]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Aggregation of drive-by cosmetic changes.
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrisic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::lang_items::SizedTraitLangItem;
22 use crate::middle::resolve_lifetime as rl;
23 use crate::middle::weak_lang_items;
24 use rustc::mir::mono::Linkage;
25 use rustc::ty::query::Providers;
26 use rustc::ty::subst::{Subst, InternalSubsts};
27 use rustc::ty::util::Discr;
28 use rustc::ty::util::IntTypeExt;
29 use rustc::ty::subst::UnpackedKind;
30 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
31 use rustc::ty::{ReprOptions, ToPredicate};
32 use rustc::util::captures::Captures;
33 use rustc::util::nodemap::FxHashMap;
34 use rustc_target::spec::abi;
35
36 use syntax::ast;
37 use syntax::ast::{Ident, MetaItemKind};
38 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
39 use syntax::source_map::Spanned;
40 use syntax::feature_gate;
41 use syntax::symbol::{InternedString, kw, Symbol, sym};
42 use syntax_pos::{Span, DUMMY_SP};
43
44 use rustc::hir::def::{CtorKind, Res, DefKind};
45 use rustc::hir::Node;
46 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
47 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
48 use rustc::hir::GenericParamKind;
49 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
50
51 use errors::Applicability;
52
53 use std::iter;
54
55 struct OnlySelfBounds(bool);
56
57 ///////////////////////////////////////////////////////////////////////////
58 // Main entry point
59
60 fn collect_mod_item_types<'tcx>(tcx: TyCtxt<'_, 'tcx, 'tcx>, module_def_id: DefId) {
61     tcx.hir().visit_item_likes_in_module(
62         module_def_id,
63         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
64     );
65 }
66
67 pub fn provide(providers: &mut Providers<'_>) {
68     *providers = Providers {
69         type_of,
70         generics_of,
71         predicates_of,
72         predicates_defined_on,
73         explicit_predicates_of,
74         super_predicates_of,
75         type_param_predicates,
76         trait_def,
77         adt_def,
78         fn_sig,
79         impl_trait_ref,
80         impl_polarity,
81         is_foreign_item,
82         static_mutability,
83         codegen_fn_attrs,
84         collect_mod_item_types,
85         ..*providers
86     };
87 }
88
89 ///////////////////////////////////////////////////////////////////////////
90
91 /// Context specific to some particular item. This is what implements
92 /// `AstConv`. It has information about the predicates that are defined
93 /// on the trait. Unfortunately, this predicate information is
94 /// available in various different forms at various points in the
95 /// process. So we can't just store a pointer to e.g., the AST or the
96 /// parsed ty form, we have to be more flexible. To this end, the
97 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
98 /// `get_type_parameter_bounds` requests, drawing the information from
99 /// the AST (`hir::Generics`), recursively.
100 pub struct ItemCtxt<'a, 'tcx: 'a> {
101     tcx: TyCtxt<'a, 'tcx, 'tcx>,
102     item_def_id: DefId,
103 }
104
105 ///////////////////////////////////////////////////////////////////////////
106
107 struct CollectItemTypesVisitor<'a, 'tcx: 'a> {
108     tcx: TyCtxt<'a, 'tcx, 'tcx>,
109 }
110
111 impl<'a, 'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'a, 'tcx> {
112     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
113         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
114     }
115
116     fn visit_item(&mut self, item: &'tcx hir::Item) {
117         convert_item(self.tcx, item.hir_id);
118         intravisit::walk_item(self, item);
119     }
120
121     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
122         for param in &generics.params {
123             match param.kind {
124                 hir::GenericParamKind::Lifetime { .. } => {}
125                 hir::GenericParamKind::Type {
126                     default: Some(_), ..
127                 } => {
128                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
129                     self.tcx.type_of(def_id);
130                 }
131                 hir::GenericParamKind::Type { .. } => {}
132                 hir::GenericParamKind::Const { .. } => {
133                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
134                     self.tcx.type_of(def_id);
135                 }
136             }
137         }
138         intravisit::walk_generics(self, generics);
139     }
140
141     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
142         if let hir::ExprKind::Closure(..) = expr.node {
143             let def_id = self.tcx.hir().local_def_id_from_hir_id(expr.hir_id);
144             self.tcx.generics_of(def_id);
145             self.tcx.type_of(def_id);
146         }
147         intravisit::walk_expr(self, expr);
148     }
149
150     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
151         convert_trait_item(self.tcx, trait_item.hir_id);
152         intravisit::walk_trait_item(self, trait_item);
153     }
154
155     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
156         convert_impl_item(self.tcx, impl_item.hir_id);
157         intravisit::walk_impl_item(self, impl_item);
158     }
159 }
160
161 ///////////////////////////////////////////////////////////////////////////
162 // Utility types and common code for the above passes.
163
164 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
165     pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_def_id: DefId) -> ItemCtxt<'a, 'tcx> {
166         ItemCtxt { tcx, item_def_id }
167     }
168 }
169
170 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
171     pub fn to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
172         AstConv::ast_ty_to_ty(self, ast_ty)
173     }
174 }
175
176 impl<'a, 'tcx> AstConv<'tcx, 'tcx> for ItemCtxt<'a, 'tcx> {
177     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
178         self.tcx
179     }
180
181     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
182                                  -> &'tcx ty::GenericPredicates<'tcx> {
183         self.tcx
184             .at(span)
185             .type_param_predicates((self.item_def_id, def_id))
186     }
187
188     fn re_infer(
189         &self,
190         _span: Span,
191         _def: Option<&ty::GenericParamDef>,
192     ) -> Option<ty::Region<'tcx>> {
193         None
194     }
195
196     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
197         struct_span_err!(
198             self.tcx().sess,
199             span,
200             E0121,
201             "the type placeholder `_` is not allowed within types on item signatures"
202         ).span_label(span, "not allowed in type signatures")
203          .emit();
204
205         self.tcx().types.err
206     }
207
208     fn projected_ty_from_poly_trait_ref(
209         &self,
210         span: Span,
211         item_def_id: DefId,
212         poly_trait_ref: ty::PolyTraitRef<'tcx>,
213     ) -> Ty<'tcx> {
214         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
215             self.tcx().mk_projection(item_def_id, trait_ref.substs)
216         } else {
217             // no late-bound regions, we can just ignore the binder
218             span_err!(
219                 self.tcx().sess,
220                 span,
221                 E0212,
222                 "cannot extract an associated type from a higher-ranked trait bound \
223                  in this context"
224             );
225             self.tcx().types.err
226         }
227     }
228
229     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
230         // types in item signatures are not normalized, to avoid undue
231         // dependencies.
