]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Decouple structure kinds from NodeIds
[rust.git] / src / librustc_typeck / collect.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*
12
13 # Collect phase
14
15 The collect phase of type check has the job of visiting all items,
16 determining their type, and writing that type into the `tcx.tcache`
17 table.  Despite its name, this table does not really operate as a
18 *cache*, at least not for the types of items defined within the
19 current crate: we assume that after the collect phase, the types of
20 all local items will be present in the table.
21
22 Unlike most of the types that are present in Rust, the types computed
23 for each item are in fact type schemes. This means that they are
24 generic types that may have type parameters. TypeSchemes are
25 represented by an instance of `ty::TypeScheme`.  This combines the
26 core type along with a list of the bounds for each parameter. Type
27 parameters themselves are represented as `ty_param()` instances.
28
29 The phasing of type conversion is somewhat complicated. There is no
30 clear set of phases we can enforce (e.g., converting traits first,
31 then types, or something like that) because the user can introduce
32 arbitrary interdependencies. So instead we generally convert things
33 lazilly and on demand, and include logic that checks for cycles.
34 Demand is driven by calls to `AstConv::get_item_type_scheme` or
35 `AstConv::lookup_trait_def`.
36
37 Currently, we "convert" types and traits in three phases (note that
38 conversion only affects the types of items / enum variants / methods;
39 it does not e.g. compute the types of individual expressions):
40
41 0. Intrinsics
42 1. Trait definitions
43 2. Type definitions
44
45 Conversion itself is done by simply walking each of the items in turn
46 and invoking an appropriate function (e.g., `trait_def_of_item` or
47 `convert_item`). However, it is possible that while converting an
48 item, we may need to compute the *type scheme* or *trait definition*
49 for other items.
50
51 There are some shortcomings in this design:
52
53 - Before walking the set of supertraits for a given trait, you must
54   call `ensure_super_predicates` on that trait def-id. Otherwise,
55   `lookup_super_predicates` will result in ICEs.
56 - Because the type scheme includes defaults, cycles through type
57   parameter defaults are illegal even if those defaults are never
58   employed. This is not necessarily a bug.
59 - The phasing of trait definitions before type definitions does not
60   seem to be necessary, sufficient, or particularly helpful, given that
61   processing a trait definition can trigger processing a type def and
62   vice versa. However, if I remove it, I get ICEs, so some more work is
63   needed in that area. -nmatsakis
64
65 */
66
67 use astconv::{self, AstConv, ty_of_arg, ast_ty_to_ty, ast_region_to_region};
68 use middle::def;
69 use middle::def_id::DefId;
70 use constrained_type_params as ctp;
71 use middle::lang_items::SizedTraitLangItem;
72 use middle::free_region::FreeRegionMap;
73 use middle::region;
74 use middle::resolve_lifetime;
75 use middle::const_eval::{self, ConstVal};
76 use middle::const_eval::EvalHint::UncheckedExprHint;
77 use middle::subst::{Substs, FnSpace, ParamSpace, SelfSpace, TypeSpace, VecPerParamSpace};
78 use middle::ty::{ToPredicate, ImplContainer, ImplOrTraitItemContainer, TraitContainer};
79 use middle::ty::{self, RegionEscape, ToPolyTraitRef, Ty, TypeScheme};
80 use middle::ty::{VariantKind};
81 use middle::ty::fold::{TypeFolder, TypeFoldable};
82 use middle::ty::util::IntTypeExt;
83 use middle::infer;
84 use rscope::*;
85 use rustc::front::map as hir_map;
86 use util::common::{ErrorReported, memoized};
87 use util::nodemap::{FnvHashMap, FnvHashSet};
88 use write_ty_to_tcx;
89
90 use std::cell::{Cell, RefCell};
91 use std::collections::HashSet;
92 use std::rc::Rc;
93
94 use syntax::abi;
95 use syntax::ast;
96 use syntax::attr;
97 use syntax::codemap::Span;
98 use syntax::parse::token::special_idents;
99 use syntax::ptr::P;
100 use rustc_front::hir;
101 use rustc_front::visit;
102 use rustc_front::print::pprust;
103
104 ///////////////////////////////////////////////////////////////////////////
105 // Main entry point
106
107 pub fn collect_item_types(tcx: &ty::ctxt) {
108     let ccx = &CrateCtxt { tcx: tcx, stack: RefCell::new(Vec::new()) };
109
110     let mut visitor = CollectTraitDefVisitor{ ccx: ccx };
111     visit::walk_crate(&mut visitor, ccx.tcx.map.krate());
112
113     let mut visitor = CollectItemTypesVisitor{ ccx: ccx };
114     visit::walk_crate(&mut visitor, ccx.tcx.map.krate());
115 }
116
117 ///////////////////////////////////////////////////////////////////////////
118
119 struct CrateCtxt<'a,'tcx:'a> {
120     tcx: &'a ty::ctxt<'tcx>,
121
122     // This stack is used to identify cycles in the user's source.
123     // Note that these cycles can cross multiple items.
124     stack: RefCell<Vec<AstConvRequest>>,
125 }
126
127 /// Context specific to some particular item. This is what implements
128 /// AstConv. It has information about the predicates that are defined
129 /// on the trait. Unfortunately, this predicate information is
130 /// available in various different forms at various points in the
131 /// process. So we can't just store a pointer to e.g. the AST or the
132 /// parsed ty form, we have to be more flexible. To this end, the
133 /// `ItemCtxt` is parameterized by a `GetTypeParameterBounds` object
134 /// that it uses to satisfy `get_type_parameter_bounds` requests.
135 /// This object might draw the information from the AST
136 /// (`hir::Generics`) or it might draw from a `ty::GenericPredicates`
137 /// or both (a tuple).
138 struct ItemCtxt<'a,'tcx:'a> {
139     ccx: &'a CrateCtxt<'a,'tcx>,
140     param_bounds: &'a (GetTypeParameterBounds<'tcx>+'a),
141 }
142
143 #[derive(Copy, Clone, PartialEq, Eq)]
144 enum AstConvRequest {
145     GetItemTypeScheme(DefId),
146     GetTraitDef(DefId),
147     EnsureSuperPredicates(DefId),
148     GetTypeParameterBounds(ast::NodeId),
149 }
150
151 ///////////////////////////////////////////////////////////////////////////
152 // First phase: just collect *trait definitions* -- basically, the set
153 // of type parameters and supertraits. This is information we need to
154 // know later when parsing field defs.
155
156 struct CollectTraitDefVisitor<'a, 'tcx: 'a> {
157     ccx: &'a CrateCtxt<'a, 'tcx>
158 }
159
160 impl<'a, 'tcx, 'v> visit::Visitor<'v> for CollectTraitDefVisitor<'a, 'tcx> {
161     fn visit_item(&mut self, i: &hir::Item) {
162         match i.node {
163             hir::ItemTrait(..) => {
164                 // computing the trait def also fills in the table
165                 let _ = trait_def_of_item(self.ccx, i);
166             }
167             _ => { }
168         }
169
170         visit::walk_item(self, i);
171     }
172 }
173
174 ///////////////////////////////////////////////////////////////////////////
175 // Second phase: collection proper.
176
177 struct CollectItemTypesVisitor<'a, 'tcx: 'a> {
178     ccx: &'a CrateCtxt<'a, 'tcx>
179 }
180
181 impl<'a, 'tcx, 'v> visit::Visitor<'v> for CollectItemTypesVisitor<'a, 'tcx> {
182     fn visit_item(&mut self, i: &hir::Item) {
183         convert_item(self.ccx, i);
184         visit::walk_item(self, i);
185     }
186     fn visit_foreign_item(&mut self, i: &hir::ForeignItem) {
187         convert_foreign_item(self.ccx, i);
188         visit::walk_foreign_item(self, i);
189     }
190 }
191
192 ///////////////////////////////////////////////////////////////////////////
193 // Utility types and common code for the above passes.
194
195 impl<'a,'tcx> CrateCtxt<'a,'tcx> {
196     fn icx(&'a self, param_bounds: &'a GetTypeParameterBounds<'tcx>) -> ItemCtxt<'a,'tcx> {
197         ItemCtxt { ccx: self, param_bounds: param_bounds }
198     }
199
200     fn method_ty(&self, method_id: ast::NodeId) -> Rc<ty::Method<'tcx>> {
201         let def_id = self.tcx.map.local_def_id(method_id);
202         match *self.tcx.impl_or_trait_items.borrow().get(&def_id).unwrap() {
203             ty::MethodTraitItem(ref mty) => mty.clone(),
204             _ => {
205                 self.tcx.sess.bug(&format!("method with id {} has the wrong type", method_id));
206             }
207         }
208     }
209
210     fn cycle_check<F,R>(&self,
211                         span: Span,
212                         request: AstConvRequest,
213                         code: F)
214                         -> Result<R,ErrorReported>
215         where F: FnOnce() -> Result<R,ErrorReported>
216     {
217         {
218             let mut stack = self.stack.borrow_mut();
219             match stack.iter().enumerate().rev().find(|&(_, r)| *r == request) {
220                 None => { }
221                 Some((i, _)) => {
222                     let cycle = &stack[i..];
223                     self.report_cycle(span, cycle);
224                     return Err(ErrorReported);
225                 }
226             }
227             stack.push(request);
228         }
229
230         let result = code();
231
232         self.stack.borrow_mut().pop();
233         result
234     }
235
236     fn report_cycle(&self,
237                     span: Span,
238                     cycle: &[AstConvRequest])
239     {
240         assert!(!cycle.is_empty());
241         let tcx = self.tcx;
242
243         span_err!(tcx.sess, span, E0391,
244             "unsupported cyclic reference between types/traits detected");
245
246         match cycle[0] {
247             AstConvRequest::GetItemTypeScheme(def_id) |
248             AstConvRequest::GetTraitDef(def_id) => {
249                 tcx.sess.note(
250                     &format!("the cycle begins when processing `{}`...",
251                              tcx.item_path_str(def_id)));
252             }
253             AstConvRequest::EnsureSuperPredicates(def_id) => {
254                 tcx.sess.note(
255                     &format!("the cycle begins when computing the supertraits of `{}`...",
256                              tcx.item_path_str(def_id)));
257             }
258             AstConvRequest::GetTypeParameterBounds(id) => {
259                 let def = tcx.type_parameter_def(id);
260                 tcx.sess.note(
261                     &format!("the cycle begins when computing the bounds \
262                               for type parameter `{}`...",
263                              def.name));
264             }
265         }
266
267         for request in &cycle[1..] {
268             match *request {
269                 AstConvRequest::GetItemTypeScheme(def_id) |
270                 AstConvRequest::GetTraitDef(def_id) => {
271                     tcx.sess.note(
272                         &format!("...which then requires processing `{}`...",
273                                  tcx.item_path_str(def_id)));
274                 }
275                 AstConvRequest::EnsureSuperPredicates(def_id) => {
276                     tcx.sess.note(
277                         &format!("...which then requires computing the supertraits of `{}`...",
278                                  tcx.item_path_str(def_id)));
279                 }
280                 AstConvRequest::GetTypeParameterBounds(id) => {
281                     let def = tcx.type_parameter_def(id);
282                     tcx.sess.note(
283                         &format!("...which then requires computing the bounds \
284                                   for type parameter `{}`...",
285                                  def.name));
286                 }
287             }
288         }
289
290         match cycle[0] {
291             AstConvRequest::GetItemTypeScheme(def_id) |
292             AstConvRequest::GetTraitDef(def_id) => {
293                 tcx.sess.note(
294                     &format!("...which then again requires processing `{}`, completing the cycle.",
295                              tcx.item_path_str(def_id)));
296             }
297             AstConvRequest::EnsureSuperPredicates(def_id) => {
298                 tcx.sess.note(
299                     &format!("...which then again requires computing the supertraits of `{}`, \
300                               completing the cycle.",
301                              tcx.item_path_str(def_id)));
302             }
303             AstConvRequest::GetTypeParameterBounds(id) => {
304                 let def = tcx.type_parameter_def(id);
305                 tcx.sess.note(
306                     &format!("...which then again requires computing the bounds \
307                               for type parameter `{}`, completing the cycle.",
308                              def.name));
309             }
310         }
311     }
312
313     /// Loads the trait def for a given trait, returning ErrorReported if a cycle arises.
