]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Rollup merge of #65664 - anp:panic-location, r=eddyb
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrinsic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::mir::mono::Linkage;
24 use rustc::ty::query::Providers;
25 use rustc::ty::subst::{Subst, InternalSubsts};
26 use rustc::ty::util::Discr;
27 use rustc::ty::util::IntTypeExt;
28 use rustc::ty::subst::GenericArgKind;
29 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, Const};
30 use rustc::ty::{ReprOptions, ToPredicate};
31 use rustc::util::captures::Captures;
32 use rustc::util::nodemap::FxHashMap;
33 use rustc_target::spec::abi;
34
35 use syntax::ast;
36 use syntax::ast::{Ident, MetaItemKind};
37 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
38 use syntax::feature_gate;
39 use syntax::symbol::{kw, Symbol, sym};
40 use syntax_pos::{Span, DUMMY_SP};
41
42 use rustc::hir::def::{CtorKind, Res, DefKind};
43 use rustc::hir::Node;
44 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
45 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
46 use rustc::hir::GenericParamKind;
47 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
48
49 use errors::{Applicability, DiagnosticId, StashKey};
50
51 struct OnlySelfBounds(bool);
52
53 ///////////////////////////////////////////////////////////////////////////
54 // Main entry point
55
56 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
57     tcx.hir().visit_item_likes_in_module(
58         module_def_id,
59         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
60     );
61 }
62
63 pub fn provide(providers: &mut Providers<'_>) {
64     *providers = Providers {
65         type_of,
66         generics_of,
67         predicates_of,
68         predicates_defined_on,
69         explicit_predicates_of,
70         super_predicates_of,
71         type_param_predicates,
72         trait_def,
73         adt_def,
74         fn_sig,
75         impl_trait_ref,
76         impl_polarity,
77         is_foreign_item,
78         static_mutability,
79         codegen_fn_attrs,
80         collect_mod_item_types,
81         ..*providers
82     };
83 }
84
85 ///////////////////////////////////////////////////////////////////////////
86
87 /// Context specific to some particular item. This is what implements
88 /// `AstConv`. It has information about the predicates that are defined
89 /// on the trait. Unfortunately, this predicate information is
90 /// available in various different forms at various points in the
91 /// process. So we can't just store a pointer to e.g., the AST or the
92 /// parsed ty form, we have to be more flexible. To this end, the
93 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
94 /// `get_type_parameter_bounds` requests, drawing the information from
95 /// the AST (`hir::Generics`), recursively.
96 pub struct ItemCtxt<'tcx> {
97     tcx: TyCtxt<'tcx>,
98     item_def_id: DefId,
99 }
100
101 ///////////////////////////////////////////////////////////////////////////
102
103 struct CollectItemTypesVisitor<'tcx> {
104     tcx: TyCtxt<'tcx>,
105 }
106
107 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
108     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
109         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
110     }
111
112     fn visit_item(&mut self, item: &'tcx hir::Item) {
113         convert_item(self.tcx, item.hir_id);
114         intravisit::walk_item(self, item);
115     }
116
117     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
118         for param in &generics.params {
119             match param.kind {
120                 hir::GenericParamKind::Lifetime { .. } => {}
121                 hir::GenericParamKind::Type {
122                     default: Some(_), ..
123                 } => {
124                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
125                     self.tcx.type_of(def_id);
126                 }
127                 hir::GenericParamKind::Type { .. } => {}
128                 hir::GenericParamKind::Const { .. } => {
129                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
130                     self.tcx.type_of(def_id);
131                 }
132             }
133         }
134         intravisit::walk_generics(self, generics);
135     }
136
137     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
138         if let hir::ExprKind::Closure(..) = expr.kind {
139             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
140             self.tcx.generics_of(def_id);
141             self.tcx.type_of(def_id);
142         }
143         intravisit::walk_expr(self, expr);
144     }
145
146     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
147         convert_trait_item(self.tcx, trait_item.hir_id);
148         intravisit::walk_trait_item(self, trait_item);
149     }
150
151     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
152         convert_impl_item(self.tcx, impl_item.hir_id);
153         intravisit::walk_impl_item(self, impl_item);
154     }
155 }
156
157 ///////////////////////////////////////////////////////////////////////////
158 // Utility types and common code for the above passes.
159
160 fn bad_placeholder_type(tcx: TyCtxt<'tcx>, span: Span) -> errors::DiagnosticBuilder<'tcx> {
161     let mut diag = tcx.sess.struct_span_err_with_code(
162         span,
163         "the type placeholder `_` is not allowed within types on item signatures",
164         DiagnosticId::Error("E0121".into()),
165     );
166     diag.span_label(span, "not allowed in type signatures");
167     diag
168 }
169
170 impl ItemCtxt<'tcx> {
171     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
172         ItemCtxt { tcx, item_def_id }
173     }
174
175     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty) -> Ty<'tcx> {
176         AstConv::ast_ty_to_ty(self, ast_ty)
177     }
178 }
179
180 impl AstConv<'tcx> for ItemCtxt<'tcx> {
181     fn tcx(&self) -> TyCtxt<'tcx> {
182         self.tcx
183     }
184
185     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
186         self.tcx
187             .at(span)
188             .type_param_predicates((self.item_def_id, def_id))
189     }
190
191     fn re_infer(
192         &self,
193         _: Option<&ty::GenericParamDef>,
194         _: Span,
195     ) -> Option<ty::Region<'tcx>> {
196         None
197     }
198
199     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
200         bad_placeholder_type(self.tcx(), span).emit();
201
202         self.tcx().types.err
203     }
204
205     fn ct_infer(
206         &self,
207         _: Ty<'tcx>,
208         _: Option<&ty::GenericParamDef>,
209         span: Span,
210     ) -> &'tcx Const<'tcx> {
211         bad_placeholder_type(self.tcx(), span).emit();
212
213         self.tcx().consts.err
214     }
215
216     fn projected_ty_from_poly_trait_ref(
217         &self,
218         span: Span,
219         item_def_id: DefId,
220         poly_trait_ref: ty::PolyTraitRef<'tcx>,
221     ) -> Ty<'tcx> {
222         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
223             self.tcx().mk_projection(item_def_id, trait_ref.substs)
224         } else {
225             // There are no late-bound regions; we can just ignore the binder.
226             span_err!(
227                 self.tcx().sess,
228                 span,
229                 E0212,
230                 "cannot extract an associated type from a higher-ranked trait bound \
231                  in this context"
232             );
233             self.tcx().types.err
234         }
235     }
236
237     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
238         // Types in item signatures are not normalized to avoid undue dependencies.
239         ty
240     }
241
242     fn set_tainted_by_errors(&self) {
243         // There's no obvious place to track this, so just let it go.
244     }
245
246     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
247         // There's no place to record types from signatures?
248     }
249 }
250
251 /// Returns the predicates defined on `item_def_id` of the form
252 /// `X: Foo` where `X` is the type parameter `def_id`.
253 fn type_param_predicates(
254     tcx: TyCtxt<'_>,
255     (item_def_id, def_id): (DefId, DefId),
256 ) -> ty::GenericPredicates<'_> {
257     use rustc::hir::*;
258
259     // In the AST, bounds can derive from two places. Either
260     // written inline like `<T: Foo>` or in a where-clause like
261     // `where T: Foo`.
262
263     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
264     let param_owner = tcx.hir().ty_param_owner(param_id);
265     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
266     let generics = tcx.generics_of(param_owner_def_id);
267     let index = generics.param_def_id_to_index[&def_id];
268     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
269
270     // Don't look for bounds where the type parameter isn't in scope.
271     let parent = if item_def_id == param_owner_def_id {
272         None
273     } else {
274         tcx.generics_of(item_def_id).parent
275     };
276
277     let mut result = parent.map(|parent| {
278         let icx = ItemCtxt::new(tcx, parent);
279         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
280     }).unwrap_or_default();
281     let mut extend = None;
282
283     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
284     let ast_generics = match tcx.hir().get(item_hir_id) {
285         Node::TraitItem(item) => &item.generics,
286
287         Node::ImplItem(item) => &item.generics,
288
289         Node::Item(item) => {
290             match item.kind {
291                 ItemKind::Fn(.., ref generics, _)
292                 | ItemKind::Impl(_, _, _, ref generics, ..)
293                 | ItemKind::TyAlias(_, ref generics)
294                 | ItemKind::OpaqueTy(OpaqueTy {
295                     ref generics,
296                     impl_trait_fn: None,
297                     ..
298                 })
299                 | ItemKind::Enum(_, ref generics)
300                 | ItemKind::Struct(_, ref generics)
301                 | ItemKind::Union(_, ref generics) => generics,
302                 ItemKind::Trait(_, _, ref generics, ..) => {
303                     // Implied `Self: Trait` and supertrait bounds.
304                     if param_id == item_hir_id {
305                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
306                         extend = Some((identity_trait_ref.to_predicate(), item.span));
307                     }
308                     generics
309                 }
310                 _ => return result,
311             }
312         }
313
314         Node::ForeignItem(item) => match item.kind {
315             ForeignItemKind::Fn(_, _, ref generics) => generics,
316             _ => return result,
317         },
318
319         _ => return result,
320     };
321
322     let icx = ItemCtxt::new(tcx, item_def_id);
323     let extra_predicates = extend.into_iter().chain(
324         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
325             .into_iter()
326             .filter(|(predicate, _)| {
327                 match predicate {
328                     ty::Predicate::Trait(ref data) => data.skip_binder().self_ty().is_param(index),
329                     _ => false,
330                 }
331             }),
332     );
333     result.predicates = tcx.arena.alloc_from_iter(
334         result.predicates.iter().copied().chain(extra_predicates),
335     );
336     result
337 }
338
339 impl ItemCtxt<'tcx> {
340     /// Finds bounds from `hir::Generics`. This requires scanning through the
341     /// AST. We do this to avoid having to convert *all* the bounds, which
342     /// would create artificial cycles. Instead, we can only convert the
343     /// bounds for a type parameter `X` if `X::Foo` is used.
344     fn type_parameter_bounds_in_generics(
345         &self,
346         ast_generics: &'tcx hir::Generics,
347         param_id: hir::HirId,
348         ty: Ty<'tcx>,
349         only_self_bounds: OnlySelfBounds,
350     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
351         let from_ty_params = ast_generics
352             .params
353             .iter()
354             .filter_map(|param| match param.kind {
355                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
356                 _ => None,
357             })
358             .flat_map(|bounds| bounds.iter())
359             .flat_map(|b| predicates_from_bound(self, ty, b));
360
361         let from_where_clauses = ast_generics
362             .where_clause
363             .predicates
364             .iter()
365             .filter_map(|wp| match *wp {
366                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
367                 _ => None,
368             })
369             .flat_map(|bp| {
370                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
371                     Some(ty)
372                 } else if !only_self_bounds.0 {
373                     Some(self.to_ty(&bp.bounded_ty))
374                 } else {
375                     None
376                 };
377                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
378             })
379             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
380
381         from_ty_params.chain(from_where_clauses).collect()
382     }
383 }
384
385 /// Tests whether this is the AST for a reference to the type
386 /// parameter with ID `param_id`. We use this so as to avoid running
387 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
388 /// conversion of the type to avoid inducing unnecessary cycles.
