553         hir::ItemKind::Impl { .. } => {
554             tcx.generics_of(def_id);
555             tcx.type_of(def_id);
556             tcx.impl_trait_ref(def_id);
557             tcx.predicates_of(def_id);
558         }
559         hir::ItemKind::Trait(..) => {
560             tcx.generics_of(def_id);
561             tcx.trait_def(def_id);
562             tcx.at(it.span).super_predicates_of(def_id);
563             tcx.predicates_of(def_id);
564         }
565         hir::ItemKind::TraitAlias(..) => {
566             tcx.generics_of(def_id);
567             tcx.at(it.span).super_predicates_of(def_id);
568             tcx.predicates_of(def_id);
569         }
570         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
571             tcx.generics_of(def_id);
572             tcx.type_of(def_id);
573             tcx.predicates_of(def_id);
574
575             for f in struct_def.fields() {
576                 let def_id = tcx.hir().local_def_id(f.hir_id);
577                 tcx.generics_of(def_id);
578                 tcx.type_of(def_id);
579                 tcx.predicates_of(def_id);
580             }
581
582             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
583                 convert_variant_ctor(tcx, ctor_hir_id);
584             }
585         }
586
587         // Desugared from `impl Trait`, so visited by the function's return type.
588         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
589
590         hir::ItemKind::OpaqueTy(..)
591         | hir::ItemKind::TyAlias(..)
592         | hir::ItemKind::Static(..)
593         | hir::ItemKind::Const(..)
594         | hir::ItemKind::Fn(..) => {
595             tcx.generics_of(def_id);
596             tcx.type_of(def_id);
597             tcx.predicates_of(def_id);
598             if let hir::ItemKind::Fn(..) = it.kind {
599                 tcx.fn_sig(def_id);
600             }
601         }
602     }
603 }
604
605 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
606     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
607     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
608     tcx.generics_of(def_id);
609
610     match trait_item.kind {
611         hir::TraitItemKind::Const(..)
612         | hir::TraitItemKind::Type(_, Some(_))
613         | hir::TraitItemKind::Method(..) => {
614             tcx.type_of(def_id);
615             if let hir::TraitItemKind::Method(..) = trait_item.kind {
616                 tcx.fn_sig(def_id);
617             }
618         }
619
620         hir::TraitItemKind::Type(_, None) => {}
621     };
622
623     tcx.predicates_of(def_id);
624 }
625
626 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
627     let def_id = tcx.hir().local_def_id(impl_item_id);
628     tcx.generics_of(def_id);
629     tcx.type_of(def_id);
630     tcx.predicates_of(def_id);
631     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).kind {
632         tcx.fn_sig(def_id);
633     }
634 }
635
636 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
637     let def_id = tcx.hir().local_def_id(ctor_id);
638     tcx.generics_of(def_id);
639     tcx.type_of(def_id);
640     tcx.predicates_of(def_id);
641 }
642
643 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
644     let def = tcx.adt_def(def_id);
645     let repr_type = def.repr.discr_type();
646     let initial = repr_type.initial_discriminant(tcx);
647     let mut prev_discr = None::<Discr<'_>>;
648
649     // fill the discriminant values and field types
650     for variant in variants {
651         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
652         prev_discr = Some(
653             if let Some(ref e) = variant.disr_expr {
654                 let expr_did = tcx.hir().local_def_id(e.hir_id);
655                 def.eval_explicit_discr(tcx, expr_did)
656             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
657                 Some(discr)
658             } else {
659                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
660                     .span_label(
661                         variant.span,
662                         format!("overflowed on value after {}", prev_discr.unwrap()),
663                     )
664                     .note(&format!(
665                         "explicitly set `{} = {}` if that is desired outcome",
666                         variant.ident, wrapped_discr
667                     ))
668                     .emit();
669                 None
670             }
671             .unwrap_or(wrapped_discr),
672         );
673
674         for f in variant.data.fields() {
675             let def_id = tcx.hir().local_def_id(f.hir_id);
676             tcx.generics_of(def_id);
677             tcx.type_of(def_id);
678             tcx.predicates_of(def_id);
679         }
680
681         // Convert the ctor, if any. This also registers the variant as
682         // an item.
683         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
684             convert_variant_ctor(tcx, ctor_hir_id);
685         }
686     }
687 }
688
689 fn convert_variant(
690     tcx: TyCtxt<'_>,
691     variant_did: Option<DefId>,
692     ctor_did: Option<DefId>,
693     ident: Ident,
694     discr: ty::VariantDiscr,
695     def: &hir::VariantData<'_>,
696     adt_kind: ty::AdtKind,
697     parent_did: DefId,
698 ) -> ty::VariantDef {
699     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
700     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
701     let fields = def
702         .fields()
703         .iter()
704         .map(|f| {
705             let fid = tcx.hir().local_def_id(f.hir_id);
706             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
707             if let Some(prev_span) = dup_span {
708                 struct_span_err!(
709                     tcx.sess,
710                     f.span,
711                     E0124,
712                     "field `{}` is already declared",
713                     f.ident
714                 )
715                 .span_label(f.span, "field already declared")
716                 .span_label(prev_span, format!("`{}` first declared here", f.ident))
717                 .emit();
718             } else {
719                 seen_fields.insert(f.ident.modern(), f.span);
720             }
721
722             ty::FieldDef {
723                 did: fid,
724                 ident: f.ident,
725                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
726             }
727         })
728         .collect();
729     let recovered = match def {
730         hir::VariantData::Struct(_, r) => *r,
731         _ => false,
732     };
733     ty::VariantDef::new(
734         tcx,
735         ident,
736         variant_did,
737         ctor_did,
738         discr,
739         fields,
740         CtorKind::from_hir(def),
741         adt_kind,
742         parent_did,
743         recovered,
744     )
745 }
746
747 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
748     use rustc_hir::*;
749
750     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
751     let item = match tcx.hir().get(hir_id) {
752         Node::Item(item) => item,
753         _ => bug!(),
754     };
755
756     let repr = ReprOptions::new(tcx, def_id);
757     let (kind, variants) = match item.kind {
758         ItemKind::Enum(ref def, _) => {
759             let mut distance_from_explicit = 0;
760             let variants = def
761                 .variants
762                 .iter()
763                 .map(|v| {
764                     let variant_did = Some(tcx.hir().local_def_id(v.id));
765                     let ctor_did =
766                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
767
768                     let discr = if let Some(ref e) = v.disr_expr {
769                         distance_from_explicit = 0;
770                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
771                     } else {
772                         ty::VariantDiscr::Relative(distance_from_explicit)
773                     };
774                     distance_from_explicit += 1;
775
776                     convert_variant(
777                         tcx,
778                         variant_did,
779                         ctor_did,
780                         v.ident,
781                         discr,
782                         &v.data,
783                         AdtKind::Enum,
784                         def_id,
785                     )
786                 })
787                 .collect();
788
789             (AdtKind::Enum, variants)
790         }
791         ItemKind::Struct(ref def, _) => {
792             let variant_did = None;
793             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
794
795             let variants = std::iter::once(convert_variant(
796                 tcx,
797                 variant_did,
798                 ctor_did,
799                 item.ident,
800                 ty::VariantDiscr::Relative(0),
801                 def,
802                 AdtKind::Struct,
803                 def_id,
804             ))
805             .collect();
806
807             (AdtKind::Struct, variants)
808         }
809         ItemKind::Union(ref def, _) => {
810             let variant_did = None;
811             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
812
813             let variants = std::iter::once(convert_variant(
814                 tcx,
815                 variant_did,
816                 ctor_did,
817                 item.ident,
818                 ty::VariantDiscr::Relative(0),
819                 def,
820                 AdtKind::Union,
821                 def_id,
822             ))
823             .collect();
824
825             (AdtKind::Union, variants)
826         }
827         _ => bug!(),
828     };
829     tcx.alloc_adt_def(def_id, kind, variants, repr)
830 }
831
832 /// Ensures that the super-predicates of the trait with a `DefId`
833 /// of `trait_def_id` are converted and stored. This also ensures that
834 /// the transitive super-predicates are converted.
835 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
836     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
837     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
838
839     let item = match tcx.hir().get(trait_hir_id) {
840         Node::Item(item) => item,
841         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
842     };
843
844     let (generics, bounds) = match item.kind {
845         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
846         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
847         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
848     };
849
850     let icx = ItemCtxt::new(tcx, trait_def_id);
851
852     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
853     let self_param_ty = tcx.types.self_param;
854     let superbounds1 =
855         AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
856
857     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
858
859     // Convert any explicit superbounds in the where-clause,
860     // e.g., `trait Foo where Self: Bar`.
861     // In the case of trait aliases, however, we include all bounds in the where-clause,
862     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
863     // as one of its "superpredicates".
864     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
865     let superbounds2 = icx.type_parameter_bounds_in_generics(
866         generics,
867         item.hir_id,
868         self_param_ty,
869         OnlySelfBounds(!is_trait_alias),
870     );
871
872     // Combine the two lists to form the complete set of superbounds:
873     let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
874
875     // Now require that immediate supertraits are converted,
876     // which will, in turn, reach indirect supertraits.