314     fn get_trait_def(&self, trait_id: DefId)
315                      -> &'tcx ty::TraitDef<'tcx>
316     {
317         let tcx = self.tcx;
318
319         if let Some(trait_id) = tcx.map.as_local_node_id(trait_id) {
320             let item = match tcx.map.get(trait_id) {
321                 hir_map::NodeItem(item) => item,
322                 _ => tcx.sess.bug(&format!("get_trait_def({:?}): not an item", trait_id))
323             };
324
325             trait_def_of_item(self, &*item)
326         } else {
327             tcx.lookup_trait_def(trait_id)
328         }
329     }
330
331     /// Ensure that the (transitive) super predicates for
332     /// `trait_def_id` are available. This will report a cycle error
333     /// if a trait `X` (transitively) extends itself in some form.
334     fn ensure_super_predicates(&self, span: Span, trait_def_id: DefId)
335                                -> Result<(), ErrorReported>
336     {
337         self.cycle_check(span, AstConvRequest::EnsureSuperPredicates(trait_def_id), || {
338             let def_ids = ensure_super_predicates_step(self, trait_def_id);
339
340             for def_id in def_ids {
341                 try!(self.ensure_super_predicates(span, def_id));
342             }
343
344             Ok(())
345         })
346     }
347 }
348
349 impl<'a,'tcx> ItemCtxt<'a,'tcx> {
350     fn to_ty<RS:RegionScope>(&self, rs: &RS, ast_ty: &hir::Ty) -> Ty<'tcx> {
351         ast_ty_to_ty(self, rs, ast_ty)
352     }
353 }
354
355 impl<'a, 'tcx> AstConv<'tcx> for ItemCtxt<'a, 'tcx> {
356     fn tcx(&self) -> &ty::ctxt<'tcx> { self.ccx.tcx }
357
358     fn get_item_type_scheme(&self, span: Span, id: DefId)
359                             -> Result<ty::TypeScheme<'tcx>, ErrorReported>
360     {
361         self.ccx.cycle_check(span, AstConvRequest::GetItemTypeScheme(id), || {
362             Ok(type_scheme_of_def_id(self.ccx, id))
363         })
364     }
365
366     fn get_trait_def(&self, span: Span, id: DefId)
367                      -> Result<&'tcx ty::TraitDef<'tcx>, ErrorReported>
368     {
369         self.ccx.cycle_check(span, AstConvRequest::GetTraitDef(id), || {
370             Ok(self.ccx.get_trait_def(id))
371         })
372     }
373
374     fn ensure_super_predicates(&self,
375                                span: Span,
376                                trait_def_id: DefId)
377                                -> Result<(), ErrorReported>
378     {
379         debug!("ensure_super_predicates(trait_def_id={:?})",
380                trait_def_id);
381
382         self.ccx.ensure_super_predicates(span, trait_def_id)
383     }
384
385
386     fn get_type_parameter_bounds(&self,
387                                  span: Span,
388                                  node_id: ast::NodeId)
389                                  -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>
390     {
391         self.ccx.cycle_check(span, AstConvRequest::GetTypeParameterBounds(node_id), || {
392             let v = self.param_bounds.get_type_parameter_bounds(self, span, node_id)
393                                      .into_iter()
394                                      .filter_map(|p| p.to_opt_poly_trait_ref())
395                                      .collect();
396             Ok(v)
397         })
398     }
399
400     fn trait_defines_associated_type_named(&self,
401                                            trait_def_id: DefId,
402                                            assoc_name: ast::Name)
403                                            -> bool
404     {
405         if let Some(trait_id) = self.tcx().map.as_local_node_id(trait_def_id) {
406             trait_defines_associated_type_named(self.ccx, trait_id, assoc_name)
407         } else {
408             let trait_def = self.tcx().lookup_trait_def(trait_def_id);
409             trait_def.associated_type_names.contains(&assoc_name)
410         }
411     }
412
413         fn ty_infer(&self,
414                     _ty_param_def: Option<ty::TypeParameterDef<'tcx>>,
415                     _substs: Option<&mut Substs<'tcx>>,
416                     _space: Option<ParamSpace>,
417                     span: Span) -> Ty<'tcx> {
418         span_err!(self.tcx().sess, span, E0121,
419                   "the type placeholder `_` is not allowed within types on item signatures");
420         self.tcx().types.err
421     }
422
423     fn projected_ty(&self,
424                     _span: Span,
425                     trait_ref: ty::TraitRef<'tcx>,
426                     item_name: ast::Name)
427                     -> Ty<'tcx>
428     {
429         self.tcx().mk_projection(trait_ref, item_name)
430     }
431 }
432
433 /// Interface used to find the bounds on a type parameter from within
434 /// an `ItemCtxt`. This allows us to use multiple kinds of sources.
435 trait GetTypeParameterBounds<'tcx> {
436     fn get_type_parameter_bounds(&self,
437                                  astconv: &AstConv<'tcx>,
438                                  span: Span,
439                                  node_id: ast::NodeId)
440                                  -> Vec<ty::Predicate<'tcx>>;
441 }
442
443 /// Find bounds from both elements of the tuple.
444 impl<'a,'b,'tcx,A,B> GetTypeParameterBounds<'tcx> for (&'a A,&'b B)
445     where A : GetTypeParameterBounds<'tcx>, B : GetTypeParameterBounds<'tcx>
446 {
447     fn get_type_parameter_bounds(&self,
448                                  astconv: &AstConv<'tcx>,
449                                  span: Span,
450                                  node_id: ast::NodeId)
451                                  -> Vec<ty::Predicate<'tcx>>
452     {
453         let mut v = self.0.get_type_parameter_bounds(astconv, span, node_id);
454         v.extend(self.1.get_type_parameter_bounds(astconv, span, node_id));
455         v
456     }
457 }
458
459 /// Empty set of bounds.
460 impl<'tcx> GetTypeParameterBounds<'tcx> for () {
461     fn get_type_parameter_bounds(&self,
462                                  _astconv: &AstConv<'tcx>,
463                                  _span: Span,
464                                  _node_id: ast::NodeId)
465                                  -> Vec<ty::Predicate<'tcx>>
466     {
467         Vec::new()
468     }
469 }
470
471 /// Find bounds from the parsed and converted predicates.  This is
472 /// used when converting methods, because by that time the predicates
473 /// from the trait/impl have been fully converted.
474 impl<'tcx> GetTypeParameterBounds<'tcx> for ty::GenericPredicates<'tcx> {
475     fn get_type_parameter_bounds(&self,
476                                  astconv: &AstConv<'tcx>,
477                                  _span: Span,
478                                  node_id: ast::NodeId)
479                                  -> Vec<ty::Predicate<'tcx>>
480     {
481         let def = astconv.tcx().type_parameter_def(node_id);
482
483         self.predicates
484             .iter()
485             .filter(|predicate| {
486                 match **predicate {
487                     ty::Predicate::Trait(ref data) => {
488                         data.skip_binder().self_ty().is_param(def.space, def.index)
489                     }
490                     ty::Predicate::TypeOutlives(ref data) => {
491                         data.skip_binder().0.is_param(def.space, def.index)
492                     }
493                     ty::Predicate::Equate(..) |
494                     ty::Predicate::RegionOutlives(..) |
495                     ty::Predicate::WellFormed(..) |
496                     ty::Predicate::ObjectSafe(..) |
497                     ty::Predicate::Projection(..) => {
498                         false
499                     }
500                 }
501             })
502             .cloned()
503             .collect()
504     }
505 }
506
507 /// Find bounds from hir::Generics. This requires scanning through the
508 /// AST. We do this to avoid having to convert *all* the bounds, which
509 /// would create artificial cycles. Instead we can only convert the
510 /// bounds for a type parameter `X` if `X::Foo` is used.
511 impl<'tcx> GetTypeParameterBounds<'tcx> for hir::Generics {
512     fn get_type_parameter_bounds(&self,
513                                  astconv: &AstConv<'tcx>,
514                                  _: Span,
515                                  node_id: ast::NodeId)
516                                  -> Vec<ty::Predicate<'tcx>>
517     {
518         // In the AST, bounds can derive from two places. Either
519         // written inline like `<T:Foo>` or in a where clause like
520         // `where T:Foo`.
521
522         let def = astconv.tcx().type_parameter_def(node_id);
523         let ty = astconv.tcx().mk_param_from_def(&def);
524
525         let from_ty_params =
526             self.ty_params
527                 .iter()
528                 .filter(|p| p.id == node_id)
529                 .flat_map(|p| p.bounds.iter())
530                 .flat_map(|b| predicates_from_bound(astconv, ty, b));
531
532         let from_where_clauses =
533             self.where_clause
534                 .predicates
535                 .iter()
536                 .filter_map(|wp| match *wp {
537                     hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
538                     _ => None
539                 })
540                 .filter(|bp| is_param(astconv.tcx(), &bp.bounded_ty, node_id))
541                 .flat_map(|bp| bp.bounds.iter())
542                 .flat_map(|b| predicates_from_bound(astconv, ty, b));
543
544         from_ty_params.chain(from_where_clauses).collect()
545     }
546 }
547
548 /// Tests whether this is the AST for a reference to the type
549 /// parameter with id `param_id`. We use this so as to avoid running
550 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
551 /// conversion of the type to avoid inducing unnecessary cycles.