389 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty, param_id: hir::HirId) -> bool {
390     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
391         match path.res {
392             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
393                 def_id == tcx.hir().local_def_id(param_id)
394             }
395             _ => false,
396         }
397     } else {
398         false
399     }
400 }
401
402 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
403     let it = tcx.hir().expect_item(item_id);
404     debug!("convert: item {} with id {}", it.ident, it.hir_id);
405     let def_id = tcx.hir().local_def_id(item_id);
406     match it.kind {
407         // These don't define types.
408         hir::ItemKind::ExternCrate(_)
409         | hir::ItemKind::Use(..)
410         | hir::ItemKind::Mod(_)
411         | hir::ItemKind::GlobalAsm(_) => {}
412         hir::ItemKind::ForeignMod(ref foreign_mod) => {
413             for item in &foreign_mod.items {
414                 let def_id = tcx.hir().local_def_id(item.hir_id);
415                 tcx.generics_of(def_id);
416                 tcx.type_of(def_id);
417                 tcx.predicates_of(def_id);
418                 if let hir::ForeignItemKind::Fn(..) = item.kind {
419                     tcx.fn_sig(def_id);
420                 }
421             }
422         }
423         hir::ItemKind::Enum(ref enum_definition, _) => {
424             tcx.generics_of(def_id);
425             tcx.type_of(def_id);
426             tcx.predicates_of(def_id);
427             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
428         }
429         hir::ItemKind::Impl(..) => {
430             tcx.generics_of(def_id);
431             tcx.type_of(def_id);
432             tcx.impl_trait_ref(def_id);
433             tcx.predicates_of(def_id);
434         }
435         hir::ItemKind::Trait(..) => {
436             tcx.generics_of(def_id);
437             tcx.trait_def(def_id);
438             tcx.at(it.span).super_predicates_of(def_id);
439             tcx.predicates_of(def_id);
440         }
441         hir::ItemKind::TraitAlias(..) => {
442             tcx.generics_of(def_id);
443             tcx.at(it.span).super_predicates_of(def_id);
444             tcx.predicates_of(def_id);
445         }
446         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
447             tcx.generics_of(def_id);
448             tcx.type_of(def_id);
449             tcx.predicates_of(def_id);
450
451             for f in struct_def.fields() {
452                 let def_id = tcx.hir().local_def_id(f.hir_id);
453                 tcx.generics_of(def_id);
454                 tcx.type_of(def_id);
455                 tcx.predicates_of(def_id);
456             }
457
458             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
459                 convert_variant_ctor(tcx, ctor_hir_id);
460             }
461         }
462
463         // Desugared from `impl Trait`, so visited by the function's return type.
464         hir::ItemKind::OpaqueTy(hir::OpaqueTy {
465             impl_trait_fn: Some(_),
466             ..
467         }) => {}
468
469         hir::ItemKind::OpaqueTy(..)
470         | hir::ItemKind::TyAlias(..)
471         | hir::ItemKind::Static(..)
472         | hir::ItemKind::Const(..)
473         | hir::ItemKind::Fn(..) => {
474             tcx.generics_of(def_id);
475             tcx.type_of(def_id);
476             tcx.predicates_of(def_id);
477             if let hir::ItemKind::Fn(..) = it.kind {
478                 tcx.fn_sig(def_id);
479             }
480         }
481     }
482 }
483
484 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
485     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
486     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
487     tcx.generics_of(def_id);
488
489     match trait_item.kind {
490         hir::TraitItemKind::Const(..)
491         | hir::TraitItemKind::Type(_, Some(_))
492         | hir::TraitItemKind::Method(..) => {
493             tcx.type_of(def_id);
494             if let hir::TraitItemKind::Method(..) = trait_item.kind {
495                 tcx.fn_sig(def_id);
496             }
497         }
498
499         hir::TraitItemKind::Type(_, None) => {}
500     };
501
502     tcx.predicates_of(def_id);
503 }
504
505 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
506     let def_id = tcx.hir().local_def_id(impl_item_id);
507     tcx.generics_of(def_id);
508     tcx.type_of(def_id);
509     tcx.predicates_of(def_id);
510     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).kind {
511         tcx.fn_sig(def_id);
512     }
513 }
514
515 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
516     let def_id = tcx.hir().local_def_id(ctor_id);
517     tcx.generics_of(def_id);
518     tcx.type_of(def_id);
519     tcx.predicates_of(def_id);
520 }
521
522 fn convert_enum_variant_types(
523     tcx: TyCtxt<'_>,
524     def_id: DefId,
525     variants: &[hir::Variant]
526 ) {
527     let def = tcx.adt_def(def_id);
528     let repr_type = def.repr.discr_type();
529     let initial = repr_type.initial_discriminant(tcx);
530     let mut prev_discr = None::<Discr<'_>>;
531
532     // fill the discriminant values and field types
533     for variant in variants {
534         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
535         prev_discr = Some(
536             if let Some(ref e) = variant.disr_expr {
537                 let expr_did = tcx.hir().local_def_id(e.hir_id);
538                 def.eval_explicit_discr(tcx, expr_did)
539             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
540                 Some(discr)
541             } else {
542                 struct_span_err!(
543                     tcx.sess,
544                     variant.span,
545                     E0370,
546                     "enum discriminant overflowed"
547                 ).span_label(
548                     variant.span,
549                     format!("overflowed on value after {}", prev_discr.unwrap()),
550                 ).note(&format!(
551                     "explicitly set `{} = {}` if that is desired outcome",
552                     variant.ident, wrapped_discr
553                 ))
554                 .emit();
555                 None
556             }.unwrap_or(wrapped_discr),
557         );
558
559         for f in variant.data.fields() {
560             let def_id = tcx.hir().local_def_id(f.hir_id);
561             tcx.generics_of(def_id);
562             tcx.type_of(def_id);
563             tcx.predicates_of(def_id);
564         }
565
566         // Convert the ctor, if any. This also registers the variant as
567         // an item.
568         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
569             convert_variant_ctor(tcx, ctor_hir_id);
570         }
571     }
572 }
573
574 fn convert_variant(
575     tcx: TyCtxt<'_>,
576     variant_did: Option<DefId>,
577     ctor_did: Option<DefId>,
578     ident: Ident,
579     discr: ty::VariantDiscr,
580     def: &hir::VariantData,
581     adt_kind: ty::AdtKind,
582     parent_did: DefId,
583 ) -> ty::VariantDef {
584     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
585     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
586     let fields = def
587         .fields()
588         .iter()
589         .map(|f| {
590             let fid = tcx.hir().local_def_id(f.hir_id);
591             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
592             if let Some(prev_span) = dup_span {
593                 struct_span_err!(
594                     tcx.sess,
595                     f.span,
596                     E0124,
597                     "field `{}` is already declared",
598                     f.ident
599                 ).span_label(f.span, "field already declared")
600                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
601                  .emit();
602             } else {
603                 seen_fields.insert(f.ident.modern(), f.span);
604             }
605
606             ty::FieldDef {
607                 did: fid,
608                 ident: f.ident,
609                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
610             }
611         })
612         .collect();
613     let recovered = match def {
614         hir::VariantData::Struct(_, r) => *r,
615         _ => false,
616     };
617     ty::VariantDef::new(
618         tcx,
619         ident,
620         variant_did,
621         ctor_did,
622         discr,
623         fields,
624         CtorKind::from_hir(def),
625         adt_kind,
626         parent_did,
627         recovered,
628     )
629 }
630
631 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
632     use rustc::hir::*;
633
634     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
635     let item = match tcx.hir().get(hir_id) {
636         Node::Item(item) => item,
637         _ => bug!(),
638     };
639
640     let repr = ReprOptions::new(tcx, def_id);
641     let (kind, variants) = match item.kind {
642         ItemKind::Enum(ref def, _) => {
643             let mut distance_from_explicit = 0;
644             let variants = def.variants
645                 .iter()
646                 .map(|v| {
647                     let variant_did = Some(tcx.hir().local_def_id(v.id));
648                     let ctor_did = v.data.ctor_hir_id()
649                         .map(|hir_id| tcx.hir().local_def_id(hir_id));
650
651                     let discr = if let Some(ref e) = v.disr_expr {
652                         distance_from_explicit = 0;
653                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
654                     } else {
655                         ty::VariantDiscr::Relative(distance_from_explicit)
656                     };
657                     distance_from_explicit += 1;
658
659                     convert_variant(tcx, variant_did, ctor_did, v.ident, discr,
660                                     &v.data, AdtKind::Enum, def_id)
661                 })
662                 .collect();
663
664             (AdtKind::Enum, variants)
665         }
666         ItemKind::Struct(ref def, _) => {
667             let variant_did = None;
668             let ctor_did = def.ctor_hir_id()
669                 .map(|hir_id| tcx.hir().local_def_id(hir_id));
670
671             let variants = std::iter::once(convert_variant(
672                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
673                 AdtKind::Struct, def_id,
674             )).collect();
675
676             (AdtKind::Struct, variants)
677         }
678         ItemKind::Union(ref def, _) => {
679             let variant_did = None;
680             let ctor_did = def.ctor_hir_id()
681                 .map(|hir_id| tcx.hir().local_def_id(hir_id));
682
683             let variants = std::iter::once(convert_variant(
684                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
685                 AdtKind::Union, def_id,
686             )).collect();
687
688             (AdtKind::Union, variants)
689         },
690         _ => bug!(),
691     };
692     tcx.alloc_adt_def(def_id, kind, variants, repr)
693 }
694
695 /// Ensures that the super-predicates of the trait with a `DefId`
696 /// of `trait_def_id` are converted and stored. This also ensures that
697 /// the transitive super-predicates are converted.
698 fn super_predicates_of(
699     tcx: TyCtxt<'_>,
700     trait_def_id: DefId,
701 ) -> ty::GenericPredicates<'_> {
702     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
703     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
704
705     let item = match tcx.hir().get(trait_hir_id) {
706         Node::Item(item) => item,
707         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
708     };
709
710     let (generics, bounds) = match item.kind {
711         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
712         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
713         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
714     };
715
716     let icx = ItemCtxt::new(tcx, trait_def_id);
717
718     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
719     let self_param_ty = tcx.types.self_param;
720     let superbounds1 = AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No,
721         item.span);
722
723     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
724
725     // Convert any explicit superbounds in the where-clause,
726     // e.g., `trait Foo where Self: Bar`.
727     // In the case of trait aliases, however, we include all bounds in the where-clause,
728     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
729     // as one of its "superpredicates".
730     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
731     let superbounds2 = icx.type_parameter_bounds_in_generics(
732         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
733
734     // Combine the two lists to form the complete set of superbounds:
735     let superbounds = &*tcx.arena.alloc_from_iter(
736         superbounds1.into_iter().chain(superbounds2)
737     );
738
739     // Now require that immediate supertraits are converted,
740     // which will, in turn, reach indirect supertraits.