877     for &(pred, span) in superbounds {
878         debug!("superbound: {:?}", pred);
879         if let ty::Predicate::Trait(bound, _) = pred {
880             tcx.at(span).super_predicates_of(bound.def_id());
881         }
882     }
883
884     ty::GenericPredicates { parent: None, predicates: superbounds }
885 }
886
887 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
888     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
889     let item = tcx.hir().expect_item(hir_id);
890
891     let (is_auto, unsafety) = match item.kind {
892         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
893         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
894         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
895     };
896
897     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
898     if paren_sugar && !tcx.features().unboxed_closures {
899         tcx.sess
900             .struct_span_err(
901                 item.span,
902                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
903              which traits can use parenthetical notation",
904             )
905             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
906             .emit();
907     }
908
909     let is_marker = tcx.has_attr(def_id, sym::marker);
910     let def_path_hash = tcx.def_path_hash(def_id);
911     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
912     tcx.arena.alloc(def)
913 }
914
915 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
916     struct LateBoundRegionsDetector<'tcx> {
917         tcx: TyCtxt<'tcx>,
918         outer_index: ty::DebruijnIndex,
919         has_late_bound_regions: Option<Span>,
920     }
921
922     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
923         type Map = Map<'tcx>;
924
925         fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
926             NestedVisitorMap::None
927         }
928
929         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
930             if self.has_late_bound_regions.is_some() {
931                 return;
932             }
933             match ty.kind {
934                 hir::TyKind::BareFn(..) => {
935                     self.outer_index.shift_in(1);
936                     intravisit::walk_ty(self, ty);
937                     self.outer_index.shift_out(1);
938                 }
939                 _ => intravisit::walk_ty(self, ty),
940             }
941         }
942
943         fn visit_poly_trait_ref(
944             &mut self,
945             tr: &'tcx hir::PolyTraitRef<'tcx>,
946             m: hir::TraitBoundModifier,
947         ) {
948             if self.has_late_bound_regions.is_some() {
949                 return;
950             }
951             self.outer_index.shift_in(1);
952             intravisit::walk_poly_trait_ref(self, tr, m);
953             self.outer_index.shift_out(1);
954         }
955
956         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
957             if self.has_late_bound_regions.is_some() {
958                 return;
959             }
960
961             match self.tcx.named_region(lt.hir_id) {
962                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
963                 Some(rl::Region::LateBound(debruijn, _, _))
964                 | Some(rl::Region::LateBoundAnon(debruijn, _))
965                     if debruijn < self.outer_index => {}
966                 Some(rl::Region::LateBound(..))
967                 | Some(rl::Region::LateBoundAnon(..))
968                 | Some(rl::Region::Free(..))
969                 | None => {
970                     self.has_late_bound_regions = Some(lt.span);
971                 }
972             }
973         }
974     }
975
976     fn has_late_bound_regions<'tcx>(
977         tcx: TyCtxt<'tcx>,
978         generics: &'tcx hir::Generics<'tcx>,
979         decl: &'tcx hir::FnDecl<'tcx>,
980     ) -> Option<Span> {
981         let mut visitor = LateBoundRegionsDetector {
982             tcx,
983             outer_index: ty::INNERMOST,
984             has_late_bound_regions: None,
985         };
986         for param in generics.params {
987             if let GenericParamKind::Lifetime { .. } = param.kind {
988                 if tcx.is_late_bound(param.hir_id) {
989                     return Some(param.span);
990                 }
991             }
992         }
993         visitor.visit_fn_decl(decl);
994         visitor.has_late_bound_regions
995     }
996
997     match node {
998         Node::TraitItem(item) => match item.kind {
999             hir::TraitItemKind::Method(ref sig, _) => {
1000                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1001             }
1002             _ => None,
1003         },
1004         Node::ImplItem(item) => match item.kind {
1005             hir::ImplItemKind::Method(ref sig, _) => {
1006                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1007             }
1008             _ => None,
1009         },
1010         Node::ForeignItem(item) => match item.kind {
1011             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1012                 has_late_bound_regions(tcx, generics, fn_decl)
1013             }
1014             _ => None,
1015         },
1016         Node::Item(item) => match item.kind {
1017             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1018                 has_late_bound_regions(tcx, generics, &sig.decl)
1019             }
1020             _ => None,
1021         },
1022         _ => None,
1023     }
1024 }
1025
1026 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
1027     use rustc_hir::*;
1028
1029     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1030
1031     let node = tcx.hir().get(hir_id);
1032     let parent_def_id = match node {
1033         Node::ImplItem(_)
1034         | Node::TraitItem(_)
1035         | Node::Variant(_)
1036         | Node::Ctor(..)
1037         | Node::Field(_) => {
1038             let parent_id = tcx.hir().get_parent_item(hir_id);
1039             Some(tcx.hir().local_def_id(parent_id))
1040         }
1041         // FIXME(#43408) enable this always when we get lazy normalization.
1042         Node::AnonConst(_) => {
1043             // HACK(eddyb) this provides the correct generics when
1044             // `feature(const_generics)` is enabled, so that const expressions
1045             // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1046             if tcx.features().const_generics {
1047                 let parent_id = tcx.hir().get_parent_item(hir_id);
1048                 Some(tcx.hir().local_def_id(parent_id))
1049             } else {
1050                 None
1051             }
1052         }
1053         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1054             Some(tcx.closure_base_def_id(def_id))
1055         }
1056         Node::Item(item) => match item.kind {
1057             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => impl_trait_fn,
1058             _ => None,
1059         },
1060         _ => None,
1061     };
1062
1063     let mut opt_self = None;
1064     let mut allow_defaults = false;
1065
1066     let no_generics = hir::Generics::empty();
1067     let ast_generics = match node {
1068         Node::TraitItem(item) => &item.generics,
1069
1070         Node::ImplItem(item) => &item.generics,
1071
1072         Node::Item(item) => {
1073             match item.kind {
1074                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl { ref generics, .. } => generics,
1075
1076                 ItemKind::TyAlias(_, ref generics)
1077                 | ItemKind::Enum(_, ref generics)
1078                 | ItemKind::Struct(_, ref generics)
1079                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1080                 | ItemKind::Union(_, ref generics) => {
1081                     allow_defaults = true;
1082                     generics
1083                 }
1084
1085                 ItemKind::Trait(_, _, ref generics, ..)
1086                 | ItemKind::TraitAlias(ref generics, ..) => {
1087                     // Add in the self type parameter.
1088                     //
1089                     // Something of a hack: use the node id for the trait, also as
1090                     // the node id for the Self type parameter.
1091                     let param_id = item.hir_id;
1092
1093                     opt_self = Some(ty::GenericParamDef {
1094                         index: 0,
1095                         name: kw::SelfUpper,
1096                         def_id: tcx.hir().local_def_id(param_id),
1097                         pure_wrt_drop: false,
1098                         kind: ty::GenericParamDefKind::Type {
1099                             has_default: false,
1100                             object_lifetime_default: rl::Set1::Empty,
1101                             synthetic: None,
1102                         },
1103                     });
1104
1105                     allow_defaults = true;
1106                     generics
1107                 }
1108
1109                 _ => &no_generics,
1110             }
1111         }
1112
1113         Node::ForeignItem(item) => match item.kind {
1114             ForeignItemKind::Static(..) => &no_generics,
1115             ForeignItemKind::Fn(_, _, ref generics) => generics,
1116             ForeignItemKind::Type => &no_generics,
1117         },
1118
1119         _ => &no_generics,
1120     };
1121
1122     let has_self = opt_self.is_some();
1123     let mut parent_has_self = false;
1124     let mut own_start = has_self as u32;
1125     let parent_count = parent_def_id.map_or(0, |def_id| {
1126         let generics = tcx.generics_of(def_id);
1127         assert_eq!(has_self, false);
1128         parent_has_self = generics.has_self;
1129         own_start = generics.count() as u32;
1130         generics.parent_count + generics.params.len()
1131     });
1132
1133     let mut params: Vec<_> = opt_self.into_iter().collect();
1134
1135     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1136     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1137         name: param.name.ident().name,
1138         index: own_start + i as u32,
1139         def_id: tcx.hir().local_def_id(param.hir_id),
1140         pure_wrt_drop: param.pure_wrt_drop,
1141         kind: ty::GenericParamDefKind::Lifetime,
1142     }));
1143
1144     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1145
1146     // Now create the real type parameters.
1147     let type_start = own_start - has_self as u32 + params.len() as u32;
1148     let mut i = 0;
1149     params.extend(ast_generics.params.iter().filter_map(|param| {
1150         let kind = match param.kind {
1151             GenericParamKind::Type { ref default, synthetic, .. } => {
1152                 if !allow_defaults && default.is_some() {
1153                     if !tcx.features().default_type_parameter_fallback {
1154                         tcx.lint_hir(
1155                             lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1156                             param.hir_id,
1157                             param.span,
1158                             &format!(
1159                                 "defaults for type parameters are only allowed in \
1160                                         `struct`, `enum`, `type`, or `trait` definitions."
1161                             ),
1162                         );
1163                     }
1164                 }
1165
1166                 ty::GenericParamDefKind::Type {
1167                     has_default: default.is_some(),
1168                     object_lifetime_default: object_lifetime_defaults
1169                         .as_ref()
1170                         .map_or(rl::Set1::Empty, |o| o[i]),
1171                     synthetic,
1172                 }
1173             }
1174             GenericParamKind::Const { .. } => ty::GenericParamDefKind::Const,
1175             _ => return None,
1176         };
1177
1178         let param_def = ty::GenericParamDef {
1179             index: type_start + i as u32,
1180             name: param.name.ident().name,
1181             def_id: tcx.hir().local_def_id(param.hir_id),
1182             pure_wrt_drop: param.pure_wrt_drop,
1183             kind,
1184         };
1185         i += 1;
1186         Some(param_def)
1187     }));
1188
1189     // provide junk type parameter defs - the only place that
1190     // cares about anything but the length is instantiation,
1191     // and we don't do that for closures.
1192     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1193         let dummy_args = if gen.is_some() {
1194             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>"][..]
1195         } else {
1196             &["<closure_kind>", "<closure_signature>"][..]