232         ty
233     }
234
235     fn set_tainted_by_errors(&self) {
236         // no obvious place to track this, so just let it go
237     }
238
239     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
240         // no place to record types from signatures?
241     }
242 }
243
244 fn type_param_predicates<'a, 'tcx>(
245     tcx: TyCtxt<'a, 'tcx, 'tcx>,
246     (item_def_id, def_id): (DefId, DefId),
247 ) -> &'tcx ty::GenericPredicates<'tcx> {
248     use rustc::hir::*;
249
250     // In the AST, bounds can derive from two places. Either
251     // written inline like `<T : Foo>` or in a where clause like
252     // `where T : Foo`.
253
254     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
255     let param_owner = tcx.hir().ty_param_owner(param_id);
256     let param_owner_def_id = tcx.hir().local_def_id_from_hir_id(param_owner);
257     let generics = tcx.generics_of(param_owner_def_id);
258     let index = generics.param_def_id_to_index[&def_id];
259     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
260
261     // Don't look for bounds where the type parameter isn't in scope.
262     let parent = if item_def_id == param_owner_def_id {
263         None
264     } else {
265         tcx.generics_of(item_def_id).parent
266     };
267
268     let result = parent.map_or(&tcx.common.empty_predicates, |parent| {
269         let icx = ItemCtxt::new(tcx, parent);
270         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
271     });
272     let mut extend = None;
273
274     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
275     let ast_generics = match tcx.hir().get_by_hir_id(item_hir_id) {
276         Node::TraitItem(item) => &item.generics,
277
278         Node::ImplItem(item) => &item.generics,
279
280         Node::Item(item) => {
281             match item.node {
282                 ItemKind::Fn(.., ref generics, _)
283                 | ItemKind::Impl(_, _, _, ref generics, ..)
284                 | ItemKind::Ty(_, ref generics)
285                 | ItemKind::Existential(ExistTy {
286                     ref generics,
287                     impl_trait_fn: None,
288                     ..
289                 })
290                 | ItemKind::Enum(_, ref generics)
291                 | ItemKind::Struct(_, ref generics)
292                 | ItemKind::Union(_, ref generics) => generics,
293                 ItemKind::Trait(_, _, ref generics, ..) => {
294                     // Implied `Self: Trait` and supertrait bounds.
295                     if param_id == item_hir_id {
296                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
297                         extend = Some((identity_trait_ref.to_predicate(), item.span));
298                     }
299                     generics
300                 }
301                 _ => return result,
302             }
303         }
304
305         Node::ForeignItem(item) => match item.node {
306             ForeignItemKind::Fn(_, _, ref generics) => generics,
307             _ => return result,
308         },
309
310         _ => return result,
311     };
312
313     let icx = ItemCtxt::new(tcx, item_def_id);
314     let mut result = (*result).clone();
315     result.predicates.extend(extend.into_iter());
316     result.predicates
317           .extend(icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty,
318                   OnlySelfBounds(true)));
319     tcx.arena.alloc(result)
320 }
321
322 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
323     /// Finds bounds from `hir::Generics`. This requires scanning through the
324     /// AST. We do this to avoid having to convert *all* the bounds, which
325     /// would create artificial cycles. Instead we can only convert the
326     /// bounds for a type parameter `X` if `X::Foo` is used.
327     fn type_parameter_bounds_in_generics(
328         &self,
329         ast_generics: &hir::Generics,
330         param_id: hir::HirId,
331         ty: Ty<'tcx>,
332         only_self_bounds: OnlySelfBounds,
333     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
334         let from_ty_params = ast_generics
335             .params
336             .iter()
337             .filter_map(|param| match param.kind {
338                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
339                 _ => None,
340             })
341             .flat_map(|bounds| bounds.iter())
342             .flat_map(|b| predicates_from_bound(self, ty, b));
343
344         let from_where_clauses = ast_generics
345             .where_clause
346             .predicates
347             .iter()
348             .filter_map(|wp| match *wp {
349                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
350                 _ => None,
351             })
352             .flat_map(|bp| {
353                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
354                     Some(ty)
355                 } else if !only_self_bounds.0 {
356                     Some(self.to_ty(&bp.bounded_ty))
357                 } else {
358                     None
359                 };
360                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
361             })
362             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
363
364         from_ty_params.chain(from_where_clauses).collect()
365     }
366 }
367
368 /// Tests whether this is the AST for a reference to the type
369 /// parameter with ID `param_id`. We use this so as to avoid running
370 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
371 /// conversion of the type to avoid inducing unnecessary cycles.
372 fn is_param<'a, 'tcx>(
373     tcx: TyCtxt<'a, 'tcx, 'tcx>,
374     ast_ty: &hir::Ty,
375     param_id: hir::HirId,
376 ) -> bool {
377     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node {
378         match path.res {
379             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
380                 def_id == tcx.hir().local_def_id_from_hir_id(param_id)
381             }
382             _ => false,
383         }
384     } else {
385         false
386     }
387 }
388
389 fn convert_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_id: hir::HirId) {
390     let it = tcx.hir().expect_item_by_hir_id(item_id);
391     debug!("convert: item {} with id {}", it.ident, it.hir_id);
392     let def_id = tcx.hir().local_def_id_from_hir_id(item_id);
393     match it.node {
394         // These don't define types.
395         hir::ItemKind::ExternCrate(_)
396         | hir::ItemKind::Use(..)
397         | hir::ItemKind::Mod(_)
398         | hir::ItemKind::GlobalAsm(_) => {}
399         hir::ItemKind::ForeignMod(ref foreign_mod) => {
400             for item in &foreign_mod.items {
401                 let def_id = tcx.hir().local_def_id_from_hir_id(item.hir_id);
402                 tcx.generics_of(def_id);
403                 tcx.type_of(def_id);
404                 tcx.predicates_of(def_id);
405                 if let hir::ForeignItemKind::Fn(..) = item.node {
406                     tcx.fn_sig(def_id);
407                 }
408             }
409         }
410         hir::ItemKind::Enum(ref enum_definition, _) => {
411             tcx.generics_of(def_id);
412             tcx.type_of(def_id);
413             tcx.predicates_of(def_id);
414             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
415         }
416         hir::ItemKind::Impl(..) => {
417             tcx.generics_of(def_id);
418             tcx.type_of(def_id);
419             tcx.impl_trait_ref(def_id);
420             tcx.predicates_of(def_id);
421         }
422         hir::ItemKind::Trait(..) => {
423             tcx.generics_of(def_id);
424             tcx.trait_def(def_id);
425             tcx.at(it.span).super_predicates_of(def_id);
426             tcx.predicates_of(def_id);
427         }
428         hir::ItemKind::TraitAlias(..) => {
429             tcx.generics_of(def_id);
430             tcx.at(it.span).super_predicates_of(def_id);
431             tcx.predicates_of(def_id);
432         }
433         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
434             tcx.generics_of(def_id);
435             tcx.type_of(def_id);
436             tcx.predicates_of(def_id);
437
438             for f in struct_def.fields() {
439                 let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
440                 tcx.generics_of(def_id);
441                 tcx.type_of(def_id);
442                 tcx.predicates_of(def_id);
443             }
444
445             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
446                 convert_variant_ctor(tcx, ctor_hir_id);
447             }
448         }
449
450         // Desugared from `impl Trait`, so visited by the function's return type.