741     for &(pred, span) in superbounds {
742         debug!("superbound: {:?}", pred);
743         if let ty::Predicate::Trait(bound) = pred {
744             tcx.at(span).super_predicates_of(bound.def_id());
745         }
746     }
747
748     ty::GenericPredicates {
749         parent: None,
750         predicates: superbounds,
751     }
752 }
753
754 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
755     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
756     let item = tcx.hir().expect_item(hir_id);
757
758     let (is_auto, unsafety) = match item.kind {
759         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
760         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
761         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
762     };
763
764     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
765     if paren_sugar && !tcx.features().unboxed_closures {
766         let mut err = tcx.sess.struct_span_err(
767             item.span,
768             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
769              which traits can use parenthetical notation",
770         );
771         help!(
772             &mut err,
773             "add `#![feature(unboxed_closures)]` to \
774              the crate attributes to use it"
775         );
776         err.emit();
777     }
778
779     let is_marker = tcx.has_attr(def_id, sym::marker);
780     let def_path_hash = tcx.def_path_hash(def_id);
781     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
782     tcx.arena.alloc(def)
783 }
784
785 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
786     struct LateBoundRegionsDetector<'tcx> {
787         tcx: TyCtxt<'tcx>,
788         outer_index: ty::DebruijnIndex,
789         has_late_bound_regions: Option<Span>,
790     }
791
792     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
793         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
794             NestedVisitorMap::None
795         }
796
797         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
798             if self.has_late_bound_regions.is_some() {
799                 return;
800             }
801             match ty.kind {
802                 hir::TyKind::BareFn(..) => {
803                     self.outer_index.shift_in(1);
804                     intravisit::walk_ty(self, ty);
805                     self.outer_index.shift_out(1);
806                 }
807                 _ => intravisit::walk_ty(self, ty),
808             }
809         }
810
811         fn visit_poly_trait_ref(
812             &mut self,
813             tr: &'tcx hir::PolyTraitRef,
814             m: hir::TraitBoundModifier,
815         ) {
816             if self.has_late_bound_regions.is_some() {
817                 return;
818             }
819             self.outer_index.shift_in(1);
820             intravisit::walk_poly_trait_ref(self, tr, m);
821             self.outer_index.shift_out(1);
822         }
823
824         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
825             if self.has_late_bound_regions.is_some() {
826                 return;
827             }
828
829             match self.tcx.named_region(lt.hir_id) {
830                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
831                 Some(rl::Region::LateBound(debruijn, _, _))
832                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
833                 Some(rl::Region::LateBound(..))
834                 | Some(rl::Region::LateBoundAnon(..))
835                 | Some(rl::Region::Free(..))
836                 | None => {
837                     self.has_late_bound_regions = Some(lt.span);
838                 }
839             }
840         }
841     }
842
843     fn has_late_bound_regions<'tcx>(
844         tcx: TyCtxt<'tcx>,
845         generics: &'tcx hir::Generics,
846         decl: &'tcx hir::FnDecl,
847     ) -> Option<Span> {
848         let mut visitor = LateBoundRegionsDetector {
849             tcx,
850             outer_index: ty::INNERMOST,
851             has_late_bound_regions: None,
852         };
853         for param in &generics.params {
854             if let GenericParamKind::Lifetime { .. } = param.kind {
855                 if tcx.is_late_bound(param.hir_id) {
856                     return Some(param.span);
857                 }
858             }
859         }
860         visitor.visit_fn_decl(decl);
861         visitor.has_late_bound_regions
862     }
863
864     match node {
865         Node::TraitItem(item) => match item.kind {
866             hir::TraitItemKind::Method(ref sig, _) => {
867                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
868             }
869             _ => None,
870         },
871         Node::ImplItem(item) => match item.kind {
872             hir::ImplItemKind::Method(ref sig, _) => {
873                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
874             }
875             _ => None,
876         },
877         Node::ForeignItem(item) => match item.kind {
878             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
879                 has_late_bound_regions(tcx, generics, fn_decl)
880             }
881             _ => None,
882         },
883         Node::Item(item) => match item.kind {
884             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
885                 has_late_bound_regions(tcx, generics, fn_decl)
886             }
887             _ => None,
888         },
889         _ => None,
890     }
891 }
892
893 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
894     use rustc::hir::*;
895
896     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
897
898     let node = tcx.hir().get(hir_id);
899     let parent_def_id = match node {
900         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
901         Node::Ctor(..) | Node::Field(_) => {
902             let parent_id = tcx.hir().get_parent_item(hir_id);
903             Some(tcx.hir().local_def_id(parent_id))
904         }
905         // FIXME(#43408) enable this in all cases when we get lazy normalization.
906         Node::AnonConst(&anon_const) => {
907             // HACK(eddyb) this provides the correct generics when the workaround
908             // for a const parameter `AnonConst` is being used elsewhere, as then
909             // there won't be the kind of cyclic dependency blocking #43408.
910             let expr = &tcx.hir().body(anon_const.body).value;
911             let icx = ItemCtxt::new(tcx, def_id);
912             if AstConv::const_param_def_id(&icx, expr).is_some() {
913                 let parent_id = tcx.hir().get_parent_item(hir_id);
914                 Some(tcx.hir().local_def_id(parent_id))
915             } else {
916                 None
917             }
918         }
919         Node::Expr(&hir::Expr {
920             kind: hir::ExprKind::Closure(..),
921             ..
922         }) => Some(tcx.closure_base_def_id(def_id)),
923         Node::Item(item) => match item.kind {
924             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => impl_trait_fn,
925             _ => None,
926         },
927         _ => None,
928     };
929
930     let mut opt_self = None;
931     let mut allow_defaults = false;
932
933     let no_generics = hir::Generics::empty();
934     let ast_generics = match node {
935         Node::TraitItem(item) => &item.generics,
936
937         Node::ImplItem(item) => &item.generics,
938
939         Node::Item(item) => {
940             match item.kind {
941                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
942                     generics
943                 }
944
945                 ItemKind::TyAlias(_, ref generics)
946                 | ItemKind::Enum(_, ref generics)
947                 | ItemKind::Struct(_, ref generics)
948                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
949                 | ItemKind::Union(_, ref generics) => {
950                     allow_defaults = true;
951                     generics
952                 }
953
954                 ItemKind::Trait(_, _, ref generics, ..)
955                 | ItemKind::TraitAlias(ref generics, ..) => {
956                     // Add in the self type parameter.
957                     //
958                     // Something of a hack: use the node id for the trait, also as
959                     // the node id for the Self type parameter.
960                     let param_id = item.hir_id;
961
962                     opt_self = Some(ty::GenericParamDef {
963                         index: 0,
964                         name: kw::SelfUpper,
965                         def_id: tcx.hir().local_def_id(param_id),
966                         pure_wrt_drop: false,
967                         kind: ty::GenericParamDefKind::Type {
968                             has_default: false,
969                             object_lifetime_default: rl::Set1::Empty,
970                             synthetic: None,
971                         },
972                     });
973
974                     allow_defaults = true;
975                     generics
976                 }
977
978                 _ => &no_generics,
979             }
980         }
981
982         Node::ForeignItem(item) => match item.kind {
983             ForeignItemKind::Static(..) => &no_generics,
984             ForeignItemKind::Fn(_, _, ref generics) => generics,
985             ForeignItemKind::Type => &no_generics,
986         },
987
988         _ => &no_generics,
989     };
990
991     let has_self = opt_self.is_some();
992     let mut parent_has_self = false;
993     let mut own_start = has_self as u32;
994     let parent_count = parent_def_id.map_or(0, |def_id| {
995         let generics = tcx.generics_of(def_id);
996         assert_eq!(has_self, false);
997         parent_has_self = generics.has_self;
998         own_start = generics.count() as u32;
999         generics.parent_count + generics.params.len()
1000     });
1001
1002     let mut params: Vec<_> = opt_self.into_iter().collect();
1003
1004     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1005     params.extend(
1006         early_lifetimes
1007             .enumerate()
1008             .map(|(i, param)| ty::GenericParamDef {
1009                 name: param.name.ident().name,
1010                 index: own_start + i as u32,
1011                 def_id: tcx.hir().local_def_id(param.hir_id),
1012                 pure_wrt_drop: param.pure_wrt_drop,
1013                 kind: ty::GenericParamDefKind::Lifetime,
1014             }),
1015     );
1016
1017     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1018
1019     // Now create the real type parameters.
1020     let type_start = own_start - has_self as u32 + params.len() as u32;
1021     let mut i = 0;
1022     params.extend(
1023         ast_generics
1024             .params
1025             .iter()
1026             .filter_map(|param| {
1027                 let kind = match param.kind {
1028                     GenericParamKind::Type {
1029                         ref default,
1030                         synthetic,
1031                         ..
1032                     } => {
1033                         if !allow_defaults && default.is_some() {
1034                             if !tcx.features().default_type_parameter_fallback {
1035                                 tcx.lint_hir(
1036                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1037                                     param.hir_id,
1038                                     param.span,
1039                                     &format!(
1040                                         "defaults for type parameters are only allowed in \
1041                                         `struct`, `enum`, `type`, or `trait` definitions."
1042                                     ),
1043                                 );
1044                             }
1045                         }
1046
1047                         ty::GenericParamDefKind::Type {
1048                             has_default: default.is_some(),
1049                             object_lifetime_default: object_lifetime_defaults
1050                                 .as_ref()
1051                                 .map_or(rl::Set1::Empty, |o| o[i]),
1052                             synthetic,
1053                         }
1054                     }
1055                     GenericParamKind::Const { .. } => {
1056                         ty::GenericParamDefKind::Const
1057                     }
1058                     _ => return None,
1059                 };
1060
1061                 let param_def = ty::GenericParamDef {
1062                     index: type_start + i as u32,
1063                     name: param.name.ident().name,
1064                     def_id: tcx.hir().local_def_id(param.hir_id),
1065                     pure_wrt_drop: param.pure_wrt_drop,
1066                     kind,
1067                 };
1068                 i += 1;
1069                 Some(param_def)
1070             })
1071     );
1072
1073     // provide junk type parameter defs - the only place that
1074     // cares about anything but the length is instantiation,
1075     // and we don't do that for closures.
1076     if let Node::Expr(&hir::Expr {
1077         kind: hir::ExprKind::Closure(.., gen),
1078         ..
1079     }) = node
1080     {
1081         let dummy_args = if gen.is_some() {
1082             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1083         } else {
1084             &["<closure_kind>", "<closure_signature>"][..]