552 fn is_param<'tcx>(tcx: &ty::ctxt<'tcx>,
553                   ast_ty: &hir::Ty,
554                   param_id: ast::NodeId)
555                   -> bool
556 {
557     if let hir::TyPath(None, _) = ast_ty.node {
558         let path_res = *tcx.def_map.borrow().get(&ast_ty.id).unwrap();
559         match path_res.base_def {
560             def::DefSelfTy(Some(def_id), None) => {
561                 path_res.depth == 0 && def_id == tcx.map.local_def_id(param_id)
562             }
563             def::DefTyParam(_, _, def_id, _) => {
564                 path_res.depth == 0 && def_id == tcx.map.local_def_id(param_id)
565             }
566             _ => {
567                 false
568             }
569         }
570     } else {
571         false
572     }
573 }
574
575
576 fn convert_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
577                             container: ImplOrTraitItemContainer,
578                             sig: &hir::MethodSig,
579                             id: ast::NodeId,
580                             name: ast::Name,
581                             vis: hir::Visibility,
582                             untransformed_rcvr_ty: Ty<'tcx>,
583                             rcvr_ty_generics: &ty::Generics<'tcx>,
584                             rcvr_ty_predicates: &ty::GenericPredicates<'tcx>) {
585     let ty_generics = ty_generics_for_fn(ccx, &sig.generics, rcvr_ty_generics);
586
587     let ty_generic_predicates =
588         ty_generic_predicates_for_fn(ccx, &sig.generics, rcvr_ty_predicates);
589
590     let (fty, explicit_self_category) =
591         astconv::ty_of_method(&ccx.icx(&(rcvr_ty_predicates, &sig.generics)),
592                               sig, untransformed_rcvr_ty);
593
594     let def_id = ccx.tcx.map.local_def_id(id);
595     let ty_method = ty::Method::new(name,
596                                     ty_generics,
597                                     ty_generic_predicates,
598                                     fty,
599                                     explicit_self_category,
600                                     vis,
601                                     def_id,
602                                     container);
603
604     let fty = ccx.tcx.mk_fn(Some(def_id),
605                             ccx.tcx.mk_bare_fn(ty_method.fty.clone()));
606     debug!("method {} (id {}) has type {:?}",
607             name, id, fty);
608     ccx.tcx.register_item_type(def_id, TypeScheme {
609         generics: ty_method.generics.clone(),
610         ty: fty
611     });
612     ccx.tcx.predicates.borrow_mut().insert(def_id, ty_method.predicates.clone());
613
614     write_ty_to_tcx(ccx.tcx, id, fty);
615
616     debug!("writing method type: def_id={:?} mty={:?}",
617             def_id, ty_method);
618
619     ccx.tcx.impl_or_trait_items.borrow_mut().insert(def_id,
620         ty::MethodTraitItem(Rc::new(ty_method)));
621 }
622
623 fn convert_field<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
624                            struct_generics: &ty::Generics<'tcx>,
625                            struct_predicates: &ty::GenericPredicates<'tcx>,
626                            v: &hir::StructField,
627                            ty_f: ty::FieldDefMaster<'tcx>)
628 {
629     let tt = ccx.icx(struct_predicates).to_ty(&ExplicitRscope, &*v.node.ty);
630     ty_f.fulfill_ty(tt);
631     write_ty_to_tcx(ccx.tcx, v.node.id, tt);
632
633     /* add the field to the tcache */
634     ccx.tcx.register_item_type(ccx.tcx.map.local_def_id(v.node.id),
635                                ty::TypeScheme {
636                                    generics: struct_generics.clone(),
637                                    ty: tt
638                                });
639     ccx.tcx.predicates.borrow_mut().insert(ccx.tcx.map.local_def_id(v.node.id),
640                                            struct_predicates.clone());
641 }
642
643 fn convert_associated_const<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
644                                       container: ImplOrTraitItemContainer,
645                                       name: ast::Name,
646                                       id: ast::NodeId,
647                                       vis: hir::Visibility,
648                                       ty: ty::Ty<'tcx>,
649                                       has_value: bool)
650 {
651     ccx.tcx.predicates.borrow_mut().insert(ccx.tcx.map.local_def_id(id),
652                                            ty::GenericPredicates::empty());
653
654     write_ty_to_tcx(ccx.tcx, id, ty);
655
656     let associated_const = Rc::new(ty::AssociatedConst {
657         name: name,
658         vis: vis,
659         def_id: ccx.tcx.map.local_def_id(id),
660         container: container,
661         ty: ty,
662         has_value: has_value
663     });
664     ccx.tcx.impl_or_trait_items.borrow_mut()
665        .insert(ccx.tcx.map.local_def_id(id), ty::ConstTraitItem(associated_const));
666 }
667
668 fn convert_associated_type<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
669                                      container: ImplOrTraitItemContainer,
670                                      name: ast::Name,
671                                      id: ast::NodeId,
672                                      vis: hir::Visibility,
673                                      ty: Option<Ty<'tcx>>)
674 {
675     let associated_type = Rc::new(ty::AssociatedType {
676         name: name,
677         vis: vis,
678         ty: ty,
679         def_id: ccx.tcx.map.local_def_id(id),
680         container: container
681     });
682     ccx.tcx.impl_or_trait_items.borrow_mut()
683        .insert(ccx.tcx.map.local_def_id(id), ty::TypeTraitItem(associated_type));
684 }
685
686 fn convert_methods<'a,'tcx,'i,I>(ccx: &CrateCtxt<'a, 'tcx>,
687                                  container: ImplOrTraitItemContainer,
688                                  methods: I,
689                                  untransformed_rcvr_ty: Ty<'tcx>,
690                                  rcvr_ty_generics: &ty::Generics<'tcx>,
691                                  rcvr_ty_predicates: &ty::GenericPredicates<'tcx>)
692     where I: Iterator<Item=(&'i hir::MethodSig, ast::NodeId, ast::Name, hir::Visibility, Span)>
693 {
694     debug!("convert_methods(untransformed_rcvr_ty={:?}, rcvr_ty_generics={:?}, \
695                             rcvr_ty_predicates={:?})",
696            untransformed_rcvr_ty,
697            rcvr_ty_generics,
698            rcvr_ty_predicates);
699
700     for (sig, id, name, vis, _span) in methods {
701         convert_method(ccx,
702                        container,
703                        sig,
704                        id,
705                        name,
706                        vis,
707                        untransformed_rcvr_ty,
708                        rcvr_ty_generics,
709                        rcvr_ty_predicates);
710     }
711 }
712
713 fn ensure_no_ty_param_bounds(ccx: &CrateCtxt,
714                                  span: Span,
715                                  generics: &hir::Generics,
716                                  thing: &'static str) {
717     let mut warn = false;
718
719     for ty_param in generics.ty_params.iter() {
720         for bound in ty_param.bounds.iter() {
721             match *bound {
722                 hir::TraitTyParamBound(..) => {
723                     warn = true;
724                 }
725                 hir::RegionTyParamBound(..) => { }
726             }
727         }
728     }
729
730     if warn {
731         // According to accepted RFC #XXX, we should
732         // eventually accept these, but it will not be
733         // part of this PR. Still, convert to warning to
734         // make bootstrapping easier.
735         span_warn!(ccx.tcx.sess, span, E0122,
736                    "trait bounds are not (yet) enforced \
737                    in {} definitions",
738                    thing);
739     }
740 }
741
742 fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
743     let tcx = ccx.tcx;
744     debug!("convert: item {} with id {}", it.name, it.id);
745     match it.node {
746         // These don't define types.
747         hir::ItemExternCrate(_) | hir::ItemUse(_) |
748         hir::ItemForeignMod(_) | hir::ItemMod(_) => {
749         }
750         hir::ItemEnum(ref enum_definition, _) => {
751             let (scheme, predicates) = convert_typed_item(ccx, it);
752             write_ty_to_tcx(tcx, it.id, scheme.ty);
753             convert_enum_variant_types(ccx,
754                                        tcx.lookup_adt_def_master(ccx.tcx.map.local_def_id(it.id)),
755                                        scheme,
756                                        predicates,
757                                        &enum_definition.variants);
758         },
759         hir::ItemDefaultImpl(_, ref ast_trait_ref) => {
760             let trait_ref =
761                 astconv::instantiate_mono_trait_ref(&ccx.icx(&()),
762                                                     &ExplicitRscope,
763                                                     ast_trait_ref,
764                                                     None);
765
766             tcx.record_trait_has_default_impl(trait_ref.def_id);
767
768             tcx.impl_trait_refs.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id),
769                                                     Some(trait_ref));
770         }
771         hir::ItemImpl(_, _,
772                       ref generics,
773                       ref opt_trait_ref,
774                       ref selfty,
775                       ref impl_items) => {
776             // Create generics from the generics specified in the impl head.
777             debug!("convert: ast_generics={:?}", generics);
778             let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
779             let ty_predicates = ty_generic_predicates_for_type_or_impl(ccx, generics);
780
781             debug!("convert: impl_bounds={:?}", ty_predicates);
782
783             let selfty = ccx.icx(&ty_predicates).to_ty(&ExplicitRscope, &**selfty);
784             write_ty_to_tcx(tcx, it.id, selfty);
785
786             tcx.register_item_type(ccx.tcx.map.local_def_id(it.id),
787                                    TypeScheme { generics: ty_generics.clone(),
788                                                 ty: selfty });
789             tcx.predicates.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id),
790                                                ty_predicates.clone());
791             if let &Some(ref ast_trait_ref) = opt_trait_ref {
792                 tcx.impl_trait_refs.borrow_mut().insert(
793                     ccx.tcx.map.local_def_id(it.id),
794                     Some(astconv::instantiate_mono_trait_ref(&ccx.icx(&ty_predicates),
795                                                              &ExplicitRscope,
796                                                              ast_trait_ref,
797                                                              Some(selfty)))
798                         );
799             } else {
800                 tcx.impl_trait_refs.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id), None);
801             }
802
803
804             // If there is a trait reference, treat the methods as always public.
805             // This is to work around some incorrect behavior in privacy checking:
806             // when the method belongs to a trait, it should acquire the privacy
807             // from the trait, not the impl. Forcing the visibility to be public
808             // makes things sorta work.
809             let parent_visibility = if opt_trait_ref.is_some() {
810                 hir::Public
811             } else {
812                 it.vis
813             };
814
815             // Convert all the associated consts.
816             // Also, check if there are any duplicate associated items
817             let mut seen_type_items = FnvHashSet();
818             let mut seen_value_items = FnvHashSet();
819
820             for impl_item in impl_items {
821                 let seen_items = match impl_item.node {
822                     hir::TypeImplItem(_) => &mut seen_type_items,
823                     _                    => &mut seen_value_items,
824                 };
825                 if !seen_items.insert(impl_item.name) {
826                     let desc = match impl_item.node {
827                         hir::ConstImplItem(_, _) => "associated constant",
828                         hir::TypeImplItem(_) => "associated type",
829                         hir::MethodImplItem(ref sig, _) =>
830                             match sig.explicit_self.node {
831                                 hir::SelfStatic => "associated function",
832                                 _ => "method",
833                             },
834                     };
835
836                     span_err!(tcx.sess, impl_item.span, E0201, "duplicate {}", desc);
837                 }
838
839                 if let hir::ConstImplItem(ref ty, _) = impl_item.node {
840                     let ty = ccx.icx(&ty_predicates)
841                                 .to_ty(&ExplicitRscope, &*ty);
842                     tcx.register_item_type(ccx.tcx.map.local_def_id(impl_item.id),
843                                            TypeScheme {
844                                                generics: ty_generics.clone(),
845                                                ty: ty,
846                                            });
847                     convert_associated_const(ccx, ImplContainer(ccx.tcx.map.local_def_id(it.id)),
848                                              impl_item.name, impl_item.id,
849                                              impl_item.vis.inherit_from(parent_visibility),
850                                              ty, true /* has_value */);
851                 }
852             }
853
854             // Convert all the associated types.
855             for impl_item in impl_items {
856                 if let hir::TypeImplItem(ref ty) = impl_item.node {
857                     if opt_trait_ref.is_none() {
858                         span_err!(tcx.sess, impl_item.span, E0202,
859                                   "associated types are not allowed in inherent impls");
860                     }
861
862                     let typ = ccx.icx(&ty_predicates).to_ty(&ExplicitRscope, ty);
863
864                     convert_associated_type(ccx, ImplContainer(ccx.tcx.map.local_def_id(it.id)),
865                                             impl_item.name, impl_item.id, impl_item.vis,
866                                             Some(typ));
867                 }
868             }
869
870             let methods = impl_items.iter().filter_map(|ii| {
871                 if let hir::MethodImplItem(ref sig, _) = ii.node {
872                     // if the method specifies a visibility, use that, otherwise
873                     // inherit the visibility from the impl (so `foo` in `pub impl
874                     // { fn foo(); }` is public, but private in `impl { fn
875                     // foo(); }`).
876                     let method_vis = ii.vis.inherit_from(parent_visibility);
877                     Some((sig, ii.id, ii.name, method_vis, ii.span))
878                 } else {
879                     None
880                 }
881             });
882             convert_methods(ccx,
883                             ImplContainer(ccx.tcx.map.local_def_id(it.id)),
884                             methods,
885                             selfty,
886                             &ty_generics,
887                             &ty_predicates);
888
889             for impl_item in impl_items {
890                 if let hir::MethodImplItem(ref sig, ref body) = impl_item.node {
891                     let body_id = body.id;
892                     check_method_self_type(ccx,
893                                            &BindingRscope::new(),
894                                            ccx.method_ty(impl_item.id),
895                                            selfty,
896                                            &sig.explicit_self,
897                                            body_id);
898                 }
899             }
900
901             enforce_impl_params_are_constrained(tcx,
902                                                 generics,
903                                                 ccx.tcx.map.local_def_id(it.id),
904                                                 impl_items);
905         },
906         hir::ItemTrait(_, _, _, ref trait_items) => {
907             let trait_def = trait_def_of_item(ccx, it);
908             let _: Result<(), ErrorReported> = // any error is already reported, can ignore
909                 ccx.ensure_super_predicates(it.span, ccx.tcx.map.local_def_id(it.id));
910             convert_trait_predicates(ccx, it);
911             let trait_predicates = tcx.lookup_predicates(ccx.tcx.map.local_def_id(it.id));
912
913             debug!("convert: trait_bounds={:?}", trait_predicates);
914
915             // Convert all the associated types.
916             for trait_item in trait_items {
917                 match trait_item.node {
918                     hir::ConstTraitItem(ref ty, ref default) => {
919                         let ty = ccx.icx(&trait_predicates)
920                                     .to_ty(&ExplicitRscope, ty);
921                         tcx.register_item_type(ccx.tcx.map.local_def_id(trait_item.id),
922                                                TypeScheme {
923                                                    generics: trait_def.generics.clone(),
924                                                    ty: ty,
925                                                });
926                         convert_associated_const(ccx,
927                                                  TraitContainer(ccx.tcx.map.local_def_id(it.id)),
928                                                  trait_item.name,
929                                                  trait_item.id,
930                                                  hir::Public,
931                                                  ty,
932                                                  default.is_some())
933                     }
934                     _ => {}
935                 }
936             };
937
938             // Convert all the associated types.
939             for trait_item in trait_items {
940                 match trait_item.node {
941                     hir::TypeTraitItem(_, ref opt_ty) => {
942                         let typ = opt_ty.as_ref().map({
943                             |ty| ccx.icx(&trait_predicates).to_ty(&ExplicitRscope, &ty)
944                         });
945
946                         convert_associated_type(ccx,
947                                                 TraitContainer(ccx.tcx.map.local_def_id(it.id)),
948                                                 trait_item.name,
949                                                 trait_item.id,
950                                                 hir::Public,
951                                                 typ);
952                     }
953                     _ => {}
954                 }
955             };
956
957             let methods = trait_items.iter().filter_map(|ti| {
958                 let sig = match ti.node {
959                     hir::MethodTraitItem(ref sig, _) => sig,
960                     _ => return None,
961                 };
962                 Some((sig, ti.id, ti.name, hir::Inherited, ti.span))
963             });
964
965             // Run convert_methods on the trait methods.
