]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Rollup merge of #63122 - Centril:fix-63115, r=petrochenkov
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrisic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::mir::mono::Linkage;
24 use rustc::ty::query::Providers;
25 use rustc::ty::subst::{Subst, InternalSubsts};
26 use rustc::ty::util::Discr;
27 use rustc::ty::util::IntTypeExt;
28 use rustc::ty::subst::UnpackedKind;
29 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, Const};
30 use rustc::ty::{ReprOptions, ToPredicate};
31 use rustc::util::captures::Captures;
32 use rustc::util::nodemap::FxHashMap;
33 use rustc_target::spec::abi;
34
35 use syntax::ast;
36 use syntax::ast::{Ident, MetaItemKind};
37 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
38 use syntax::source_map::Spanned;
39 use syntax::feature_gate;
40 use syntax::symbol::{InternedString, kw, Symbol, sym};
41 use syntax_pos::{Span, DUMMY_SP};
42
43 use rustc::hir::def::{CtorKind, Res, DefKind};
44 use rustc::hir::Node;
45 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
46 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
47 use rustc::hir::GenericParamKind;
48 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
49
50 use errors::{Applicability, DiagnosticId};
51
52 use std::iter;
53
54 struct OnlySelfBounds(bool);
55
56 ///////////////////////////////////////////////////////////////////////////
57 // Main entry point
58
59 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
60     tcx.hir().visit_item_likes_in_module(
61         module_def_id,
62         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
63     );
64 }
65
66 pub fn provide(providers: &mut Providers<'_>) {
67     *providers = Providers {
68         type_of,
69         generics_of,
70         predicates_of,
71         predicates_defined_on,
72         explicit_predicates_of,
73         super_predicates_of,
74         type_param_predicates,
75         trait_def,
76         adt_def,
77         fn_sig,
78         impl_trait_ref,
79         impl_polarity,
80         is_foreign_item,
81         static_mutability,
82         codegen_fn_attrs,
83         collect_mod_item_types,
84         ..*providers
85     };
86 }
87
88 ///////////////////////////////////////////////////////////////////////////
89
90 /// Context specific to some particular item. This is what implements
91 /// `AstConv`. It has information about the predicates that are defined
92 /// on the trait. Unfortunately, this predicate information is
93 /// available in various different forms at various points in the
94 /// process. So we can't just store a pointer to e.g., the AST or the
95 /// parsed ty form, we have to be more flexible. To this end, the
96 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
97 /// `get_type_parameter_bounds` requests, drawing the information from
98 /// the AST (`hir::Generics`), recursively.
99 pub struct ItemCtxt<'tcx> {
100     tcx: TyCtxt<'tcx>,
101     item_def_id: DefId,
102 }
103
104 ///////////////////////////////////////////////////////////////////////////
105
106 struct CollectItemTypesVisitor<'tcx> {
107     tcx: TyCtxt<'tcx>,
108 }
109
110 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
111     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
112         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
113     }
114
115     fn visit_item(&mut self, item: &'tcx hir::Item) {
116         convert_item(self.tcx, item.hir_id);
117         intravisit::walk_item(self, item);
118     }
119
120     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
121         for param in &generics.params {
122             match param.kind {
123                 hir::GenericParamKind::Lifetime { .. } => {}
124                 hir::GenericParamKind::Type {
125                     default: Some(_), ..
126                 } => {
127                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
128                     self.tcx.type_of(def_id);
129                 }
130                 hir::GenericParamKind::Type { .. } => {}
131                 hir::GenericParamKind::Const { .. } => {
132                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
133                     self.tcx.type_of(def_id);
134                 }
135             }
136         }
137         intravisit::walk_generics(self, generics);
138     }
139
140     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
141         if let hir::ExprKind::Closure(..) = expr.node {
142             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
143             self.tcx.generics_of(def_id);
144             self.tcx.type_of(def_id);
145         }
146         intravisit::walk_expr(self, expr);
147     }
148
149     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
150         convert_trait_item(self.tcx, trait_item.hir_id);
151         intravisit::walk_trait_item(self, trait_item);
152     }
153
154     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
155         convert_impl_item(self.tcx, impl_item.hir_id);
156         intravisit::walk_impl_item(self, impl_item);
157     }
158 }
159
160 ///////////////////////////////////////////////////////////////////////////
161 // Utility types and common code for the above passes.
162
163 fn bad_placeholder_type(tcx: TyCtxt<'tcx>, span: Span) -> errors::DiagnosticBuilder<'tcx> {
164     let mut diag = tcx.sess.struct_span_err_with_code(
165         span,
166         "the type placeholder `_` is not allowed within types on item signatures",
167         DiagnosticId::Error("E0121".into()),
168     );
169     diag.span_label(span, "not allowed in type signatures");
170     diag
171 }
172
173 impl ItemCtxt<'tcx> {
174     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
175         ItemCtxt { tcx, item_def_id }
176     }
177
178     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty) -> Ty<'tcx> {
179         AstConv::ast_ty_to_ty(self, ast_ty)
180     }
181 }
182
183 impl AstConv<'tcx> for ItemCtxt<'tcx> {
184     fn tcx(&self) -> TyCtxt<'tcx> {
185         self.tcx
186     }
187
188     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
189                                  -> &'tcx ty::GenericPredicates<'tcx> {
190         self.tcx
191             .at(span)
192             .type_param_predicates((self.item_def_id, def_id))
193     }
194
195     fn re_infer(
196         &self,
197         _: Option<&ty::GenericParamDef>,
198         _: Span,
199     ) -> Option<ty::Region<'tcx>> {
200         None
201     }
202
203     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
204         bad_placeholder_type(self.tcx(), span).emit();
205
206         self.tcx().types.err
207     }
208
209     fn ct_infer(
210         &self,
211         _: Ty<'tcx>,
212         _: Option<&ty::GenericParamDef>,
213         span: Span,
214     ) -> &'tcx Const<'tcx> {
215         bad_placeholder_type(self.tcx(), span).emit();
216
217         self.tcx().consts.err
218     }
219
220     fn projected_ty_from_poly_trait_ref(
221         &self,
222         span: Span,
223         item_def_id: DefId,
224         poly_trait_ref: ty::PolyTraitRef<'tcx>,
225     ) -> Ty<'tcx> {
226         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
227             self.tcx().mk_projection(item_def_id, trait_ref.substs)
228         } else {
229             // no late-bound regions, we can just ignore the binder
230             span_err!(
231                 self.tcx().sess,
232                 span,
233                 E0212,
234                 "cannot extract an associated type from a higher-ranked trait bound \
235                  in this context"
236             );
237             self.tcx().types.err
238         }
239     }
240
241     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
242         // types in item signatures are not normalized, to avoid undue
243         // dependencies.
244         ty
245     }
246
247     fn set_tainted_by_errors(&self) {
248         // no obvious place to track this, so just let it go
249     }
250
251     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
252         // no place to record types from signatures?
253     }
254 }
255
256 fn type_param_predicates(
257     tcx: TyCtxt<'_>,
258     (item_def_id, def_id): (DefId, DefId),
259 ) -> &ty::GenericPredicates<'_> {
260     use rustc::hir::*;
261
262     // In the AST, bounds can derive from two places. Either
263     // written inline like `<T : Foo>` or in a where clause like
264     // `where T : Foo`.
265
266     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
267     let param_owner = tcx.hir().ty_param_owner(param_id);
268     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
269     let generics = tcx.generics_of(param_owner_def_id);
270     let index = generics.param_def_id_to_index[&def_id];
271     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
272
273     // Don't look for bounds where the type parameter isn't in scope.
274     let parent = if item_def_id == param_owner_def_id {
275         None
276     } else {
277         tcx.generics_of(item_def_id).parent
278     };
279
280     let result = parent.map_or(&tcx.common.empty_predicates, |parent| {
281         let icx = ItemCtxt::new(tcx, parent);
282         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
283     });
284     let mut extend = None;
285
286     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
287     let ast_generics = match tcx.hir().get(item_hir_id) {
288         Node::TraitItem(item) => &item.generics,
289
290         Node::ImplItem(item) => &item.generics,
291
292         Node::Item(item) => {
293             match item.node {
294                 ItemKind::Fn(.., ref generics, _)
295                 | ItemKind::Impl(_, _, _, ref generics, ..)
296                 | ItemKind::Ty(_, ref generics)
297                 | ItemKind::Existential(ExistTy {
298                     ref generics,
299                     impl_trait_fn: None,
300                     ..
301                 })
302                 | ItemKind::Enum(_, ref generics)
303                 | ItemKind::Struct(_, ref generics)
304                 | ItemKind::Union(_, ref generics) => generics,
305                 ItemKind::Trait(_, _, ref generics, ..) => {
306                     // Implied `Self: Trait` and supertrait bounds.
307                     if param_id == item_hir_id {
308                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
309                         extend = Some((identity_trait_ref.to_predicate(), item.span));
310                     }
311                     generics
312                 }
313                 _ => return result,
314             }
315         }
316
317         Node::ForeignItem(item) => match item.node {
318             ForeignItemKind::Fn(_, _, ref generics) => generics,
319             _ => return result,
320         },
321
322         _ => return result,
323     };
324
325     let icx = ItemCtxt::new(tcx, item_def_id);
326     let mut result = (*result).clone();
327     result.predicates.extend(extend.into_iter());
328     result.predicates
329           .extend(icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty,
330                   OnlySelfBounds(true)));
331     tcx.arena.alloc(result)
332 }
333
334 impl ItemCtxt<'tcx> {
335     /// Finds bounds from `hir::Generics`. This requires scanning through the
336     /// AST. We do this to avoid having to convert *all* the bounds, which
337     /// would create artificial cycles. Instead we can only convert the
338     /// bounds for a type parameter `X` if `X::Foo` is used.