1085         };
1086
1087         params.extend(
1088             dummy_args
1089                 .iter()
1090                 .enumerate()
1091                 .map(|(i, &arg)| ty::GenericParamDef {
1092                     index: type_start + i as u32,
1093                     name: Symbol::intern(arg),
1094                     def_id,
1095                     pure_wrt_drop: false,
1096                     kind: ty::GenericParamDefKind::Type {
1097                         has_default: false,
1098                         object_lifetime_default: rl::Set1::Empty,
1099                         synthetic: None,
1100                     },
1101                 }),
1102         );
1103
1104         if let Some(upvars) = tcx.upvars(def_id) {
1105             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1106                 ty::GenericParamDef {
1107                     index: type_start + i,
1108                     name: Symbol::intern("<upvar>"),
1109                     def_id,
1110                     pure_wrt_drop: false,
1111                     kind: ty::GenericParamDefKind::Type {
1112                         has_default: false,
1113                         object_lifetime_default: rl::Set1::Empty,
1114                         synthetic: None,
1115                     },
1116                 }
1117             }));
1118         }
1119     }
1120
1121     let param_def_id_to_index = params
1122         .iter()
1123         .map(|param| (param.def_id, param.index))
1124         .collect();
1125
1126     tcx.arena.alloc(ty::Generics {
1127         parent: parent_def_id,
1128         parent_count,
1129         params,
1130         param_def_id_to_index,
1131         has_self: has_self || parent_has_self,
1132         has_late_bound_regions: has_late_bound_regions(tcx, node),
1133     })
1134 }
1135
1136 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1137     span_err!(
1138         tcx.sess,
1139         span,
1140         E0202,
1141         "associated types are not yet supported in inherent impls (see #8995)"
1142     );
1143 }
1144
1145 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1146     checked_type_of(tcx, def_id, true).unwrap()
1147 }
1148
1149 fn infer_placeholder_type(
1150     tcx: TyCtxt<'_>,
1151     def_id: DefId,
1152     body_id: hir::BodyId,
1153     span: Span,
1154     item_ident: Ident,
1155 ) -> Ty<'_> {
1156     let ty = tcx.typeck_tables_of(def_id).node_type(body_id.hir_id);
1157
1158     // If this came from a free `const` or `static mut?` item,
1159     // then the user may have written e.g. `const A = 42;`.
1160     // In this case, the parser has stashed a diagnostic for
1161     // us to improve in typeck so we do that now.
1162     match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
1163         Some(mut err) => {
1164             // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
1165             // We are typeck and have the real type, so remove that and suggest the actual type.
1166             err.suggestions.clear();
1167             err.span_suggestion(
1168                 span,
1169                 "provide a type for the item",
1170                 format!("{}: {}", item_ident, ty),
1171                 Applicability::MachineApplicable,
1172             )
1173             .emit();
1174         }
1175         None => {
1176             let mut diag = bad_placeholder_type(tcx, span);
1177             if ty != tcx.types.err {
1178                 diag.span_suggestion(
1179                     span,
1180                     "replace `_` with the correct type",
1181                     ty.to_string(),
1182                     Applicability::MaybeIncorrect,
1183                 );
1184             }
1185             diag.emit();
1186         }
1187     }
1188
1189     ty
1190 }
1191
1192 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1193 ///
1194 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1195 /// you'd better just call [`type_of`] directly.
1196 pub fn checked_type_of(tcx: TyCtxt<'_>, def_id: DefId, fail: bool) -> Option<Ty<'_>> {
1197     use rustc::hir::*;
1198
1199     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1200         Some(hir_id) => hir_id,
1201         None => {
1202             if !fail {
1203                 return None;
1204             }
1205             bug!("invalid node");
1206         }
1207     };
1208
1209     let icx = ItemCtxt::new(tcx, def_id);
1210
1211     Some(match tcx.hir().get(hir_id) {
1212         Node::TraitItem(item) => match item.kind {
1213             TraitItemKind::Method(..) => {
1214                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1215                 tcx.mk_fn_def(def_id, substs)
1216             }
1217             TraitItemKind::Const(ref ty, body_id)  => {
1218                 body_id.and_then(|body_id| {
1219                     if let hir::TyKind::Infer = ty.kind {
1220                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
1221                     } else {
1222                         None
1223                     }
1224                 }).unwrap_or_else(|| icx.to_ty(ty))
1225             },
1226             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1227             TraitItemKind::Type(_, None) => {
1228                 if !fail {
1229                     return None;
1230                 }
1231                 span_bug!(item.span, "associated type missing default");
1232             }
1233         },
1234
1235         Node::ImplItem(item) => match item.kind {
1236             ImplItemKind::Method(..) => {
1237                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1238                 tcx.mk_fn_def(def_id, substs)
1239             }
1240             ImplItemKind::Const(ref ty, body_id) => {
1241                 if let hir::TyKind::Infer = ty.kind {
1242                     infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1243                 } else {
1244                     icx.to_ty(ty)
1245                 }
1246             },
1247             ImplItemKind::OpaqueTy(_) => {
1248                 if tcx
1249                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1250                     .is_none()
1251                 {
1252                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1253                 }
1254
1255                 find_opaque_ty_constraints(tcx, def_id)
1256             }
1257             ImplItemKind::TyAlias(ref ty) => {
1258                 if tcx
1259                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1260                     .is_none()
1261                 {
1262                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1263                 }
1264
1265                 icx.to_ty(ty)
1266             }
1267         },
1268
1269         Node::Item(item) => {
1270             match item.kind {
1271                 ItemKind::Static(ref ty, .., body_id)
1272                 | ItemKind::Const(ref ty, body_id) => {
1273                     if let hir::TyKind::Infer = ty.kind {
1274                         infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1275                     } else {
1276                         icx.to_ty(ty)
1277                     }
1278                 },
1279                 ItemKind::TyAlias(ref ty, _)
1280                 | ItemKind::Impl(.., ref ty, _) => icx.to_ty(ty),
1281                 ItemKind::Fn(..) => {
1282                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1283                     tcx.mk_fn_def(def_id, substs)
1284                 }
1285                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1286                     let def = tcx.adt_def(def_id);
1287                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1288                     tcx.mk_adt(def, substs)
1289                 }
1290                 ItemKind::OpaqueTy(hir::OpaqueTy {
1291                     impl_trait_fn: None,
1292                     ..
1293                 }) => find_opaque_ty_constraints(tcx, def_id),
1294                 // Opaque types desugared from `impl Trait`.
1295                 ItemKind::OpaqueTy(hir::OpaqueTy {
1296                     impl_trait_fn: Some(owner),
1297                     ..
1298                 }) => {
1299                     tcx.typeck_tables_of(owner)
1300                         .concrete_opaque_types
1301                         .get(&def_id)
1302                         .map(|opaque| opaque.concrete_type)
1303                         .unwrap_or_else(|| {
1304                             // This can occur if some error in the
1305                             // owner fn prevented us from populating
1306                             // the `concrete_opaque_types` table.
1307                             tcx.sess.delay_span_bug(
1308                                 DUMMY_SP,
1309                                 &format!(
1310                                     "owner {:?} has no opaque type for {:?} in its tables",
1311                                     owner, def_id,
1312                                 ),
1313                             );
1314                             tcx.types.err
1315                         })
1316                 }
1317                 ItemKind::Trait(..)
1318                 | ItemKind::TraitAlias(..)
1319                 | ItemKind::Mod(..)
1320                 | ItemKind::ForeignMod(..)
1321                 | ItemKind::GlobalAsm(..)
1322                 | ItemKind::ExternCrate(..)
1323                 | ItemKind::Use(..) => {
1324                     if !fail {
1325                         return None;
1326                     }
1327                     span_bug!(
1328                         item.span,
1329                         "compute_type_of_item: unexpected item type: {:?}",
1330                         item.kind
1331                     );
1332                 }
1333             }
1334         }
1335
1336         Node::ForeignItem(foreign_item) => match foreign_item.kind {
1337             ForeignItemKind::Fn(..) => {
1338                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1339                 tcx.mk_fn_def(def_id, substs)
1340             }
1341             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1342             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1343         },
1344
1345         Node::Ctor(&ref def) | Node::Variant(
1346             hir::Variant { data: ref def, .. }
1347         ) => match *def {
1348             VariantData::Unit(..) | VariantData::Struct(..) => {
1349                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1350             }
1351             VariantData::Tuple(..) => {
1352                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1353                 tcx.mk_fn_def(def_id, substs)
1354             }
1355         },
1356
1357         Node::Field(field) => icx.to_ty(&field.ty),
1358
1359         Node::Expr(&hir::Expr {
1360             kind: hir::ExprKind::Closure(.., gen),
1361             ..
1362         }) => {
1363             if gen.is_some() {
1364                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1365             }
1366
1367             let substs = InternalSubsts::identity_for_item(tcx, def_id);
1368             tcx.mk_closure(def_id, substs)
1369         }
1370
1371         Node::AnonConst(_) => {
1372             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1373             match parent_node {
1374                 Node::Ty(&hir::Ty {
1375                     kind: hir::TyKind::Array(_, ref constant),
1376                     ..
1377                 })
1378                 | Node::Ty(&hir::Ty {
1379                     kind: hir::TyKind::Typeof(ref constant),
1380                     ..
1381                 })
1382                 | Node::Expr(&hir::Expr {
1383                     kind: ExprKind::Repeat(_, ref constant),
1384                     ..
1385                 }) if constant.hir_id == hir_id =>
1386                 {
1387                     tcx.types.usize
1388                 }
1389
1390                 Node::Variant(Variant {
1391                     disr_expr: Some(ref e),
1392                     ..
1393                 }) if e.hir_id == hir_id =>
1394                 {
1395                     tcx.adt_def(tcx.hir().get_parent_did(hir_id))
1396                         .repr
1397                         .discr_type()
1398                         .to_ty(tcx)
1399                 }
1400
1401                 Node::Ty(&hir::Ty { kind: hir::TyKind::Path(_), .. }) |
1402                 Node::Expr(&hir::Expr { kind: ExprKind::Struct(..), .. }) |
1403                 Node::Expr(&hir::Expr { kind: ExprKind::Path(_), .. }) |
1404                 Node::TraitRef(..) => {
1405                     let path = match parent_node {
1406                         Node::Ty(&hir::Ty {
1407                             kind: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1408                             ..
1409                         })
1410                         | Node::Expr(&hir::Expr {
1411                             kind: ExprKind::Path(QPath::Resolved(_, ref path)),
1412                             ..
1413                         }) => {
1414                             Some(&**path)
1415                         }
1416                         Node::Expr(&hir::Expr { kind: ExprKind::Struct(ref path, ..), .. }) => {
1417                             if let QPath::Resolved(_, ref path) = **path {
1418                                 Some(&**path)
1419                             } else {
1420                                 None
1421                             }
1422                         }
1423                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1424                         _ => None,
1425                     };
1426
1427                     if let Some(path) = path {
1428                         let arg_index = path.segments.iter()
1429                             .filter_map(|seg| seg.args.as_ref())
1430                             .map(|generic_args| generic_args.args.as_ref())
1431                             .find_map(|args| {
1432                                 args.iter()
1433                                     .filter(|arg| arg.is_const())
1434                                     .enumerate()
1435                                     .filter(|(_, arg)| arg.id() == hir_id)
1436                                     .map(|(index, _)| index)
1437                                     .next()
1438                             })
1439                             .or_else(|| {
1440                                 if !fail {
1441                                     None
1442                                 } else {
1443                                     bug!("no arg matching AnonConst in path")
1444                                 }
1445                             })?;
1446
1447                         // We've encountered an `AnonConst` in some path, so we need to
1448                         // figure out which generic parameter it corresponds to and return
1449                         // the relevant type.