966             convert_methods(ccx,
967                             TraitContainer(ccx.tcx.map.local_def_id(it.id)),
968                             methods,
969                             tcx.mk_self_type(),
970                             &trait_def.generics,
971                             &trait_predicates);
972
973             // Add an entry mapping
974             let trait_item_def_ids = Rc::new(trait_items.iter().map(|trait_item| {
975                 let def_id = ccx.tcx.map.local_def_id(trait_item.id);
976                 match trait_item.node {
977                     hir::ConstTraitItem(..) => {
978                         ty::ConstTraitItemId(def_id)
979                     }
980                     hir::MethodTraitItem(..) => {
981                         ty::MethodTraitItemId(def_id)
982                     }
983                     hir::TypeTraitItem(..) => {
984                         ty::TypeTraitItemId(def_id)
985                     }
986                 }
987             }).collect());
988             tcx.trait_item_def_ids.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id),
989                                                        trait_item_def_ids);
990
991             // This must be done after `collect_trait_methods` so that
992             // we have a method type stored for every method.
993             for trait_item in trait_items {
994                 let sig = match trait_item.node {
995                     hir::MethodTraitItem(ref sig, _) => sig,
996                     _ => continue
997                 };
998                 check_method_self_type(ccx,
999                                        &BindingRscope::new(),
1000                                        ccx.method_ty(trait_item.id),
1001                                        tcx.mk_self_type(),
1002                                        &sig.explicit_self,
1003                                        it.id)
1004             }
1005         },
1006         hir::ItemStruct(ref struct_def, _) => {
1007             let (scheme, predicates) = convert_typed_item(ccx, it);
1008             write_ty_to_tcx(tcx, it.id, scheme.ty);
1009
1010             let it_def_id = ccx.tcx.map.local_def_id(it.id);
1011             let variant = tcx.lookup_adt_def_master(it_def_id).struct_variant();
1012
1013             for (f, ty_f) in struct_def.fields.iter().zip(variant.fields.iter()) {
1014                 convert_field(ccx, &scheme.generics, &predicates, f, ty_f)
1015             }
1016
1017             if struct_def.kind != hir::VariantKind::Dict {
1018                 convert_variant_ctor(tcx, struct_def.id, variant, scheme, predicates);
1019             }
1020         },
1021         hir::ItemTy(_, ref generics) => {
1022             ensure_no_ty_param_bounds(ccx, it.span, generics, "type");
1023             let (scheme, _) = convert_typed_item(ccx, it);
1024             write_ty_to_tcx(tcx, it.id, scheme.ty);
1025         },
1026         _ => {
1027             // This call populates the type cache with the converted type
1028             // of the item in passing. All we have to do here is to write
1029             // it into the node type table.
1030             let (scheme, _) = convert_typed_item(ccx, it);
1031             write_ty_to_tcx(tcx, it.id, scheme.ty);
1032         },
1033     }
1034 }
1035
1036 fn convert_variant_ctor<'a, 'tcx>(tcx: &ty::ctxt<'tcx>,
1037                                   ctor_id: ast::NodeId,
1038                                   variant: ty::VariantDef<'tcx>,
1039                                   scheme: ty::TypeScheme<'tcx>,
1040                                   predicates: ty::GenericPredicates<'tcx>) {
1041     let ctor_ty = match variant.kind() {
1042         VariantKind::Unit | VariantKind::Dict => scheme.ty,
1043         VariantKind::Tuple => {
1044             let inputs: Vec<_> =
1045                 variant.fields
1046                 .iter()
1047                 .map(|field| field.unsubst_ty())
1048                 .collect();
1049             tcx.mk_ctor_fn(tcx.map.local_def_id(ctor_id),
1050                            &inputs[..],
1051                            scheme.ty)
1052         }
1053     };
1054     write_ty_to_tcx(tcx, ctor_id, ctor_ty);
1055     tcx.predicates.borrow_mut().insert(tcx.map.local_def_id(ctor_id), predicates);
1056     tcx.register_item_type(tcx.map.local_def_id(ctor_id),
1057                            TypeScheme {
1058                                generics: scheme.generics,
1059                                ty: ctor_ty
1060                            });
1061 }
1062
1063 fn convert_enum_variant_types<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1064                                         def: ty::AdtDefMaster<'tcx>,
1065                                         scheme: ty::TypeScheme<'tcx>,
1066                                         predicates: ty::GenericPredicates<'tcx>,
1067                                         variants: &[P<hir::Variant>]) {
1068     // fill the field types
1069     for (variant, ty_variant) in variants.iter().zip(def.variants.iter()) {
1070         for (f, ty_f) in variant.node.def.fields.iter().zip(ty_variant.fields.iter()) {
1071             convert_field(ccx, &scheme.generics, &predicates, f, ty_f)
1072         }
1073
1074         // Convert the ctor, if any. This also registers the variant as
1075         // an item.
1076         convert_variant_ctor(
1077             ccx.tcx,
1078             variant.node.id,
1079             ty_variant,
1080             scheme.clone(),
1081             predicates.clone()
1082         );
1083     }
1084 }
1085
1086 fn convert_struct_variant<'tcx>(tcx: &ty::ctxt<'tcx>,
1087                                 did: DefId,
1088                                 name: ast::Name,
1089                                 disr_val: ty::Disr,
1090                                 def: &hir::StructDef) -> ty::VariantDefData<'tcx, 'tcx> {
1091     let mut seen_fields: FnvHashMap<ast::Name, Span> = FnvHashMap();
1092     let fields = def.fields.iter().map(|f| {
1093         let fid = tcx.map.local_def_id(f.node.id);
1094         match f.node.kind {
1095             hir::NamedField(name, vis) => {
1096                 let dup_span = seen_fields.get(&name).cloned();
1097                 if let Some(prev_span) = dup_span {
1098                     span_err!(tcx.sess, f.span, E0124,
1099                               "field `{}` is already declared",
1100                               name);
1101                     span_note!(tcx.sess, prev_span, "previously declared here");
1102                 } else {
1103                     seen_fields.insert(name, f.span);
1104                 }
1105
1106                 ty::FieldDefData::new(fid, name, vis)
1107             },
1108             hir::UnnamedField(vis) => {
1109                 ty::FieldDefData::new(fid, special_idents::unnamed_field.name, vis)
1110             }
1111         }
1112     }).collect();
1113     ty::VariantDefData {
1114         did: did,
1115         name: name,
1116         disr_val: disr_val,
1117         fields: fields
1118     }
1119 }
1120
1121 fn convert_struct_def<'tcx>(tcx: &ty::ctxt<'tcx>,
1122                             it: &hir::Item,
1123                             def: &hir::StructDef)
1124                             -> ty::AdtDefMaster<'tcx>
1125 {
1126
1127     let did = tcx.map.local_def_id(it.id);
1128     let ctor_id = def.ctor_id.map_or(did,
1129         |ctor_id| tcx.map.local_def_id(ctor_id));
1130     tcx.intern_adt_def(
1131         did,
1132         ty::AdtKind::Struct,
1133         vec![convert_struct_variant(tcx, ctor_id, it.name, 0, def)]
1134     )
1135 }
1136
1137 fn convert_enum_def<'tcx>(tcx: &ty::ctxt<'tcx>,
1138                           it: &hir::Item,
1139                           def: &hir::EnumDef)
1140                           -> ty::AdtDefMaster<'tcx>
1141 {
1142     fn evaluate_disr_expr<'tcx>(tcx: &ty::ctxt<'tcx>,
1143                                 repr_ty: Ty<'tcx>,
1144                                 e: &hir::Expr) -> Option<ty::Disr> {
1145         debug!("disr expr, checking {}", pprust::expr_to_string(e));
1146
1147         let hint = UncheckedExprHint(repr_ty);
1148         match const_eval::eval_const_expr_partial(tcx, e, hint) {
1149             Ok(ConstVal::Int(val)) => Some(val as ty::Disr),
1150             Ok(ConstVal::Uint(val)) => Some(val as ty::Disr),
1151             Ok(_) => {
1152                 let sign_desc = if repr_ty.is_signed() {
1153                     "signed"
1154                 } else {
1155                     "unsigned"
1156                 };
1157                 span_err!(tcx.sess, e.span, E0079,
1158                           "expected {} integer constant",
1159                           sign_desc);
1160                 None
1161             },
1162             Err(err) => {
1163                 span_err!(tcx.sess, err.span, E0080,
1164                           "constant evaluation error: {}",
1165                           err.description());
1166                 if !e.span.contains(err.span) {
1167                     tcx.sess.span_note(e.span, "for enum discriminant here");
1168                 }
1169                 None
1170             }
1171         }
1172     }
1173
1174     fn report_discrim_overflow(tcx: &ty::ctxt,
1175                                variant_span: Span,
1176                                variant_name: &str,
1177                                repr_type: attr::IntType,
1178                                prev_val: ty::Disr) {
1179         let computed_value = repr_type.disr_wrap_incr(Some(prev_val));
1180         let computed_value = repr_type.disr_string(computed_value);
1181         let prev_val = repr_type.disr_string(prev_val);
1182         let repr_type = repr_type.to_ty(tcx);
1183         span_err!(tcx.sess, variant_span, E0370,
1184                   "enum discriminant overflowed on value after {}: {}; \
1185                    set explicitly via {} = {} if that is desired outcome",
1186                   prev_val, repr_type, variant_name, computed_value);
1187     }
1188
1189     fn next_disr(tcx: &ty::ctxt,
1190                  v: &hir::Variant,
1191                  repr_type: attr::IntType,
1192                  prev_disr_val: Option<ty::Disr>) -> Option<ty::Disr> {
1193         if let Some(prev_disr_val) = prev_disr_val {
1194             let result = repr_type.disr_incr(prev_disr_val);
1195             if let None = result {
1196                 report_discrim_overflow(tcx, v.span, &v.node.name.as_str(),
1197                                              repr_type, prev_disr_val);
1198             }
1199             result
1200         } else {
1201             Some(ty::INITIAL_DISCRIMINANT_VALUE)
1202         }
1203     }
1204     fn convert_enum_variant<'tcx>(tcx: &ty::ctxt<'tcx>,
1205                                   v: &hir::Variant,
1206                                   disr: ty::Disr)
1207                                   -> ty::VariantDefData<'tcx, 'tcx>
1208     {
1209         let did = tcx.map.local_def_id(v.node.id);
1210         let name = v.node.name;
1211         convert_struct_variant(tcx, did, name, disr, &v.node.def)
1212     }
1213     let did = tcx.map.local_def_id(it.id);
1214     let repr_hints = tcx.lookup_repr_hints(did);
1215     let (repr_type, repr_type_ty) = tcx.enum_repr_type(repr_hints.get(0));
1216     let mut prev_disr = None;
1217     let variants = def.variants.iter().map(|v| {
1218         let disr = match v.node.disr_expr {
1219             Some(ref e) => evaluate_disr_expr(tcx, repr_type_ty, e),
1220             None => next_disr(tcx, v, repr_type, prev_disr)
1221         }.unwrap_or(repr_type.disr_wrap_incr(prev_disr));
1222
1223         let v = convert_enum_variant(tcx, v, disr);
1224         prev_disr = Some(disr);
1225         v
1226     }).collect();
1227     tcx.intern_adt_def(tcx.map.local_def_id(it.id), ty::AdtKind::Enum, variants)
1228 }
1229
1230 /// Ensures that the super-predicates of the trait with def-id
1231 /// trait_def_id are converted and stored. This does NOT ensure that
1232 /// the transitive super-predicates are converted; that is the job of
1233 /// the `ensure_super_predicates()` method in the `AstConv` impl
1234 /// above. Returns a list of trait def-ids that must be ensured as
1235 /// well to guarantee that the transitive superpredicates are
1236 /// converted.
1237 fn ensure_super_predicates_step(ccx: &CrateCtxt,
1238                                 trait_def_id: DefId)
1239                                 -> Vec<DefId>
1240 {
1241     let tcx = ccx.tcx;
1242
1243     debug!("ensure_super_predicates_step(trait_def_id={:?})", trait_def_id);
1244
1245     let trait_node_id = if let Some(n) = tcx.map.as_local_node_id(trait_def_id) {
1246         n
1247     } else {
1248         // If this trait comes from an external crate, then all of the
1249         // supertraits it may depend on also must come from external
1250         // crates, and hence all of them already have their
1251         // super-predicates "converted" (and available from crate
1252         // meta-data), so there is no need to transitively test them.