451         hir::ItemKind::Existential(hir::ExistTy {
452             impl_trait_fn: Some(_),
453             ..
454         }) => {}
455
456         hir::ItemKind::Existential(..)
457         | hir::ItemKind::Ty(..)
458         | hir::ItemKind::Static(..)
459         | hir::ItemKind::Const(..)
460         | hir::ItemKind::Fn(..) => {
461             tcx.generics_of(def_id);
462             tcx.type_of(def_id);
463             tcx.predicates_of(def_id);
464             if let hir::ItemKind::Fn(..) = it.node {
465                 tcx.fn_sig(def_id);
466             }
467         }
468     }
469 }
470
471 fn convert_trait_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trait_item_id: hir::HirId) {
472     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
473     let def_id = tcx.hir().local_def_id_from_hir_id(trait_item.hir_id);
474     tcx.generics_of(def_id);
475
476     match trait_item.node {
477         hir::TraitItemKind::Const(..)
478         | hir::TraitItemKind::Type(_, Some(_))
479         | hir::TraitItemKind::Method(..) => {
480             tcx.type_of(def_id);
481             if let hir::TraitItemKind::Method(..) = trait_item.node {
482                 tcx.fn_sig(def_id);
483             }
484         }
485
486         hir::TraitItemKind::Type(_, None) => {}
487     };
488
489     tcx.predicates_of(def_id);
490 }
491
492 fn convert_impl_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, impl_item_id: hir::HirId) {
493     let def_id = tcx.hir().local_def_id_from_hir_id(impl_item_id);
494     tcx.generics_of(def_id);
495     tcx.type_of(def_id);
496     tcx.predicates_of(def_id);
497     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node {
498         tcx.fn_sig(def_id);
499     }
500 }
501
502 fn convert_variant_ctor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ctor_id: hir::HirId) {
503     let def_id = tcx.hir().local_def_id_from_hir_id(ctor_id);
504     tcx.generics_of(def_id);
505     tcx.type_of(def_id);
506     tcx.predicates_of(def_id);
507 }
508
509 fn convert_enum_variant_types<'a, 'tcx>(
510     tcx: TyCtxt<'a, 'tcx, 'tcx>,
511     def_id: DefId,
512     variants: &[hir::Variant],
513 ) {
514     let def = tcx.adt_def(def_id);
515     let repr_type = def.repr.discr_type();
516     let initial = repr_type.initial_discriminant(tcx);
517     let mut prev_discr = None::<Discr<'tcx>>;
518
519     // fill the discriminant values and field types
520     for variant in variants {
521         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
522         prev_discr = Some(
523             if let Some(ref e) = variant.node.disr_expr {
524                 let expr_did = tcx.hir().local_def_id_from_hir_id(e.hir_id);
525                 def.eval_explicit_discr(tcx, expr_did)
526             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
527                 Some(discr)
528             } else {
529                 struct_span_err!(
530                     tcx.sess,
531                     variant.span,
532                     E0370,
533                     "enum discriminant overflowed"
534                 ).span_label(
535                     variant.span,
536                     format!("overflowed on value after {}", prev_discr.unwrap()),
537                 ).note(&format!(
538                     "explicitly set `{} = {}` if that is desired outcome",
539                     variant.node.ident, wrapped_discr
540                 ))
541                 .emit();
542                 None
543             }.unwrap_or(wrapped_discr),
544         );
545
546         for f in variant.node.data.fields() {
547             let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
548             tcx.generics_of(def_id);
549             tcx.type_of(def_id);
550             tcx.predicates_of(def_id);
551         }
552
553         // Convert the ctor, if any. This also registers the variant as
554         // an item.
555         if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() {
556             convert_variant_ctor(tcx, ctor_hir_id);
557         }
558     }
559 }
560
561 fn convert_variant<'a, 'tcx>(
562     tcx: TyCtxt<'a, 'tcx, 'tcx>,
563     variant_did: Option<DefId>,
564     ctor_did: Option<DefId>,
565     ident: Ident,
566     discr: ty::VariantDiscr,
567     def: &hir::VariantData,
568     adt_kind: ty::AdtKind,
569     parent_did: DefId
570 ) -> ty::VariantDef {
571     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
572     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
573     let fields = def
574         .fields()
575         .iter()
576         .map(|f| {
577             let fid = tcx.hir().local_def_id_from_hir_id(f.hir_id);
578             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
579             if let Some(prev_span) = dup_span {
580                 struct_span_err!(
581                     tcx.sess,
582                     f.span,
583                     E0124,
584                     "field `{}` is already declared",
585                     f.ident
586                 ).span_label(f.span, "field already declared")
587                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
588                  .emit();
589             } else {
590                 seen_fields.insert(f.ident.modern(), f.span);
591             }
592
593             ty::FieldDef {
594                 did: fid,
595                 ident: f.ident,
596                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
597             }
598         })
599         .collect();
600     let recovered = match def {
601         hir::VariantData::Struct(_, r) => *r,
602         _ => false,
603     };
604     ty::VariantDef::new(
605         tcx,
606         ident,
607         variant_did,
608         ctor_did,
609         discr,
610         fields,
611         CtorKind::from_hir(def),
612         adt_kind,
613         parent_did,
614         recovered,
615     )
616 }
617
618 fn adt_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::AdtDef {
619     use rustc::hir::*;
620
621     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
622     let item = match tcx.hir().get_by_hir_id(hir_id) {
623         Node::Item(item) => item,
624         _ => bug!(),
625     };
626
627     let repr = ReprOptions::new(tcx, def_id);
628     let (kind, variants) = match item.node {
629         ItemKind::Enum(ref def, _) => {
630             let mut distance_from_explicit = 0;
631             let variants = def.variants
632                 .iter()
633                 .map(|v| {
634                     let variant_did = Some(tcx.hir().local_def_id_from_hir_id(v.node.id));
635                     let ctor_did = v.node.data.ctor_hir_id()
636                         .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
637
638                     let discr = if let Some(ref e) = v.node.disr_expr {
639                         distance_from_explicit = 0;
640                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id_from_hir_id(e.hir_id))
641                     } else {
642                         ty::VariantDiscr::Relative(distance_from_explicit)
643                     };
644                     distance_from_explicit += 1;
645
646                     convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr,
647                                     &v.node.data, AdtKind::Enum, def_id)
648                 })
649                 .collect();
650
651             (AdtKind::Enum, variants)
652         }
653         ItemKind::Struct(ref def, _) => {
654             let variant_did = None;
655             let ctor_did = def.ctor_hir_id()
656                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
657
658             let variants = std::iter::once(convert_variant(
659                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
660                 AdtKind::Struct, def_id,
661             )).collect();
662
663             (AdtKind::Struct, variants)
664         }
665         ItemKind::Union(ref def, _) => {
666             let variant_did = None;
667             let ctor_did = def.ctor_hir_id()
668                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
669
670             let variants = std::iter::once(convert_variant(
671                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
672                 AdtKind::Union, def_id,
673             )).collect();
674
675             (AdtKind::Union, variants)
676         },
677         _ => bug!(),
678     };
679     tcx.alloc_adt_def(def_id, kind, variants, repr)
680 }
681
682 /// Ensures that the super-predicates of the trait with a `DefId`
683 /// of `trait_def_id` are converted and stored. This also ensures that
684 /// the transitive super-predicates are converted.