339     fn type_parameter_bounds_in_generics(
340         &self,
341         ast_generics: &'tcx hir::Generics,
342         param_id: hir::HirId,
343         ty: Ty<'tcx>,
344         only_self_bounds: OnlySelfBounds,
345     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
346         let from_ty_params = ast_generics
347             .params
348             .iter()
349             .filter_map(|param| match param.kind {
350                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
351                 _ => None,
352             })
353             .flat_map(|bounds| bounds.iter())
354             .flat_map(|b| predicates_from_bound(self, ty, b));
355
356         let from_where_clauses = ast_generics
357             .where_clause
358             .predicates
359             .iter()
360             .filter_map(|wp| match *wp {
361                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
362                 _ => None,
363             })
364             .flat_map(|bp| {
365                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
366                     Some(ty)
367                 } else if !only_self_bounds.0 {
368                     Some(self.to_ty(&bp.bounded_ty))
369                 } else {
370                     None
371                 };
372                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
373             })
374             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
375
376         from_ty_params.chain(from_where_clauses).collect()
377     }
378 }
379
380 /// Tests whether this is the AST for a reference to the type
381 /// parameter with ID `param_id`. We use this so as to avoid running
382 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
383 /// conversion of the type to avoid inducing unnecessary cycles.
384 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty, param_id: hir::HirId) -> bool {
385     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node {
386         match path.res {
387             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
388                 def_id == tcx.hir().local_def_id(param_id)
389             }
390             _ => false,
391         }
392     } else {
393         false
394     }
395 }
396
397 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
398     let it = tcx.hir().expect_item(item_id);
399     debug!("convert: item {} with id {}", it.ident, it.hir_id);
400     let def_id = tcx.hir().local_def_id(item_id);
401     match it.node {
402         // These don't define types.
403         hir::ItemKind::ExternCrate(_)
404         | hir::ItemKind::Use(..)
405         | hir::ItemKind::Mod(_)
406         | hir::ItemKind::GlobalAsm(_) => {}
407         hir::ItemKind::ForeignMod(ref foreign_mod) => {
408             for item in &foreign_mod.items {
409                 let def_id = tcx.hir().local_def_id(item.hir_id);
410                 tcx.generics_of(def_id);
411                 tcx.type_of(def_id);
412                 tcx.predicates_of(def_id);
413                 if let hir::ForeignItemKind::Fn(..) = item.node {
414                     tcx.fn_sig(def_id);
415                 }
416             }
417         }
418         hir::ItemKind::Enum(ref enum_definition, _) => {
419             tcx.generics_of(def_id);
420             tcx.type_of(def_id);
421             tcx.predicates_of(def_id);
422             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
423         }
424         hir::ItemKind::Impl(..) => {
425             tcx.generics_of(def_id);
426             tcx.type_of(def_id);
427             tcx.impl_trait_ref(def_id);
428             tcx.predicates_of(def_id);
429         }
430         hir::ItemKind::Trait(..) => {
431             tcx.generics_of(def_id);
432             tcx.trait_def(def_id);
433             tcx.at(it.span).super_predicates_of(def_id);
434             tcx.predicates_of(def_id);
435         }
436         hir::ItemKind::TraitAlias(..) => {
437             tcx.generics_of(def_id);
438             tcx.at(it.span).super_predicates_of(def_id);
439             tcx.predicates_of(def_id);
440         }
441         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
442             tcx.generics_of(def_id);
443             tcx.type_of(def_id);
444             tcx.predicates_of(def_id);
445
446             for f in struct_def.fields() {
447                 let def_id = tcx.hir().local_def_id(f.hir_id);
448                 tcx.generics_of(def_id);
449                 tcx.type_of(def_id);
450                 tcx.predicates_of(def_id);
451             }
452
453             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
454                 convert_variant_ctor(tcx, ctor_hir_id);
455             }
456         }
457
458         // Desugared from `impl Trait`, so visited by the function's return type.
459         hir::ItemKind::Existential(hir::ExistTy {
460             impl_trait_fn: Some(_),
461             ..
462         }) => {}
463
464         hir::ItemKind::Existential(..)
465         | hir::ItemKind::Ty(..)
466         | hir::ItemKind::Static(..)
467         | hir::ItemKind::Const(..)
468         | hir::ItemKind::Fn(..) => {
469             tcx.generics_of(def_id);
470             tcx.type_of(def_id);
471             tcx.predicates_of(def_id);
472             if let hir::ItemKind::Fn(..) = it.node {
473                 tcx.fn_sig(def_id);
474             }
475         }
476     }
477 }
478
479 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
480     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
481     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
482     tcx.generics_of(def_id);
483
484     match trait_item.node {
485         hir::TraitItemKind::Const(..)
486         | hir::TraitItemKind::Type(_, Some(_))
487         | hir::TraitItemKind::Method(..) => {
488             tcx.type_of(def_id);
489             if let hir::TraitItemKind::Method(..) = trait_item.node {
490                 tcx.fn_sig(def_id);
491             }
492         }
493
494         hir::TraitItemKind::Type(_, None) => {}
495     };
496
497     tcx.predicates_of(def_id);
498 }
499
500 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
501     let def_id = tcx.hir().local_def_id(impl_item_id);
502     tcx.generics_of(def_id);
503     tcx.type_of(def_id);
504     tcx.predicates_of(def_id);
505     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node {
506         tcx.fn_sig(def_id);
507     }
508 }
509
510 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
511     let def_id = tcx.hir().local_def_id(ctor_id);
512     tcx.generics_of(def_id);
513     tcx.type_of(def_id);
514     tcx.predicates_of(def_id);
515 }
516
517 fn convert_enum_variant_types<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, variants: &[hir::Variant]) {
518     let def = tcx.adt_def(def_id);
519     let repr_type = def.repr.discr_type();
520     let initial = repr_type.initial_discriminant(tcx);
521     let mut prev_discr = None::<Discr<'tcx>>;
522
523     // fill the discriminant values and field types
524     for variant in variants {
525         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
526         prev_discr = Some(
527             if let Some(ref e) = variant.node.disr_expr {
528                 let expr_did = tcx.hir().local_def_id(e.hir_id);
529                 def.eval_explicit_discr(tcx, expr_did)
530             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
531                 Some(discr)
532             } else {
533                 struct_span_err!(
534                     tcx.sess,
535                     variant.span,
536                     E0370,
537                     "enum discriminant overflowed"
538                 ).span_label(
539                     variant.span,
540                     format!("overflowed on value after {}", prev_discr.unwrap()),
541                 ).note(&format!(
542                     "explicitly set `{} = {}` if that is desired outcome",
543                     variant.node.ident, wrapped_discr
544                 ))
545                 .emit();
546                 None
547             }.unwrap_or(wrapped_discr),
548         );
549
550         for f in variant.node.data.fields() {
551             let def_id = tcx.hir().local_def_id(f.hir_id);
552             tcx.generics_of(def_id);
553             tcx.type_of(def_id);
554             tcx.predicates_of(def_id);
555         }
556
557         // Convert the ctor, if any. This also registers the variant as
558         // an item.
559         if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() {
560             convert_variant_ctor(tcx, ctor_hir_id);
561         }
562     }
563 }
564
565 fn convert_variant(
566     tcx: TyCtxt<'_>,
567     variant_did: Option<DefId>,
568     ctor_did: Option<DefId>,
569     ident: Ident,
570     discr: ty::VariantDiscr,
571     def: &hir::VariantData,
572     adt_kind: ty::AdtKind,
573     parent_did: DefId,
574 ) -> ty::VariantDef {
575     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
576     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
577     let fields = def
578         .fields()
579         .iter()
580         .map(|f| {
581             let fid = tcx.hir().local_def_id(f.hir_id);
582             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
583             if let Some(prev_span) = dup_span {
584                 struct_span_err!(
585                     tcx.sess,
586                     f.span,
587                     E0124,
588                     "field `{}` is already declared",
589                     f.ident
590                 ).span_label(f.span, "field already declared")
591                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
592                  .emit();
593             } else {
594                 seen_fields.insert(f.ident.modern(), f.span);
595             }
596
597             ty::FieldDef {
598                 did: fid,
599                 ident: f.ident,
600                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
601             }
602         })
603         .collect();
604     let recovered = match def {
605         hir::VariantData::Struct(_, r) => *r,
606         _ => false,
607     };
608     ty::VariantDef::new(
609         tcx,
610         ident,
611         variant_did,
612         ctor_did,
613         discr,
614         fields,
615         CtorKind::from_hir(def),
616         adt_kind,
617         parent_did,
618         recovered,
619     )
620 }
621
622 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
623     use rustc::hir::*;
624
625     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
626     let item = match tcx.hir().get(hir_id) {
627         Node::Item(item) => item,
628         _ => bug!(),
629     };
630
631     let repr = ReprOptions::new(tcx, def_id);
632     let (kind, variants) = match item.node {
633         ItemKind::Enum(ref def, _) => {
634             let mut distance_from_explicit = 0;
635             let variants = def.variants
636                 .iter()
637                 .map(|v| {
638                     let variant_did = Some(tcx.hir().local_def_id(v.node.id));
639                     let ctor_did = v.node.data.ctor_hir_id()
640                         .map(|hir_id| tcx.hir().local_def_id(hir_id));
641
642                     let discr = if let Some(ref e) = v.node.disr_expr {
643                         distance_from_explicit = 0;
644                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
645                     } else {
646                         ty::VariantDiscr::Relative(distance_from_explicit)
647                     };
648                     distance_from_explicit += 1;
649
650                     convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr,
651                                     &v.node.data, AdtKind::Enum, def_id)
652                 })
653                 .collect();
654
655             (AdtKind::Enum, variants)
656         }
657         ItemKind::Struct(ref def, _) => {
658             let variant_did = None;
659             let ctor_did = def.ctor_hir_id()
660                 .map(|hir_id| tcx.hir().local_def_id(hir_id));
661
662             let variants = std::iter::once(convert_variant(
663                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
664                 AdtKind::Struct, def_id,
665             )).collect();
666
667             (AdtKind::Struct, variants)
668         }
669         ItemKind::Union(ref def, _) => {
670             let variant_did = None;
671             let ctor_did = def.ctor_hir_id()
672                 .map(|hir_id| tcx.hir().local_def_id(hir_id));
673
674             let variants = std::iter::once(convert_variant(
675                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
676                 AdtKind::Union, def_id,
677             )).collect();
678
679             (AdtKind::Union, variants)
680         },
681         _ => bug!(),
682     };
683     tcx.alloc_adt_def(def_id, kind, variants, repr)
684 }
685
686 /// Ensures that the super-predicates of the trait with a `DefId`
687 /// of `trait_def_id` are converted and stored. This also ensures that
688 /// the transitive super-predicates are converted.