1450                         let generics = match path.res {
1451                             Res::Def(DefKind::Ctor(..), def_id) => {
1452                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1453                             }
1454                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1455                             Res::Err => return Some(tcx.types.err),
1456                             _ if !fail => return None,
1457                             res => {
1458                                 tcx.sess.delay_span_bug(
1459                                     DUMMY_SP,
1460                                     &format!(
1461                                         "unexpected const parent path def {:?}",
1462                                         res,
1463                                     ),
1464                                 );
1465                                 return Some(tcx.types.err);
1466                             }
1467                         };
1468
1469                         generics.params.iter()
1470                             .filter(|param| {
1471                                 if let ty::GenericParamDefKind::Const = param.kind {
1472                                     true
1473                                 } else {
1474                                     false
1475                                 }
1476                             })
1477                             .nth(arg_index)
1478                             .map(|param| tcx.type_of(param.def_id))
1479                             // This is no generic parameter associated with the arg. This is
1480                             // probably from an extra arg where one is not needed.
1481                             .unwrap_or(tcx.types.err)
1482                     } else {
1483                         if !fail {
1484                             return None;
1485                         }
1486                         tcx.sess.delay_span_bug(
1487                             DUMMY_SP,
1488                             &format!(
1489                                 "unexpected const parent path {:?}",
1490                                 parent_node,
1491                             ),
1492                         );
1493                         return Some(tcx.types.err);
1494                     }
1495                 }
1496
1497                 x => {
1498                     if !fail {
1499                         return None;
1500                     }
1501                     tcx.sess.delay_span_bug(
1502                         DUMMY_SP,
1503                         &format!(
1504                             "unexpected const parent in type_of_def_id(): {:?}", x
1505                         ),
1506                     );
1507                     tcx.types.err
1508                 }
1509             }
1510         }
1511
1512         Node::GenericParam(param) => match &param.kind {
1513             hir::GenericParamKind::Type { default: Some(ref ty), .. } => icx.to_ty(ty),
1514             hir::GenericParamKind::Const { ty: ref hir_ty, .. } => {
1515                 let ty = icx.to_ty(hir_ty);
1516                 if !tcx.features().const_compare_raw_pointers {
1517                     let err = match ty.peel_refs().kind {
1518                         ty::FnPtr(_) => Some("function pointers"),
1519                         ty::RawPtr(_) => Some("raw pointers"),
1520                         _ => None,
1521                     };
1522                     if let Some(unsupported_type) = err {
1523                         feature_gate::emit_feature_err(
1524                             &tcx.sess.parse_sess,
1525                             sym::const_compare_raw_pointers,
1526                             hir_ty.span,
1527                             feature_gate::GateIssue::Language,
1528                             &format!(
1529                                 "using {} as const generic parameters is unstable",
1530                                 unsupported_type
1531                             ),
1532                         );
1533                     };
1534                 }
1535                 if ty::search_for_structural_match_violation(
1536                     param.hir_id, param.span, tcx, ty).is_some()
1537                 {
1538                     struct_span_err!(
1539                         tcx.sess,
1540                         hir_ty.span,
1541                         E0741,
1542                         "the types of const generic parameters must derive `PartialEq` and `Eq`",
1543                     ).span_label(
1544                         hir_ty.span,
1545                         format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
1546                     ).emit();
1547                 }
1548                 ty
1549             }
1550             x => {
1551                 if !fail {
1552                     return None;
1553                 }
1554                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1555             },
1556         },
1557
1558         x => {
1559             if !fail {
1560                 return None;
1561             }
1562             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1563         }
1564     })
1565 }
1566
1567 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1568     use rustc::hir::{ImplItem, Item, TraitItem};
1569
1570     debug!("find_opaque_ty_constraints({:?})", def_id);
1571
1572     struct ConstraintLocator<'tcx> {
1573         tcx: TyCtxt<'tcx>,
1574         def_id: DefId,
1575         // (first found type span, actual type, mapping from the opaque type's generic
1576         // parameters to the concrete type's generic parameters)
1577         //
1578         // The mapping is an index for each use site of a generic parameter in the concrete type
1579         //
1580         // The indices index into the generic parameters on the opaque type.
1581         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1582     }
1583
1584     impl ConstraintLocator<'tcx> {
1585         fn check(&mut self, def_id: DefId) {
1586             // Don't try to check items that cannot possibly constrain the type.
1587             if !self.tcx.has_typeck_tables(def_id) {
1588                 debug!(
1589                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1590                     self.def_id,
1591                     def_id,
1592                 );
1593                 return;
1594             }
1595             let ty = self
1596                 .tcx
1597                 .typeck_tables_of(def_id)
1598                 .concrete_opaque_types
1599                 .get(&self.def_id);
1600             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1601                 debug!(
1602                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1603                     self.def_id,
1604                     def_id,
1605                     ty,
1606                 );
1607
1608                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1609                 let span = self.tcx.def_span(def_id);
1610                 // used to quickly look up the position of a generic parameter
1611                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1612                 // Skipping binder is ok, since we only use this to find generic parameters and
1613                 // their positions.
1614                 for (idx, subst) in substs.iter().enumerate() {
1615                     if let GenericArgKind::Type(ty) = subst.unpack() {
1616                         if let ty::Param(p) = ty.kind {
1617                             if index_map.insert(p, idx).is_some() {
1618                                 // There was already an entry for `p`, meaning a generic parameter
1619                                 // was used twice.
1620                                 self.tcx.sess.span_err(
1621                                     span,
1622                                     &format!(
1623                                         "defining opaque type use restricts opaque \
1624                                          type by using the generic parameter `{}` twice",
1625                                         p,
1626                                     ),
1627                                 );
1628                                 return;
1629                             }
1630                         } else {
1631                             self.tcx.sess.delay_span_bug(
1632                                 span,
1633                                 &format!(
1634                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1635                                     concrete_type, substs,
1636                                 ),
1637                             );
1638                         }
1639                     }
1640                 }
1641                 // Compute the index within the opaque type for each generic parameter used in
1642                 // the concrete type.
1643                 let indices = concrete_type
1644                     .subst(self.tcx, substs)
1645                     .walk()
1646                     .filter_map(|t| match &t.kind {
1647                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1648                         _ => None,
1649                     }).collect();
1650                 let is_param = |ty: Ty<'_>| match ty.kind {
1651                     ty::Param(_) => true,
1652                     _ => false,
1653                 };
1654                 if !substs.types().all(is_param) {
1655                     self.tcx.sess.span_err(
1656                         span,
1657                         "defining opaque type use does not fully define opaque type",
1658                     );
1659                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1660                     let mut ty = concrete_type.walk().fuse();
1661                     let mut p_ty = prev_ty.walk().fuse();
1662                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
1663                         // Type parameters are equal to any other type parameter for the purpose of
1664                         // concrete type equality, as it is possible to obtain the same type just
1665                         // by passing matching parameters to a function.
1666                         (ty::Param(_), ty::Param(_)) => true,
1667                         _ => t == p,
1668                     });
1669                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1670                         debug!("find_opaque_ty_constraints: span={:?}", span);
1671                         // Found different concrete types for the opaque type.
1672                         let mut err = self.tcx.sess.struct_span_err(
1673                             span,
1674                             "concrete type differs from previous defining opaque type use",
1675                         );
1676                         err.span_label(
1677                             span,
1678                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1679                         );
1680                         err.span_note(prev_span, "previous use here");
1681                         err.emit();
1682                     } else if indices != *prev_indices {
1683                         // Found "same" concrete types, but the generic parameter order differs.
1684                         let mut err = self.tcx.sess.struct_span_err(
1685                             span,
1686                             "concrete type's generic parameters differ from previous defining use",
1687                         );
1688                         use std::fmt::Write;
1689                         let mut s = String::new();
1690                         write!(s, "expected [").unwrap();
1691                         let list = |s: &mut String, indices: &Vec<usize>| {
1692                             let mut indices = indices.iter().cloned();
1693                             if let Some(first) = indices.next() {
1694                                 write!(s, "`{}`", substs[first]).unwrap();
1695                                 for i in indices {
1696                                     write!(s, ", `{}`", substs[i]).unwrap();
1697                                 }
1698                             }
1699                         };
1700                         list(&mut s, prev_indices);
1701                         write!(s, "], got [").unwrap();
1702                         list(&mut s, &indices);
1703                         write!(s, "]").unwrap();
1704                         err.span_label(span, s);
1705                         err.span_note(prev_span, "previous use here");
1706                         err.emit();
1707                     }
1708                 } else {
1709                     self.found = Some((span, concrete_type, indices));
1710                 }
1711             } else {
1712                 debug!(
1713                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1714                     self.def_id,
1715                     def_id,
1716                 );
1717             }
1718         }
1719     }
1720
1721     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1722         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1723             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1724         }
1725         fn visit_item(&mut self, it: &'tcx Item) {
1726             debug!("find_existential_constraints: visiting {:?}", it);
1727             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1728             // The opaque type itself or its children are not within its reveal scope.
1729             if def_id != self.def_id {
1730                 self.check(def_id);
1731                 intravisit::walk_item(self, it);
1732             }
1733         }
1734         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1735             debug!("find_existential_constraints: visiting {:?}", it);
1736             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1737             // The opaque type itself or its children are not within its reveal scope.
1738             if def_id != self.def_id {
1739                 self.check(def_id);
1740                 intravisit::walk_impl_item(self, it);
1741             }
1742         }
1743         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1744             debug!("find_existential_constraints: visiting {:?}", it);
1745             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1746             self.check(def_id);
1747             intravisit::walk_trait_item(self, it);
1748         }
1749     }
1750
1751     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1752     let scope = tcx.hir().get_defining_scope(hir_id);
1753     let mut locator = ConstraintLocator {
1754         def_id,
1755         tcx,
1756         found: None,
1757     };
1758
1759     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1760
1761     if scope == hir::CRATE_HIR_ID {
1762         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1763     } else {
1764         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1765         match tcx.hir().get(scope) {
1766             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1767             // This allows our visitor to process the defining item itself, causing
1768             // it to pick up any 'sibling' defining uses.
1769             //
1770             // For example, this code:
1771             // ```
1772             // fn foo() {
1773             //     type Blah = impl Debug;
1774             //     let my_closure = || -> Blah { true };
1775             // }
1776             // ```
1777             //
1778             // requires us to explicitly process `foo()` in order
1779             // to notice the defining usage of `Blah`.