685 fn super_predicates_of<'a, 'tcx>(
686     tcx: TyCtxt<'a, 'tcx, 'tcx>,
687     trait_def_id: DefId,
688 ) -> &'tcx ty::GenericPredicates<'tcx> {
689     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
690     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
691
692     let item = match tcx.hir().get_by_hir_id(trait_hir_id) {
693         Node::Item(item) => item,
694         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
695     };
696
697     let (generics, bounds) = match item.node {
698         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
699         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
700         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
701     };
702
703     let icx = ItemCtxt::new(tcx, trait_def_id);
704
705     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
706     let self_param_ty = tcx.mk_self_type();
707     let superbounds1 = compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
708
709     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
710
711     // Convert any explicit superbounds in the where-clause,
712     // e.g., `trait Foo where Self: Bar`.
713     // In the case of trait aliases, however, we include all bounds in the where-clause,
714     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
715     // as one of its "superpredicates".
716     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
717     let superbounds2 = icx.type_parameter_bounds_in_generics(
718         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
719
720     // Combine the two lists to form the complete set of superbounds:
721     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
722
723     // Now require that immediate supertraits are converted,
724     // which will, in turn, reach indirect supertraits.
725     for &(pred, span) in &superbounds {
726         debug!("superbound: {:?}", pred);
727         if let ty::Predicate::Trait(bound) = pred {
728             tcx.at(span).super_predicates_of(bound.def_id());
729         }
730     }
731
732     tcx.arena.alloc(ty::GenericPredicates {
733         parent: None,
734         predicates: superbounds,
735     })
736 }
737
738 fn trait_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::TraitDef {
739     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
740     let item = tcx.hir().expect_item_by_hir_id(hir_id);
741
742     let (is_auto, unsafety) = match item.node {
743         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
744         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
745         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
746     };
747
748     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
749     if paren_sugar && !tcx.features().unboxed_closures {
750         let mut err = tcx.sess.struct_span_err(
751             item.span,
752             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
753              which traits can use parenthetical notation",
754         );
755         help!(
756             &mut err,
757             "add `#![feature(unboxed_closures)]` to \
758              the crate attributes to use it"
759         );
760         err.emit();
761     }
762
763     let is_marker = tcx.has_attr(def_id, sym::marker);
764     let def_path_hash = tcx.def_path_hash(def_id);
765     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
766     tcx.arena.alloc(def)
767 }
768
769 fn has_late_bound_regions<'a, 'tcx>(
770     tcx: TyCtxt<'a, 'tcx, 'tcx>,
771     node: Node<'tcx>,
772 ) -> Option<Span> {
773     struct LateBoundRegionsDetector<'a, 'tcx: 'a> {
774         tcx: TyCtxt<'a, 'tcx, 'tcx>,
775         outer_index: ty::DebruijnIndex,
776         has_late_bound_regions: Option<Span>,
777     }
778
779     impl<'a, 'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'a, 'tcx> {
780         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
781             NestedVisitorMap::None
782         }
783
784         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
785             if self.has_late_bound_regions.is_some() {
786                 return;
787             }
788             match ty.node {
789                 hir::TyKind::BareFn(..) => {
790                     self.outer_index.shift_in(1);
791                     intravisit::walk_ty(self, ty);
792                     self.outer_index.shift_out(1);
793                 }
794                 _ => intravisit::walk_ty(self, ty),
795             }
796         }
797
798         fn visit_poly_trait_ref(
799             &mut self,
800             tr: &'tcx hir::PolyTraitRef,
801             m: hir::TraitBoundModifier,
802         ) {
803             if self.has_late_bound_regions.is_some() {
804                 return;
805             }
806             self.outer_index.shift_in(1);
807             intravisit::walk_poly_trait_ref(self, tr, m);
808             self.outer_index.shift_out(1);
809         }
810
811         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
812             if self.has_late_bound_regions.is_some() {
813                 return;
814             }
815
816             match self.tcx.named_region(lt.hir_id) {
817                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
818                 Some(rl::Region::LateBound(debruijn, _, _))
819                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
820                 Some(rl::Region::LateBound(..))
821                 | Some(rl::Region::LateBoundAnon(..))
822                 | Some(rl::Region::Free(..))