1253         return Vec::new();
1254     };
1255
1256     let superpredicates = tcx.super_predicates.borrow().get(&trait_def_id).cloned();
1257     let superpredicates = superpredicates.unwrap_or_else(|| {
1258         let item = match ccx.tcx.map.get(trait_node_id) {
1259             hir_map::NodeItem(item) => item,
1260             _ => ccx.tcx.sess.bug(&format!("trait_node_id {} is not an item", trait_node_id))
1261         };
1262
1263         let (generics, bounds) = match item.node {
1264             hir::ItemTrait(_, ref generics, ref supertraits, _) => (generics, supertraits),
1265             _ => tcx.sess.span_bug(item.span,
1266                                    "ensure_super_predicates_step invoked on non-trait"),
1267         };
1268
1269         // In-scope when converting the superbounds for `Trait` are
1270         // that `Self:Trait` as well as any bounds that appear on the
1271         // generic types:
1272         let trait_def = trait_def_of_item(ccx, item);
1273         let self_predicate = ty::GenericPredicates {
1274             predicates: VecPerParamSpace::new(vec![],
1275                                               vec![trait_def.trait_ref.to_predicate()],
1276                                               vec![])
1277         };
1278         let scope = &(generics, &self_predicate);
1279
1280         // Convert the bounds that follow the colon, e.g. `Bar+Zed` in `trait Foo : Bar+Zed`.
1281         let self_param_ty = tcx.mk_self_type();
1282         let superbounds1 = compute_bounds(&ccx.icx(scope),
1283                                     self_param_ty,
1284                                     bounds,
1285                                     SizedByDefault::No,
1286                                     item.span);
1287
1288         let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
1289
1290         // Convert any explicit superbounds in the where clause,
1291         // e.g. `trait Foo where Self : Bar`:
1292         let superbounds2 = generics.get_type_parameter_bounds(&ccx.icx(scope), item.span, item.id);
1293
1294         // Combine the two lists to form the complete set of superbounds:
1295         let superbounds = superbounds1.into_iter().chain(superbounds2).collect();
1296         let superpredicates = ty::GenericPredicates {
1297             predicates: VecPerParamSpace::new(superbounds, vec![], vec![])
1298         };
1299         debug!("superpredicates for trait {:?} = {:?}",
1300                tcx.map.local_def_id(item.id),
1301                superpredicates);
1302
1303         tcx.super_predicates.borrow_mut().insert(trait_def_id, superpredicates.clone());
1304
1305         superpredicates
1306     });
1307
1308     let def_ids: Vec<_> = superpredicates.predicates
1309                                          .iter()
1310                                          .filter_map(|p| p.to_opt_poly_trait_ref())
1311                                          .map(|tr| tr.def_id())
1312                                          .collect();
1313
1314     debug!("ensure_super_predicates_step: def_ids={:?}", def_ids);
1315
1316     def_ids
1317 }
1318
1319 fn trait_def_of_item<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1320                                it: &hir::Item)
1321                                -> &'tcx ty::TraitDef<'tcx>
1322 {
1323     let def_id = ccx.tcx.map.local_def_id(it.id);
1324     let tcx = ccx.tcx;
1325
1326     if let Some(def) = tcx.trait_defs.borrow().get(&def_id) {
1327         return def.clone();
1328     }
1329
1330     let (unsafety, generics, items) = match it.node {
1331         hir::ItemTrait(unsafety, ref generics, _, ref items) => (unsafety, generics, items),
1332         _ => tcx.sess.span_bug(it.span, "trait_def_of_item invoked on non-trait"),
1333     };
1334
1335     let paren_sugar = tcx.has_attr(def_id, "rustc_paren_sugar");
1336     if paren_sugar && !ccx.tcx.sess.features.borrow().unboxed_closures {
1337         ccx.tcx.sess.span_err(
1338             it.span,
1339             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1340              which traits can use parenthetical notation");
1341         fileline_help!(ccx.tcx.sess, it.span,
1342                    "add `#![feature(unboxed_closures)]` to \
1343                     the crate attributes to use it");
1344     }
1345
1346     let substs = ccx.tcx.mk_substs(mk_trait_substs(ccx, generics));
1347
1348     let ty_generics = ty_generics_for_trait(ccx, it.id, substs, generics);
1349
1350     let associated_type_names: Vec<_> = items.iter().filter_map(|trait_item| {
1351         match trait_item.node {
1352             hir::TypeTraitItem(..) => Some(trait_item.name),
1353             _ => None,
1354         }
1355     }).collect();
1356
1357     let trait_ref = ty::TraitRef {
1358         def_id: def_id,
1359         substs: substs,
1360     };
1361
1362     let trait_def = ty::TraitDef {
1363         paren_sugar: paren_sugar,
1364         unsafety: unsafety,
1365         generics: ty_generics,
1366         trait_ref: trait_ref,
1367         associated_type_names: associated_type_names,
1368         nonblanket_impls: RefCell::new(FnvHashMap()),
1369         blanket_impls: RefCell::new(vec![]),
1370         flags: Cell::new(ty::TraitFlags::NO_TRAIT_FLAGS)
1371     };
1372
1373     return tcx.intern_trait_def(trait_def);
1374
1375     fn mk_trait_substs<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1376                                  generics: &hir::Generics)
1377                                  -> Substs<'tcx>
1378     {
1379         let tcx = ccx.tcx;
1380
1381         // Creates a no-op substitution for the trait's type parameters.
1382         let regions =
1383             generics.lifetimes
1384                     .iter()
1385                     .enumerate()
1386                     .map(|(i, def)| ty::ReEarlyBound(ty::EarlyBoundRegion {
1387                         def_id: tcx.map.local_def_id(def.lifetime.id),
1388                         space: TypeSpace,
1389                         index: i as u32,
1390                         name: def.lifetime.name
1391                     }))
1392                     .collect();
1393
1394         // Start with the generics in the type parameters...
1395         let types: Vec<_> =
1396             generics.ty_params
1397                     .iter()
1398                     .enumerate()
1399                     .map(|(i, def)| tcx.mk_param(TypeSpace,
1400                                                  i as u32, def.name))
1401                     .collect();
1402
1403         // ...and also create the `Self` parameter.
1404         let self_ty = tcx.mk_self_type();
1405
1406         Substs::new_trait(types, regions, self_ty)
1407     }
1408 }
1409
1410 fn trait_defines_associated_type_named(ccx: &CrateCtxt,
1411                                        trait_node_id: ast::NodeId,
1412                                        assoc_name: ast::Name)
1413                                        -> bool
1414 {
1415     let item = match ccx.tcx.map.get(trait_node_id) {
1416         hir_map::NodeItem(item) => item,
1417         _ => ccx.tcx.sess.bug(&format!("trait_node_id {} is not an item", trait_node_id))
1418     };
1419
1420     let trait_items = match item.node {
1421         hir::ItemTrait(_, _, _, ref trait_items) => trait_items,
1422         _ => ccx.tcx.sess.bug(&format!("trait_node_id {} is not a trait", trait_node_id))
1423     };
1424
1425     trait_items.iter().any(|trait_item| {
1426         match trait_item.node {
1427             hir::TypeTraitItem(..) => trait_item.name == assoc_name,
1428             _ => false,
1429         }
1430     })
1431 }
1432
1433 fn convert_trait_predicates<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>, it: &hir::Item) {
1434     let tcx = ccx.tcx;
1435     let trait_def = trait_def_of_item(ccx, it);
1436
1437     let def_id = ccx.tcx.map.local_def_id(it.id);
1438
1439     let (generics, items) = match it.node {
1440         hir::ItemTrait(_, ref generics, _, ref items) => (generics, items),
1441         ref s => {
1442             tcx.sess.span_bug(
1443                 it.span,
1444                 &format!("trait_def_of_item invoked on {:?}", s));
1445         }
1446     };
1447
1448     let super_predicates = ccx.tcx.lookup_super_predicates(def_id);
1449
1450     // `ty_generic_predicates` below will consider the bounds on the type
1451     // parameters (including `Self`) and the explicit where-clauses,
1452     // but to get the full set of predicates on a trait we need to add
1453     // in the supertrait bounds and anything declared on the
1454     // associated types.
1455     let mut base_predicates = super_predicates;
1456
1457     // Add in a predicate that `Self:Trait` (where `Trait` is the
1458     // current trait).  This is needed for builtin bounds.
1459     let self_predicate = trait_def.trait_ref.to_poly_trait_ref().to_predicate();
1460     base_predicates.predicates.push(SelfSpace, self_predicate);
1461
1462     // add in the explicit where-clauses
1463     let mut trait_predicates =
1464         ty_generic_predicates(ccx, TypeSpace, generics, &base_predicates);
1465
1466     let assoc_predicates = predicates_for_associated_types(ccx,
1467                                                            generics,
1468                                                            &trait_predicates,
1469                                                            trait_def.trait_ref,
1470                                                            items);
1471     trait_predicates.predicates.extend(TypeSpace, assoc_predicates.into_iter());
1472
1473     let prev_predicates = tcx.predicates.borrow_mut().insert(def_id, trait_predicates);
1474     assert!(prev_predicates.is_none());
1475
1476     return;
1477
1478     fn predicates_for_associated_types<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1479                                                  ast_generics: &hir::Generics,
1480                                                  trait_predicates: &ty::GenericPredicates<'tcx>,
1481                                                  self_trait_ref: ty::TraitRef<'tcx>,
1482                                                  trait_items: &[P<hir::TraitItem>])
1483                                                  -> Vec<ty::Predicate<'tcx>>
1484     {
1485         trait_items.iter().flat_map(|trait_item| {
1486             let bounds = match trait_item.node {
1487                 hir::TypeTraitItem(ref bounds, _) => bounds,
1488                 _ => {
1489                     return vec!().into_iter();
1490                 }
1491             };
1492
1493             let assoc_ty = ccx.tcx.mk_projection(self_trait_ref,
1494                                                  trait_item.name);
1495
1496             let bounds = compute_bounds(&ccx.icx(&(ast_generics, trait_predicates)),
1497                                         assoc_ty,
1498                                         bounds,
1499                                         SizedByDefault::Yes,
1500                                         trait_item.span);
1501
1502             bounds.predicates(ccx.tcx, assoc_ty).into_iter()
1503         }).collect()
1504     }
1505 }
1506
1507 fn type_scheme_of_def_id<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1508                                   def_id: DefId)
1509                                   -> ty::TypeScheme<'tcx>
1510 {
1511     if let Some(node_id) = ccx.tcx.map.as_local_node_id(def_id) {
1512         match ccx.tcx.map.find(node_id) {
1513             Some(hir_map::NodeItem(item)) => {
1514                 type_scheme_of_item(ccx, &*item)
1515             }
1516             Some(hir_map::NodeForeignItem(foreign_item)) => {
1517                 let abi = ccx.tcx.map.get_foreign_abi(node_id);
1518                 type_scheme_of_foreign_item(ccx, &*foreign_item, abi)
1519             }
1520             x => {
1521                 ccx.tcx.sess.bug(&format!("unexpected sort of node \
1522                                            in get_item_type_scheme(): {:?}",
1523                                           x));
1524             }
1525         }
1526     } else {
1527         ccx.tcx.lookup_item_type(def_id)
1528     }
1529 }
1530
1531 fn type_scheme_of_item<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1532                                 it: &hir::Item)
1533                                 -> ty::TypeScheme<'tcx>
1534 {
1535     memoized(&ccx.tcx.tcache,
1536              ccx.tcx.map.local_def_id(it.id),
1537              |_| compute_type_scheme_of_item(ccx, it))
1538 }
1539
1540 fn compute_type_scheme_of_item<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1541                                         it: &hir::Item)
1542                                         -> ty::TypeScheme<'tcx>
1543 {
1544     let tcx = ccx.tcx;
1545     match it.node {
1546         hir::ItemStatic(ref t, _, _) | hir::ItemConst(ref t, _) => {
1547             let ty = ccx.icx(&()).to_ty(&ExplicitRscope, &**t);
1548             ty::TypeScheme { ty: ty, generics: ty::Generics::empty() }