1197         };
1198
1199         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1200             index: type_start + i as u32,
1201             name: Symbol::intern(arg),
1202             def_id,
1203             pure_wrt_drop: false,
1204             kind: ty::GenericParamDefKind::Type {
1205                 has_default: false,
1206                 object_lifetime_default: rl::Set1::Empty,
1207                 synthetic: None,
1208             },
1209         }));
1210
1211         if let Some(upvars) = tcx.upvars(def_id) {
1212             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1213                 ty::GenericParamDef {
1214                     index: type_start + i,
1215                     name: Symbol::intern("<upvar>"),
1216                     def_id,
1217                     pure_wrt_drop: false,
1218                     kind: ty::GenericParamDefKind::Type {
1219                         has_default: false,
1220                         object_lifetime_default: rl::Set1::Empty,
1221                         synthetic: None,
1222                     },
1223                 }
1224             }));
1225         }
1226     }
1227
1228     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1229
1230     tcx.arena.alloc(ty::Generics {
1231         parent: parent_def_id,
1232         parent_count,
1233         params,
1234         param_def_id_to_index,
1235         has_self: has_self || parent_has_self,
1236         has_late_bound_regions: has_late_bound_regions(tcx, node),
1237     })
1238 }
1239
1240 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1241     struct_span_err!(
1242         tcx.sess,
1243         span,
1244         E0202,
1245         "associated types are not yet supported in inherent impls (see #8995)"
1246     )
1247     .emit();
1248 }
1249
1250 fn infer_placeholder_type(
1251     tcx: TyCtxt<'_>,
1252     def_id: DefId,
1253     body_id: hir::BodyId,
1254     span: Span,
1255     item_ident: Ident,
1256 ) -> Ty<'_> {
1257     let ty = tcx.diagnostic_only_typeck_tables_of(def_id).node_type(body_id.hir_id);
1258
1259     // If this came from a free `const` or `static mut?` item,
1260     // then the user may have written e.g. `const A = 42;`.
1261     // In this case, the parser has stashed a diagnostic for
1262     // us to improve in typeck so we do that now.
1263     match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
1264         Some(mut err) => {
1265             // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
1266             // We are typeck and have the real type, so remove that and suggest the actual type.
1267             err.suggestions.clear();
1268             err.span_suggestion(
1269                 span,
1270                 "provide a type for the item",
1271                 format!("{}: {}", item_ident, ty),
1272                 Applicability::MachineApplicable,
1273             )
1274             .emit();
1275         }
1276         None => {
1277             let mut diag = bad_placeholder_type(tcx, vec![span]);
1278             if ty != tcx.types.err {
1279                 diag.span_suggestion(
1280                     span,
1281                     "replace `_` with the correct type",
1282                     ty.to_string(),
1283                     Applicability::MaybeIncorrect,
1284                 );
1285             }
1286             diag.emit();
1287         }
1288     }
1289
1290     ty
1291 }
1292
1293 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1294     use rustc_hir::*;
1295
1296     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1297
1298     let icx = ItemCtxt::new(tcx, def_id);
1299
1300     match tcx.hir().get(hir_id) {
1301         Node::TraitItem(item) => match item.kind {
1302             TraitItemKind::Method(..) => {
1303                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1304                 tcx.mk_fn_def(def_id, substs)
1305             }
1306             TraitItemKind::Const(ref ty, body_id) => body_id
1307                 .and_then(|body_id| {
1308                     if is_suggestable_infer_ty(ty) {
1309                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
1310                     } else {
1311                         None
1312                     }
1313                 })
1314                 .unwrap_or_else(|| icx.to_ty(ty)),
1315             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1316             TraitItemKind::Type(_, None) => {
1317                 span_bug!(item.span, "associated type missing default");
1318             }
1319         },
1320
1321         Node::ImplItem(item) => match item.kind {
1322             ImplItemKind::Method(..) => {
1323                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1324                 tcx.mk_fn_def(def_id, substs)
1325             }
1326             ImplItemKind::Const(ref ty, body_id) => {
1327                 if is_suggestable_infer_ty(ty) {
1328                     infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1329                 } else {
1330                     icx.to_ty(ty)
1331                 }
1332             }
1333             ImplItemKind::OpaqueTy(_) => {
1334                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1335                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1336                 }
1337
1338                 find_opaque_ty_constraints(tcx, def_id)
1339             }
1340             ImplItemKind::TyAlias(ref ty) => {
1341                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1342                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1343                 }
1344
1345                 icx.to_ty(ty)
1346             }
1347         },
1348
1349         Node::Item(item) => {
1350             match item.kind {
1351                 ItemKind::Static(ref ty, .., body_id) | ItemKind::Const(ref ty, body_id) => {
1352                     if is_suggestable_infer_ty(ty) {
1353                         infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1354                     } else {
1355                         icx.to_ty(ty)
1356                     }
1357                 }
1358                 ItemKind::TyAlias(ref self_ty, _) | ItemKind::Impl { ref self_ty, .. } => {
1359                     icx.to_ty(self_ty)
1360                 }
1361                 ItemKind::Fn(..) => {
1362                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1363                     tcx.mk_fn_def(def_id, substs)
1364                 }
1365                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1366                     let def = tcx.adt_def(def_id);
1367                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1368                     tcx.mk_adt(def, substs)
1369                 }
1370                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: None, .. }) => {
1371                     find_opaque_ty_constraints(tcx, def_id)
1372                 }
1373                 // Opaque types desugared from `impl Trait`.
1374                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(owner), .. }) => {
1375                     tcx.typeck_tables_of(owner)
1376                         .concrete_opaque_types
1377                         .get(&def_id)
1378                         .map(|opaque| opaque.concrete_type)
1379                         .unwrap_or_else(|| {
1380                             // This can occur if some error in the
1381                             // owner fn prevented us from populating
1382                             // the `concrete_opaque_types` table.
1383                             tcx.sess.delay_span_bug(
1384                                 DUMMY_SP,
1385                                 &format!(
1386                                     "owner {:?} has no opaque type for {:?} in its tables",
1387                                     owner, def_id,
1388                                 ),
1389                             );
1390                             tcx.types.err
1391                         })
1392                 }
1393                 ItemKind::Trait(..)
1394                 | ItemKind::TraitAlias(..)
1395                 | ItemKind::Mod(..)
1396                 | ItemKind::ForeignMod(..)
1397                 | ItemKind::GlobalAsm(..)
1398                 | ItemKind::ExternCrate(..)
1399                 | ItemKind::Use(..) => {
1400                     span_bug!(
1401                         item.span,
1402                         "compute_type_of_item: unexpected item type: {:?}",
1403                         item.kind
1404                     );
1405                 }
1406             }
1407         }
1408
1409         Node::ForeignItem(foreign_item) => match foreign_item.kind {
1410             ForeignItemKind::Fn(..) => {
1411                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1412                 tcx.mk_fn_def(def_id, substs)
1413             }
1414             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1415             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1416         },
1417
1418         Node::Ctor(&ref def) | Node::Variant(hir::Variant { data: ref def, .. }) => match *def {
1419             VariantData::Unit(..) | VariantData::Struct(..) => {
1420                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1421             }
1422             VariantData::Tuple(..) => {
1423                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1424                 tcx.mk_fn_def(def_id, substs)
1425             }
1426         },
1427
1428         Node::Field(field) => icx.to_ty(&field.ty),
1429
1430         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) => {
1431             if gen.is_some() {
1432                 return tcx.typeck_tables_of(def_id).node_type(hir_id);
1433             }
1434
1435             let substs = InternalSubsts::identity_for_item(tcx, def_id);
1436             tcx.mk_closure(def_id, substs)
1437         }
1438
1439         Node::AnonConst(_) => {
1440             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1441             match parent_node {
1442                 Node::Ty(&hir::Ty { kind: hir::TyKind::Array(_, ref constant), .. })
1443                 | Node::Ty(&hir::Ty { kind: hir::TyKind::Typeof(ref constant), .. })
1444                 | Node::Expr(&hir::Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1445                     if constant.hir_id == hir_id =>
1446                 {
1447                     tcx.types.usize
1448                 }
1449
1450                 Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => {
1451                     tcx.adt_def(tcx.hir().get_parent_did(hir_id)).repr.discr_type().to_ty(tcx)
1452                 }
1453
1454                 Node::Ty(&hir::Ty { kind: hir::TyKind::Path(_), .. })
1455                 | Node::Expr(&hir::Expr { kind: ExprKind::Struct(..), .. })
1456                 | Node::Expr(&hir::Expr { kind: ExprKind::Path(_), .. })
1457                 | Node::TraitRef(..) => {
1458                     let path = match parent_node {
1459                         Node::Ty(&hir::Ty {
1460                             kind: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1461                             ..
1462                         })
1463                         | Node::Expr(&hir::Expr {
1464                             kind: ExprKind::Path(QPath::Resolved(_, ref path)),
1465                             ..
1466                         }) => Some(&**path),
1467                         Node::Expr(&hir::Expr { kind: ExprKind::Struct(ref path, ..), .. }) => {
1468                             if let QPath::Resolved(_, ref path) = **path {
1469                                 Some(&**path)
1470                             } else {
1471                                 None
1472                             }
1473                         }
1474                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1475                         _ => None,
1476                     };
1477
1478                     if let Some(path) = path {
1479                         let arg_index = path
1480                             .segments
1481                             .iter()
1482                             .filter_map(|seg| seg.args.as_ref())
1483                             .map(|generic_args| generic_args.args.as_ref())
1484                             .find_map(|args| {
1485                                 args.iter()
1486                                     .filter(|arg| arg.is_const())
1487                                     .enumerate()
1488                                     .filter(|(_, arg)| arg.id() == hir_id)
1489                                     .map(|(index, _)| index)
1490                                     .next()
1491                             })
1492                             .unwrap_or_else(|| {
1493                                 bug!("no arg matching AnonConst in path");
1494                             });
1495
1496                         // We've encountered an `AnonConst` in some path, so we need to
1497                         // figure out which generic parameter it corresponds to and return
1498                         // the relevant type.