823                 | None => {
824                     self.has_late_bound_regions = Some(lt.span);
825                 }
826             }
827         }
828     }
829
830     fn has_late_bound_regions<'a, 'tcx>(
831         tcx: TyCtxt<'a, 'tcx, 'tcx>,
832         generics: &'tcx hir::Generics,
833         decl: &'tcx hir::FnDecl,
834     ) -> Option<Span> {
835         let mut visitor = LateBoundRegionsDetector {
836             tcx,
837             outer_index: ty::INNERMOST,
838             has_late_bound_regions: None,
839         };
840         for param in &generics.params {
841             if let GenericParamKind::Lifetime { .. } = param.kind {
842                 if tcx.is_late_bound(param.hir_id) {
843                     return Some(param.span);
844                 }
845             }
846         }
847         visitor.visit_fn_decl(decl);
848         visitor.has_late_bound_regions
849     }
850
851     match node {
852         Node::TraitItem(item) => match item.node {
853             hir::TraitItemKind::Method(ref sig, _) => {
854                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
855             }
856             _ => None,
857         },
858         Node::ImplItem(item) => match item.node {
859             hir::ImplItemKind::Method(ref sig, _) => {
860                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
861             }
862             _ => None,
863         },
864         Node::ForeignItem(item) => match item.node {
865             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
866                 has_late_bound_regions(tcx, generics, fn_decl)
867             }
868             _ => None,
869         },
870         Node::Item(item) => match item.node {
871             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
872                 has_late_bound_regions(tcx, generics, fn_decl)
873             }
874             _ => None,
875         },
876         _ => None,
877     }
878 }
879
880 fn generics_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::Generics {
881     use rustc::hir::*;
882
883     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
884
885     let node = tcx.hir().get_by_hir_id(hir_id);
886     let parent_def_id = match node {
887         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
888         Node::Ctor(..) | Node::Field(_) => {
889             let parent_id = tcx.hir().get_parent_item(hir_id);
890             Some(tcx.hir().local_def_id_from_hir_id(parent_id))
891         }
892         Node::Expr(&hir::Expr {
893             node: hir::ExprKind::Closure(..),
894             ..
895         }) => Some(tcx.closure_base_def_id(def_id)),
896         Node::Item(item) => match item.node {
897             ItemKind::Existential(hir::ExistTy { impl_trait_fn, .. }) => impl_trait_fn,
898             _ => None,
899         },
900         _ => None,
901     };
902
903     let mut opt_self = None;
904     let mut allow_defaults = false;
905
906     let no_generics = hir::Generics::empty();
907     let ast_generics = match node {
908         Node::TraitItem(item) => &item.generics,
909
910         Node::ImplItem(item) => &item.generics,
911
912         Node::Item(item) => {
913             match item.node {
914                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
915                     generics
916                 }
917
918                 ItemKind::Ty(_, ref generics)
919                 | ItemKind::Enum(_, ref generics)
920                 | ItemKind::Struct(_, ref generics)
921                 | ItemKind::Existential(hir::ExistTy { ref generics, .. })
922                 | ItemKind::Union(_, ref generics) => {
923                     allow_defaults = true;
924                     generics
925                 }
926
927                 ItemKind::Trait(_, _, ref generics, ..)
928                 | ItemKind::TraitAlias(ref generics, ..) => {
929                     // Add in the self type parameter.
930                     //
931                     // Something of a hack: use the node id for the trait, also as
932                     // the node id for the Self type parameter.
933                     let param_id = item.hir_id;
934
935                     opt_self = Some(ty::GenericParamDef {
936                         index: 0,
937                         name: kw::SelfUpper.as_interned_str(),
938                         def_id: tcx.hir().local_def_id_from_hir_id(param_id),
939                         pure_wrt_drop: false,
940                         kind: ty::GenericParamDefKind::Type {
941                             has_default: false,
942                             object_lifetime_default: rl::Set1::Empty,
943                             synthetic: None,
944                         },
945                     });
946
947                     allow_defaults = true;
948                     generics
949                 }
950
951                 _ => &no_generics,
952             }
953         }
954
955         Node::ForeignItem(item) => match item.node {
956             ForeignItemKind::Static(..) => &no_generics,
957             ForeignItemKind::Fn(_, _, ref generics) => generics,
958             ForeignItemKind::Type => &no_generics,
959         },
960
961         _ => &no_generics,
962     };
963
964     let has_self = opt_self.is_some();
965     let mut parent_has_self = false;
966     let mut own_start = has_self as u32;
967     let parent_count = parent_def_id.map_or(0, |def_id| {
968         let generics = tcx.generics_of(def_id);
969         assert_eq!(has_self, false);
970         parent_has_self = generics.has_self;
971         own_start = generics.count() as u32;
972         generics.parent_count + generics.params.len()
973     });
974
975     let mut params: Vec<_> = opt_self.into_iter().collect();
976
977     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
978     params.extend(
979         early_lifetimes
980             .enumerate()
981             .map(|(i, param)| ty::GenericParamDef {
982                 name: param.name.ident().as_interned_str(),
983                 index: own_start + i as u32,
984                 def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
985                 pure_wrt_drop: param.pure_wrt_drop,
986                 kind: ty::GenericParamDefKind::Lifetime,
987             }),
988     );
989
990     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
991
992     // Now create the real type parameters.
993     let type_start = own_start - has_self as u32 + params.len() as u32;
994     let mut i = 0;
995     params.extend(
996         ast_generics
997             .params
998             .iter()
999             .filter_map(|param| {
1000                 let kind = match param.kind {
1001                     GenericParamKind::Type {
1002                         ref default,
1003                         synthetic,
1004                         ..
1005                     } => {
1006                         if param.name.ident().name == kw::SelfUpper {
1007                             span_bug!(
1008                                 param.span,
1009                                 "`Self` should not be the name of a regular parameter"
1010                             );
1011                         }
1012
1013                         if !allow_defaults && default.is_some() {
1014                             if !tcx.features().default_type_parameter_fallback {
1015                                 tcx.lint_hir(
1016                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1017                                     param.hir_id,
1018                                     param.span,
1019                                     &format!(
1020                                         "defaults for type parameters are only allowed in \
1021                                         `struct`, `enum`, `type`, or `trait` definitions."
1022                                     ),
1023                                 );
1024                             }
1025                         }
1026
1027                         ty::GenericParamDefKind::Type {
1028                             has_default: default.is_some(),
1029                             object_lifetime_default: object_lifetime_defaults
1030                                 .as_ref()
1031                                 .map_or(rl::Set1::Empty, |o| o[i]),
1032                             synthetic,
1033                         }
1034                     }
1035                     GenericParamKind::Const { .. } => {
1036                         if param.name.ident().name == kw::SelfUpper {
1037                             span_bug!(
1038                                 param.span,
1039                                 "`Self` should not be the name of a regular parameter",
1040                             );
1041                         }
1042
1043                         ty::GenericParamDefKind::Const
1044                     }
1045                     _ => return None,
1046                 };
1047
1048                 let param_def = ty::GenericParamDef {
1049                     index: type_start + i as u32,
1050                     name: param.name.ident().as_interned_str(),
1051                     def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
1052                     pure_wrt_drop: param.pure_wrt_drop,
1053                     kind,
1054                 };
1055                 i += 1;
1056                 Some(param_def)
1057             })
1058     );
1059
1060     // provide junk type parameter defs - the only place that
1061     // cares about anything but the length is instantiation,
1062     // and we don't do that for closures.