1780             Node::Item(ref it) => locator.visit_item(it),
1781             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1782             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1783             other => bug!(
1784                 "{:?} is not a valid scope for an opaque type item",
1785                 other
1786             ),
1787         }
1788     }
1789
1790     match locator.found {
1791         Some((_, ty, _)) => ty,
1792         None => {
1793             let span = tcx.def_span(def_id);
1794             tcx.sess.span_err(span, "could not find defining uses");
1795             tcx.types.err
1796         }
1797     }
1798 }
1799
1800 pub fn get_infer_ret_ty(output: &'_ hir::FunctionRetTy) -> Option<&hir::Ty> {
1801     if let hir::FunctionRetTy::Return(ref ty) = output {
1802         if let hir::TyKind::Infer = ty.kind {
1803             return Some(&**ty)
1804         }
1805     }
1806     None
1807 }
1808
1809 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1810     use rustc::hir::*;
1811     use rustc::hir::Node::*;
1812
1813     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1814
1815     let icx = ItemCtxt::new(tcx, def_id);
1816
1817     match tcx.hir().get(hir_id) {
1818         TraitItem(hir::TraitItem {
1819             kind: TraitItemKind::Method(MethodSig { header, decl }, TraitMethod::Provided(_)),
1820             ..
1821         })
1822         | ImplItem(hir::ImplItem {
1823             kind: ImplItemKind::Method(MethodSig { header, decl }, _),
1824             ..
1825         })
1826         | Item(hir::Item {
1827             kind: ItemKind::Fn(decl, header, _, _),
1828             ..
1829         }) => match get_infer_ret_ty(&decl.output) {
1830             Some(ty) => {
1831                 let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1832                 let mut diag = bad_placeholder_type(tcx, ty.span);
1833                 let ret_ty = fn_sig.output();
1834                 if ret_ty != tcx.types.err  {
1835                     diag.span_suggestion(
1836                         ty.span,
1837                         "replace `_` with the correct return type",
1838                         ret_ty.to_string(),
1839                         Applicability::MaybeIncorrect,
1840                     );
1841                 }
1842                 diag.emit();
1843                 ty::Binder::bind(fn_sig)
1844             },
1845             None => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl)
1846         },
1847
1848         TraitItem(hir::TraitItem {
1849             kind: TraitItemKind::Method(MethodSig { header, decl }, _),
1850             ..
1851         }) => {
1852             AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl)
1853         },
1854
1855         ForeignItem(&hir::ForeignItem {
1856             kind: ForeignItemKind::Fn(ref fn_decl, _, _),
1857             ..
1858         }) => {
1859             let abi = tcx.hir().get_foreign_abi(hir_id);
1860             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1861         }
1862
1863         Ctor(data) | Variant(
1864             hir::Variant { data, ..  }
1865         ) if data.ctor_hir_id().is_some() => {
1866             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1867             let inputs = data.fields()
1868                 .iter()
1869                 .map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1870             ty::Binder::bind(tcx.mk_fn_sig(
1871                 inputs,
1872                 ty,
1873                 false,
1874                 hir::Unsafety::Normal,
1875                 abi::Abi::Rust,
1876             ))
1877         }
1878
1879         Expr(&hir::Expr {
1880             kind: hir::ExprKind::Closure(..),
1881             ..
1882         }) => {
1883             // Closure signatures are not like other function
1884             // signatures and cannot be accessed through `fn_sig`. For
1885             // example, a closure signature excludes the `self`
1886             // argument. In any case they are embedded within the
1887             // closure type as part of the `ClosureSubsts`.
1888             //
1889             // To get
1890             // the signature of a closure, you should use the
1891             // `closure_sig` method on the `ClosureSubsts`:
1892             //
1893             //    closure_substs.sig(def_id, tcx)
1894             //
1895             // or, inside of an inference context, you can use
1896             //
1897             //    infcx.closure_sig(def_id, closure_substs)
1898             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1899         }
1900
1901         x => {
1902             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1903         }
1904     }
1905 }
1906
1907 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1908     let icx = ItemCtxt::new(tcx, def_id);
1909
1910     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1911     match tcx.hir().expect_item(hir_id).kind {
1912         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1913             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1914                 let selfty = tcx.type_of(def_id);
1915                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1916             })
1917         }
1918         _ => bug!(),
1919     }
1920 }
1921
1922 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1923     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1924     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1925     let item = tcx.hir().expect_item(hir_id);
1926     match &item.kind {
1927         hir::ItemKind::Impl(_, hir::ImplPolarity::Negative, ..) => {
1928             if is_rustc_reservation {
1929                 tcx.sess.span_err(item.span, "reservation impls can't be negative");
1930             }
1931             ty::ImplPolarity::Negative
1932         }
1933         hir::ItemKind::Impl(_, hir::ImplPolarity::Positive, _, _, None, _, _) => {
1934             if is_rustc_reservation {
1935                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1936             }
1937             ty::ImplPolarity::Positive
1938         }
1939         hir::ItemKind::Impl(_, hir::ImplPolarity::Positive, _, _, Some(_tr), _, _) => {
1940             if is_rustc_reservation {
1941                 ty::ImplPolarity::Reservation
1942             } else {
1943                 ty::ImplPolarity::Positive
1944             }
1945         }
1946         ref item => bug!("impl_polarity: {:?} not an impl", item),
1947     }
1948 }
1949
1950 /// Returns the early-bound lifetimes declared in this generics
1951 /// listing. For anything other than fns/methods, this is just all
1952 /// the lifetimes that are declared. For fns or methods, we have to
1953 /// screen out those that do not appear in any where-clauses etc using
1954 /// `resolve_lifetime::early_bound_lifetimes`.
1955 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1956     tcx: TyCtxt<'tcx>,
1957     generics: &'a hir::Generics,
1958 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1959     generics
1960         .params
1961         .iter()
1962         .filter(move |param| match param.kind {
1963             GenericParamKind::Lifetime { .. } => {
1964                 !tcx.is_late_bound(param.hir_id)
1965             }
1966             _ => false,
1967         })
1968 }
1969
1970 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1971 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1972 /// inferred constraints concerning which regions outlive other regions.
1973 fn predicates_defined_on(
1974     tcx: TyCtxt<'_>,
1975     def_id: DefId,
1976 ) -> ty::GenericPredicates<'_> {
1977     debug!("predicates_defined_on({:?})", def_id);
1978     let mut result = tcx.explicit_predicates_of(def_id);
1979     debug!(
1980         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1981         def_id,
1982         result,
1983     );
1984     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1985     if !inferred_outlives.is_empty() {
1986         debug!(
1987             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1988             def_id,
1989             inferred_outlives,
1990         );
1991         if result.predicates.is_empty() {
1992             result.predicates = inferred_outlives;
1993         } else {
1994             result.predicates = tcx.arena.alloc_from_iter(
1995                 result.predicates.iter().chain(inferred_outlives).copied(),
1996             );
1997         }
1998     }
1999     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2000     result
2001 }
2002
2003 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2004 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2005 /// `Self: Trait` predicates for traits.
2006 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2007     let mut result = tcx.predicates_defined_on(def_id);
2008
2009     if tcx.is_trait(def_id) {
2010         // For traits, add `Self: Trait` predicate. This is
2011         // not part of the predicates that a user writes, but it
2012         // is something that one must prove in order to invoke a
2013         // method or project an associated type.
2014         //
2015         // In the chalk setup, this predicate is not part of the
2016         // "predicates" for a trait item. But it is useful in
2017         // rustc because if you directly (e.g.) invoke a trait
2018         // method like `Trait::method(...)`, you must naturally
2019         // prove that the trait applies to the types that were
2020         // used, and adding the predicate into this list ensures
2021         // that this is done.
2022         let span = tcx.def_span(def_id);
2023         result.predicates = tcx.arena.alloc_from_iter(
2024             result.predicates.iter().copied().chain(
2025                 std::iter::once((ty::TraitRef::identity(tcx, def_id).to_predicate(), span))
2026             ),
2027         );
2028     }
2029     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2030     result
2031 }
2032
2033 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2034 /// N.B., this does not include any implied/inferred constraints.
2035 fn explicit_predicates_of(
2036     tcx: TyCtxt<'_>,
2037     def_id: DefId,
2038 ) -> ty::GenericPredicates<'_> {
2039     use rustc::hir::*;
2040     use rustc_data_structures::fx::FxHashSet;
2041
2042     debug!("explicit_predicates_of(def_id={:?})", def_id);
2043
2044     /// A data structure with unique elements, which preserves order of insertion.
2045     /// Preserving the order of insertion is important here so as not to break
2046     /// compile-fail UI tests.
2047     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
2048     struct UniquePredicates<'tcx> {
2049         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
2050         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
2051     }
2052
2053     impl<'tcx> UniquePredicates<'tcx> {
2054         fn new() -> Self {
2055             UniquePredicates {
2056                 predicates: vec![],
2057                 uniques: FxHashSet::default(),
2058             }
2059         }
2060
2061         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
2062             if self.uniques.insert(value) {
2063                 self.predicates.push(value);
2064             }
2065         }
2066
2067         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
2068             for value in iter {
2069                 self.push(value);
2070             }
2071         }
2072     }
2073
2074     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
2075         Some(hir_id) => hir_id,
2076         None => return tcx.predicates_of(def_id),
2077     };
2078     let node = tcx.hir().get(hir_id);
2079
2080     let mut is_trait = None;
2081     let mut is_default_impl_trait = None;
2082
2083     let icx = ItemCtxt::new(tcx, def_id);
2084
2085     const NO_GENERICS: &hir::Generics = &hir::Generics::empty();
2086
2087     let empty_trait_items = HirVec::new();
2088
2089     let mut predicates = UniquePredicates::new();
2090
2091     let ast_generics = match node {
2092         Node::TraitItem(item) => &item.generics,
2093
2094         Node::ImplItem(item) => match item.kind {
2095             ImplItemKind::OpaqueTy(ref bounds) => {
2096                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
2097                 let opaque_ty = tcx.mk_opaque(def_id, substs);
2098
2099                 // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2100                 let bounds = AstConv::compute_bounds(
2101                     &icx,
2102                     opaque_ty,
2103                     bounds,
2104                     SizedByDefault::Yes,
2105                     tcx.def_span(def_id),
2106                 );
2107
2108                 predicates.extend(bounds.predicates(tcx, opaque_ty));
2109                 &item.generics
2110             }
2111             _ => &item.generics,
2112         },
2113
2114         Node::Item(item) => {
2115             match item.kind {
2116                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
2117                     if defaultness.is_default() {
2118                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2119                     }
2120                     generics
2121                 }
2122                 ItemKind::Fn(.., ref generics, _)
2123                 | ItemKind::TyAlias(_, ref generics)
2124                 | ItemKind::Enum(_, ref generics)
2125                 | ItemKind::Struct(_, ref generics)
2126                 | ItemKind::Union(_, ref generics) => generics,
2127
2128                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
2129                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2130                     generics
2131                 }
2132                 ItemKind::TraitAlias(ref generics, _) => {
2133                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
2134                     generics
2135                 }
2136                 ItemKind::OpaqueTy(OpaqueTy {
2137                     ref bounds,
2138                     impl_trait_fn,
2139                     ref generics,
2140                     origin: _,
2141                 }) => {
2142                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2143                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2144
2145                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2146                     let bounds = AstConv::compute_bounds(
2147                         &icx,
2148                         opaque_ty,
2149                         bounds,
2150                         SizedByDefault::Yes,
2151                         tcx.def_span(def_id),
2152                     );
2153
2154                     let bounds_predicates = bounds.predicates(tcx, opaque_ty);
2155                     if impl_trait_fn.is_some() {
2156                         // opaque types
2157                         return ty::GenericPredicates {
2158                             parent: None,
2159                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
2160                         };
2161                     } else {
2162                         // named opaque types
2163                         predicates.extend(bounds_predicates);
2164                         generics
2165                     }
2166                 }
2167
2168                 _ => NO_GENERICS,
2169             }
2170         }
2171
2172         Node::ForeignItem(item) => match item.kind {
2173             ForeignItemKind::Static(..) => NO_GENERICS,
2174             ForeignItemKind::Fn(_, _, ref generics) => generics,
2175             ForeignItemKind::Type => NO_GENERICS,
2176         },
2177
2178         _ => NO_GENERICS,
2179     };
2180
2181     let generics = tcx.generics_of(def_id);
2182     let parent_count = generics.parent_count as u32;
2183     let has_own_self = generics.has_self && parent_count == 0;
2184
2185     // Below we'll consider the bounds on the type parameters (including `Self`)
2186     // and the explicit where-clauses, but to get the full set of predicates
2187     // on a trait we need to add in the supertrait bounds and bounds found on
2188     // associated types.