1499                         let generics = match path.res {
1500                             Res::Def(DefKind::Ctor(..), def_id) => {
1501                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1502                             }
1503                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1504                             Res::Err => return tcx.types.err,
1505                             res => {
1506                                 tcx.sess.delay_span_bug(
1507                                     DUMMY_SP,
1508                                     &format!("unexpected const parent path def {:?}", res,),
1509                                 );
1510                                 return tcx.types.err;
1511                             }
1512                         };
1513
1514                         generics
1515                             .params
1516                             .iter()
1517                             .filter(|param| {
1518                                 if let ty::GenericParamDefKind::Const = param.kind {
1519                                     true
1520                                 } else {
1521                                     false
1522                                 }
1523                             })
1524                             .nth(arg_index)
1525                             .map(|param| tcx.type_of(param.def_id))
1526                             // This is no generic parameter associated with the arg. This is
1527                             // probably from an extra arg where one is not needed.
1528                             .unwrap_or(tcx.types.err)
1529                     } else {
1530                         tcx.sess.delay_span_bug(
1531                             DUMMY_SP,
1532                             &format!("unexpected const parent path {:?}", parent_node,),
1533                         );
1534                         return tcx.types.err;
1535                     }
1536                 }
1537
1538                 x => {
1539                     tcx.sess.delay_span_bug(
1540                         DUMMY_SP,
1541                         &format!("unexpected const parent in type_of_def_id(): {:?}", x),
1542                     );
1543                     tcx.types.err
1544                 }
1545             }
1546         }
1547
1548         Node::GenericParam(param) => match &param.kind {
1549             hir::GenericParamKind::Type { default: Some(ref ty), .. } => icx.to_ty(ty),
1550             hir::GenericParamKind::Const { ty: ref hir_ty, .. } => {
1551                 let ty = icx.to_ty(hir_ty);
1552                 if !tcx.features().const_compare_raw_pointers {
1553                     let err = match ty.peel_refs().kind {
1554                         ty::FnPtr(_) => Some("function pointers"),
1555                         ty::RawPtr(_) => Some("raw pointers"),
1556                         _ => None,
1557                     };
1558                     if let Some(unsupported_type) = err {
1559                         feature_err(
1560                             &tcx.sess.parse_sess,
1561                             sym::const_compare_raw_pointers,
1562                             hir_ty.span,
1563                             &format!(
1564                                 "using {} as const generic parameters is unstable",
1565                                 unsupported_type
1566                             ),
1567                         )
1568                         .emit();
1569                     };
1570                 }
1571                 if traits::search_for_structural_match_violation(param.hir_id, param.span, tcx, ty)
1572                     .is_some()
1573                 {
1574                     struct_span_err!(
1575                         tcx.sess,
1576                         hir_ty.span,
1577                         E0741,
1578                         "the types of const generic parameters must derive `PartialEq` and `Eq`",
1579                     )
1580                     .span_label(
1581                         hir_ty.span,
1582                         format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
1583                     )
1584                     .emit();
1585                 }
1586                 ty
1587             }
1588             x => bug!("unexpected non-type Node::GenericParam: {:?}", x),
1589         },
1590
1591         x => {
1592             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1593         }
1594     }
1595 }
1596
1597 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1598     use rustc_hir::{ImplItem, Item, TraitItem};
1599
1600     debug!("find_opaque_ty_constraints({:?})", def_id);
1601
1602     struct ConstraintLocator<'tcx> {
1603         tcx: TyCtxt<'tcx>,
1604         def_id: DefId,
1605         // (first found type span, actual type, mapping from the opaque type's generic
1606         // parameters to the concrete type's generic parameters)
1607         //
1608         // The mapping is an index for each use site of a generic parameter in the concrete type
1609         //
1610         // The indices index into the generic parameters on the opaque type.
1611         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1612     }
1613
1614     impl ConstraintLocator<'tcx> {
1615         fn check(&mut self, def_id: DefId) {
1616             // Don't try to check items that cannot possibly constrain the type.
1617             if !self.tcx.has_typeck_tables(def_id) {
1618                 debug!(
1619                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1620                     self.def_id, def_id,
1621                 );
1622                 return;
1623             }
1624             let ty = self.tcx.typeck_tables_of(def_id).concrete_opaque_types.get(&self.def_id);
1625             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1626                 debug!(
1627                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1628                     self.def_id, def_id, ty,
1629                 );
1630
1631                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1632                 let span = self.tcx.def_span(def_id);
1633                 // used to quickly look up the position of a generic parameter
1634                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1635                 // Skipping binder is ok, since we only use this to find generic parameters and
1636                 // their positions.
1637                 for (idx, subst) in substs.iter().enumerate() {
1638                     if let GenericArgKind::Type(ty) = subst.unpack() {
1639                         if let ty::Param(p) = ty.kind {
1640                             if index_map.insert(p, idx).is_some() {
1641                                 // There was already an entry for `p`, meaning a generic parameter
1642                                 // was used twice.
1643                                 self.tcx.sess.span_err(
1644                                     span,
1645                                     &format!(
1646                                         "defining opaque type use restricts opaque \
1647                                          type by using the generic parameter `{}` twice",
1648                                         p,
1649                                     ),
1650                                 );
1651                                 return;
1652                             }
1653                         } else {
1654                             self.tcx.sess.delay_span_bug(
1655                                 span,
1656                                 &format!(
1657                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1658                                     concrete_type, substs,
1659                                 ),
1660                             );
1661                         }
1662                     }
1663                 }
1664                 // Compute the index within the opaque type for each generic parameter used in
1665                 // the concrete type.
1666                 let indices = concrete_type
1667                     .subst(self.tcx, substs)
1668                     .walk()
1669                     .filter_map(|t| match &t.kind {
1670                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1671                         _ => None,
1672                     })
1673                     .collect();
1674                 let is_param = |ty: Ty<'_>| match ty.kind {
1675                     ty::Param(_) => true,
1676                     _ => false,
1677                 };
1678                 let bad_substs: Vec<_> = substs
1679                     .iter()
1680                     .enumerate()
1681                     .filter_map(|(i, k)| {
1682                         if let GenericArgKind::Type(ty) = k.unpack() { Some((i, ty)) } else { None }
1683                     })
1684                     .filter(|(_, ty)| !is_param(ty))
1685                     .collect();
1686
1687                 if !bad_substs.is_empty() {
1688                     let identity_substs = InternalSubsts::identity_for_item(self.tcx, self.def_id);
1689                     for (i, bad_subst) in bad_substs {
1690                         self.tcx.sess.span_err(
1691                             span,
1692                             &format!(
1693                                 "defining opaque type use does not fully define opaque type: \
1694                             generic parameter `{}` is specified as concrete type `{}`",
1695                                 identity_substs.type_at(i),
1696                                 bad_subst
1697                             ),
1698                         );
1699                     }
1700                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1701                     let mut ty = concrete_type.walk().fuse();
1702                     let mut p_ty = prev_ty.walk().fuse();
1703                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
1704                         // Type parameters are equal to any other type parameter for the purpose of
1705                         // concrete type equality, as it is possible to obtain the same type just
1706                         // by passing matching parameters to a function.
1707                         (ty::Param(_), ty::Param(_)) => true,
1708                         _ => t == p,
1709                     });
1710                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1711                         debug!("find_opaque_ty_constraints: span={:?}", span);
1712                         // Found different concrete types for the opaque type.
1713                         let mut err = self.tcx.sess.struct_span_err(
1714                             span,
1715                             "concrete type differs from previous defining opaque type use",
1716                         );
1717                         err.span_label(
1718                             span,
1719                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1720                         );
1721                         err.span_note(prev_span, "previous use here");
1722                         err.emit();
1723                     } else if indices != *prev_indices {
1724                         // Found "same" concrete types, but the generic parameter order differs.
1725                         let mut err = self.tcx.sess.struct_span_err(
1726                             span,
1727                             "concrete type's generic parameters differ from previous defining use",
1728                         );
1729                         use std::fmt::Write;
1730                         let mut s = String::new();
1731                         write!(s, "expected [").unwrap();
1732                         let list = |s: &mut String, indices: &Vec<usize>| {
1733                             let mut indices = indices.iter().cloned();
1734                             if let Some(first) = indices.next() {
1735                                 write!(s, "`{}`", substs[first]).unwrap();
1736                                 for i in indices {
1737                                     write!(s, ", `{}`", substs[i]).unwrap();
1738                                 }
1739                             }
1740                         };
1741                         list(&mut s, prev_indices);
1742                         write!(s, "], got [").unwrap();
1743                         list(&mut s, &indices);
1744                         write!(s, "]").unwrap();
1745                         err.span_label(span, s);
1746                         err.span_note(prev_span, "previous use here");
1747                         err.emit();
1748                     }
1749                 } else {
1750                     self.found = Some((span, concrete_type, indices));
1751                 }
1752             } else {
1753                 debug!(
1754                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1755                     self.def_id, def_id,
1756                 );
1757             }
1758         }
1759     }
1760
1761     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1762         type Map = Map<'tcx>;
1763
1764         fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<'_, Self::Map> {
1765             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1766         }
1767         fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
1768             debug!("find_existential_constraints: visiting {:?}", it);
1769             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1770             // The opaque type itself or its children are not within its reveal scope.
1771             if def_id != self.def_id {
1772                 self.check(def_id);
1773                 intravisit::walk_item(self, it);
1774             }
1775         }
1776         fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
1777             debug!("find_existential_constraints: visiting {:?}", it);
1778             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1779             // The opaque type itself or its children are not within its reveal scope.
1780             if def_id != self.def_id {
1781                 self.check(def_id);
1782                 intravisit::walk_impl_item(self, it);
1783             }
1784         }
1785         fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
1786             debug!("find_existential_constraints: visiting {:?}", it);
1787             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1788             self.check(def_id);
1789             intravisit::walk_trait_item(self, it);
1790         }
1791     }
1792
1793     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1794     let scope = tcx.hir().get_defining_scope(hir_id);
1795     let mut locator = ConstraintLocator { def_id, tcx, found: None };
1796
1797     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1798
1799     if scope == hir::CRATE_HIR_ID {
1800         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1801     } else {
1802         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1803         match tcx.hir().get(scope) {
1804             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1805             // This allows our visitor to process the defining item itself, causing
1806             // it to pick up any 'sibling' defining uses.