689 fn super_predicates_of(
690     tcx: TyCtxt<'_>,
691     trait_def_id: DefId,
692 ) -> &ty::GenericPredicates<'_> {
693     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
694     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
695
696     let item = match tcx.hir().get(trait_hir_id) {
697         Node::Item(item) => item,
698         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
699     };
700
701     let (generics, bounds) = match item.node {
702         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
703         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
704         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
705     };
706
707     let icx = ItemCtxt::new(tcx, trait_def_id);
708
709     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
710     let self_param_ty = tcx.mk_self_type();
711     let superbounds1 = AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No,
712         item.span);
713
714     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
715
716     // Convert any explicit superbounds in the where-clause,
717     // e.g., `trait Foo where Self: Bar`.
718     // In the case of trait aliases, however, we include all bounds in the where-clause,
719     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
720     // as one of its "superpredicates".
721     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
722     let superbounds2 = icx.type_parameter_bounds_in_generics(
723         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
724
725     // Combine the two lists to form the complete set of superbounds:
726     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
727
728     // Now require that immediate supertraits are converted,
729     // which will, in turn, reach indirect supertraits.
730     for &(pred, span) in &superbounds {
731         debug!("superbound: {:?}", pred);
732         if let ty::Predicate::Trait(bound) = pred {
733             tcx.at(span).super_predicates_of(bound.def_id());
734         }
735     }
736
737     tcx.arena.alloc(ty::GenericPredicates {
738         parent: None,
739         predicates: superbounds,
740     })
741 }
742
743 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
744     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
745     let item = tcx.hir().expect_item(hir_id);
746
747     let (is_auto, unsafety) = match item.node {
748         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
749         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
750         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
751     };
752
753     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
754     if paren_sugar && !tcx.features().unboxed_closures {
755         let mut err = tcx.sess.struct_span_err(
756             item.span,
757             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
758              which traits can use parenthetical notation",
759         );
760         help!(
761             &mut err,
762             "add `#![feature(unboxed_closures)]` to \
763              the crate attributes to use it"
764         );
765         err.emit();
766     }
767
768     let is_marker = tcx.has_attr(def_id, sym::marker);
769     let def_path_hash = tcx.def_path_hash(def_id);
770     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
771     tcx.arena.alloc(def)
772 }
773
774 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
775     struct LateBoundRegionsDetector<'tcx> {
776         tcx: TyCtxt<'tcx>,
777         outer_index: ty::DebruijnIndex,
778         has_late_bound_regions: Option<Span>,
779     }
780
781     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
782         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
783             NestedVisitorMap::None
784         }
785
786         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
787             if self.has_late_bound_regions.is_some() {
788                 return;
789             }
790             match ty.node {
791                 hir::TyKind::BareFn(..) => {
792                     self.outer_index.shift_in(1);
793                     intravisit::walk_ty(self, ty);
794                     self.outer_index.shift_out(1);
795                 }
796                 _ => intravisit::walk_ty(self, ty),
797             }
798         }
799
800         fn visit_poly_trait_ref(
801             &mut self,
802             tr: &'tcx hir::PolyTraitRef,
803             m: hir::TraitBoundModifier,
804         ) {
805             if self.has_late_bound_regions.is_some() {
806                 return;
807             }
808             self.outer_index.shift_in(1);
809             intravisit::walk_poly_trait_ref(self, tr, m);
810             self.outer_index.shift_out(1);
811         }
812
813         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
814             if self.has_late_bound_regions.is_some() {
815                 return;
816             }
817
818             match self.tcx.named_region(lt.hir_id) {
819                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
820                 Some(rl::Region::LateBound(debruijn, _, _))
821                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
822                 Some(rl::Region::LateBound(..))
823                 | Some(rl::Region::LateBoundAnon(..))
824                 | Some(rl::Region::Free(..))
825                 | None => {
826                     self.has_late_bound_regions = Some(lt.span);
827                 }
828             }
829         }
830     }
831
832     fn has_late_bound_regions<'tcx>(
833         tcx: TyCtxt<'tcx>,
834         generics: &'tcx hir::Generics,
835         decl: &'tcx hir::FnDecl,
836     ) -> Option<Span> {
837         let mut visitor = LateBoundRegionsDetector {
838             tcx,
839             outer_index: ty::INNERMOST,
840             has_late_bound_regions: None,
841         };
842         for param in &generics.params {
843             if let GenericParamKind::Lifetime { .. } = param.kind {
844                 if tcx.is_late_bound(param.hir_id) {
845                     return Some(param.span);
846                 }
847             }
848         }
849         visitor.visit_fn_decl(decl);
850         visitor.has_late_bound_regions
851     }
852
853     match node {
854         Node::TraitItem(item) => match item.node {
855             hir::TraitItemKind::Method(ref sig, _) => {
856                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
857             }
858             _ => None,
859         },
860         Node::ImplItem(item) => match item.node {
861             hir::ImplItemKind::Method(ref sig, _) => {
862                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
863             }
864             _ => None,
865         },
866         Node::ForeignItem(item) => match item.node {
867             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
868                 has_late_bound_regions(tcx, generics, fn_decl)
869             }
870             _ => None,
871         },
872         Node::Item(item) => match item.node {
873             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
874                 has_late_bound_regions(tcx, generics, fn_decl)
875             }
876             _ => None,
877         },
878         _ => None,
879     }
880 }
881
882 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
883     use rustc::hir::*;
884
885     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
886
887     let node = tcx.hir().get(hir_id);
888     let parent_def_id = match node {
889         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
890         Node::Ctor(..) | Node::Field(_) => {
891             let parent_id = tcx.hir().get_parent_item(hir_id);
892             Some(tcx.hir().local_def_id(parent_id))
893         }
894         Node::Expr(&hir::Expr {
895             node: hir::ExprKind::Closure(..),
896             ..
897         }) => Some(tcx.closure_base_def_id(def_id)),
898         Node::Item(item) => match item.node {
899             ItemKind::Existential(hir::ExistTy { impl_trait_fn, .. }) => impl_trait_fn,
900             _ => None,
901         },
902         _ => None,
903     };
904
905     let mut opt_self = None;
906     let mut allow_defaults = false;
907
908     let no_generics = hir::Generics::empty();
909     let ast_generics = match node {
910         Node::TraitItem(item) => &item.generics,
911
912         Node::ImplItem(item) => &item.generics,
913
914         Node::Item(item) => {
915             match item.node {
916                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
917                     generics
918                 }
919
920                 ItemKind::Ty(_, ref generics)
921                 | ItemKind::Enum(_, ref generics)
922                 | ItemKind::Struct(_, ref generics)
923                 | ItemKind::Existential(hir::ExistTy { ref generics, .. })
924                 | ItemKind::Union(_, ref generics) => {
925                     allow_defaults = true;
926                     generics
927                 }
928
929                 ItemKind::Trait(_, _, ref generics, ..)
930                 | ItemKind::TraitAlias(ref generics, ..) => {
931                     // Add in the self type parameter.
932                     //
933                     // Something of a hack: use the node id for the trait, also as
934                     // the node id for the Self type parameter.
935                     let param_id = item.hir_id;
936
937                     opt_self = Some(ty::GenericParamDef {
938                         index: 0,
939                         name: kw::SelfUpper.as_interned_str(),
940                         def_id: tcx.hir().local_def_id(param_id),
941                         pure_wrt_drop: false,
942                         kind: ty::GenericParamDefKind::Type {
943                             has_default: false,
944                             object_lifetime_default: rl::Set1::Empty,
945                             synthetic: None,
946                         },
947                     });
948
949                     allow_defaults = true;
950                     generics
951                 }
952
953                 _ => &no_generics,
954             }
955         }
956
957         Node::ForeignItem(item) => match item.node {
958             ForeignItemKind::Static(..) => &no_generics,
959             ForeignItemKind::Fn(_, _, ref generics) => generics,
960             ForeignItemKind::Type => &no_generics,
961         },
962
963         _ => &no_generics,
964     };
965
966     let has_self = opt_self.is_some();
967     let mut parent_has_self = false;
968     let mut own_start = has_self as u32;
969     let parent_count = parent_def_id.map_or(0, |def_id| {
970         let generics = tcx.generics_of(def_id);
971         assert_eq!(has_self, false);
972         parent_has_self = generics.has_self;
973         own_start = generics.count() as u32;
974         generics.parent_count + generics.params.len()
975     });
976
977     let mut params: Vec<_> = opt_self.into_iter().collect();
978
979     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
980     params.extend(
981         early_lifetimes
982             .enumerate()
983             .map(|(i, param)| ty::GenericParamDef {
984                 name: param.name.ident().as_interned_str(),
985                 index: own_start + i as u32,
986                 def_id: tcx.hir().local_def_id(param.hir_id),
987                 pure_wrt_drop: param.pure_wrt_drop,
988                 kind: ty::GenericParamDefKind::Lifetime,
989             }),
990     );
991
992     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
993
994     // Now create the real type parameters.
995     let type_start = own_start - has_self as u32 + params.len() as u32;
996     let mut i = 0;
997     params.extend(
998         ast_generics
999             .params
1000             .iter()
1001             .filter_map(|param| {
1002                 let kind = match param.kind {
1003                     GenericParamKind::Type {
1004                         ref default,
1005                         synthetic,
1006                         ..
1007                     } => {
1008                         if param.name.ident().name == kw::SelfUpper {
1009                             span_bug!(
1010                                 param.span,
1011                                 "`Self` should not be the name of a regular parameter"
1012                             );
1013                         }
1014
1015                         if !allow_defaults && default.is_some() {
1016                             if !tcx.features().default_type_parameter_fallback {
1017                                 tcx.lint_hir(
1018                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1019                                     param.hir_id,
1020                                     param.span,
1021                                     &format!(
1022                                         "defaults for type parameters are only allowed in \
1023                                         `struct`, `enum`, `type`, or `trait` definitions."
1024                                     ),
1025                                 );
1026                             }
1027                         }
1028
1029                         ty::GenericParamDefKind::Type {
1030                             has_default: default.is_some(),
1031                             object_lifetime_default: object_lifetime_defaults
1032                                 .as_ref()
1033                                 .map_or(rl::Set1::Empty, |o| o[i]),
1034                             synthetic,
1035                         }
1036                     }
1037                     GenericParamKind::Const { .. } => {
1038                         if param.name.ident().name == kw::SelfUpper {
1039                             span_bug!(
1040                                 param.span,
1041                                 "`Self` should not be the name of a regular parameter",
1042                             );
1043                         }
1044
1045                         ty::GenericParamDefKind::Const
1046                     }
1047                     _ => return None,
1048                 };
1049
1050                 let param_def = ty::GenericParamDef {
1051                     index: type_start + i as u32,
1052                     name: param.name.ident().as_interned_str(),
1053                     def_id: tcx.hir().local_def_id(param.hir_id),
1054                     pure_wrt_drop: param.pure_wrt_drop,
1055                     kind,
1056                 };
1057                 i += 1;
1058                 Some(param_def)
1059             })
1060     );
1061
1062     // provide junk type parameter defs - the only place that
1063     // cares about anything but the length is instantiation,
1064     // and we don't do that for closures.