1549         }
1550         hir::ItemFn(ref decl, unsafety, _, abi, ref generics, _) => {
1551             let ty_generics = ty_generics_for_fn(ccx, generics, &ty::Generics::empty());
1552             let tofd = astconv::ty_of_bare_fn(&ccx.icx(generics), unsafety, abi, &**decl);
1553             let ty = tcx.mk_fn(Some(ccx.tcx.map.local_def_id(it.id)), tcx.mk_bare_fn(tofd));
1554             ty::TypeScheme { ty: ty, generics: ty_generics }
1555         }
1556         hir::ItemTy(ref t, ref generics) => {
1557             let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
1558             let ty = ccx.icx(generics).to_ty(&ExplicitRscope, &**t);
1559             ty::TypeScheme { ty: ty, generics: ty_generics }
1560         }
1561         hir::ItemEnum(ref ei, ref generics) => {
1562             let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
1563             let substs = mk_item_substs(ccx, &ty_generics);
1564             let def = convert_enum_def(tcx, it, ei);
1565             let t = tcx.mk_enum(def, tcx.mk_substs(substs));
1566             ty::TypeScheme { ty: t, generics: ty_generics }
1567         }
1568         hir::ItemStruct(ref si, ref generics) => {
1569             let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
1570             let substs = mk_item_substs(ccx, &ty_generics);
1571             let def = convert_struct_def(tcx, it, si);
1572             let t = tcx.mk_struct(def, tcx.mk_substs(substs));
1573             ty::TypeScheme { ty: t, generics: ty_generics }
1574         }
1575         hir::ItemDefaultImpl(..) |
1576         hir::ItemTrait(..) |
1577         hir::ItemImpl(..) |
1578         hir::ItemMod(..) |
1579         hir::ItemForeignMod(..) |
1580         hir::ItemExternCrate(..) |
1581         hir::ItemUse(..) => {
1582             tcx.sess.span_bug(
1583                 it.span,
1584                 &format!("compute_type_scheme_of_item: unexpected item type: {:?}",
1585                          it.node));
1586         }
1587     }
1588 }
1589
1590 fn convert_typed_item<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1591                                 it: &hir::Item)
1592                                 -> (ty::TypeScheme<'tcx>, ty::GenericPredicates<'tcx>)
1593 {
1594     let tcx = ccx.tcx;
1595
1596     let tag = type_scheme_of_item(ccx, it);
1597     let scheme = TypeScheme { generics: tag.generics, ty: tag.ty };
1598     let predicates = match it.node {
1599         hir::ItemStatic(..) | hir::ItemConst(..) => {
1600             ty::GenericPredicates::empty()
1601         }
1602         hir::ItemFn(_, _, _, _, ref ast_generics, _) => {
1603             ty_generic_predicates_for_fn(ccx, ast_generics, &ty::GenericPredicates::empty())
1604         }
1605         hir::ItemTy(_, ref generics) => {
1606             ty_generic_predicates_for_type_or_impl(ccx, generics)
1607         }
1608         hir::ItemEnum(_, ref generics) => {
1609             ty_generic_predicates_for_type_or_impl(ccx, generics)
1610         }
1611         hir::ItemStruct(_, ref generics) => {
1612             ty_generic_predicates_for_type_or_impl(ccx, generics)
1613         }
1614         hir::ItemDefaultImpl(..) |
1615         hir::ItemTrait(..) |
1616         hir::ItemExternCrate(..) |
1617         hir::ItemUse(..) |
1618         hir::ItemImpl(..) |
1619         hir::ItemMod(..) |
1620         hir::ItemForeignMod(..) => {
1621             tcx.sess.span_bug(
1622                 it.span,
1623                 &format!("compute_type_scheme_of_item: unexpected item type: {:?}",
1624                          it.node));
1625         }
1626     };
1627
1628     let prev_predicates = tcx.predicates.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id),
1629                                                              predicates.clone());
1630     assert!(prev_predicates.is_none());
1631
1632     // Debugging aid.
1633     if tcx.has_attr(ccx.tcx.map.local_def_id(it.id), "rustc_object_lifetime_default") {
1634         let object_lifetime_default_reprs: String =
1635             scheme.generics.types.iter()
1636                                  .map(|t| match t.object_lifetime_default {
1637                                      ty::ObjectLifetimeDefault::Specific(r) => r.to_string(),
1638                                      d => format!("{:?}", d),
1639                                  })
1640                                  .collect::<Vec<String>>()
1641                                  .join(",");
1642
1643         tcx.sess.span_err(it.span, &object_lifetime_default_reprs);
1644     }
1645
1646     return (scheme, predicates);
1647 }
1648
1649 fn type_scheme_of_foreign_item<'a, 'tcx>(
1650     ccx: &CrateCtxt<'a, 'tcx>,
1651     it: &hir::ForeignItem,
1652     abi: abi::Abi)
1653     -> ty::TypeScheme<'tcx>
1654 {
1655     memoized(&ccx.tcx.tcache,
1656              ccx.tcx.map.local_def_id(it.id),
1657              |_| compute_type_scheme_of_foreign_item(ccx, it, abi))
1658 }
1659
1660 fn compute_type_scheme_of_foreign_item<'a, 'tcx>(
1661     ccx: &CrateCtxt<'a, 'tcx>,
1662     it: &hir::ForeignItem,
1663     abi: abi::Abi)
1664     -> ty::TypeScheme<'tcx>
1665 {
1666     match it.node {
1667         hir::ForeignItemFn(ref fn_decl, ref generics) => {
1668             compute_type_scheme_of_foreign_fn_decl(ccx, fn_decl, generics, abi)
1669         }
1670         hir::ForeignItemStatic(ref t, _) => {
1671             ty::TypeScheme {
1672                 generics: ty::Generics::empty(),
1673                 ty: ast_ty_to_ty(&ccx.icx(&()), &ExplicitRscope, t)
1674             }
1675         }
1676     }
1677 }
1678
1679 fn convert_foreign_item<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1680                                   it: &hir::ForeignItem)
1681 {
1682     // For reasons I cannot fully articulate, I do so hate the AST
1683     // map, and I regard each time that I use it as a personal and
1684     // moral failing, but at the moment it seems like the only
1685     // convenient way to extract the ABI. - ndm
1686     let tcx = ccx.tcx;
1687     let abi = tcx.map.get_foreign_abi(it.id);
1688
1689     let scheme = type_scheme_of_foreign_item(ccx, it, abi);
1690     write_ty_to_tcx(ccx.tcx, it.id, scheme.ty);
1691
1692     let predicates = match it.node {
1693         hir::ForeignItemFn(_, ref generics) => {
1694             ty_generic_predicates_for_fn(ccx, generics, &ty::GenericPredicates::empty())
1695         }
1696         hir::ForeignItemStatic(..) => {
1697             ty::GenericPredicates::empty()
1698         }
1699     };
1700
1701     let prev_predicates = tcx.predicates.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id),
1702                                                              predicates);
1703     assert!(prev_predicates.is_none());
1704 }
1705
1706 fn ty_generics_for_type_or_impl<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1707                                           generics: &hir::Generics)
1708                                           -> ty::Generics<'tcx> {
1709     ty_generics(ccx, TypeSpace, generics, &ty::Generics::empty())
1710 }
1711
1712 fn ty_generic_predicates_for_type_or_impl<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1713                                                    generics: &hir::Generics)
1714                                                    -> ty::GenericPredicates<'tcx>
1715 {
1716     ty_generic_predicates(ccx, TypeSpace, generics, &ty::GenericPredicates::empty())
1717 }
1718
1719 fn ty_generics_for_trait<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1720                                    trait_id: ast::NodeId,
1721                                    substs: &'tcx Substs<'tcx>,
1722                                    ast_generics: &hir::Generics)
1723                                    -> ty::Generics<'tcx>
1724 {
1725     debug!("ty_generics_for_trait(trait_id={:?}, substs={:?})",
1726            ccx.tcx.map.local_def_id(trait_id), substs);
1727
1728     let mut generics = ty_generics_for_type_or_impl(ccx, ast_generics);
1729
1730     // Add in the self type parameter.
1731     //
1732     // Something of a hack: use the node id for the trait, also as
1733     // the node id for the Self type parameter.
1734     let param_id = trait_id;
1735
1736     let parent = ccx.tcx.map.get_parent(param_id);
1737
1738     let def = ty::TypeParameterDef {
1739         space: SelfSpace,
1740         index: 0,
1741         name: special_idents::type_self.name,
1742         def_id: ccx.tcx.map.local_def_id(param_id),
1743         default_def_id: ccx.tcx.map.local_def_id(parent),
1744         default: None,
1745         object_lifetime_default: ty::ObjectLifetimeDefault::BaseDefault,
1746     };
1747
1748     ccx.tcx.ty_param_defs.borrow_mut().insert(param_id, def.clone());
1749
1750     generics.types.push(SelfSpace, def);
1751
1752     return generics;
1753 }
1754
1755 fn ty_generics_for_fn<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1756                                generics: &hir::Generics,
1757                                base_generics: &ty::Generics<'tcx>)
1758                                -> ty::Generics<'tcx>
1759 {
1760     ty_generics(ccx, FnSpace, generics, base_generics)
1761 }
1762
1763 fn ty_generic_predicates_for_fn<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1764                                          generics: &hir::Generics,
1765                                          base_predicates: &ty::GenericPredicates<'tcx>)
1766                                          -> ty::GenericPredicates<'tcx>
1767 {
1768     ty_generic_predicates(ccx, FnSpace, generics, base_predicates)
1769 }
1770
1771 // Add the Sized bound, unless the type parameter is marked as `?Sized`.
1772 fn add_unsized_bound<'tcx>(astconv: &AstConv<'tcx>,
1773                            bounds: &mut ty::BuiltinBounds,
1774                            ast_bounds: &[hir::TyParamBound],
1775                            span: Span)
1776 {
1777     let tcx = astconv.tcx();
1778
1779     // Try to find an unbound in bounds.
1780     let mut unbound = None;
1781     for ab in ast_bounds {
1782         if let &hir::TraitTyParamBound(ref ptr, hir::TraitBoundModifier::Maybe) = ab  {
1783             if unbound.is_none() {
1784                 assert!(ptr.bound_lifetimes.is_empty());
1785                 unbound = Some(ptr.trait_ref.clone());
1786             } else {
1787                 span_err!(tcx.sess, span, E0203,
1788                           "type parameter has more than one relaxed default \
1789                                                 bound, only one is supported");
1790             }
1791         }
1792     }
1793
1794     let kind_id = tcx.lang_items.require(SizedTraitLangItem);
1795     match unbound {
1796         Some(ref tpb) => {
1797             // FIXME(#8559) currently requires the unbound to be built-in.
1798             let trait_def_id = tcx.trait_ref_to_def_id(tpb);
1799             match kind_id {
1800                 Ok(kind_id) if trait_def_id != kind_id => {
1801                     tcx.sess.span_warn(span,
1802                                        "default bound relaxed for a type parameter, but \
1803                                        this does nothing because the given bound is not \
1804                                        a default. Only `?Sized` is supported");
1805                     tcx.try_add_builtin_trait(kind_id, bounds);
1806                 }
1807                 _ => {}
1808             }
1809         }
1810         _ if kind_id.is_ok() => {
1811             tcx.try_add_builtin_trait(kind_id.unwrap(), bounds);
1812         }
1813         // No lang item for Sized, so we can't add it as a bound.
1814         None => {}
1815     }
1816 }
1817
1818 /// Returns the early-bound lifetimes declared in this generics
1819 /// listing.  For anything other than fns/methods, this is just all
1820 /// the lifetimes that are declared. For fns or methods, we have to
1821 /// screen out those that do not appear in any where-clauses etc using
1822 /// `resolve_lifetime::early_bound_lifetimes`.
1823 fn early_bound_lifetimes_from_generics(space: ParamSpace,
1824                                        ast_generics: &hir::Generics)
1825                                        -> Vec<hir::LifetimeDef>
1826 {
1827     match space {
1828         SelfSpace | TypeSpace => ast_generics.lifetimes.to_vec(),
1829         FnSpace => resolve_lifetime::early_bound_lifetimes(ast_generics),
1830     }
1831 }
1832
1833 fn ty_generic_predicates<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1834                                   space: ParamSpace,
1835                                   ast_generics: &hir::Generics,
1836                                   base_predicates: &ty::GenericPredicates<'tcx>)
1837                                   -> ty::GenericPredicates<'tcx>
1838 {
1839     let tcx = ccx.tcx;
1840     let mut result = base_predicates.clone();
1841
1842     // Collect the predicates that were written inline by the user on each
1843     // type parameter (e.g., `<T:Foo>`).