1807             //
1808             // For example, this code:
1809             // ```
1810             // fn foo() {
1811             //     type Blah = impl Debug;
1812             //     let my_closure = || -> Blah { true };
1813             // }
1814             // ```
1815             //
1816             // requires us to explicitly process `foo()` in order
1817             // to notice the defining usage of `Blah`.
1818             Node::Item(ref it) => locator.visit_item(it),
1819             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1820             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1821             other => bug!("{:?} is not a valid scope for an opaque type item", other),
1822         }
1823     }
1824
1825     match locator.found {
1826         Some((_, ty, _)) => ty,
1827         None => {
1828             let span = tcx.def_span(def_id);
1829             tcx.sess.span_err(span, "could not find defining uses");
1830             tcx.types.err
1831         }
1832     }
1833 }
1834
1835 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1836     generic_args
1837         .iter()
1838         .filter_map(|arg| match arg {
1839             hir::GenericArg::Type(ty) => Some(ty),
1840             _ => None,
1841         })
1842         .any(is_suggestable_infer_ty)
1843 }
1844
1845 /// Whether `ty` is a type with `_` placeholders that can be infered. Used in diagnostics only to
1846 /// use inference to provide suggestions for the appropriate type if possible.
1847 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1848     use hir::TyKind::*;
1849     match &ty.kind {
1850         Infer => true,
1851         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1852         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1853         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1854         Def(_, generic_args) => are_suggestable_generic_args(generic_args),
1855         Path(hir::QPath::TypeRelative(ty, segment)) => {
1856             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.generic_args().args)
1857         }
1858         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1859             ty_opt.map_or(false, is_suggestable_infer_ty)
1860                 || segments
1861                     .iter()
1862                     .any(|segment| are_suggestable_generic_args(segment.generic_args().args))
1863         }
1864         _ => false,
1865     }
1866 }
1867
1868 pub fn get_infer_ret_ty(output: &'hir hir::FunctionRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1869     if let hir::FunctionRetTy::Return(ref ty) = output {
1870         if is_suggestable_infer_ty(ty) {
1871             return Some(&**ty);
1872         }
1873     }
1874     None
1875 }
1876
1877 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1878     use rustc_hir::Node::*;
1879     use rustc_hir::*;
1880
1881     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1882
1883     let icx = ItemCtxt::new(tcx, def_id);
1884
1885     match tcx.hir().get(hir_id) {
1886         TraitItem(hir::TraitItem {
1887             kind: TraitItemKind::Method(sig, TraitMethod::Provided(_)),
1888             ident,
1889             generics,
1890             ..
1891         })
1892         | ImplItem(hir::ImplItem { kind: ImplItemKind::Method(sig, _), ident, generics, .. })
1893         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1894             match get_infer_ret_ty(&sig.decl.output) {
1895                 Some(ty) => {
1896                     let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1897                     let mut visitor = PlaceholderHirTyCollector::default();
1898                     visitor.visit_ty(ty);
1899                     let mut diag = bad_placeholder_type(tcx, visitor.0);
1900                     let ret_ty = fn_sig.output();
1901                     if ret_ty != tcx.types.err {
1902                         diag.span_suggestion(
1903                             ty.span,
1904                             "replace with the correct return type",
1905                             ret_ty.to_string(),
1906                             Applicability::MaybeIncorrect,
1907                         );
1908                     }
1909                     diag.emit();
1910                     ty::Binder::bind(fn_sig)
1911                 }
1912                 None => AstConv::ty_of_fn(
1913                     &icx,
1914                     sig.header.unsafety,
1915                     sig.header.abi,
1916                     &sig.decl,
1917                     &generics.params[..],
1918                     Some(ident.span),
1919                 ),
1920             }
1921         }
1922
1923         TraitItem(hir::TraitItem {
1924             kind: TraitItemKind::Method(FnSig { header, decl }, _),
1925             ident,
1926             generics,
1927             ..
1928         }) => AstConv::ty_of_fn(
1929             &icx,
1930             header.unsafety,
1931             header.abi,
1932             decl,
1933             &generics.params[..],
1934             Some(ident.span),
1935         ),
1936
1937         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(ref fn_decl, _, _), .. }) => {
1938             let abi = tcx.hir().get_foreign_abi(hir_id);
1939             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1940         }
1941
1942         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1943             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1944             let inputs =
1945                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1946             ty::Binder::bind(tcx.mk_fn_sig(
1947                 inputs,
1948                 ty,
1949                 false,
1950                 hir::Unsafety::Normal,
1951                 abi::Abi::Rust,
1952             ))
1953         }
1954
1955         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1956             // Closure signatures are not like other function
1957             // signatures and cannot be accessed through `fn_sig`. For
1958             // example, a closure signature excludes the `self`
1959             // argument. In any case they are embedded within the
1960             // closure type as part of the `ClosureSubsts`.
1961             //
1962             // To get
1963             // the signature of a closure, you should use the
1964             // `closure_sig` method on the `ClosureSubsts`:
1965             //
1966             //    closure_substs.sig(def_id, tcx)
1967             //
1968             // or, inside of an inference context, you can use
1969             //
1970             //    infcx.closure_sig(def_id, closure_substs)
1971             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1972         }
1973
1974         x => {
1975             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1976         }
1977     }
1978 }
1979
1980 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1981     let icx = ItemCtxt::new(tcx, def_id);
1982
1983     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1984     match tcx.hir().expect_item(hir_id).kind {
1985         hir::ItemKind::Impl { ref of_trait, .. } => of_trait.as_ref().map(|ast_trait_ref| {
1986             let selfty = tcx.type_of(def_id);
1987             AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1988         }),
1989         _ => bug!(),
1990     }
1991 }
1992
1993 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1994     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1995     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1996     let item = tcx.hir().expect_item(hir_id);
1997     match &item.kind {
1998         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Negative, .. } => {
1999             if is_rustc_reservation {
2000                 tcx.sess.span_err(item.span, "reservation impls can't be negative");
2001             }
2002             ty::ImplPolarity::Negative
2003         }
2004         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Positive, of_trait: None, .. } => {
2005             if is_rustc_reservation {
2006                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
2007             }
2008             ty::ImplPolarity::Positive
2009         }
2010         hir::ItemKind::Impl {
2011             polarity: hir::ImplPolarity::Positive, of_trait: Some(_), ..
2012         } => {
2013             if is_rustc_reservation {
2014                 ty::ImplPolarity::Reservation
2015             } else {
2016                 ty::ImplPolarity::Positive
2017             }
2018         }
2019         ref item => bug!("impl_polarity: {:?} not an impl", item),
2020     }
2021 }
2022
2023 /// Returns the early-bound lifetimes declared in this generics
2024 /// listing. For anything other than fns/methods, this is just all
2025 /// the lifetimes that are declared. For fns or methods, we have to
2026 /// screen out those that do not appear in any where-clauses etc using
2027 /// `resolve_lifetime::early_bound_lifetimes`.
2028 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
2029     tcx: TyCtxt<'tcx>,
2030     generics: &'a hir::Generics<'a>,
2031 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
2032     generics.params.iter().filter(move |param| match param.kind {
2033         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
2034         _ => false,
2035     })
2036 }
2037
2038 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
2039 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
2040 /// inferred constraints concerning which regions outlive other regions.
2041 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2042     debug!("predicates_defined_on({:?})", def_id);
2043     let mut result = tcx.explicit_predicates_of(def_id);
2044     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
2045     let inferred_outlives = tcx.inferred_outlives_of(def_id);
2046     if !inferred_outlives.is_empty() {
2047         debug!(
2048             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
2049             def_id, inferred_outlives,
2050         );
2051         if result.predicates.is_empty() {
2052             result.predicates = inferred_outlives;
2053         } else {
2054             result.predicates = tcx
2055                 .arena
2056                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
2057         }
2058     }
2059     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2060     result
2061 }
2062
2063 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2064 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2065 /// `Self: Trait` predicates for traits.
2066 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2067     let mut result = tcx.predicates_defined_on(def_id);
2068
2069     if tcx.is_trait(def_id) {
2070         // For traits, add `Self: Trait` predicate. This is
2071         // not part of the predicates that a user writes, but it
2072         // is something that one must prove in order to invoke a
2073         // method or project an associated type.
2074         //
2075         // In the chalk setup, this predicate is not part of the
2076         // "predicates" for a trait item. But it is useful in
2077         // rustc because if you directly (e.g.) invoke a trait
2078         // method like `Trait::method(...)`, you must naturally
2079         // prove that the trait applies to the types that were
2080         // used, and adding the predicate into this list ensures
2081         // that this is done.
2082         let span = tcx.def_span(def_id);
2083         result.predicates =
2084             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2085                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(),
2086                 span,
2087             ))));
2088     }
2089     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2090     result
2091 }
2092
2093 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2094 /// N.B., this does not include any implied/inferred constraints.
2095 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2096     use rustc_data_structures::fx::FxHashSet;
2097     use rustc_hir::*;
2098
2099     debug!("explicit_predicates_of(def_id={:?})", def_id);
2100
2101     /// A data structure with unique elements, which preserves order of insertion.
2102     /// Preserving the order of insertion is important here so as not to break
2103     /// compile-fail UI tests.