1065     if let Node::Expr(&hir::Expr {
1066         node: hir::ExprKind::Closure(.., gen),
1067         ..
1068     }) = node
1069     {
1070         let dummy_args = if gen.is_some() {
1071             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1072         } else {
1073             &["<closure_kind>", "<closure_signature>"][..]
1074         };
1075
1076         params.extend(
1077             dummy_args
1078                 .iter()
1079                 .enumerate()
1080                 .map(|(i, &arg)| ty::GenericParamDef {
1081                     index: type_start + i as u32,
1082                     name: InternedString::intern(arg),
1083                     def_id,
1084                     pure_wrt_drop: false,
1085                     kind: ty::GenericParamDefKind::Type {
1086                         has_default: false,
1087                         object_lifetime_default: rl::Set1::Empty,
1088                         synthetic: None,
1089                     },
1090                 }),
1091         );
1092
1093         if let Some(upvars) = tcx.upvars(def_id) {
1094             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1095                 ty::GenericParamDef {
1096                     index: type_start + i,
1097                     name: InternedString::intern("<upvar>"),
1098                     def_id,
1099                     pure_wrt_drop: false,
1100                     kind: ty::GenericParamDefKind::Type {
1101                         has_default: false,
1102                         object_lifetime_default: rl::Set1::Empty,
1103                         synthetic: None,
1104                     },
1105                 }
1106             }));
1107         }
1108     }
1109
1110     let param_def_id_to_index = params
1111         .iter()
1112         .map(|param| (param.def_id, param.index))
1113         .collect();
1114
1115     tcx.arena.alloc(ty::Generics {
1116         parent: parent_def_id,
1117         parent_count,
1118         params,
1119         param_def_id_to_index,
1120         has_self: has_self || parent_has_self,
1121         has_late_bound_regions: has_late_bound_regions(tcx, node),
1122     })
1123 }
1124
1125 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1126     span_err!(
1127         tcx.sess,
1128         span,
1129         E0202,
1130         "associated types are not yet supported in inherent impls (see #8995)"
1131     );
1132 }
1133
1134 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1135     checked_type_of(tcx, def_id, true).unwrap()
1136 }
1137
1138 fn infer_placeholder_type(
1139     tcx: TyCtxt<'_>,
1140     def_id: DefId,
1141     body_id: hir::BodyId,
1142     span: Span,
1143 ) -> Ty<'_> {
1144     let ty = tcx.typeck_tables_of(def_id).node_type(body_id.hir_id);
1145     let mut diag = bad_placeholder_type(tcx, span);
1146     if ty != tcx.types.err {
1147         diag.span_suggestion(
1148             span,
1149             "replace `_` with the correct type",
1150             ty.to_string(),
1151             Applicability::MaybeIncorrect,
1152         );
1153     }
1154     diag.emit();
1155     ty
1156 }
1157
1158 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1159 ///
1160 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1161 /// you'd better just call [`type_of`] directly.
1162 pub fn checked_type_of(tcx: TyCtxt<'_>, def_id: DefId, fail: bool) -> Option<Ty<'_>> {
1163     use rustc::hir::*;
1164
1165     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1166         Some(hir_id) => hir_id,
1167         None => {
1168             if !fail {
1169                 return None;
1170             }
1171             bug!("invalid node");
1172         }
1173     };
1174
1175     let icx = ItemCtxt::new(tcx, def_id);
1176
1177     Some(match tcx.hir().get(hir_id) {
1178         Node::TraitItem(item) => match item.node {
1179             TraitItemKind::Method(..) => {
1180                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1181                 tcx.mk_fn_def(def_id, substs)
1182             }
1183             TraitItemKind::Const(ref ty, body_id)  => {
1184                 body_id.and_then(|body_id| {
1185                     if let hir::TyKind::Infer = ty.node {
1186                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span))
1187                     } else {
1188                         None
1189                     }
1190                 }).unwrap_or_else(|| icx.to_ty(ty))
1191             },
1192             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1193             TraitItemKind::Type(_, None) => {
1194                 if !fail {
1195                     return None;
1196                 }
1197                 span_bug!(item.span, "associated type missing default");
1198             }
1199         },
1200
1201         Node::ImplItem(item) => match item.node {
1202             ImplItemKind::Method(..) => {
1203                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1204                 tcx.mk_fn_def(def_id, substs)
1205             }
1206             ImplItemKind::Const(ref ty, body_id) => {
1207                 if let hir::TyKind::Infer = ty.node {
1208                     infer_placeholder_type(tcx, def_id, body_id, ty.span)
1209                 } else {
1210                     icx.to_ty(ty)
1211                 }
1212             },
1213             ImplItemKind::Existential(_) => {
1214                 if tcx
1215                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1216                     .is_none()
1217                 {
1218                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1219                 }
1220
1221                 find_existential_constraints(tcx, def_id)
1222             }
1223             ImplItemKind::Type(ref ty) => {
1224                 if tcx
1225                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1226                     .is_none()
1227                 {
1228                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1229                 }
1230
1231                 icx.to_ty(ty)
1232             }
1233         },
1234
1235         Node::Item(item) => {
1236             match item.node {
1237                 ItemKind::Static(ref ty, .., body_id)
1238                 | ItemKind::Const(ref ty, body_id) => {
1239                     if let hir::TyKind::Infer = ty.node {
1240                         infer_placeholder_type(tcx, def_id, body_id, ty.span)
1241                     } else {
1242                         icx.to_ty(ty)
1243                     }
1244                 },
1245                 ItemKind::Ty(ref ty, _)
1246                 | ItemKind::Impl(.., ref ty, _) => icx.to_ty(ty),
1247                 ItemKind::Fn(..) => {
1248                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1249                     tcx.mk_fn_def(def_id, substs)
1250                 }
1251                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1252                     let def = tcx.adt_def(def_id);
1253                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1254                     tcx.mk_adt(def, substs)
1255                 }
1256                 ItemKind::Existential(hir::ExistTy {
1257                     impl_trait_fn: None,
1258                     ..
1259                 }) => find_existential_constraints(tcx, def_id),
1260                 // Existential types desugared from `impl Trait`.
1261                 ItemKind::Existential(hir::ExistTy {
1262                     impl_trait_fn: Some(owner),
1263                     ..
1264                 }) => {
1265                     tcx.typeck_tables_of(owner)
1266                         .concrete_existential_types
1267                         .get(&def_id)
1268                         .map(|opaque| opaque.concrete_type)
1269                         .unwrap_or_else(|| {
1270                             // This can occur if some error in the
1271                             // owner fn prevented us from populating
1272                             // the `concrete_existential_types` table.
1273                             tcx.sess.delay_span_bug(
1274                                 DUMMY_SP,
1275                                 &format!(
1276                                     "owner {:?} has no existential type for {:?} in its tables",
1277                                     owner, def_id,
1278                                 ),
1279                             );
1280                             tcx.types.err
1281                         })
1282                 }
1283                 ItemKind::Trait(..)
1284                 | ItemKind::TraitAlias(..)
1285                 | ItemKind::Mod(..)
1286                 | ItemKind::ForeignMod(..)
1287                 | ItemKind::GlobalAsm(..)
1288                 | ItemKind::ExternCrate(..)
1289                 | ItemKind::Use(..) => {
1290                     if !fail {
1291                         return None;
1292                     }
1293                     span_bug!(
1294                         item.span,
1295                         "compute_type_of_item: unexpected item type: {:?}",
1296                         item.node
1297                     );
1298                 }
1299             }
1300         }
1301
1302         Node::ForeignItem(foreign_item) => match foreign_item.node {
1303             ForeignItemKind::Fn(..) => {
1304                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1305                 tcx.mk_fn_def(def_id, substs)
1306             }
1307             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1308             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1309         },
1310
1311         Node::Ctor(&ref def) | Node::Variant(&Spanned {
1312             node: hir::VariantKind { data: ref def, .. },
1313             ..
1314         }) => match *def {
1315             VariantData::Unit(..) | VariantData::Struct(..) => {
1316                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1317             }
1318             VariantData::Tuple(..) => {
1319                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1320                 tcx.mk_fn_def(def_id, substs)
1321             }
1322         },
1323
1324         Node::Field(field) => icx.to_ty(&field.ty),
1325
1326         Node::Expr(&hir::Expr {
1327             node: hir::ExprKind::Closure(.., gen),
1328             ..
1329         }) => {
1330             if gen.is_some() {
1331                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1332             }
1333
1334             let substs = ty::ClosureSubsts {
1335                 substs: InternalSubsts::identity_for_item(tcx, def_id),
1336             };
1337
1338             tcx.mk_closure(def_id, substs)
1339         }
1340
1341         Node::AnonConst(_) => {
1342             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1343             match parent_node {
1344                 Node::Ty(&hir::Ty {
1345                     node: hir::TyKind::Array(_, ref constant),
1346                     ..
1347                 })
1348                 | Node::Ty(&hir::Ty {
1349                     node: hir::TyKind::Typeof(ref constant),
1350                     ..
1351                 })
1352                 | Node::Expr(&hir::Expr {
1353                     node: ExprKind::Repeat(_, ref constant),
1354                     ..
1355                 }) if constant.hir_id == hir_id =>
1356                 {
1357                     tcx.types.usize
1358                 }
1359
1360                 Node::Variant(&Spanned {
1361                     node:
1362                         VariantKind {
1363                             disr_expr: Some(ref e),
1364                             ..
1365                         },
1366                     ..
1367                 }) if e.hir_id == hir_id =>
1368                 {
1369                     tcx.adt_def(tcx.hir().get_parent_did(hir_id))
1370                         .repr
1371                         .discr_type()
1372                         .to_ty(tcx)
1373                 }
1374
1375                 Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) |
1376                 Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) |
1377                 Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) |
1378                 Node::TraitRef(..) => {
1379                     let path = match parent_node {
1380                         Node::Ty(&hir::Ty {
1381                             node: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1382                             ..