1844     for (index, param) in ast_generics.ty_params.iter().enumerate() {
1845         let index = index as u32;
1846         let param_ty = ty::ParamTy::new(space, index, param.name).to_ty(ccx.tcx);
1847         let bounds = compute_bounds(&ccx.icx(&(base_predicates, ast_generics)),
1848                                     param_ty,
1849                                     &param.bounds,
1850                                     SizedByDefault::Yes,
1851                                     param.span);
1852         let predicates = bounds.predicates(ccx.tcx, param_ty);
1853         result.predicates.extend(space, predicates.into_iter());
1854     }
1855
1856     // Collect the region predicates that were declared inline as
1857     // well. In the case of parameters declared on a fn or method, we
1858     // have to be careful to only iterate over early-bound regions.
1859     let early_lifetimes = early_bound_lifetimes_from_generics(space, ast_generics);
1860     for (index, param) in early_lifetimes.iter().enumerate() {
1861         let index = index as u32;
1862         let def_id = tcx.map.local_def_id(param.lifetime.id);
1863         let region =
1864             ty::ReEarlyBound(ty::EarlyBoundRegion {
1865                 def_id: def_id,
1866                 space: space,
1867                 index: index,
1868                 name: param.lifetime.name
1869             });
1870         for bound in &param.bounds {
1871             let bound_region = ast_region_to_region(ccx.tcx, bound);
1872             let outlives = ty::Binder(ty::OutlivesPredicate(region, bound_region));
1873             result.predicates.push(space, outlives.to_predicate());
1874         }
1875     }
1876
1877     // Add in the bounds that appear in the where-clause
1878     let where_clause = &ast_generics.where_clause;
1879     for predicate in &where_clause.predicates {
1880         match predicate {
1881             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
1882                 let ty = ast_ty_to_ty(&ccx.icx(&(base_predicates, ast_generics)),
1883                                       &ExplicitRscope,
1884                                       &*bound_pred.bounded_ty);
1885
1886                 for bound in bound_pred.bounds.iter() {
1887                     match bound {
1888                         &hir::TyParamBound::TraitTyParamBound(ref poly_trait_ref, _) => {
1889                             let mut projections = Vec::new();
1890
1891                             let trait_ref =
1892                                 conv_poly_trait_ref(&ccx.icx(&(base_predicates, ast_generics)),
1893                                                     ty,
1894                                                     poly_trait_ref,
1895                                                     &mut projections);
1896
1897                             result.predicates.push(space, trait_ref.to_predicate());
1898
1899                             for projection in &projections {
1900                                 result.predicates.push(space, projection.to_predicate());
1901                             }
1902                         }
1903
1904                         &hir::TyParamBound::RegionTyParamBound(ref lifetime) => {
1905                             let region = ast_region_to_region(tcx, lifetime);
1906                             let pred = ty::Binder(ty::OutlivesPredicate(ty, region));
1907                             result.predicates.push(space, ty::Predicate::TypeOutlives(pred))
1908                         }
1909                     }
1910                 }
1911             }
1912
1913             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
1914                 let r1 = ast_region_to_region(tcx, &region_pred.lifetime);
1915                 for bound in &region_pred.bounds {
1916                     let r2 = ast_region_to_region(tcx, bound);
1917                     let pred = ty::Binder(ty::OutlivesPredicate(r1, r2));
1918                     result.predicates.push(space, ty::Predicate::RegionOutlives(pred))
1919                 }
1920             }
1921
1922             &hir::WherePredicate::EqPredicate(ref eq_pred) => {
1923                 // FIXME(#20041)
1924                 tcx.sess.span_bug(eq_pred.span,
1925                                     "Equality constraints are not yet \
1926                                         implemented (#20041)")
1927             }
1928         }
1929     }
1930
1931     return result;
1932 }
1933
1934 fn ty_generics<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1935                         space: ParamSpace,
1936                         ast_generics: &hir::Generics,
1937                         base_generics: &ty::Generics<'tcx>)
1938                         -> ty::Generics<'tcx>
1939 {
1940     let tcx = ccx.tcx;
1941     let mut result = base_generics.clone();
1942
1943     let early_lifetimes = early_bound_lifetimes_from_generics(space, ast_generics);
1944     for (i, l) in early_lifetimes.iter().enumerate() {
1945         let bounds = l.bounds.iter()
1946                              .map(|l| ast_region_to_region(tcx, l))
1947                              .collect();
1948         let def = ty::RegionParameterDef { name: l.lifetime.name,
1949                                            space: space,
1950                                            index: i as u32,
1951                                            def_id: ccx.tcx.map.local_def_id(l.lifetime.id),
1952                                            bounds: bounds };
1953         result.regions.push(space, def);
1954     }
1955
1956     assert!(result.types.is_empty_in(space));
1957
1958     // Now create the real type parameters.
1959     for i in 0..ast_generics.ty_params.len() {
1960         let def = get_or_create_type_parameter_def(ccx, ast_generics, space, i as u32);
1961         debug!("ty_generics: def for type param: {:?}, {:?}", def, space);
1962         result.types.push(space, def);
1963     }
1964
1965     result
1966 }
1967
1968 fn convert_default_type_parameter<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
1969                                             path: &P<hir::Ty>,
1970                                             space: ParamSpace,
1971                                             index: u32)
1972                                             -> Ty<'tcx>
1973 {
1974     let ty = ast_ty_to_ty(&ccx.icx(&()), &ExplicitRscope, &path);
1975
1976     for leaf_ty in ty.walk() {
1977         if let ty::TyParam(p) = leaf_ty.sty {
1978             if p.space == space && p.idx >= index {
1979                 span_err!(ccx.tcx.sess, path.span, E0128,
1980                           "type parameters with a default cannot use \
1981                            forward declared identifiers");
1982
1983                 return ccx.tcx.types.err
1984             }
1985         }
1986     }
1987
1988     ty
1989 }
1990
1991 fn get_or_create_type_parameter_def<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
1992                                              ast_generics: &hir::Generics,
1993                                              space: ParamSpace,
1994                                              index: u32)
1995                                              -> ty::TypeParameterDef<'tcx>
1996 {
1997     let param = &ast_generics.ty_params[index as usize];
1998
1999     let tcx = ccx.tcx;
2000     match tcx.ty_param_defs.borrow().get(&param.id) {
2001         Some(d) => { return d.clone(); }
2002         None => { }
2003     }
2004
2005     let default = param.default.as_ref().map(
2006         |def| convert_default_type_parameter(ccx, def, space, index)
2007     );
2008
2009     let object_lifetime_default =
2010         compute_object_lifetime_default(ccx, param.id,
2011                                         &param.bounds, &ast_generics.where_clause);
2012
2013     let parent = tcx.map.get_parent(param.id);
2014
2015     let def = ty::TypeParameterDef {
2016         space: space,
2017         index: index,
2018         name: param.name,
2019         def_id: ccx.tcx.map.local_def_id(param.id),
2020         default_def_id: ccx.tcx.map.local_def_id(parent),
2021         default: default,
2022         object_lifetime_default: object_lifetime_default,
2023     };
2024
2025     tcx.ty_param_defs.borrow_mut().insert(param.id, def.clone());
2026
2027     def
2028 }
2029
2030 /// Scan the bounds and where-clauses on a parameter to extract bounds
2031 /// of the form `T:'a` so as to determine the `ObjectLifetimeDefault`.
2032 /// This runs as part of computing the minimal type scheme, so we
2033 /// intentionally avoid just asking astconv to convert all the where
2034 /// clauses into a `ty::Predicate`. This is because that could induce
2035 /// artificial cycles.
2036 fn compute_object_lifetime_default<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
2037                                             param_id: ast::NodeId,
2038                                             param_bounds: &[hir::TyParamBound],
2039                                             where_clause: &hir::WhereClause)
2040                                             -> ty::ObjectLifetimeDefault
2041 {
2042     let inline_bounds = from_bounds(ccx, param_bounds);
2043     let where_bounds = from_predicates(ccx, param_id, &where_clause.predicates);
2044     let all_bounds: HashSet<_> = inline_bounds.into_iter()
2045                                               .chain(where_bounds)
2046                                               .collect();
2047     return if all_bounds.len() > 1 {
2048         ty::ObjectLifetimeDefault::Ambiguous
2049     } else if all_bounds.len() == 0 {
2050         ty::ObjectLifetimeDefault::BaseDefault
2051     } else {
2052         ty::ObjectLifetimeDefault::Specific(
2053             all_bounds.into_iter().next().unwrap())
2054     };
2055
2056     fn from_bounds<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
2057                             bounds: &[hir::TyParamBound])
2058                             -> Vec<ty::Region>
2059     {
2060         bounds.iter()
2061               .filter_map(|bound| {
2062                   match *bound {
2063                       hir::TraitTyParamBound(..) =>
2064                           None,
2065                       hir::RegionTyParamBound(ref lifetime) =>
2066                           Some(astconv::ast_region_to_region(ccx.tcx, lifetime)),
2067                   }
2068               })
2069               .collect()
2070     }
2071
2072     fn from_predicates<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
2073                                 param_id: ast::NodeId,
2074                                 predicates: &[hir::WherePredicate])
2075                                 -> Vec<ty::Region>
2076     {
2077         predicates.iter()
2078                   .flat_map(|predicate| {
2079                       match *predicate {
2080                           hir::WherePredicate::BoundPredicate(ref data) => {
2081                               if data.bound_lifetimes.is_empty() &&
2082                                   is_param(ccx.tcx, &data.bounded_ty, param_id)
2083                               {
2084                                   from_bounds(ccx, &data.bounds).into_iter()
2085                               } else {
2086                                   Vec::new().into_iter()
2087                               }
2088                           }
2089                           hir::WherePredicate::RegionPredicate(..) |
2090                           hir::WherePredicate::EqPredicate(..) => {
2091                               Vec::new().into_iter()
2092                           }
2093                       }
2094                   })
2095                   .collect()
2096     }
2097 }
2098
2099 enum SizedByDefault { Yes, No, }
2100
2101 /// Translate the AST's notion of ty param bounds (which are an enum consisting of a newtyped Ty or
2102 /// a region) to ty's notion of ty param bounds, which can either be user-defined traits, or the
2103 /// built-in trait (formerly known as kind): Send.
2104 fn compute_bounds<'tcx>(astconv: &AstConv<'tcx>,
2105                         param_ty: ty::Ty<'tcx>,
2106                         ast_bounds: &[hir::TyParamBound],
2107                         sized_by_default: SizedByDefault,
2108                         span: Span)
2109                         -> astconv::Bounds<'tcx>
2110 {
2111     let mut bounds =
2112         conv_param_bounds(astconv,
2113                           span,
2114                           param_ty,
2115                           ast_bounds);
2116
2117     if let SizedByDefault::Yes = sized_by_default {
2118         add_unsized_bound(astconv,
2119                           &mut bounds.builtin_bounds,
2120                           ast_bounds,
2121                           span);
2122     }
2123
2124     bounds.trait_bounds.sort_by(|a,b| a.def_id().cmp(&b.def_id()));
2125
2126     bounds
2127 }
2128
2129 /// Converts a specific TyParamBound from the AST into a set of
2130 /// predicates that apply to the self-type. A vector is returned
2131 /// because this can be anywhere from 0 predicates (`T:?Sized` adds no
2132 /// predicates) to 1 (`T:Foo`) to many (`T:Bar<X=i32>` adds `T:Bar`
2133 /// and `<T as Bar>::X == i32`).