2189     if let Some((_trait_ref, _)) = is_trait {
2190         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2191     }
2192
2193     // In default impls, we can assume that the self type implements
2194     // the trait. So in:
2195     //
2196     //     default impl Foo for Bar { .. }
2197     //
2198     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2199     // (see below). Recall that a default impl is not itself an impl, but rather a
2200     // set of defaults that can be incorporated into another impl.
2201     if let Some(trait_ref) = is_default_impl_trait {
2202         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2203     }
2204
2205     // Collect the region predicates that were declared inline as
2206     // well. In the case of parameters declared on a fn or method, we
2207     // have to be careful to only iterate over early-bound regions.
2208     let mut index = parent_count + has_own_self as u32;
2209     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2210         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2211             def_id: tcx.hir().local_def_id(param.hir_id),
2212             index,
2213             name: param.name.ident().name,
2214         }));
2215         index += 1;
2216
2217         match param.kind {
2218             GenericParamKind::Lifetime { .. } => {
2219                 param.bounds.iter().for_each(|bound| match bound {
2220                     hir::GenericBound::Outlives(lt) => {
2221                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2222                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2223                         predicates.push((outlives.to_predicate(), lt.span));
2224                     }
2225                     _ => bug!(),
2226                 });
2227             }
2228             _ => bug!(),
2229         }
2230     }
2231
2232     // Collect the predicates that were written inline by the user on each
2233     // type parameter (e.g., `<T: Foo>`).
2234     for param in &ast_generics.params {
2235         if let GenericParamKind::Type { .. } = param.kind {
2236             let name = param.name.ident().name;
2237             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2238             index += 1;
2239
2240             let sized = SizedByDefault::Yes;
2241             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2242             predicates.extend(bounds.predicates(tcx, param_ty));
2243         }
2244     }
2245
2246     // Add in the bounds that appear in the where-clause.
2247     let where_clause = &ast_generics.where_clause;
2248     for predicate in &where_clause.predicates {
2249         match predicate {
2250             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2251                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2252
2253                 // Keep the type around in a dummy predicate, in case of no bounds.
2254                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2255                 // is still checked for WF.
2256                 if bound_pred.bounds.is_empty() {
2257                     if let ty::Param(_) = ty.kind {
2258                         // This is a `where T:`, which can be in the HIR from the
2259                         // transformation that moves `?Sized` to `T`'s declaration.
2260                         // We can skip the predicate because type parameters are
2261                         // trivially WF, but also we *should*, to avoid exposing
2262                         // users who never wrote `where Type:,` themselves, to
2263                         // compiler/tooling bugs from not handling WF predicates.
2264                     } else {
2265                         let span = bound_pred.bounded_ty.span;
2266                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2267                         predicates.push(
2268                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2269                         );
2270                     }
2271                 }
2272
2273                 for bound in bound_pred.bounds.iter() {
2274                     match bound {
2275                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2276                             let mut bounds = Bounds::default();
2277                             let _ = AstConv::instantiate_poly_trait_ref(
2278                                 &icx,
2279                                 poly_trait_ref,
2280                                 ty,
2281                                 &mut bounds,
2282                             );
2283                             predicates.extend(bounds.predicates(tcx, ty));
2284                         }
2285
2286                         &hir::GenericBound::Outlives(ref lifetime) => {
2287                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2288                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2289                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2290                         }
2291                     }
2292                 }
2293             }
2294
2295             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2296                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2297                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2298                     let (r2, span) = match bound {
2299                         hir::GenericBound::Outlives(lt) => {
2300                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2301                         }
2302                         _ => bug!(),
2303                     };
2304                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2305
2306                     (ty::Predicate::RegionOutlives(pred), span)
2307                 }))
2308             }
2309
2310             &hir::WherePredicate::EqPredicate(..) => {
2311                 // FIXME(#20041)
2312             }
2313         }
2314     }
2315
2316     // Add predicates from associated type bounds.
2317     if let Some((self_trait_ref, trait_items)) = is_trait {
2318         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2319             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2320             let bounds = match trait_item.kind {
2321                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2322                 _ => return Vec::new().into_iter()
2323             };
2324
2325             let assoc_ty =
2326                 tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id),
2327                     self_trait_ref.substs);
2328
2329             let bounds = AstConv::compute_bounds(
2330                 &ItemCtxt::new(tcx, def_id),
2331                 assoc_ty,
2332                 bounds,
2333                 SizedByDefault::Yes,
2334                 trait_item.span,
2335             );
2336
2337             bounds.predicates(tcx, assoc_ty).into_iter()
2338         }))
2339     }
2340
2341     let mut predicates = predicates.predicates;
2342
2343     // Subtle: before we store the predicates into the tcx, we
2344     // sort them so that predicates like `T: Foo<Item=U>` come
2345     // before uses of `U`.  This avoids false ambiguity errors
2346     // in trait checking. See `setup_constraining_predicates`
2347     // for details.
2348     if let Node::Item(&Item {
2349         kind: ItemKind::Impl(..),
2350         ..
2351     }) = node
2352     {
2353         let self_ty = tcx.type_of(def_id);
2354         let trait_ref = tcx.impl_trait_ref(def_id);
2355         cgp::setup_constraining_predicates(
2356             tcx,
2357             &mut predicates,
2358             trait_ref,
2359             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2360         );
2361     }
2362
2363     let result = ty::GenericPredicates {
2364         parent: generics.parent,
2365         predicates: tcx.arena.alloc_from_iter(predicates),
2366     };
2367     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2368     result
2369 }
2370
2371 /// Converts a specific `GenericBound` from the AST into a set of
2372 /// predicates that apply to the self type. A vector is returned
2373 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2374 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2375 /// and `<T as Bar>::X == i32`).
2376 fn predicates_from_bound<'tcx>(
2377     astconv: &dyn AstConv<'tcx>,
2378     param_ty: Ty<'tcx>,
2379     bound: &'tcx hir::GenericBound,
2380 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2381     match *bound {
2382         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2383             let mut bounds = Bounds::default();
2384             let _ = astconv.instantiate_poly_trait_ref(
2385                 tr,
2386                 param_ty,
2387                 &mut bounds,
2388             );
2389             bounds.predicates(astconv.tcx(), param_ty)
2390         }
2391         hir::GenericBound::Outlives(ref lifetime) => {
2392             let region = astconv.ast_region_to_region(lifetime, None);
2393             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2394             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2395         }
2396         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2397     }
2398 }
2399
2400 fn compute_sig_of_foreign_fn_decl<'tcx>(
2401     tcx: TyCtxt<'tcx>,
2402     def_id: DefId,
2403     decl: &'tcx hir::FnDecl,
2404     abi: abi::Abi,
2405 ) -> ty::PolyFnSig<'tcx> {
2406     let unsafety = if abi == abi::Abi::RustIntrinsic {
2407         intrinsic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2408     } else {
2409         hir::Unsafety::Unsafe
2410     };
2411     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2412
2413     // Feature gate SIMD types in FFI, since I am not sure that the
2414     // ABIs are handled at all correctly. -huonw
2415     if abi != abi::Abi::RustIntrinsic
2416         && abi != abi::Abi::PlatformIntrinsic
2417         && !tcx.features().simd_ffi
2418     {
2419         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2420             if ty.is_simd() {
2421                 tcx.sess
2422                    .struct_span_err(
2423                        ast_ty.span,
2424                        &format!(
2425                            "use of SIMD type `{}` in FFI is highly experimental and \
2426                             may result in invalid code",
2427                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2428                        ),
2429                    )
2430                    .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2431                    .emit();
2432             }
2433         };
2434         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2435             check(&input, ty)
2436         }
2437         if let hir::Return(ref ty) = decl.output {
2438             check(&ty, *fty.output().skip_binder())
2439         }
2440     }
2441
2442     fty
2443 }
2444
2445 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2446     match tcx.hir().get_if_local(def_id) {
2447         Some(Node::ForeignItem(..)) => true,
2448         Some(_) => false,
2449         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2450     }
2451 }
2452
2453 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2454     match tcx.hir().get_if_local(def_id) {
2455         Some(Node::Item(&hir::Item {
2456             kind: hir::ItemKind::Static(_, mutbl, _), ..
2457         })) |
2458         Some(Node::ForeignItem( &hir::ForeignItem {
2459             kind: hir::ForeignItemKind::Static(_, mutbl), ..
2460         })) => Some(mutbl),
2461         Some(_) => None,
2462         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2463     }
2464 }
2465
2466 fn from_target_feature(
2467     tcx: TyCtxt<'_>,
2468     id: DefId,
2469     attr: &ast::Attribute,
2470     whitelist: &FxHashMap<String, Option<Symbol>>,
2471     target_features: &mut Vec<Symbol>,
2472 ) {
2473     let list = match attr.meta_item_list() {
2474         Some(list) => list,
2475         None => return,
2476     };
2477     let bad_item = |span| {
2478         let msg = "malformed `target_feature` attribute input";
2479         let code = "enable = \"..\"".to_owned();
2480         tcx.sess.struct_span_err(span, &msg)
2481             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2482             .emit();
2483     };
2484     let rust_features = tcx.features();
2485     for item in list {
2486         // Only `enable = ...` is accepted in the meta-item list.
2487         if !item.check_name(sym::enable) {
2488             bad_item(item.span());
2489             continue;
2490         }
2491
2492         // Must be of the form `enable = "..."` (a string).
2493         let value = match item.value_str() {
2494             Some(value) => value,
2495             None => {
2496                 bad_item(item.span());
2497                 continue;
2498             }
2499         };
2500
2501         // We allow comma separation to enable multiple features.