1383                         })
1384                         | Node::Expr(&hir::Expr {
1385                             node: ExprKind::Path(QPath::Resolved(_, ref path)),
1386                             ..
1387                         }) => {
1388                             Some(&**path)
1389                         }
1390                         Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => {
1391                             if let QPath::Resolved(_, ref path) = **path {
1392                                 Some(&**path)
1393                             } else {
1394                                 None
1395                             }
1396                         }
1397                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1398                         _ => None,
1399                     };
1400
1401                     if let Some(path) = path {
1402                         let arg_index = path.segments.iter()
1403                             .filter_map(|seg| seg.args.as_ref())
1404                             .map(|generic_args| generic_args.args.as_ref())
1405                             .find_map(|args| {
1406                                 args.iter()
1407                                     .filter(|arg| arg.is_const())
1408                                     .enumerate()
1409                                     .filter(|(_, arg)| arg.id() == hir_id)
1410                                     .map(|(index, _)| index)
1411                                     .next()
1412                             })
1413                             .or_else(|| {
1414                                 if !fail {
1415                                     None
1416                                 } else {
1417                                     bug!("no arg matching AnonConst in path")
1418                                 }
1419                             })?;
1420
1421                         // We've encountered an `AnonConst` in some path, so we need to
1422                         // figure out which generic parameter it corresponds to and return
1423                         // the relevant type.
1424                         let generics = match path.res {
1425                             Res::Def(DefKind::Ctor(..), def_id) => {
1426                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1427                             }
1428                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1429                             Res::Err => return Some(tcx.types.err),
1430                             _ if !fail => return None,
1431                             res => {
1432                                 tcx.sess.delay_span_bug(
1433                                     DUMMY_SP,
1434                                     &format!(
1435                                         "unexpected const parent path def {:?}",
1436                                         res,
1437                                     ),
1438                                 );
1439                                 return Some(tcx.types.err);
1440                             }
1441                         };
1442
1443                         generics.params.iter()
1444                             .filter(|param| {
1445                                 if let ty::GenericParamDefKind::Const = param.kind {
1446                                     true
1447                                 } else {
1448                                     false
1449                                 }
1450                             })
1451                             .nth(arg_index)
1452                             .map(|param| tcx.type_of(param.def_id))
1453                             // This is no generic parameter associated with the arg. This is
1454                             // probably from an extra arg where one is not needed.
1455                             .unwrap_or(tcx.types.err)
1456                     } else {
1457                         if !fail {
1458                             return None;
1459                         }
1460                         tcx.sess.delay_span_bug(
1461                             DUMMY_SP,
1462                             &format!(
1463                                 "unexpected const parent path {:?}",
1464                                 parent_node,
1465                             ),
1466                         );
1467                         return Some(tcx.types.err);
1468                     }
1469                 }
1470
1471                 x => {
1472                     if !fail {
1473                         return None;
1474                     }
1475                     tcx.sess.delay_span_bug(
1476                         DUMMY_SP,
1477                         &format!(
1478                             "unexpected const parent in type_of_def_id(): {:?}", x
1479                         ),
1480                     );
1481                     tcx.types.err
1482                 }
1483             }
1484         }
1485
1486         Node::GenericParam(param) => match &param.kind {
1487             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1488             hir::GenericParamKind::Const { ref ty, .. } => {
1489                 icx.to_ty(ty)
1490             }
1491             x => {
1492                 if !fail {
1493                     return None;
1494                 }
1495                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1496             },
1497         },
1498
1499         x => {
1500             if !fail {
1501                 return None;
1502             }
1503             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1504         }
1505     })
1506 }
1507
1508 fn find_existential_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1509     use rustc::hir::{ImplItem, Item, TraitItem};
1510
1511     debug!("find_existential_constraints({:?})", def_id);
1512
1513     struct ConstraintLocator<'tcx> {
1514         tcx: TyCtxt<'tcx>,
1515         def_id: DefId,
1516         // (first found type span, actual type, mapping from the existential type's generic
1517         // parameters to the concrete type's generic parameters)
1518         //
1519         // The mapping is an index for each use site of a generic parameter in the concrete type
1520         //
1521         // The indices index into the generic parameters on the existential type.
1522         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1523     }
1524
1525     impl ConstraintLocator<'tcx> {
1526         fn check(&mut self, def_id: DefId) {
1527             // Don't try to check items that cannot possibly constrain the type.
1528             if !self.tcx.has_typeck_tables(def_id) {
1529                 debug!(
1530                     "find_existential_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1531                     self.def_id,
1532                     def_id,
1533                 );
1534                 return;
1535             }
1536             let ty = self
1537                 .tcx
1538                 .typeck_tables_of(def_id)
1539                 .concrete_existential_types
1540                 .get(&self.def_id);
1541             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1542                 debug!(
1543                     "find_existential_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1544                     self.def_id,
1545                     def_id,
1546                     ty,
1547                 );
1548
1549                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1550                 let span = self.tcx.def_span(def_id);
1551                 // used to quickly look up the position of a generic parameter
1552                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1553                 // Skipping binder is ok, since we only use this to find generic parameters and
1554                 // their positions.
1555                 for (idx, subst) in substs.iter().enumerate() {
1556                     if let UnpackedKind::Type(ty) = subst.unpack() {
1557                         if let ty::Param(p) = ty.sty {
1558                             if index_map.insert(p, idx).is_some() {
1559                                 // There was already an entry for `p`, meaning a generic parameter
1560                                 // was used twice.
1561                                 self.tcx.sess.span_err(
1562                                     span,
1563                                     &format!(
1564                                         "defining existential type use restricts existential \
1565                                          type by using the generic parameter `{}` twice",
1566                                         p.name
1567                                     ),
1568                                 );
1569                                 return;
1570                             }
1571                         } else {
1572                             self.tcx.sess.delay_span_bug(
1573                                 span,
1574                                 &format!(
1575                                     "non-defining exist ty use in defining scope: {:?}, {:?}",
1576                                     concrete_type, substs,
1577                                 ),
1578                             );
1579                         }
1580                     }
1581                 }
1582                 // Compute the index within the existential type for each generic parameter used in
1583                 // the concrete type.
1584                 let indices = concrete_type
1585                     .subst(self.tcx, substs)
1586                     .walk()
1587                     .filter_map(|t| match &t.sty {
1588                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1589                         _ => None,
1590                     }).collect();
1591                 let is_param = |ty: Ty<'_>| match ty.sty {
1592                     ty::Param(_) => true,
1593                     _ => false,
1594                 };
1595                 if !substs.types().all(is_param) {
1596                     self.tcx.sess.span_err(
1597                         span,
1598                         "defining existential type use does not fully define existential type",
1599                     );
1600                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1601                     let mut ty = concrete_type.walk().fuse();
1602                     let mut p_ty = prev_ty.walk().fuse();
1603                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) {
1604                         // Type parameters are equal to any other type parameter for the purpose of
1605                         // concrete type equality, as it is possible to obtain the same type just
1606                         // by passing matching parameters to a function.
1607                         (ty::Param(_), ty::Param(_)) => true,
1608                         _ => t == p,
1609                     });
1610                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1611                         debug!("find_existential_constraints: span={:?}", span);
1612                         // Found different concrete types for the existential type.
1613                         let mut err = self.tcx.sess.struct_span_err(
1614                             span,
1615                             "concrete type differs from previous defining existential type use",
1616                         );
1617                         err.span_label(
1618                             span,
1619                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1620                         );
1621                         err.span_note(prev_span, "previous use here");
1622                         err.emit();
1623                     } else if indices != *prev_indices {
1624                         // Found "same" concrete types, but the generic parameter order differs.
1625                         let mut err = self.tcx.sess.struct_span_err(
1626                             span,
1627                             "concrete type's generic parameters differ from previous defining use",
1628                         );
1629                         use std::fmt::Write;
1630                         let mut s = String::new();
1631                         write!(s, "expected [").unwrap();
1632                         let list = |s: &mut String, indices: &Vec<usize>| {
1633                             let mut indices = indices.iter().cloned();
1634                             if let Some(first) = indices.next() {
1635                                 write!(s, "`{}`", substs[first]).unwrap();
1636                                 for i in indices {
1637                                     write!(s, ", `{}`", substs[i]).unwrap();
1638                                 }
1639                             }
1640                         };
1641                         list(&mut s, prev_indices);
1642                         write!(s, "], got [").unwrap();
1643                         list(&mut s, &indices);
1644                         write!(s, "]").unwrap();
1645                         err.span_label(span, s);
1646                         err.span_note(prev_span, "previous use here");
1647                         err.emit();
1648                     }
1649                 } else {
1650                     self.found = Some((span, concrete_type, indices));
1651                 }
1652             } else {
1653                 debug!(
1654                     "find_existential_constraints: no constraint for `{:?}` at `{:?}`",
1655                     self.def_id,
1656                     def_id,
1657                 );
1658             }
1659         }
1660     }
1661
1662     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1663         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1664             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1665         }
1666         fn visit_item(&mut self, it: &'tcx Item) {
1667             debug!("find_existential_constraints: visiting {:?}", it);
1668             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1669             // The existential type itself or its children are not within its reveal scope.
1670             if def_id != self.def_id {
1671                 self.check(def_id);
1672                 intravisit::walk_item(self, it);
1673             }
1674         }
1675         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1676             debug!("find_existential_constraints: visiting {:?}", it);
1677             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1678             // The existential type itself or its children are not within its reveal scope.
1679             if def_id != self.def_id {
1680                 self.check(def_id);
1681                 intravisit::walk_impl_item(self, it);
1682             }
1683         }
1684         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1685             debug!("find_existential_constraints: visiting {:?}", it);
1686             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1687             self.check(def_id);
1688             intravisit::walk_trait_item(self, it);
1689         }
1690     }
1691
1692     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1693     let scope = tcx.hir()
1694         .get_defining_scope(hir_id)
1695         .expect("could not get defining scope");
1696     let mut locator = ConstraintLocator {
1697         def_id,
1698         tcx,
1699         found: None,
1700     };
1701
1702     debug!("find_existential_constraints: scope={:?}", scope);
1703
1704     if scope == hir::CRATE_HIR_ID {
1705         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1706     } else {
1707         debug!("find_existential_constraints: scope={:?}", tcx.hir().get(scope));
1708         match tcx.hir().get(scope) {
1709             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1710             // This allows our visitor to process the defining item itself, causing
1711             // it to pick up any 'sibling' defining uses.