2134 fn predicates_from_bound<'tcx>(astconv: &AstConv<'tcx>,
2135                                param_ty: Ty<'tcx>,
2136                                bound: &hir::TyParamBound)
2137                                -> Vec<ty::Predicate<'tcx>>
2138 {
2139     match *bound {
2140         hir::TraitTyParamBound(ref tr, hir::TraitBoundModifier::None) => {
2141             let mut projections = Vec::new();
2142             let pred = conv_poly_trait_ref(astconv, param_ty, tr, &mut projections);
2143             projections.into_iter()
2144                        .map(|p| p.to_predicate())
2145                        .chain(Some(pred.to_predicate()))
2146                        .collect()
2147         }
2148         hir::RegionTyParamBound(ref lifetime) => {
2149             let region = ast_region_to_region(astconv.tcx(), lifetime);
2150             let pred = ty::Binder(ty::OutlivesPredicate(param_ty, region));
2151             vec![ty::Predicate::TypeOutlives(pred)]
2152         }
2153         hir::TraitTyParamBound(_, hir::TraitBoundModifier::Maybe) => {
2154             Vec::new()
2155         }
2156     }
2157 }
2158
2159 fn conv_poly_trait_ref<'tcx>(astconv: &AstConv<'tcx>,
2160                              param_ty: Ty<'tcx>,
2161                              trait_ref: &hir::PolyTraitRef,
2162                              projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
2163                              -> ty::PolyTraitRef<'tcx>
2164 {
2165     astconv::instantiate_poly_trait_ref(astconv,
2166                                         &ExplicitRscope,
2167                                         trait_ref,
2168                                         Some(param_ty),
2169                                         projections)
2170 }
2171
2172 fn conv_param_bounds<'a,'tcx>(astconv: &AstConv<'tcx>,
2173                               span: Span,
2174                               param_ty: ty::Ty<'tcx>,
2175                               ast_bounds: &[hir::TyParamBound])
2176                               -> astconv::Bounds<'tcx>
2177 {
2178     let tcx = astconv.tcx();
2179     let astconv::PartitionedBounds {
2180         builtin_bounds,
2181         trait_bounds,
2182         region_bounds
2183     } = astconv::partition_bounds(tcx, span, &ast_bounds);
2184
2185     let mut projection_bounds = Vec::new();
2186
2187     let trait_bounds: Vec<ty::PolyTraitRef> =
2188         trait_bounds.iter()
2189                     .map(|bound| conv_poly_trait_ref(astconv,
2190                                                      param_ty,
2191                                                      *bound,
2192                                                      &mut projection_bounds))
2193                     .collect();
2194
2195     let region_bounds: Vec<ty::Region> =
2196         region_bounds.into_iter()
2197                      .map(|r| ast_region_to_region(tcx, r))
2198                      .collect();
2199
2200     astconv::Bounds {
2201         region_bounds: region_bounds,
2202         builtin_bounds: builtin_bounds,
2203         trait_bounds: trait_bounds,
2204         projection_bounds: projection_bounds,
2205     }
2206 }
2207
2208 fn compute_type_scheme_of_foreign_fn_decl<'a, 'tcx>(
2209     ccx: &CrateCtxt<'a, 'tcx>,
2210     decl: &hir::FnDecl,
2211     ast_generics: &hir::Generics,
2212     abi: abi::Abi)
2213     -> ty::TypeScheme<'tcx>
2214 {
2215     for i in &decl.inputs {
2216         match (*i).pat.node {
2217             hir::PatIdent(_, _, _) => (),
2218             hir::PatWild(hir::PatWildSingle) => (),
2219             _ => {
2220                 span_err!(ccx.tcx.sess, (*i).pat.span, E0130,
2221                           "patterns aren't allowed in foreign function declarations");
2222             }
2223         }
2224     }
2225
2226     let ty_generics = ty_generics_for_fn(ccx, ast_generics, &ty::Generics::empty());
2227
2228     let rb = BindingRscope::new();
2229     let input_tys = decl.inputs
2230                         .iter()
2231                         .map(|a| ty_of_arg(&ccx.icx(ast_generics), &rb, a, None))
2232                         .collect();
2233
2234     let output = match decl.output {
2235         hir::Return(ref ty) =>
2236             ty::FnConverging(ast_ty_to_ty(&ccx.icx(ast_generics), &rb, &**ty)),
2237         hir::DefaultReturn(..) =>
2238             ty::FnConverging(ccx.tcx.mk_nil()),
2239         hir::NoReturn(..) =>
2240             ty::FnDiverging
2241     };
2242
2243     let t_fn = ccx.tcx.mk_fn(None,
2244         ccx.tcx.mk_bare_fn(ty::BareFnTy {
2245             abi: abi,
2246             unsafety: hir::Unsafety::Unsafe,
2247             sig: ty::Binder(ty::FnSig {inputs: input_tys,
2248                                        output: output,
2249                                        variadic: decl.variadic}),
2250         }));
2251
2252     ty::TypeScheme {
2253         generics: ty_generics,
2254         ty: t_fn
2255     }
2256 }
2257
2258 fn mk_item_substs<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
2259                             ty_generics: &ty::Generics<'tcx>)
2260                             -> Substs<'tcx>
2261 {
2262     let types =
2263         ty_generics.types.map(
2264             |def| ccx.tcx.mk_param_from_def(def));
2265
2266     let regions =
2267         ty_generics.regions.map(
2268             |def| def.to_early_bound_region());
2269
2270     Substs::new(types, regions)
2271 }
2272
2273 /// Verifies that the explicit self type of a method matches the impl
2274 /// or trait. This is a bit weird but basically because right now we
2275 /// don't handle the general case, but instead map it to one of
2276 /// several pre-defined options using various heuristics, this method
2277 /// comes back to check after the fact that explicit type the user
2278 /// wrote actually matches what the pre-defined option said.
2279 fn check_method_self_type<'a, 'tcx, RS:RegionScope>(
2280     ccx: &CrateCtxt<'a, 'tcx>,
2281     rs: &RS,
2282     method_type: Rc<ty::Method<'tcx>>,
2283     required_type: Ty<'tcx>,
2284     explicit_self: &hir::ExplicitSelf,
2285     body_id: ast::NodeId)
2286 {
2287     let tcx = ccx.tcx;
2288     if let hir::SelfExplicit(ref ast_type, _) = explicit_self.node {
2289         let typ = ccx.icx(&method_type.predicates).to_ty(rs, &**ast_type);
2290         let base_type = match typ.sty {
2291             ty::TyRef(_, tm) => tm.ty,
2292             ty::TyBox(typ) => typ,
2293             _ => typ,
2294         };
2295
2296         let body_scope = tcx.region_maps.item_extent(body_id);
2297
2298         // "Required type" comes from the trait definition. It may
2299         // contain late-bound regions from the method, but not the
2300         // trait (since traits only have early-bound region
2301         // parameters).
2302         assert!(!base_type.has_regions_escaping_depth(1));
2303         let required_type_free =
2304             liberate_early_bound_regions(
2305                 tcx, body_scope,
2306                 &tcx.liberate_late_bound_regions(body_scope, &ty::Binder(required_type)));
2307
2308         // The "base type" comes from the impl. It too may have late-bound
2309         // regions from the method.
2310         assert!(!base_type.has_regions_escaping_depth(1));
2311         let base_type_free =
2312             liberate_early_bound_regions(
2313                 tcx, body_scope,
2314                 &tcx.liberate_late_bound_regions(body_scope, &ty::Binder(base_type)));
2315
2316         debug!("required_type={:?} required_type_free={:?} \
2317                 base_type={:?} base_type_free={:?}",
2318                required_type,
2319                required_type_free,
2320                base_type,
2321                base_type_free);
2322
2323         let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, None, false);
2324         drop(::require_same_types(tcx,
2325                                   Some(&infcx),
2326                                   false,
2327                                   explicit_self.span,
2328                                   base_type_free,
2329                                   required_type_free,
2330                                   || {
2331                 format!("mismatched self type: expected `{}`",
2332                          required_type)
2333         }));
2334
2335         // We could conceviably add more free-region relations here,
2336         // but since this code is just concerned with checking that
2337         // the `&Self` types etc match up, it's not really necessary.
2338         // It would just allow people to be more approximate in some
2339         // cases. In any case, we can do it later as we feel the need;
2340         // I'd like this function to go away eventually.
2341         let free_regions = FreeRegionMap::new();
2342
2343         infcx.resolve_regions_and_report_errors(&free_regions, body_id);
2344     }
2345
2346     fn liberate_early_bound_regions<'tcx,T>(
2347         tcx: &ty::ctxt<'tcx>,
2348         scope: region::CodeExtent,
2349         value: &T)
2350         -> T
2351         where T : TypeFoldable<'tcx>
2352     {
2353         /*!
2354          * Convert early-bound regions into free regions; normally this is done by
2355          * applying the `free_substs` from the `ParameterEnvironment`, but this particular
2356          * method-self-type check is kind of hacky and done very early in the process,
2357          * before we really have a `ParameterEnvironment` to check.
2358          */
2359
2360         tcx.fold_regions(value, &mut false, |region, _| {
2361             match region {
2362                 ty::ReEarlyBound(data) => {
2363                     ty::ReFree(ty::FreeRegion {
2364                         scope: scope,
2365                         bound_region: ty::BrNamed(data.def_id, data.name)
2366                     })
2367                 }
2368                 _ => region
2369             }
2370         })
2371     }
2372 }
2373
2374 /// Checks that all the type parameters on an impl
2375 fn enforce_impl_params_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
2376                                              ast_generics: &hir::Generics,
2377                                              impl_def_id: DefId,
2378                                              impl_items: &[P<hir::ImplItem>])
2379 {
2380     let impl_scheme = tcx.lookup_item_type(impl_def_id);
2381     let impl_predicates = tcx.lookup_predicates(impl_def_id);
2382     let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
2383
2384     // The trait reference is an input, so find all type parameters
2385     // reachable from there, to start (if this is an inherent impl,
2386     // then just examine the self type).
2387     let mut input_parameters: HashSet<_> =
2388         ctp::parameters_for_type(impl_scheme.ty).into_iter().collect();
2389     if let Some(ref trait_ref) = impl_trait_ref {
2390         input_parameters.extend(ctp::parameters_for_trait_ref(trait_ref));
2391     }
2392
2393     ctp::identify_constrained_type_params(tcx,
2394                                           impl_predicates.predicates.as_slice(),
2395                                           impl_trait_ref,
2396                                           &mut input_parameters);
2397
2398     for (index, ty_param) in ast_generics.ty_params.iter().enumerate() {
2399         let param_ty = ty::ParamTy { space: TypeSpace,
2400                                      idx: index as u32,
2401                                      name: ty_param.name };
2402         if !input_parameters.contains(&ctp::Parameter::Type(param_ty)) {
2403             report_unused_parameter(tcx, ty_param.span, "type", &param_ty.to_string());
2404         }
2405     }
2406
2407     // Every lifetime used in an associated type must be constrained.
2408
2409     let lifetimes_in_associated_types: HashSet<_> =
2410         impl_items.iter()
2411                   .map(|item| tcx.impl_or_trait_item(tcx.map.local_def_id(item.id)))
2412                   .filter_map(|item| match item {
2413                       ty::TypeTraitItem(ref assoc_ty) => assoc_ty.ty,
2414                       ty::ConstTraitItem(..) | ty::MethodTraitItem(..) => None
2415                   })
2416                   .flat_map(|ty| ctp::parameters_for_type(ty))
2417                   .filter_map(|p| match p {
2418                       ctp::Parameter::Type(_) => None,
2419                       ctp::Parameter::Region(r) => Some(r),
2420                   })
2421                   .collect();
2422
2423     for (index, lifetime_def) in ast_generics.lifetimes.iter().enumerate() {
2424         let def_id = tcx.map.local_def_id(lifetime_def.lifetime.id);
2425         let region = ty::EarlyBoundRegion { def_id: def_id,
2426                                             space: TypeSpace,
2427                                             index: index as u32,
2428                                             name: lifetime_def.lifetime.name };
2429         if
2430             lifetimes_in_associated_types.contains(&region) && // (*)
2431             !input_parameters.contains(&ctp::Parameter::Region(region))
2432         {
2433             report_unused_parameter(tcx, lifetime_def.lifetime.span,
2434                                     "lifetime", &region.name.to_string());
2435         }
2436     }
2437
2438     // (*) This is a horrible concession to reality. I think it'd be
2439     // better to just ban unconstrianed lifetimes outright, but in
2440     // practice people do non-hygenic macros like:
2441     //
2442     // ```
2443     // macro_rules! __impl_slice_eq1 {
2444     //     ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
2445     //         impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
2446     //            ....
2447     //         }
2448     //     }
2449     // }
2450     // ```
2451     //
2452     // In a concession to backwards compatbility, we continue to
2453     // permit those, so long as the lifetimes aren't used in
2454     // associated types. I believe this is sound, because lifetimes
2455     // used elsewhere are not projected back out.
2456 }
2457
2458 fn report_unused_parameter(tcx: &ty::ctxt,
2459                            span: Span,
2460                            kind: &str,
2461                            name: &str)
2462 {
2463     span_err!(tcx.sess, span, E0207,
2464               "the {} parameter `{}` is not constrained by the \
2465                impl trait, self type, or predicates",
2466               kind, name);
2467 }