2104     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
2105     struct UniquePredicates<'tcx> {
2106         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
2107         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
2108     }
2109
2110     impl<'tcx> UniquePredicates<'tcx> {
2111         fn new() -> Self {
2112             UniquePredicates { predicates: vec![], uniques: FxHashSet::default() }
2113         }
2114
2115         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
2116             if self.uniques.insert(value) {
2117                 self.predicates.push(value);
2118             }
2119         }
2120
2121         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
2122             for value in iter {
2123                 self.push(value);
2124             }
2125         }
2126     }
2127
2128     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2129     let node = tcx.hir().get(hir_id);
2130
2131     let mut is_trait = None;
2132     let mut is_default_impl_trait = None;
2133
2134     let icx = ItemCtxt::new(tcx, def_id);
2135     let constness = icx.default_constness_for_trait_bounds();
2136
2137     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
2138
2139     let mut predicates = UniquePredicates::new();
2140
2141     let ast_generics = match node {
2142         Node::TraitItem(item) => &item.generics,
2143
2144         Node::ImplItem(item) => match item.kind {
2145             ImplItemKind::OpaqueTy(ref bounds) => {
2146                 ty::print::with_no_queries(|| {
2147                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2148                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2149                     debug!(
2150                         "explicit_predicates_of({:?}): created opaque type {:?}",
2151                         def_id, opaque_ty
2152                     );
2153
2154                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2155                     let bounds = AstConv::compute_bounds(
2156                         &icx,
2157                         opaque_ty,
2158                         bounds,
2159                         SizedByDefault::Yes,
2160                         tcx.def_span(def_id),
2161                     );
2162
2163                     predicates.extend(bounds.predicates(tcx, opaque_ty));
2164                     &item.generics
2165                 })
2166             }
2167             _ => &item.generics,
2168         },
2169
2170         Node::Item(item) => {
2171             match item.kind {
2172                 ItemKind::Impl { defaultness, ref generics, .. } => {
2173                     if defaultness.is_default() {
2174                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2175                     }
2176                     generics
2177                 }
2178                 ItemKind::Fn(.., ref generics, _)
2179                 | ItemKind::TyAlias(_, ref generics)
2180                 | ItemKind::Enum(_, ref generics)
2181                 | ItemKind::Struct(_, ref generics)
2182                 | ItemKind::Union(_, ref generics) => generics,
2183
2184                 ItemKind::Trait(_, _, ref generics, .., items) => {
2185                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2186                     generics
2187                 }
2188                 ItemKind::TraitAlias(ref generics, _) => {
2189                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &[]));
2190                     generics
2191                 }
2192                 ItemKind::OpaqueTy(OpaqueTy {
2193                     ref bounds,
2194                     impl_trait_fn,
2195                     ref generics,
2196                     origin: _,
2197                 }) => {
2198                     let bounds_predicates = ty::print::with_no_queries(|| {
2199                         let substs = InternalSubsts::identity_for_item(tcx, def_id);
2200                         let opaque_ty = tcx.mk_opaque(def_id, substs);
2201
2202                         // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2203                         let bounds = AstConv::compute_bounds(
2204                             &icx,
2205                             opaque_ty,
2206                             bounds,
2207                             SizedByDefault::Yes,
2208                             tcx.def_span(def_id),
2209                         );
2210
2211                         bounds.predicates(tcx, opaque_ty)
2212                     });
2213                     if impl_trait_fn.is_some() {
2214                         // opaque types
2215                         return ty::GenericPredicates {
2216                             parent: None,
2217                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
2218                         };
2219                     } else {
2220                         // named opaque types
2221                         predicates.extend(bounds_predicates);
2222                         generics
2223                     }
2224                 }
2225
2226                 _ => NO_GENERICS,
2227             }
2228         }
2229
2230         Node::ForeignItem(item) => match item.kind {
2231             ForeignItemKind::Static(..) => NO_GENERICS,
2232             ForeignItemKind::Fn(_, _, ref generics) => generics,
2233             ForeignItemKind::Type => NO_GENERICS,
2234         },
2235
2236         _ => NO_GENERICS,
2237     };
2238
2239     let generics = tcx.generics_of(def_id);
2240     let parent_count = generics.parent_count as u32;
2241     let has_own_self = generics.has_self && parent_count == 0;
2242
2243     // Below we'll consider the bounds on the type parameters (including `Self`)
2244     // and the explicit where-clauses, but to get the full set of predicates
2245     // on a trait we need to add in the supertrait bounds and bounds found on
2246     // associated types.
2247     if let Some((_trait_ref, _)) = is_trait {
2248         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2249     }
2250
2251     // In default impls, we can assume that the self type implements
2252     // the trait. So in:
2253     //
2254     //     default impl Foo for Bar { .. }
2255     //
2256     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2257     // (see below). Recall that a default impl is not itself an impl, but rather a
2258     // set of defaults that can be incorporated into another impl.
2259     if let Some(trait_ref) = is_default_impl_trait {
2260         predicates.push((
2261             trait_ref.to_poly_trait_ref().without_const().to_predicate(),
2262             tcx.def_span(def_id),
2263         ));
2264     }
2265
2266     // Collect the region predicates that were declared inline as
2267     // well. In the case of parameters declared on a fn or method, we
2268     // have to be careful to only iterate over early-bound regions.
2269     let mut index = parent_count + has_own_self as u32;
2270     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2271         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2272             def_id: tcx.hir().local_def_id(param.hir_id),
2273             index,
2274             name: param.name.ident().name,
2275         }));
2276         index += 1;
2277
2278         match param.kind {
2279             GenericParamKind::Lifetime { .. } => {
2280                 param.bounds.iter().for_each(|bound| match bound {
2281                     hir::GenericBound::Outlives(lt) => {
2282                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2283                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2284                         predicates.push((outlives.to_predicate(), lt.span));
2285                     }
2286                     _ => bug!(),
2287                 });
2288             }
2289             _ => bug!(),
2290         }
2291     }
2292
2293     // Collect the predicates that were written inline by the user on each
2294     // type parameter (e.g., `<T: Foo>`).
2295     for param in ast_generics.params {
2296         if let GenericParamKind::Type { .. } = param.kind {
2297             let name = param.name.ident().name;
2298             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2299             index += 1;
2300
2301             let sized = SizedByDefault::Yes;
2302             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2303             predicates.extend(bounds.predicates(tcx, param_ty));
2304         }
2305     }
2306
2307     // Add in the bounds that appear in the where-clause.
2308     let where_clause = &ast_generics.where_clause;
2309     for predicate in where_clause.predicates {
2310         match predicate {
2311             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2312                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2313
2314                 // Keep the type around in a dummy predicate, in case of no bounds.
2315                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2316                 // is still checked for WF.
2317                 if bound_pred.bounds.is_empty() {
2318                     if let ty::Param(_) = ty.kind {
2319                         // This is a `where T:`, which can be in the HIR from the
2320                         // transformation that moves `?Sized` to `T`'s declaration.
2321                         // We can skip the predicate because type parameters are
2322                         // trivially WF, but also we *should*, to avoid exposing
2323                         // users who never wrote `where Type:,` themselves, to
2324                         // compiler/tooling bugs from not handling WF predicates.
2325                     } else {
2326                         let span = bound_pred.bounded_ty.span;
2327                         let re_root_empty = tcx.lifetimes.re_root_empty;
2328                         let predicate = ty::OutlivesPredicate(ty, re_root_empty);
2329                         predicates.push((
2330                             ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)),
2331                             span,
2332                         ));
2333                     }
2334                 }
2335
2336                 for bound in bound_pred.bounds.iter() {
2337                     match bound {
2338                         &hir::GenericBound::Trait(ref poly_trait_ref, modifier) => {
2339                             let constness = match modifier {
2340                                 hir::TraitBoundModifier::MaybeConst => ast::Constness::NotConst,
2341                                 hir::TraitBoundModifier::None => constness,
2342                                 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
2343                             };
2344
2345                             let mut bounds = Bounds::default();
2346                             let _ = AstConv::instantiate_poly_trait_ref(
2347                                 &icx,
2348                                 poly_trait_ref,
2349                                 constness,
2350                                 ty,
2351                                 &mut bounds,
2352                             );
2353                             predicates.extend(bounds.predicates(tcx, ty));
2354                         }
2355
2356                         &hir::GenericBound::Outlives(ref lifetime) => {
2357                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2358                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2359                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2360                         }
2361                     }
2362                 }
2363             }
2364
2365             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2366                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2367                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2368                     let (r2, span) = match bound {
2369                         hir::GenericBound::Outlives(lt) => {
2370                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2371                         }
2372                         _ => bug!(),
2373                     };
2374                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2375
2376                     (ty::Predicate::RegionOutlives(pred), span)
2377                 }))
2378             }
2379
2380             &hir::WherePredicate::EqPredicate(..) => {
2381                 // FIXME(#20041)
2382             }
2383         }
2384     }
2385
2386     // Add predicates from associated type bounds.
2387     if let Some((self_trait_ref, trait_items)) = is_trait {
2388         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2389             associated_item_predicates(tcx, def_id, self_trait_ref, trait_item_ref)
2390         }))
2391     }
2392
2393     let mut predicates = predicates.predicates;
2394
2395     // Subtle: before we store the predicates into the tcx, we
2396     // sort them so that predicates like `T: Foo<Item=U>` come
2397     // before uses of `U`.  This avoids false ambiguity errors
2398     // in trait checking. See `setup_constraining_predicates`
2399     // for details.