1712             //
1713             // For example, this code:
1714             // ```
1715             // fn foo() {
1716             //     existential type Blah: Debug;
1717             //     let my_closure = || -> Blah { true };
1718             // }
1719             // ```
1720             //
1721             // requires us to explicitly process `foo()` in order
1722             // to notice the defining usage of `Blah`.
1723             Node::Item(ref it) => locator.visit_item(it),
1724             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1725             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1726             other => bug!(
1727                 "{:?} is not a valid scope for an existential type item",
1728                 other
1729             ),
1730         }
1731     }
1732
1733     match locator.found {
1734         Some((_, ty, _)) => ty,
1735         None => {
1736             let span = tcx.def_span(def_id);
1737             tcx.sess.span_err(span, "could not find defining uses");
1738             tcx.types.err
1739         }
1740     }
1741 }
1742
1743 pub fn get_infer_ret_ty(output: &'_ hir::FunctionRetTy) -> Option<&hir::Ty> {
1744     if let hir::FunctionRetTy::Return(ref ty) = output {
1745         if let hir::TyKind::Infer = ty.node {
1746             return Some(&**ty)
1747         }
1748     }
1749     None
1750 }
1751
1752 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1753     use rustc::hir::*;
1754     use rustc::hir::Node::*;
1755
1756     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1757
1758     let icx = ItemCtxt::new(tcx, def_id);
1759
1760     match tcx.hir().get(hir_id) {
1761         TraitItem(hir::TraitItem {
1762             node: TraitItemKind::Method(MethodSig { header, decl }, TraitMethod::Provided(_)),
1763             ..
1764         })
1765         | ImplItem(hir::ImplItem {
1766             node: ImplItemKind::Method(MethodSig { header, decl }, _),
1767             ..
1768         })
1769         | Item(hir::Item {
1770             node: ItemKind::Fn(decl, header, _, _),
1771             ..
1772         }) => match get_infer_ret_ty(&decl.output) {
1773             Some(ty) => {
1774                 let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1775                 let mut diag = bad_placeholder_type(tcx, ty.span);
1776                 let ret_ty = fn_sig.output();
1777                 if ret_ty != tcx.types.err  {
1778                     diag.span_suggestion(
1779                         ty.span,
1780                         "replace `_` with the correct return type",
1781                         ret_ty.to_string(),
1782                         Applicability::MaybeIncorrect,
1783                     );
1784                 }
1785                 diag.emit();
1786                 ty::Binder::bind(fn_sig)
1787             },
1788             None => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl)
1789         },
1790
1791         TraitItem(hir::TraitItem {
1792             node: TraitItemKind::Method(MethodSig { header, decl }, _),
1793             ..
1794         }) => {
1795             AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl)
1796         },
1797
1798         ForeignItem(&hir::ForeignItem {
1799             node: ForeignItemKind::Fn(ref fn_decl, _, _),
1800             ..
1801         }) => {
1802             let abi = tcx.hir().get_foreign_abi(hir_id);
1803             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1804         }
1805
1806         Ctor(data) | Variant(Spanned {
1807             node: hir::VariantKind { data, ..  },
1808             ..
1809         }) if data.ctor_hir_id().is_some() => {
1810             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1811             let inputs = data.fields()
1812                 .iter()
1813                 .map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1814             ty::Binder::bind(tcx.mk_fn_sig(
1815                 inputs,
1816                 ty,
1817                 false,
1818                 hir::Unsafety::Normal,
1819                 abi::Abi::Rust,
1820             ))
1821         }
1822
1823         Expr(&hir::Expr {
1824             node: hir::ExprKind::Closure(..),
1825             ..
1826         }) => {
1827             // Closure signatures are not like other function
1828             // signatures and cannot be accessed through `fn_sig`. For
1829             // example, a closure signature excludes the `self`
1830             // argument. In any case they are embedded within the
1831             // closure type as part of the `ClosureSubsts`.
1832             //
1833             // To get
1834             // the signature of a closure, you should use the
1835             // `closure_sig` method on the `ClosureSubsts`:
1836             //
1837             //    closure_substs.closure_sig(def_id, tcx)
1838             //
1839             // or, inside of an inference context, you can use
1840             //
1841             //    infcx.closure_sig(def_id, closure_substs)
1842             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1843         }
1844
1845         x => {
1846             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1847         }
1848     }
1849 }
1850
1851 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1852     let icx = ItemCtxt::new(tcx, def_id);
1853
1854     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1855     match tcx.hir().expect_item(hir_id).node {
1856         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1857             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1858                 let selfty = tcx.type_of(def_id);
1859                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1860             })
1861         }
1862         _ => bug!(),
1863     }
1864 }
1865
1866 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> hir::ImplPolarity {
1867     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1868     match tcx.hir().expect_item(hir_id).node {
1869         hir::ItemKind::Impl(_, polarity, ..) => polarity,
1870         ref item => bug!("impl_polarity: {:?} not an impl", item),
1871     }
1872 }
1873
1874 /// Returns the early-bound lifetimes declared in this generics
1875 /// listing. For anything other than fns/methods, this is just all
1876 /// the lifetimes that are declared. For fns or methods, we have to
1877 /// screen out those that do not appear in any where-clauses etc using
1878 /// `resolve_lifetime::early_bound_lifetimes`.
1879 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1880     tcx: TyCtxt<'tcx>,
1881     generics: &'a hir::Generics,
1882 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1883     generics
1884         .params
1885         .iter()
1886         .filter(move |param| match param.kind {
1887             GenericParamKind::Lifetime { .. } => {
1888                 !tcx.is_late_bound(param.hir_id)
1889             }
1890             _ => false,
1891         })
1892 }
1893
1894 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1895 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1896 /// inferred constraints concerning which regions outlive other regions.
1897 fn predicates_defined_on(
1898     tcx: TyCtxt<'_>,
1899     def_id: DefId,
1900 ) -> &ty::GenericPredicates<'_> {
1901     debug!("predicates_defined_on({:?})", def_id);
1902     let mut result = tcx.explicit_predicates_of(def_id);
1903     debug!(
1904         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1905         def_id,
1906         result,
1907     );
1908     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1909     if !inferred_outlives.is_empty() {
1910         let span = tcx.def_span(def_id);
1911         debug!(
1912             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1913             def_id,
1914             inferred_outlives,
1915         );
1916         let mut predicates = (*result).clone();
1917         predicates.predicates.extend(inferred_outlives.iter().map(|&p| (p, span)));
1918         result = tcx.arena.alloc(predicates);
1919     }
1920     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1921     result
1922 }
1923
1924 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1925 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1926 /// `Self: Trait` predicates for traits.
1927 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::GenericPredicates<'_> {
1928     let mut result = tcx.predicates_defined_on(def_id);
1929
1930     if tcx.is_trait(def_id) {
1931         // For traits, add `Self: Trait` predicate. This is
1932         // not part of the predicates that a user writes, but it
1933         // is something that one must prove in order to invoke a
1934         // method or project an associated type.
1935         //
1936         // In the chalk setup, this predicate is not part of the
1937         // "predicates" for a trait item. But it is useful in
1938         // rustc because if you directly (e.g.) invoke a trait
1939         // method like `Trait::method(...)`, you must naturally
1940         // prove that the trait applies to the types that were
1941         // used, and adding the predicate into this list ensures
1942         // that this is done.
1943         let span = tcx.def_span(def_id);
1944         let mut predicates = (*result).clone();
1945         predicates.predicates.push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1946         result = tcx.arena.alloc(predicates);
1947     }
1948     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1949     result
1950 }
1951
1952 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1953 /// N.B., this does not include any implied/inferred constraints.
1954 fn explicit_predicates_of(
1955     tcx: TyCtxt<'_>,
1956     def_id: DefId,
1957 ) -> &ty::GenericPredicates<'_> {
1958     use rustc::hir::*;
1959     use rustc_data_structures::fx::FxHashSet;
1960
1961     debug!("explicit_predicates_of(def_id={:?})", def_id);
1962
1963     /// A data structure with unique elements, which preserves order of insertion.
1964     /// Preserving the order of insertion is important here so as not to break
1965     /// compile-fail UI tests.
1966     struct UniquePredicates<'tcx> {
1967         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1968         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1969     }
1970
1971     impl<'tcx> UniquePredicates<'tcx> {
1972         fn new() -> Self {
1973             UniquePredicates {
1974                 predicates: vec![],
1975                 uniques: FxHashSet::default(),
1976             }
1977         }
1978
1979         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1980             if self.uniques.insert(value) {
1981                 self.predicates.push(value);
1982             }
1983         }
1984
1985         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1986             for value in iter {
1987                 self.push(value);
1988             }
1989         }
1990     }
1991
1992     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1993         Some(hir_id) => hir_id,
1994         None => return tcx.predicates_of(def_id),
1995     };
1996     let node = tcx.hir().get(hir_id);
1997
1998     let mut is_trait = None;
1999     let mut is_default_impl_trait = None;
2000
2001     let icx = ItemCtxt::new(tcx, def_id);
2002
2003     const NO_GENERICS: &hir::Generics = &hir::Generics::empty();
2004
2005     let empty_trait_items = HirVec::new();
2006
2007     let mut predicates = UniquePredicates::new();
2008
2009     let ast_generics = match node {
2010         Node::TraitItem(item) => &item.generics,
2011
2012         Node::ImplItem(item) => match item.node {
2013             ImplItemKind::Existential(ref bounds) => {
2014                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
2015                 let opaque_ty = tcx.mk_opaque(def_id, substs);
2016
2017                 // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2018                 let bounds = AstConv::compute_bounds(
2019                     &icx,
2020                     opaque_ty,
2021                     bounds,
2022                     SizedByDefault::Yes,
2023                     tcx.def_span(def_id),
2024                 );
2025
2026                 predicates.extend(bounds.predicates(tcx, opaque_ty));
2027                 &item.generics
2028             }
2029             _ => &item.generics,
2030         },
2031
2032         Node::Item(item) => {
2033             match item.node {
2034                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
2035                     if defaultness.is_default() {
2036                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2037                     }
2038                     generics
2039                 }
2040                 ItemKind::Fn(.., ref generics, _)
2041                 | ItemKind::Ty(_, ref generics)
2042                 | ItemKind::Enum(_, ref generics)
2043                 | ItemKind::Struct(_, ref generics)
2044                 | ItemKind::Union(_, ref generics) => generics,
2045
2046                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
2047                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2048                     generics
2049                 }
2050                 ItemKind::TraitAlias(ref generics, _) => {
2051                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
2052                     generics
2053                 }
2054                 ItemKind::Existential(ExistTy {
2055                     ref bounds,
2056                     impl_trait_fn,
2057                     ref generics,
2058                     origin: _,
2059                 }) => {
2060                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2061                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2062
2063                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2064                     let bounds = AstConv::compute_bounds(
2065                         &icx,
2066                         opaque_ty,
2067                         bounds,
2068                         SizedByDefault::Yes,
2069                         tcx.def_span(def_id),
2070                     );
2071
2072                     let bounds_predicates = bounds.predicates(tcx, opaque_ty);
2073                     if impl_trait_fn.is_some() {
2074                         // opaque types
2075                         return tcx.arena.alloc(ty::GenericPredicates {
2076                             parent: None,
2077                             predicates: bounds_predicates,
2078                         });
2079                     } else {
2080                         // named existential types
2081                         predicates.extend(bounds_predicates);
2082                         generics
2083                     }
2084                 }
2085
2086                 _ => NO_GENERICS,
2087             }
2088         }
2089
2090         Node::ForeignItem(item) => match item.node {
2091             ForeignItemKind::Static(..) => NO_GENERICS,
2092             ForeignItemKind::Fn(_, _, ref generics) => generics,
2093             ForeignItemKind::Type => NO_GENERICS,
2094         },
2095
2096         _ => NO_GENERICS,
2097     };
2098
2099     let generics = tcx.generics_of(def_id);
2100     let parent_count = generics.parent_count as u32;
2101     let has_own_self = generics.has_self && parent_count == 0;
2102
2103     // Below we'll consider the bounds on the type parameters (including `Self`)
2104     // and the explicit where-clauses, but to get the full set of predicates
2105     // on a trait we need to add in the supertrait bounds and bounds found on
2106     // associated types.