1063     if let Node::Expr(&hir::Expr {
1064         node: hir::ExprKind::Closure(.., gen),
1065         ..
1066     }) = node
1067     {
1068         let dummy_args = if gen.is_some() {
1069             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1070         } else {
1071             &["<closure_kind>", "<closure_signature>"][..]
1072         };
1073
1074         params.extend(
1075             dummy_args
1076                 .iter()
1077                 .enumerate()
1078                 .map(|(i, &arg)| ty::GenericParamDef {
1079                     index: type_start + i as u32,
1080                     name: InternedString::intern(arg),
1081                     def_id,
1082                     pure_wrt_drop: false,
1083                     kind: ty::GenericParamDefKind::Type {
1084                         has_default: false,
1085                         object_lifetime_default: rl::Set1::Empty,
1086                         synthetic: None,
1087                     },
1088                 }),
1089         );
1090
1091         if let Some(upvars) = tcx.upvars(def_id) {
1092             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1093                 ty::GenericParamDef {
1094                     index: type_start + i,
1095                     name: InternedString::intern("<upvar>"),
1096                     def_id,
1097                     pure_wrt_drop: false,
1098                     kind: ty::GenericParamDefKind::Type {
1099                         has_default: false,
1100                         object_lifetime_default: rl::Set1::Empty,
1101                         synthetic: None,
1102                     },
1103                 }
1104             }));
1105         }
1106     }
1107
1108     let param_def_id_to_index = params
1109         .iter()
1110         .map(|param| (param.def_id, param.index))
1111         .collect();
1112
1113     tcx.arena.alloc(ty::Generics {
1114         parent: parent_def_id,
1115         parent_count,
1116         params,
1117         param_def_id_to_index,
1118         has_self: has_self || parent_has_self,
1119         has_late_bound_regions: has_late_bound_regions(tcx, node),
1120     })
1121 }
1122
1123 fn report_assoc_ty_on_inherent_impl<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span) {
1124     span_err!(
1125         tcx.sess,
1126         span,
1127         E0202,
1128         "associated types are not yet supported in inherent impls (see #8995)"
1129     );
1130 }
1131
1132 fn type_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Ty<'tcx> {
1133     checked_type_of(tcx, def_id, true).unwrap()
1134 }
1135
1136 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1137 ///
1138 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1139 /// you'd better just call [`type_of`] directly.
1140 pub fn checked_type_of<'a, 'tcx>(
1141     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1142     def_id: DefId,
1143     fail: bool,
1144 ) -> Option<Ty<'tcx>> {
1145     use rustc::hir::*;
1146
1147     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1148         Some(hir_id) => hir_id,
1149         None => {
1150             if !fail {
1151                 return None;
1152             }
1153             bug!("invalid node");
1154         }
1155     };
1156
1157     let icx = ItemCtxt::new(tcx, def_id);
1158
1159     Some(match tcx.hir().get_by_hir_id(hir_id) {
1160         Node::TraitItem(item) => match item.node {
1161             TraitItemKind::Method(..) => {
1162                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1163                 tcx.mk_fn_def(def_id, substs)
1164             }
1165             TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1166             TraitItemKind::Type(_, None) => {
1167                 if !fail {
1168                     return None;
1169                 }
1170                 span_bug!(item.span, "associated type missing default");
1171             }
1172         },
1173
1174         Node::ImplItem(item) => match item.node {
1175             ImplItemKind::Method(..) => {
1176                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1177                 tcx.mk_fn_def(def_id, substs)
1178             }
1179             ImplItemKind::Const(ref ty, _) => icx.to_ty(ty),
1180             ImplItemKind::Existential(_) => {
1181                 if tcx
1182                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1183                     .is_none()
1184                 {
1185                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1186                 }
1187
1188                 find_existential_constraints(tcx, def_id)
1189             }
1190             ImplItemKind::Type(ref ty) => {
1191                 if tcx
1192                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1193                     .is_none()
1194                 {
1195                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1196                 }
1197
1198                 icx.to_ty(ty)
1199             }
1200         },
1201
1202         Node::Item(item) => {
1203             match item.node {
1204                 ItemKind::Static(ref t, ..)
1205                 | ItemKind::Const(ref t, _)
1206                 | ItemKind::Ty(ref t, _)
1207                 | ItemKind::Impl(.., ref t, _) => icx.to_ty(t),
1208                 ItemKind::Fn(..) => {
1209                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1210                     tcx.mk_fn_def(def_id, substs)
1211                 }
1212                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1213                     let def = tcx.adt_def(def_id);
1214                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1215                     tcx.mk_adt(def, substs)
1216                 }
1217                 ItemKind::Existential(hir::ExistTy {
1218                     impl_trait_fn: None,
1219                     ..
1220                 }) => find_existential_constraints(tcx, def_id),
1221                 // Existential types desugared from `impl Trait`.
1222                 ItemKind::Existential(hir::ExistTy {
1223                     impl_trait_fn: Some(owner),
1224                     ..
1225                 }) => {
1226                     tcx.typeck_tables_of(owner)
1227                         .concrete_existential_types
1228                         .get(&def_id)
1229                         .map(|opaque| opaque.concrete_type)
1230                         .unwrap_or_else(|| {
1231                             // This can occur if some error in the
1232                             // owner fn prevented us from populating
1233                             // the `concrete_existential_types` table.
1234                             tcx.sess.delay_span_bug(
1235                                 DUMMY_SP,
1236                                 &format!(
1237                                     "owner {:?} has no existential type for {:?} in its tables",
1238                                     owner, def_id,
1239                                 ),
1240                             );
1241                             tcx.types.err
1242                         })
1243                 }
1244                 ItemKind::Trait(..)
1245                 | ItemKind::TraitAlias(..)
1246                 | ItemKind::Mod(..)
1247                 | ItemKind::ForeignMod(..)
1248                 | ItemKind::GlobalAsm(..)
1249                 | ItemKind::ExternCrate(..)
1250                 | ItemKind::Use(..) => {
1251                     if !fail {
1252                         return None;
1253                     }
1254                     span_bug!(
1255                         item.span,
1256                         "compute_type_of_item: unexpected item type: {:?}",
1257                         item.node
1258                     );
1259                 }
1260             }
1261         }
1262
1263         Node::ForeignItem(foreign_item) => match foreign_item.node {
1264             ForeignItemKind::Fn(..) => {
1265                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1266                 tcx.mk_fn_def(def_id, substs)
1267             }
1268             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1269             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1270         },
1271
1272         Node::Ctor(&ref def) | Node::Variant(&Spanned {
1273             node: hir::VariantKind { data: ref def, .. },
1274             ..