2400     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2401         let self_ty = tcx.type_of(def_id);
2402         let trait_ref = tcx.impl_trait_ref(def_id);
2403         cgp::setup_constraining_predicates(
2404             tcx,
2405             &mut predicates,
2406             trait_ref,
2407             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2408         );
2409     }
2410
2411     let result = ty::GenericPredicates {
2412         parent: generics.parent,
2413         predicates: tcx.arena.alloc_from_iter(predicates),
2414     };
2415     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2416     result
2417 }
2418
2419 fn associated_item_predicates(
2420     tcx: TyCtxt<'tcx>,
2421     def_id: DefId,
2422     self_trait_ref: ty::TraitRef<'tcx>,
2423     trait_item_ref: &hir::TraitItemRef,
2424 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2425     let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2426     let item_def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
2427     let bounds = match trait_item.kind {
2428         hir::TraitItemKind::Type(ref bounds, _) => bounds,
2429         _ => return Vec::new(),
2430     };
2431
2432     let is_gat = !tcx.generics_of(item_def_id).params.is_empty();
2433
2434     let mut had_error = false;
2435
2436     let mut unimplemented_error = |arg_kind: &str| {
2437         if !had_error {
2438             tcx.sess
2439                 .struct_span_err(
2440                     trait_item.span,
2441                     &format!("{}-generic associated types are not yet implemented", arg_kind),
2442                 )
2443                 .note("for more information, see https://github.com/rust-lang/rust/issues/44265")
2444                 .emit();
2445             had_error = true;
2446         }
2447     };
2448
2449     let mk_bound_param = |param: &ty::GenericParamDef, _: &_| {
2450         match param.kind {
2451             ty::GenericParamDefKind::Lifetime => tcx
2452                 .mk_region(ty::RegionKind::ReLateBound(
2453                     ty::INNERMOST,
2454                     ty::BoundRegion::BrNamed(param.def_id, param.name),
2455                 ))
2456                 .into(),
2457             // FIXME(generic_associated_types): Use bound types and constants
2458             // once they are handled by the trait system.
2459             ty::GenericParamDefKind::Type { .. } => {
2460                 unimplemented_error("type");
2461                 tcx.types.err.into()
2462             }
2463             ty::GenericParamDefKind::Const => {
2464                 unimplemented_error("const");
2465                 tcx.consts.err.into()
2466             }
2467         }
2468     };
2469
2470     let bound_substs = if is_gat {
2471         // Given:
2472         //
2473         // trait X<'a, B, const C: usize> {
2474         //     type T<'d, E, const F: usize>: Default;
2475         // }
2476         //
2477         // We need to create predicates on the trait:
2478         //
2479         // for<'d, E, const F: usize>
2480         // <Self as X<'a, B, const C: usize>>::T<'d, E, const F: usize>: Sized + Default
2481         //
2482         // We substitute escaping bound parameters for the generic
2483         // arguments to the associated type which are then bound by
2484         // the `Binder` around the the predicate.
2485         //
2486         // FIXME(generic_associated_types): Currently only lifetimes are handled.
2487         self_trait_ref.substs.extend_to(tcx, item_def_id, mk_bound_param)
2488     } else {
2489         self_trait_ref.substs
2490     };
2491
2492     let assoc_ty = tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id), bound_substs);
2493
2494     let bounds = AstConv::compute_bounds(
2495         &ItemCtxt::new(tcx, def_id),
2496         assoc_ty,
2497         bounds,
2498         SizedByDefault::Yes,
2499         trait_item.span,
2500     );
2501
2502     let predicates = bounds.predicates(tcx, assoc_ty);
2503
2504     if is_gat {
2505         // We use shifts to get the regions that we're substituting to
2506         // be bound by the binders in the `Predicate`s rather that
2507         // escaping.
2508         let shifted_in = ty::fold::shift_vars(tcx, &predicates, 1);
2509         let substituted = shifted_in.subst(tcx, bound_substs);
2510         ty::fold::shift_out_vars(tcx, &substituted, 1)
2511     } else {
2512         predicates
2513     }
2514 }
2515
2516 /// Converts a specific `GenericBound` from the AST into a set of
2517 /// predicates that apply to the self type. A vector is returned
2518 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2519 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2520 /// and `<T as Bar>::X == i32`).
2521 fn predicates_from_bound<'tcx>(
2522     astconv: &dyn AstConv<'tcx>,
2523     param_ty: Ty<'tcx>,
2524     bound: &'tcx hir::GenericBound<'tcx>,
2525     constness: ast::Constness,
2526 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2527     match *bound {
2528         hir::GenericBound::Trait(ref tr, modifier) => {
2529             let constness = match modifier {
2530                 hir::TraitBoundModifier::Maybe => return vec![],
2531                 hir::TraitBoundModifier::MaybeConst => ast::Constness::NotConst,
2532                 hir::TraitBoundModifier::None => constness,
2533             };
2534
2535             let mut bounds = Bounds::default();
2536             let _ = astconv.instantiate_poly_trait_ref(tr, constness, param_ty, &mut bounds);
2537             bounds.predicates(astconv.tcx(), param_ty)
2538         }
2539         hir::GenericBound::Outlives(ref lifetime) => {
2540             let region = astconv.ast_region_to_region(lifetime, None);
2541             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2542             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2543         }
2544     }
2545 }
2546
2547 fn compute_sig_of_foreign_fn_decl<'tcx>(
2548     tcx: TyCtxt<'tcx>,
2549     def_id: DefId,
2550     decl: &'tcx hir::FnDecl<'tcx>,
2551     abi: abi::Abi,
2552 ) -> ty::PolyFnSig<'tcx> {
2553     let unsafety = if abi == abi::Abi::RustIntrinsic {
2554         intrinsic_operation_unsafety(&tcx.item_name(def_id).as_str())
2555     } else {
2556         hir::Unsafety::Unsafe
2557     };
2558     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl, &[], None);
2559
2560     // Feature gate SIMD types in FFI, since I am not sure that the
2561     // ABIs are handled at all correctly. -huonw
2562     if abi != abi::Abi::RustIntrinsic
2563         && abi != abi::Abi::PlatformIntrinsic
2564         && !tcx.features().simd_ffi
2565     {
2566         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2567             if ty.is_simd() {
2568                 tcx.sess
2569                     .struct_span_err(
2570                         ast_ty.span,
2571                         &format!(
2572                             "use of SIMD type `{}` in FFI is highly experimental and \
2573                             may result in invalid code",
2574                             tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2575                         ),
2576                     )
2577                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2578                     .emit();
2579             }
2580         };
2581         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2582             check(&input, ty)
2583         }
2584         if let hir::FunctionRetTy::Return(ref ty) = decl.output {
2585             check(&ty, *fty.output().skip_binder())
2586         }
2587     }
2588
2589     fty
2590 }
2591
2592 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2593     match tcx.hir().get_if_local(def_id) {
2594         Some(Node::ForeignItem(..)) => true,
2595         Some(_) => false,
2596         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2597     }
2598 }
2599
2600 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2601     match tcx.hir().get_if_local(def_id) {
2602         Some(Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. }))
2603         | Some(Node::ForeignItem(&hir::ForeignItem {
2604             kind: hir::ForeignItemKind::Static(_, mutbl),
2605             ..
2606         })) => Some(mutbl),
2607         Some(_) => None,
2608         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2609     }
2610 }
2611
2612 fn from_target_feature(
2613     tcx: TyCtxt<'_>,
2614     id: DefId,
2615     attr: &ast::Attribute,
2616     whitelist: &FxHashMap<String, Option<Symbol>>,
2617     target_features: &mut Vec<Symbol>,
2618 ) {
2619     let list = match attr.meta_item_list() {
2620         Some(list) => list,
2621         None => return,
2622     };
2623     let bad_item = |span| {
2624         let msg = "malformed `target_feature` attribute input";
2625         let code = "enable = \"..\"".to_owned();
2626         tcx.sess
2627             .struct_span_err(span, &msg)
2628             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2629             .emit();
2630     };
2631     let rust_features = tcx.features();
2632     for item in list {
2633         // Only `enable = ...` is accepted in the meta-item list.
2634         if !item.check_name(sym::enable) {
2635             bad_item(item.span());
2636             continue;
2637         }
2638
2639         // Must be of the form `enable = "..."` (a string).
2640         let value = match item.value_str() {
2641             Some(value) => value,
2642             None => {
2643                 bad_item(item.span());
2644                 continue;
2645             }
2646         };
2647
2648         // We allow comma separation to enable multiple features.
2649         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2650             // Only allow whitelisted features per platform.
2651             let feature_gate = match whitelist.get(feature) {
2652                 Some(g) => g,
2653                 None => {
2654                     let msg =
2655                         format!("the feature named `{}` is not valid for this target", feature);
2656                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2657                     err.span_label(
2658                         item.span(),
2659                         format!("`{}` is not valid for this target", feature),
2660                     );
2661                     if feature.starts_with("+") {
2662                         let valid = whitelist.contains_key(&feature[1..]);
2663                         if valid {
2664                             err.help("consider removing the leading `+` in the feature name");
2665                         }
2666                     }
2667                     err.emit();
2668                     return None;
2669                 }
2670             };
2671
2672             // Only allow features whose feature gates have been enabled.
2673             let allowed = match feature_gate.as_ref().map(|s| *s) {
2674                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2675                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2676                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2677                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2678                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2679                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2680                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2681                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2682                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2683                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2684                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2685                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2686                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2687                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2688                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2689                 Some(name) => bug!("unknown target feature gate {}", name),
2690                 None => true,
2691             };
2692             if !allowed && id.is_local() {
2693                 feature_err(
2694                     &tcx.sess.parse_sess,
2695                     feature_gate.unwrap(),
2696                     item.span(),
2697                     &format!("the target feature `{}` is currently unstable", feature),
2698                 )
2699                 .emit();
2700             }
2701             Some(Symbol::intern(feature))
2702         }));
2703     }
2704 }
2705
2706 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2707     use rustc::mir::mono::Linkage::*;
2708
2709     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2710     // applicable to variable declarations and may not really make sense for
2711     // Rust code in the first place but whitelist them anyway and trust that
2712     // the user knows what s/he's doing. Who knows, unanticipated use cases
2713     // may pop up in the future.
2714     //
2715     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2716     // and don't have to be, LLVM treats them as no-ops.