2502         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2503             // Only allow whitelisted features per platform.
2504             let feature_gate = match whitelist.get(feature) {
2505                 Some(g) => g,
2506                 None => {
2507                     let msg = format!(
2508                         "the feature named `{}` is not valid for this target",
2509                         feature
2510                     );
2511                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2512                     err.span_label(
2513                         item.span(),
2514                         format!("`{}` is not valid for this target", feature),
2515                     );
2516                     if feature.starts_with("+") {
2517                         let valid = whitelist.contains_key(&feature[1..]);
2518                         if valid {
2519                             err.help("consider removing the leading `+` in the feature name");
2520                         }
2521                     }
2522                     err.emit();
2523                     return None;
2524                 }
2525             };
2526
2527             // Only allow features whose feature gates have been enabled.
2528             let allowed = match feature_gate.as_ref().map(|s| *s) {
2529                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2530                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2531                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2532                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2533                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2534                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2535                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2536                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2537                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2538                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2539                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2540                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2541                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2542                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2543                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2544                 Some(name) => bug!("unknown target feature gate {}", name),
2545                 None => true,
2546             };
2547             if !allowed && id.is_local() {
2548                 feature_gate::emit_feature_err(
2549                     &tcx.sess.parse_sess,
2550                     feature_gate.unwrap(),
2551                     item.span(),
2552                     feature_gate::GateIssue::Language,
2553                     &format!("the target feature `{}` is currently unstable", feature),
2554                 );
2555             }
2556             Some(Symbol::intern(feature))
2557         }));
2558     }
2559 }
2560
2561 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2562     use rustc::mir::mono::Linkage::*;
2563
2564     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2565     // applicable to variable declarations and may not really make sense for
2566     // Rust code in the first place but whitelist them anyway and trust that
2567     // the user knows what s/he's doing. Who knows, unanticipated use cases
2568     // may pop up in the future.
2569     //
2570     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2571     // and don't have to be, LLVM treats them as no-ops.
2572     match name {
2573         "appending" => Appending,
2574         "available_externally" => AvailableExternally,
2575         "common" => Common,
2576         "extern_weak" => ExternalWeak,
2577         "external" => External,
2578         "internal" => Internal,
2579         "linkonce" => LinkOnceAny,
2580         "linkonce_odr" => LinkOnceODR,
2581         "private" => Private,
2582         "weak" => WeakAny,
2583         "weak_odr" => WeakODR,
2584         _ => {
2585             let span = tcx.hir().span_if_local(def_id);
2586             if let Some(span) = span {
2587                 tcx.sess.span_fatal(span, "invalid linkage specified")
2588             } else {
2589                 tcx.sess
2590                    .fatal(&format!("invalid linkage specified: {}", name))
2591             }
2592         }
2593     }
2594 }
2595
2596 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2597     let attrs = tcx.get_attrs(id);
2598
2599     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2600
2601     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2602
2603     let mut inline_span = None;
2604     let mut link_ordinal_span = None;
2605     for attr in attrs.iter() {
2606         if attr.check_name(sym::cold) {
2607             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2608         } else if attr.check_name(sym::rustc_allocator) {
2609             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2610         } else if attr.check_name(sym::unwind) {
2611             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2612         } else if attr.check_name(sym::ffi_returns_twice) {
2613             if tcx.is_foreign_item(id) {
2614                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2615             } else {
2616                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2617                 struct_span_err!(
2618                     tcx.sess,
2619                     attr.span,
2620                     E0724,
2621                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2622                 ).emit();
2623             }
2624         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2625             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2626         } else if attr.check_name(sym::naked) {
2627             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2628         } else if attr.check_name(sym::no_mangle) {
2629             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2630         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2631             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2632         } else if attr.check_name(sym::no_debug) {
2633             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2634         } else if attr.check_name(sym::used) {
2635             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2636         } else if attr.check_name(sym::thread_local) {
2637             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2638         } else if attr.check_name(sym::track_caller) {
2639             if tcx.fn_sig(id).abi() != abi::Abi::Rust {
2640                 struct_span_err!(
2641                     tcx.sess,
2642                     attr.span,
2643                     E0737,
2644                     "rust ABI is required to use `#[track_caller]`"
2645                 ).emit();
2646             }
2647             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2648         } else if attr.check_name(sym::export_name) {
2649             if let Some(s) = attr.value_str() {
2650                 if s.as_str().contains("\0") {
2651                     // `#[export_name = ...]` will be converted to a null-terminated string,
2652                     // so it may not contain any null characters.
2653                     struct_span_err!(
2654                         tcx.sess,
2655                         attr.span,
2656                         E0648,
2657                         "`export_name` may not contain null characters"
2658                     ).emit();
2659                 }
2660                 codegen_fn_attrs.export_name = Some(s);
2661             }
2662         } else if attr.check_name(sym::target_feature) {
2663             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2664                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2665                 tcx.sess.struct_span_err(attr.span, msg)
2666                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2667                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2668                     .emit();
2669             }
2670             from_target_feature(
2671                 tcx,
2672                 id,
2673                 attr,
2674                 &whitelist,
2675                 &mut codegen_fn_attrs.target_features,
2676             );
2677         } else if attr.check_name(sym::linkage) {
2678             if let Some(val) = attr.value_str() {
2679                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2680             }
2681         } else if attr.check_name(sym::link_section) {
2682             if let Some(val) = attr.value_str() {
2683                 if val.as_str().bytes().any(|b| b == 0) {
2684                     let msg = format!(
2685                         "illegal null byte in link_section \
2686                          value: `{}`",
2687                         &val
2688                     );
2689                     tcx.sess.span_err(attr.span, &msg);
2690                 } else {
2691                     codegen_fn_attrs.link_section = Some(val);
2692                 }
2693             }
2694         } else if attr.check_name(sym::link_name) {
2695             codegen_fn_attrs.link_name = attr.value_str();
2696         } else if attr.check_name(sym::link_ordinal) {
2697             link_ordinal_span = Some(attr.span);
2698             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2699                 codegen_fn_attrs.link_ordinal = ordinal;
2700             }
2701         }
2702     }
2703
2704     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2705         if attr.path != sym::inline {
2706             return ia;
2707         }
2708         match attr.meta().map(|i| i.kind) {
2709             Some(MetaItemKind::Word) => {
2710                 mark_used(attr);
2711                 InlineAttr::Hint
2712             }
2713             Some(MetaItemKind::List(ref items)) => {
2714                 mark_used(attr);
2715                 inline_span = Some(attr.span);
2716                 if items.len() != 1 {
2717                     span_err!(
2718                         tcx.sess.diagnostic(),
2719                         attr.span,
2720                         E0534,
2721                         "expected one argument"
2722                     );
2723                     InlineAttr::None
2724                 } else if list_contains_name(&items[..], sym::always) {
2725                     InlineAttr::Always
2726                 } else if list_contains_name(&items[..], sym::never) {
2727                     InlineAttr::Never
2728                 } else {
2729                     span_err!(
2730                         tcx.sess.diagnostic(),
2731                         items[0].span(),
2732                         E0535,
2733                         "invalid argument"
2734                     );
2735
2736                     InlineAttr::None
2737                 }
2738             }
2739             Some(MetaItemKind::NameValue(_)) => ia,
2740             None => ia,
2741         }
2742     });
2743
2744     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2745         if attr.path != sym::optimize {
2746             return ia;
2747         }
2748         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2749         match attr.meta().map(|i| i.kind) {
2750             Some(MetaItemKind::Word) => {
2751                 err(attr.span, "expected one argument");
2752                 ia
2753             }
2754             Some(MetaItemKind::List(ref items)) => {
2755                 mark_used(attr);
2756                 inline_span = Some(attr.span);
2757                 if items.len() != 1 {
2758                     err(attr.span, "expected one argument");
2759                     OptimizeAttr::None
2760                 } else if list_contains_name(&items[..], sym::size) {
2761                     OptimizeAttr::Size
2762                 } else if list_contains_name(&items[..], sym::speed) {
2763                     OptimizeAttr::Speed
2764                 } else {
2765                     err(items[0].span(), "invalid argument");
2766                     OptimizeAttr::None
2767                 }
2768             }
2769             Some(MetaItemKind::NameValue(_)) => ia,
2770             None => ia,
2771         }
2772     });
2773
2774     // If a function uses #[target_feature] it can't be inlined into general
2775     // purpose functions as they wouldn't have the right target features
2776     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2777     // respected.
2778
2779     if codegen_fn_attrs.target_features.len() > 0 {
2780         if codegen_fn_attrs.inline == InlineAttr::Always {
2781             if let Some(span) = inline_span {
2782                 tcx.sess.span_err(
2783                     span,
2784                     "cannot use `#[inline(always)]` with \
2785                      `#[target_feature]`",
2786                 );
2787             }
2788         }
2789     }
2790
2791     // Weak lang items have the same semantics as "std internal" symbols in the
2792     // sense that they're preserved through all our LTO passes and only
2793     // strippable by the linker.
2794     //
2795     // Additionally weak lang items have predetermined symbol names.
2796     if tcx.is_weak_lang_item(id) {
2797         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2798     }
2799     if let Some(name) = weak_lang_items::link_name(&attrs) {
2800         codegen_fn_attrs.export_name = Some(name);
2801         codegen_fn_attrs.link_name = Some(name);
2802     }
2803     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2804
2805     // Internal symbols to the standard library all have no_mangle semantics in
2806     // that they have defined symbol names present in the function name. This
2807     // also applies to weak symbols where they all have known symbol names.
2808     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2809         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2810     }
2811
2812     codegen_fn_attrs
2813 }
2814
2815 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2816     use syntax::ast::{Lit, LitIntType, LitKind};
2817     let meta_item_list = attr.meta_item_list();
2818     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2819     let sole_meta_list = match meta_item_list {
2820         Some([item]) => item.literal(),
2821         _ => None,
2822     };
2823     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2824         if *ordinal <= std::usize::MAX as u128 {
2825             Some(*ordinal as usize)
2826         } else {
2827             let msg = format!(
2828                 "ordinal value in `link_ordinal` is too large: `{}`",
2829                 &ordinal
2830             );
2831             tcx.sess.struct_span_err(attr.span, &msg)
2832                 .note("the value may not exceed `std::usize::MAX`")
2833                 .emit();
2834             None
2835         }
2836     } else {
2837         tcx.sess.struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
2838             .note("an unsuffixed integer value, e.g., `1`, is expected")
2839             .emit();
2840         None
2841     }
2842 }
2843
2844 fn check_link_name_xor_ordinal(
2845     tcx: TyCtxt<'_>,
2846     codegen_fn_attrs: &CodegenFnAttrs,
2847     inline_span: Option<Span>,
2848 ) {
2849     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
2850         return;
2851     }
2852     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
2853     if let Some(span) = inline_span {
2854         tcx.sess.span_err(span, msg);
2855     } else {
2856         tcx.sess.err(msg);
2857     }
2858 }