1275         }) => match *def {
1276             VariantData::Unit(..) | VariantData::Struct(..) => {
1277                 tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id))
1278             }
1279             VariantData::Tuple(..) => {
1280                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1281                 tcx.mk_fn_def(def_id, substs)
1282             }
1283         },
1284
1285         Node::Field(field) => icx.to_ty(&field.ty),
1286
1287         Node::Expr(&hir::Expr {
1288             node: hir::ExprKind::Closure(.., gen),
1289             ..
1290         }) => {
1291             if gen.is_some() {
1292                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1293             }
1294
1295             let substs = ty::ClosureSubsts {
1296                 substs: InternalSubsts::identity_for_item(tcx, def_id),
1297             };
1298
1299             tcx.mk_closure(def_id, substs)
1300         }
1301
1302         Node::AnonConst(_) => {
1303             let parent_node = tcx.hir().get_by_hir_id(tcx.hir().get_parent_node_by_hir_id(hir_id));
1304             match parent_node {
1305                 Node::Ty(&hir::Ty {
1306                     node: hir::TyKind::Array(_, ref constant),
1307                     ..
1308                 })
1309                 | Node::Ty(&hir::Ty {
1310                     node: hir::TyKind::Typeof(ref constant),
1311                     ..
1312                 })
1313                 | Node::Expr(&hir::Expr {
1314                     node: ExprKind::Repeat(_, ref constant),
1315                     ..
1316                 }) if constant.hir_id == hir_id =>
1317                 {
1318                     tcx.types.usize
1319                 }
1320
1321                 Node::Variant(&Spanned {
1322                     node:
1323                         VariantKind {
1324                             disr_expr: Some(ref e),
1325                             ..
1326                         },
1327                     ..
1328                 }) if e.hir_id == hir_id =>
1329                 {
1330                     tcx.adt_def(tcx.hir().get_parent_did_by_hir_id(hir_id))
1331                         .repr
1332                         .discr_type()
1333                         .to_ty(tcx)
1334                 }
1335
1336                 Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) |
1337                 Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) |
1338                 Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) |
1339                 Node::TraitRef(..) => {
1340                     let path = match parent_node {
1341                         Node::Ty(&hir::Ty {
1342                             node: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1343                             ..
1344                         })
1345                         | Node::Expr(&hir::Expr {
1346                             node: ExprKind::Path(QPath::Resolved(_, ref path)),
1347                             ..
1348                         }) => {
1349                             Some(&**path)
1350                         }
1351                         Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => {
1352                             if let QPath::Resolved(_, ref path) = **path {
1353                                 Some(&**path)
1354                             } else {
1355                                 None
1356                             }
1357                         }
1358                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(path),
1359                         _ => None,
1360                     };
1361
1362                     if let Some(path) = path {
1363                         let arg_index = path.segments.iter()
1364                             .filter_map(|seg| seg.args.as_ref())
1365                             .map(|generic_args| generic_args.args.as_ref())
1366                             .find_map(|args| {
1367                                 args.iter()
1368                                     .filter(|arg| arg.is_const())
1369                                     .enumerate()
1370                                     .filter(|(_, arg)| arg.id() == hir_id)
1371                                     .map(|(index, _)| index)
1372                                     .next()
1373                             })
1374                             .or_else(|| {
1375                                 if !fail {
1376                                     None
1377                                 } else {
1378                                     bug!("no arg matching AnonConst in path")
1379                                 }
1380                             })?;
1381
1382                         // We've encountered an `AnonConst` in some path, so we need to
1383                         // figure out which generic parameter it corresponds to and return
1384                         // the relevant type.
1385                         let generics = match path.res {
1386                             Res::Def(DefKind::Ctor(..), def_id) => {
1387                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1388                             }
1389                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1390                             Res::Err => return Some(tcx.types.err),
1391                             _ if !fail => return None,
1392                             res => {
1393                                 tcx.sess.delay_span_bug(
1394                                     DUMMY_SP,
1395                                     &format!(
1396                                         "unexpected const parent path def {:?}",
1397                                         res,
1398                                     ),
1399                                 );
1400                                 return Some(tcx.types.err);
1401                             }
1402                         };
1403
1404                         generics.params.iter()
1405                             .filter(|param| {
1406                                 if let ty::GenericParamDefKind::Const = param.kind {
1407                                     true
1408                                 } else {
1409                                     false
1410                                 }
1411                             })
1412                             .nth(arg_index)
1413                             .map(|param| tcx.type_of(param.def_id))
1414                             // This is no generic parameter associated with the arg. This is
1415                             // probably from an extra arg where one is not needed.
1416                             .unwrap_or(tcx.types.err)
1417                     } else {
1418                         if !fail {
1419                             return None;
1420                         }
1421                         tcx.sess.delay_span_bug(
1422                             DUMMY_SP,
1423                             &format!(
1424                                 "unexpected const parent path {:?}",
1425                                 parent_node,
1426                             ),
1427                         );
1428                         return Some(tcx.types.err);
1429                     }
1430                 }
1431
1432                 x => {
1433                     if !fail {
1434                         return None;
1435                     }
1436                     tcx.sess.delay_span_bug(
1437                         DUMMY_SP,
1438                         &format!(
1439                             "unexpected const parent in type_of_def_id(): {:?}", x
1440                         ),
1441                     );
1442                     tcx.types.err
1443                 }
1444             }
1445         }
1446
1447         Node::GenericParam(param) => match &param.kind {
1448             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1449             hir::GenericParamKind::Const { ref ty, .. } => {
1450                 icx.to_ty(ty)
1451             }
1452             x => {
1453                 if !fail {
1454                     return None;
1455                 }
1456                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1457             },
1458         },
1459
1460         x => {
1461             if !fail {
1462                 return None;
1463             }
1464             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1465         }
1466     })
1467 }
1468
1469 fn find_existential_constraints<'a, 'tcx>(
1470     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1471     def_id: DefId,
1472 ) -> Ty<'tcx> {
1473     use rustc::hir::{ImplItem, Item, TraitItem};
1474
1475     debug!("find_existential_constraints({:?})", def_id);
1476
1477     struct ConstraintLocator<'a, 'tcx: 'a> {
1478         tcx: TyCtxt<'a, 'tcx, 'tcx>,
1479         def_id: DefId,
1480         // (first found type span, actual type, mapping from the existential type's generic
1481         // parameters to the concrete type's generic parameters)
1482         //
1483         // The mapping is an index for each use site of a generic parameter in the concrete type
1484         //
1485         // The indices index into the generic parameters on the existential type.