2717     match name {
2718         "appending" => Appending,
2719         "available_externally" => AvailableExternally,
2720         "common" => Common,
2721         "extern_weak" => ExternalWeak,
2722         "external" => External,
2723         "internal" => Internal,
2724         "linkonce" => LinkOnceAny,
2725         "linkonce_odr" => LinkOnceODR,
2726         "private" => Private,
2727         "weak" => WeakAny,
2728         "weak_odr" => WeakODR,
2729         _ => {
2730             let span = tcx.hir().span_if_local(def_id);
2731             if let Some(span) = span {
2732                 tcx.sess.span_fatal(span, "invalid linkage specified")
2733             } else {
2734                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2735             }
2736         }
2737     }
2738 }
2739
2740 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2741     let attrs = tcx.get_attrs(id);
2742
2743     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2744
2745     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2746
2747     let mut inline_span = None;
2748     let mut link_ordinal_span = None;
2749     let mut no_sanitize_span = None;
2750     for attr in attrs.iter() {
2751         if attr.check_name(sym::cold) {
2752             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2753         } else if attr.check_name(sym::rustc_allocator) {
2754             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2755         } else if attr.check_name(sym::unwind) {
2756             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2757         } else if attr.check_name(sym::ffi_returns_twice) {
2758             if tcx.is_foreign_item(id) {
2759                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2760             } else {
2761                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2762                 struct_span_err!(
2763                     tcx.sess,
2764                     attr.span,
2765                     E0724,
2766                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2767                 )
2768                 .emit();
2769             }
2770         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2771             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2772         } else if attr.check_name(sym::naked) {
2773             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2774         } else if attr.check_name(sym::no_mangle) {
2775             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2776         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2777             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2778         } else if attr.check_name(sym::no_debug) {
2779             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2780         } else if attr.check_name(sym::used) {
2781             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2782         } else if attr.check_name(sym::thread_local) {
2783             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2784         } else if attr.check_name(sym::track_caller) {
2785             if tcx.fn_sig(id).abi() != abi::Abi::Rust {
2786                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2787                     .emit();
2788             }
2789             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2790         } else if attr.check_name(sym::export_name) {
2791             if let Some(s) = attr.value_str() {
2792                 if s.as_str().contains("\0") {
2793                     // `#[export_name = ...]` will be converted to a null-terminated string,
2794                     // so it may not contain any null characters.
2795                     struct_span_err!(
2796                         tcx.sess,
2797                         attr.span,
2798                         E0648,
2799                         "`export_name` may not contain null characters"
2800                     )
2801                     .emit();
2802                 }
2803                 codegen_fn_attrs.export_name = Some(s);
2804             }
2805         } else if attr.check_name(sym::target_feature) {
2806             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2807                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2808                 tcx.sess
2809                     .struct_span_err(attr.span, msg)
2810                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2811                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2812                     .emit();
2813             }
2814             from_target_feature(tcx, id, attr, &whitelist, &mut codegen_fn_attrs.target_features);
2815         } else if attr.check_name(sym::linkage) {
2816             if let Some(val) = attr.value_str() {
2817                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2818             }
2819         } else if attr.check_name(sym::link_section) {
2820             if let Some(val) = attr.value_str() {
2821                 if val.as_str().bytes().any(|b| b == 0) {
2822                     let msg = format!(
2823                         "illegal null byte in link_section \
2824                          value: `{}`",
2825                         &val
2826                     );
2827                     tcx.sess.span_err(attr.span, &msg);
2828                 } else {
2829                     codegen_fn_attrs.link_section = Some(val);
2830                 }
2831             }
2832         } else if attr.check_name(sym::link_name) {
2833             codegen_fn_attrs.link_name = attr.value_str();
2834         } else if attr.check_name(sym::link_ordinal) {
2835             link_ordinal_span = Some(attr.span);
2836             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2837                 codegen_fn_attrs.link_ordinal = ordinal;
2838             }
2839         } else if attr.check_name(sym::no_sanitize) {
2840             no_sanitize_span = Some(attr.span);
2841             if let Some(list) = attr.meta_item_list() {
2842                 for item in list.iter() {
2843                     if item.check_name(sym::address) {
2844                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_ADDRESS;
2845                     } else if item.check_name(sym::memory) {
2846                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_MEMORY;
2847                     } else if item.check_name(sym::thread) {
2848                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_THREAD;
2849                     } else {
2850                         tcx.sess
2851                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2852                             .note("expected one of: `address`, `memory` or `thread`")
2853                             .emit();
2854                     }
2855                 }
2856             }
2857         }
2858     }
2859
2860     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2861         if !attr.has_name(sym::inline) {
2862             return ia;
2863         }
2864         match attr.meta().map(|i| i.kind) {
2865             Some(MetaItemKind::Word) => {
2866                 mark_used(attr);
2867                 InlineAttr::Hint
2868             }
2869             Some(MetaItemKind::List(ref items)) => {
2870                 mark_used(attr);
2871                 inline_span = Some(attr.span);
2872                 if items.len() != 1 {
2873                     struct_span_err!(
2874                         tcx.sess.diagnostic(),
2875                         attr.span,
2876                         E0534,
2877                         "expected one argument"
2878                     )
2879                     .emit();
2880                     InlineAttr::None
2881                 } else if list_contains_name(&items[..], sym::always) {
2882                     InlineAttr::Always
2883                 } else if list_contains_name(&items[..], sym::never) {
2884                     InlineAttr::Never
2885                 } else {
2886                     struct_span_err!(
2887                         tcx.sess.diagnostic(),
2888                         items[0].span(),
2889                         E0535,
2890                         "invalid argument"
2891                     )
2892                     .emit();
2893
2894                     InlineAttr::None
2895                 }
2896             }
2897             Some(MetaItemKind::NameValue(_)) => ia,
2898             None => ia,
2899         }
2900     });
2901
2902     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2903         if !attr.has_name(sym::optimize) {
2904             return ia;
2905         }
2906         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
2907         match attr.meta().map(|i| i.kind) {
2908             Some(MetaItemKind::Word) => {
2909                 err(attr.span, "expected one argument");
2910                 ia
2911             }
2912             Some(MetaItemKind::List(ref items)) => {
2913                 mark_used(attr);
2914                 inline_span = Some(attr.span);
2915                 if items.len() != 1 {
2916                     err(attr.span, "expected one argument");
2917                     OptimizeAttr::None
2918                 } else if list_contains_name(&items[..], sym::size) {
2919                     OptimizeAttr::Size
2920                 } else if list_contains_name(&items[..], sym::speed) {
2921                     OptimizeAttr::Speed
2922                 } else {
2923                     err(items[0].span(), "invalid argument");
2924                     OptimizeAttr::None
2925                 }
2926             }
2927             Some(MetaItemKind::NameValue(_)) => ia,
2928             None => ia,
2929         }
2930     });
2931
2932     // If a function uses #[target_feature] it can't be inlined into general
2933     // purpose functions as they wouldn't have the right target features
2934     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2935     // respected.
2936     if codegen_fn_attrs.target_features.len() > 0 {
2937         if codegen_fn_attrs.inline == InlineAttr::Always {
2938             if let Some(span) = inline_span {
2939                 tcx.sess.span_err(
2940                     span,
2941                     "cannot use `#[inline(always)]` with \
2942                      `#[target_feature]`",
2943                 );
2944             }
2945         }
2946     }
2947
2948     if codegen_fn_attrs.flags.intersects(CodegenFnAttrFlags::NO_SANITIZE_ANY) {
2949         if codegen_fn_attrs.inline == InlineAttr::Always {
2950             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
2951                 let hir_id = tcx.hir().as_local_hir_id(id).unwrap();
2952                 tcx.struct_span_lint_hir(
2953                     lint::builtin::INLINE_NO_SANITIZE,
2954                     hir_id,
2955                     no_sanitize_span,
2956                     "`no_sanitize` will have no effect after inlining",
2957                 )
2958                 .span_note(inline_span, "inlining requested here")
2959                 .emit();
2960             }
2961         }
2962     }
2963
2964     // Weak lang items have the same semantics as "std internal" symbols in the
2965     // sense that they're preserved through all our LTO passes and only
2966     // strippable by the linker.
2967     //
2968     // Additionally weak lang items have predetermined symbol names.
2969     if tcx.is_weak_lang_item(id) {
2970         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2971     }
2972     if let Some(name) = weak_lang_items::link_name(&attrs) {
2973         codegen_fn_attrs.export_name = Some(name);
2974         codegen_fn_attrs.link_name = Some(name);
2975     }
2976     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2977
2978     // Internal symbols to the standard library all have no_mangle semantics in
2979     // that they have defined symbol names present in the function name. This
2980     // also applies to weak symbols where they all have known symbol names.
2981     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2982         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2983     }
2984
2985     codegen_fn_attrs
2986 }
2987
2988 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2989     use syntax::ast::{Lit, LitIntType, LitKind};
2990     let meta_item_list = attr.meta_item_list();
2991     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2992     let sole_meta_list = match meta_item_list {
2993         Some([item]) => item.literal(),
2994         _ => None,
2995     };
2996     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2997         if *ordinal <= std::usize::MAX as u128 {
2998             Some(*ordinal as usize)
2999         } else {
3000             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3001             tcx.sess
3002                 .struct_span_err(attr.span, &msg)
3003                 .note("the value may not exceed `std::usize::MAX`")
3004                 .emit();
3005             None
3006         }
3007     } else {
3008         tcx.sess
3009             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3010             .note("an unsuffixed integer value, e.g., `1`, is expected")
3011             .emit();
3012         None
3013     }
3014 }
3015
3016 fn check_link_name_xor_ordinal(
3017     tcx: TyCtxt<'_>,
3018     codegen_fn_attrs: &CodegenFnAttrs,
3019     inline_span: Option<Span>,
3020 ) {
3021     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3022         return;
3023     }
3024     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3025     if let Some(span) = inline_span {
3026         tcx.sess.span_err(span, msg);
3027     } else {
3028         tcx.sess.err(msg);
3029     }
3030 }