2107     if let Some((_trait_ref, _)) = is_trait {
2108         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2109     }
2110
2111     // In default impls, we can assume that the self type implements
2112     // the trait. So in:
2113     //
2114     //     default impl Foo for Bar { .. }
2115     //
2116     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2117     // (see below). Recall that a default impl is not itself an impl, but rather a
2118     // set of defaults that can be incorporated into another impl.
2119     if let Some(trait_ref) = is_default_impl_trait {
2120         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2121     }
2122
2123     // Collect the region predicates that were declared inline as
2124     // well. In the case of parameters declared on a fn or method, we
2125     // have to be careful to only iterate over early-bound regions.
2126     let mut index = parent_count + has_own_self as u32;
2127     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2128         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2129             def_id: tcx.hir().local_def_id(param.hir_id),
2130             index,
2131             name: param.name.ident().as_interned_str(),
2132         }));
2133         index += 1;
2134
2135         match param.kind {
2136             GenericParamKind::Lifetime { .. } => {
2137                 param.bounds.iter().for_each(|bound| match bound {
2138                     hir::GenericBound::Outlives(lt) => {
2139                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2140                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2141                         predicates.push((outlives.to_predicate(), lt.span));
2142                     }
2143                     _ => bug!(),
2144                 });
2145             }
2146             _ => bug!(),
2147         }
2148     }
2149
2150     // Collect the predicates that were written inline by the user on each
2151     // type parameter (e.g., `<T: Foo>`).
2152     for param in &ast_generics.params {
2153         if let GenericParamKind::Type { .. } = param.kind {
2154             let name = param.name.ident().as_interned_str();
2155             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2156             index += 1;
2157
2158             let sized = SizedByDefault::Yes;
2159             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2160             predicates.extend(bounds.predicates(tcx, param_ty));
2161         }
2162     }
2163
2164     // Add in the bounds that appear in the where-clause.
2165     let where_clause = &ast_generics.where_clause;
2166     for predicate in &where_clause.predicates {
2167         match predicate {
2168             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2169                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2170
2171                 // Keep the type around in a dummy predicate, in case of no bounds.
2172                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2173                 // is still checked for WF.
2174                 if bound_pred.bounds.is_empty() {
2175                     if let ty::Param(_) = ty.sty {
2176                         // This is a `where T:`, which can be in the HIR from the
2177                         // transformation that moves `?Sized` to `T`'s declaration.
2178                         // We can skip the predicate because type parameters are
2179                         // trivially WF, but also we *should*, to avoid exposing
2180                         // users who never wrote `where Type:,` themselves, to
2181                         // compiler/tooling bugs from not handling WF predicates.
2182                     } else {
2183                         let span = bound_pred.bounded_ty.span;
2184                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2185                         predicates.push(
2186                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2187                         );
2188                     }
2189                 }
2190
2191                 for bound in bound_pred.bounds.iter() {
2192                     match bound {
2193                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2194                             let mut bounds = Bounds::default();
2195
2196                             let (trait_ref, _) = AstConv::instantiate_poly_trait_ref(
2197                                 &icx,
2198                                 poly_trait_ref,
2199                                 ty,
2200                                 &mut bounds,
2201                             );
2202
2203                             predicates.push((trait_ref.to_predicate(), poly_trait_ref.span));
2204                             predicates.extend(bounds.predicates(tcx, ty));
2205                         }
2206
2207                         &hir::GenericBound::Outlives(ref lifetime) => {
2208                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2209                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2210                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2211                         }
2212                     }
2213                 }
2214             }
2215
2216             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2217                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2218                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2219                     let (r2, span) = match bound {
2220                         hir::GenericBound::Outlives(lt) => {
2221                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2222                         }
2223                         _ => bug!(),
2224                     };
2225                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2226
2227                     (ty::Predicate::RegionOutlives(pred), span)
2228                 }))
2229             }
2230
2231             &hir::WherePredicate::EqPredicate(..) => {
2232                 // FIXME(#20041)
2233             }
2234         }
2235     }
2236
2237     // Add predicates from associated type bounds.
2238     if let Some((self_trait_ref, trait_items)) = is_trait {
2239         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2240             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2241             let bounds = match trait_item.node {
2242                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2243                 _ => return Vec::new().into_iter()
2244             };
2245
2246             let assoc_ty =
2247                 tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id),
2248                     self_trait_ref.substs);
2249
2250             let bounds = AstConv::compute_bounds(
2251                 &ItemCtxt::new(tcx, def_id),
2252                 assoc_ty,
2253                 bounds,
2254                 SizedByDefault::Yes,
2255                 trait_item.span,
2256             );
2257
2258             bounds.predicates(tcx, assoc_ty).into_iter()
2259         }))
2260     }
2261
2262     let mut predicates = predicates.predicates;
2263
2264     // Subtle: before we store the predicates into the tcx, we
2265     // sort them so that predicates like `T: Foo<Item=U>` come
2266     // before uses of `U`.  This avoids false ambiguity errors
2267     // in trait checking. See `setup_constraining_predicates`
2268     // for details.
2269     if let Node::Item(&Item {
2270         node: ItemKind::Impl(..),
2271         ..
2272     }) = node
2273     {
2274         let self_ty = tcx.type_of(def_id);
2275         let trait_ref = tcx.impl_trait_ref(def_id);
2276         cgp::setup_constraining_predicates(
2277             tcx,
2278             &mut predicates,
2279             trait_ref,
2280             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2281         );
2282     }
2283
2284     let result = tcx.arena.alloc(ty::GenericPredicates {
2285         parent: generics.parent,
2286         predicates,
2287     });
2288     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2289     result
2290 }
2291
2292 /// Converts a specific `GenericBound` from the AST into a set of
2293 /// predicates that apply to the self type. A vector is returned
2294 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2295 /// predicates) to one (`T: Foo`) to many (`T: Bar<X=i32>` adds `T: Bar`
2296 /// and `<T as Bar>::X == i32`).
2297 fn predicates_from_bound<'tcx>(
2298     astconv: &dyn AstConv<'tcx>,
2299     param_ty: Ty<'tcx>,
2300     bound: &'tcx hir::GenericBound,
2301 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2302     match *bound {
2303         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2304             let mut bounds = Bounds::default();
2305             let (pred, _) = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut bounds);
2306             iter::once((pred.to_predicate(), tr.span))
2307                 .chain(bounds.predicates(astconv.tcx(), param_ty))
2308                 .collect()
2309         }
2310         hir::GenericBound::Outlives(ref lifetime) => {
2311             let region = astconv.ast_region_to_region(lifetime, None);
2312             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2313             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2314         }
2315         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2316     }
2317 }
2318
2319 fn compute_sig_of_foreign_fn_decl<'tcx>(
2320     tcx: TyCtxt<'tcx>,
2321     def_id: DefId,
2322     decl: &'tcx hir::FnDecl,
2323     abi: abi::Abi,
2324 ) -> ty::PolyFnSig<'tcx> {
2325     let unsafety = if abi == abi::Abi::RustIntrinsic {
2326         intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2327     } else {
2328         hir::Unsafety::Unsafe
2329     };
2330     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2331
2332     // Feature gate SIMD types in FFI, since I am not sure that the
2333     // ABIs are handled at all correctly. -huonw
2334     if abi != abi::Abi::RustIntrinsic
2335         && abi != abi::Abi::PlatformIntrinsic
2336         && !tcx.features().simd_ffi
2337     {
2338         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2339             if ty.is_simd() {
2340                 tcx.sess
2341                    .struct_span_err(
2342                        ast_ty.span,
2343                        &format!(
2344                            "use of SIMD type `{}` in FFI is highly experimental and \
2345                             may result in invalid code",
2346                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2347                        ),
2348                    )
2349                    .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2350                    .emit();
2351             }
2352         };
2353         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2354             check(&input, ty)
2355         }
2356         if let hir::Return(ref ty) = decl.output {
2357             check(&ty, *fty.output().skip_binder())
2358         }
2359     }
2360
2361     fty
2362 }
2363
2364 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2365     match tcx.hir().get_if_local(def_id) {
2366         Some(Node::ForeignItem(..)) => true,
2367         Some(_) => false,
2368         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2369     }
2370 }
2371
2372 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2373     match tcx.hir().get_if_local(def_id) {
2374         Some(Node::Item(&hir::Item {
2375             node: hir::ItemKind::Static(_, mutbl, _), ..
2376         })) |
2377         Some(Node::ForeignItem( &hir::ForeignItem {
2378             node: hir::ForeignItemKind::Static(_, mutbl), ..
2379         })) => Some(mutbl),
2380         Some(_) => None,
2381         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2382     }
2383 }
2384
2385 fn from_target_feature(
2386     tcx: TyCtxt<'_>,
2387     id: DefId,
2388     attr: &ast::Attribute,
2389     whitelist: &FxHashMap<String, Option<Symbol>>,
2390     target_features: &mut Vec<Symbol>,
2391 ) {
2392     let list = match attr.meta_item_list() {
2393         Some(list) => list,
2394         None => return,
2395     };
2396     let bad_item = |span| {
2397         let msg = "malformed `target_feature` attribute input";
2398         let code = "enable = \"..\"".to_owned();
2399         tcx.sess.struct_span_err(span, &msg)
2400             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2401             .emit();
2402     };
2403     let rust_features = tcx.features();
2404     for item in list {
2405         // Only `enable = ...` is accepted in the meta-item list.
2406         if !item.check_name(sym::enable) {
2407             bad_item(item.span());
2408             continue;
2409         }
2410
2411         // Must be of the form `enable = "..."` (a string).
2412         let value = match item.value_str() {
2413             Some(value) => value,
2414             None => {
2415                 bad_item(item.span());
2416                 continue;
2417             }
2418         };
2419
2420         // We allow comma separation to enable multiple features.
2421         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2422             // Only allow whitelisted features per platform.
2423             let feature_gate = match whitelist.get(feature) {
2424                 Some(g) => g,
2425                 None => {
2426                     let msg = format!(
2427                         "the feature named `{}` is not valid for this target",
2428                         feature
2429                     );
2430                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2431                     err.span_label(
2432                         item.span(),
2433                         format!("`{}` is not valid for this target", feature),
2434                     );
2435                     if feature.starts_with("+") {
2436                         let valid = whitelist.contains_key(&feature[1..]);
2437                         if valid {
2438                             err.help("consider removing the leading `+` in the feature name");
2439                         }
2440                     }
2441                     err.emit();
2442                     return None;
2443                 }
2444             };
2445
2446             // Only allow features whose feature gates have been enabled.
2447             let allowed = match feature_gate.as_ref().map(|s| *s) {
2448                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2449                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2450                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2451                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2452                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2453                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2454                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2455                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2456                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2457                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2458                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2459                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2460                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2461                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2462                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2463                 Some(name) => bug!("unknown target feature gate {}", name),
2464                 None => true,
2465             };
2466             if !allowed && id.is_local() {
2467                 feature_gate::emit_feature_err(
2468                     &tcx.sess.parse_sess,
2469                     feature_gate.unwrap(),
2470                     item.span(),
2471                     feature_gate::GateIssue::Language,
2472                     &format!("the target feature `{}` is currently unstable", feature),
2473                 );
2474             }
2475             Some(Symbol::intern(feature))
2476         }));
2477     }
2478 }
2479
2480 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2481     use rustc::mir::mono::Linkage::*;
2482
2483     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2484     // applicable to variable declarations and may not really make sense for
2485     // Rust code in the first place but whitelist them anyway and trust that
2486     // the user knows what s/he's doing. Who knows, unanticipated use cases
2487     // may pop up in the future.
2488     //
2489     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2490     // and don't have to be, LLVM treats them as no-ops.
2491     match name {
2492         "appending" => Appending,
2493         "available_externally" => AvailableExternally,
2494         "common" => Common,
2495         "extern_weak" => ExternalWeak,
2496         "external" => External,
2497         "internal" => Internal,
2498         "linkonce" => LinkOnceAny,
2499         "linkonce_odr" => LinkOnceODR,
2500         "private" => Private,
2501         "weak" => WeakAny,
2502         "weak_odr" => WeakODR,
2503         _ => {
2504             let span = tcx.hir().span_if_local(def_id);
2505             if let Some(span) = span {
2506                 tcx.sess.span_fatal(span, "invalid linkage specified")
2507             } else {
2508                 tcx.sess
2509                    .fatal(&format!("invalid linkage specified: {}", name))
2510             }
2511         }
2512     }
2513 }
2514
2515 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2516     let attrs = tcx.get_attrs(id);
2517
2518     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2519
2520     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2521
2522     let mut inline_span = None;
2523     for attr in attrs.iter() {
2524         if attr.check_name(sym::cold) {
2525             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2526         } else if attr.check_name(sym::rustc_allocator) {
2527             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2528         } else if attr.check_name(sym::unwind) {
2529             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2530         } else if attr.check_name(sym::ffi_returns_twice) {
2531             if tcx.is_foreign_item(id) {
2532                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2533             } else {
2534                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2535                 struct_span_err!(
2536                     tcx.sess,
2537                     attr.span,
2538                     E0724,
2539                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2540                 ).emit();
2541             }
2542         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2543             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2544         } else if attr.check_name(sym::naked) {
2545             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2546         } else if attr.check_name(sym::no_mangle) {
2547             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2548         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2549             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2550         } else if attr.check_name(sym::no_debug) {
2551             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2552         } else if attr.check_name(sym::used) {
2553             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2554         } else if attr.check_name(sym::thread_local) {
2555             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2556         } else if attr.check_name(sym::export_name) {
2557             if let Some(s) = attr.value_str() {
2558                 if s.as_str().contains("\0") {
2559                     // `#[export_name = ...]` will be converted to a null-terminated string,
2560                     // so it may not contain any null characters.
2561                     struct_span_err!(
2562                         tcx.sess,
2563                         attr.span,
2564                         E0648,
2565                         "`export_name` may not contain null characters"
2566                     ).emit();
2567                 }
2568                 codegen_fn_attrs.export_name = Some(s);
2569             }
2570         } else if attr.check_name(sym::target_feature) {
2571             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2572                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2573                 tcx.sess.struct_span_err(attr.span, msg)
2574                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2575                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2576                     .emit();
2577             }
2578             from_target_feature(
2579                 tcx,
2580                 id,
2581                 attr,
2582                 &whitelist,
2583                 &mut codegen_fn_attrs.target_features,
2584             );
2585         } else if attr.check_name(sym::linkage) {
2586             if let Some(val) = attr.value_str() {
2587                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2588             }
2589         } else if attr.check_name(sym::link_section) {
2590             if let Some(val) = attr.value_str() {
2591                 if val.as_str().bytes().any(|b| b == 0) {
2592                     let msg = format!(
2593                         "illegal null byte in link_section \
2594                          value: `{}`",
2595                         &val
2596                     );
2597                     tcx.sess.span_err(attr.span, &msg);
2598                 } else {
2599                     codegen_fn_attrs.link_section = Some(val);
2600                 }
2601             }
2602         } else if attr.check_name(sym::link_name) {
2603             codegen_fn_attrs.link_name = attr.value_str();
2604         }
2605     }
2606
2607     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2608         if attr.path != sym::inline {
2609             return ia;
2610         }
2611         match attr.meta().map(|i| i.node) {
2612             Some(MetaItemKind::Word) => {
2613                 mark_used(attr);
2614                 InlineAttr::Hint
2615             }
2616             Some(MetaItemKind::List(ref items)) => {
2617                 mark_used(attr);
2618                 inline_span = Some(attr.span);
2619                 if items.len() != 1 {
2620                     span_err!(
2621                         tcx.sess.diagnostic(),
2622                         attr.span,
2623                         E0534,
2624                         "expected one argument"
2625                     );
2626                     InlineAttr::None
2627                 } else if list_contains_name(&items[..], sym::always) {
2628                     InlineAttr::Always
2629                 } else if list_contains_name(&items[..], sym::never) {
2630                     InlineAttr::Never
2631                 } else {
2632                     span_err!(
2633                         tcx.sess.diagnostic(),
2634                         items[0].span(),
2635                         E0535,
2636                         "invalid argument"
2637                     );
2638
2639                     InlineAttr::None
2640                 }
2641             }
2642             Some(MetaItemKind::NameValue(_)) => ia,
2643             None => ia,
2644         }
2645     });
2646
2647     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2648         if attr.path != sym::optimize {
2649             return ia;
2650         }
2651         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2652         match attr.meta().map(|i| i.node) {
2653             Some(MetaItemKind::Word) => {
2654                 err(attr.span, "expected one argument");
2655                 ia
2656             }
2657             Some(MetaItemKind::List(ref items)) => {
2658                 mark_used(attr);
2659                 inline_span = Some(attr.span);
2660                 if items.len() != 1 {
2661                     err(attr.span, "expected one argument");
2662                     OptimizeAttr::None
2663                 } else if list_contains_name(&items[..], sym::size) {
2664                     OptimizeAttr::Size
2665                 } else if list_contains_name(&items[..], sym::speed) {
2666                     OptimizeAttr::Speed
2667                 } else {
2668                     err(items[0].span(), "invalid argument");
2669                     OptimizeAttr::None
2670                 }
2671             }
2672             Some(MetaItemKind::NameValue(_)) => ia,
2673             None => ia,
2674         }
2675     });
2676
2677     // If a function uses #[target_feature] it can't be inlined into general
2678     // purpose functions as they wouldn't have the right target features
2679     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2680     // respected.
2681     if codegen_fn_attrs.target_features.len() > 0 {
2682         if codegen_fn_attrs.inline == InlineAttr::Always {
2683             if let Some(span) = inline_span {
2684                 tcx.sess.span_err(
2685                     span,
2686                     "cannot use `#[inline(always)]` with \
2687                      `#[target_feature]`",
2688                 );
2689             }
2690         }
2691     }
2692
2693     // Weak lang items have the same semantics as "std internal" symbols in the
2694     // sense that they're preserved through all our LTO passes and only
2695     // strippable by the linker.
2696     //
2697     // Additionally weak lang items have predetermined symbol names.
2698     if tcx.is_weak_lang_item(id) {
2699         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2700     }
2701     if let Some(name) = weak_lang_items::link_name(&attrs) {
2702         codegen_fn_attrs.export_name = Some(name);
2703         codegen_fn_attrs.link_name = Some(name);
2704     }
2705
2706     // Internal symbols to the standard library all have no_mangle semantics in
2707     // that they have defined symbol names present in the function name. This
2708     // also applies to weak symbols where they all have known symbol names.
2709     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2710         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2711     }
2712
2713     codegen_fn_attrs
2714 }