1486         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1487     }
1488
1489     impl<'a, 'tcx> ConstraintLocator<'a, 'tcx> {
1490         fn check(&mut self, def_id: DefId) {
1491             trace!("checking {:?}", def_id);
1492             // don't try to check items that cannot possibly constrain the type
1493             if !self.tcx.has_typeck_tables(def_id) {
1494                 trace!("no typeck tables for {:?}", def_id);
1495                 return;
1496             }
1497             let ty = self
1498                 .tcx
1499                 .typeck_tables_of(def_id)
1500                 .concrete_existential_types
1501                 .get(&self.def_id);
1502             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1503                 // FIXME(oli-obk): trace the actual span from inference to improve errors
1504                 let span = self.tcx.def_span(def_id);
1505                 // used to quickly look up the position of a generic parameter
1506                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1507                 // Skipping binder is ok, since we only use this to find generic parameters and
1508                 // their positions.
1509                 for (idx, subst) in substs.iter().enumerate() {
1510                     if let UnpackedKind::Type(ty) = subst.unpack() {
1511                         if let ty::Param(p) = ty.sty {
1512                             if index_map.insert(p, idx).is_some() {
1513                                 // There was already an entry for `p`, meaning a generic parameter
1514                                 // was used twice.
1515                                 self.tcx.sess.span_err(
1516                                     span,
1517                                     &format!(
1518                                         "defining existential type use restricts existential \
1519                                          type by using the generic parameter `{}` twice",
1520                                         p.name
1521                                     ),
1522                                 );
1523                                 return;
1524                             }
1525                         } else {
1526                             self.tcx.sess.delay_span_bug(
1527                                 span,
1528                                 &format!(
1529                                     "non-defining exist ty use in defining scope: {:?}, {:?}",
1530                                     concrete_type, substs,
1531                                 ),
1532                             );
1533                         }
1534                     }
1535                 }
1536                 // Compute the index within the existential type for each generic parameter used in
1537                 // the concrete type.
1538                 let indices = concrete_type
1539                     .subst(self.tcx, substs)
1540                     .walk()
1541                     .filter_map(|t| match &t.sty {
1542                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1543                         _ => None,
1544                     }).collect();
1545                 let is_param = |ty: Ty<'_>| match ty.sty {
1546                     ty::Param(_) => true,
1547                     _ => false,
1548                 };
1549                 if !substs.types().all(is_param) {
1550                     self.tcx.sess.span_err(
1551                         span,
1552                         "defining existential type use does not fully define existential type",
1553                     );
1554                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1555                     let mut ty = concrete_type.walk().fuse();
1556                     let mut p_ty = prev_ty.walk().fuse();
1557                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) {
1558                         // type parameters are equal to any other type parameter for the purpose of
1559                         // concrete type equality, as it is possible to obtain the same type just
1560                         // by passing matching parameters to a function.
1561                         (ty::Param(_), ty::Param(_)) => true,
1562                         _ => t == p,
1563                     });
1564                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1565                         // found different concrete types for the existential type
1566                         let mut err = self.tcx.sess.struct_span_err(
1567                             span,
1568                             "concrete type differs from previous defining existential type use",
1569                         );
1570                         err.span_label(
1571                             span,
1572                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1573                         );
1574                         err.span_note(prev_span, "previous use here");
1575                         err.emit();
1576                     } else if indices != *prev_indices {
1577                         // found "same" concrete types, but the generic parameter order differs
1578                         let mut err = self.tcx.sess.struct_span_err(
1579                             span,
1580                             "concrete type's generic parameters differ from previous defining use",
1581                         );
1582                         use std::fmt::Write;
1583                         let mut s = String::new();
1584                         write!(s, "expected [").unwrap();
1585                         let list = |s: &mut String, indices: &Vec<usize>| {
1586                             let mut indices = indices.iter().cloned();
1587                             if let Some(first) = indices.next() {
1588                                 write!(s, "`{}`", substs[first]).unwrap();
1589                                 for i in indices {
1590                                     write!(s, ", `{}`", substs[i]).unwrap();
1591                                 }
1592                             }
1593                         };
1594                         list(&mut s, prev_indices);
1595                         write!(s, "], got [").unwrap();
1596                         list(&mut s, &indices);
1597                         write!(s, "]").unwrap();
1598                         err.span_label(span, s);
1599                         err.span_note(prev_span, "previous use here");
1600                         err.emit();
1601                     }
1602                 } else {
1603                     self.found = Some((span, concrete_type, indices));
1604                 }
1605             }
1606         }
1607     }
1608
1609     impl<'a, 'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'a, 'tcx> {
1610         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1611             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1612         }
1613         fn visit_item(&mut self, it: &'tcx Item) {
1614             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1615             // The existential type itself or its children are not within its reveal scope.
1616             if def_id != self.def_id {
1617                 self.check(def_id);
1618                 intravisit::walk_item(self, it);
1619             }
1620         }
1621         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1622             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1623             // The existential type itself or its children are not within its reveal scope.
1624             if def_id != self.def_id {
1625                 self.check(def_id);
1626                 intravisit::walk_impl_item(self, it);
1627             }
1628         }
1629         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1630             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1631             self.check(def_id);
1632             intravisit::walk_trait_item(self, it);
1633         }
1634     }
1635
1636     let mut locator = ConstraintLocator {
1637         def_id,
1638         tcx,
1639         found: None,
1640     };
1641     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1642     let parent = tcx.hir().get_parent_item(hir_id);
1643
1644     trace!("parent_id: {:?}", parent);
1645
1646     if parent == hir::CRATE_HIR_ID {
1647         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1648     } else {
1649         trace!("parent: {:?}", tcx.hir().get_by_hir_id(parent));
1650         match tcx.hir().get_by_hir_id(parent) {
1651             Node::Item(ref it) => intravisit::walk_item(&mut locator, it),
1652             Node::ImplItem(ref it) => intravisit::walk_impl_item(&mut locator, it),
1653             Node::TraitItem(ref it) => intravisit::walk_trait_item(&mut locator, it),
1654             other => bug!(
1655                 "{:?} is not a valid parent of an existential type item",
1656                 other
1657             ),
1658         }
1659     }
1660
1661     match locator.found {
1662         Some((_, ty, _)) => ty,
1663         None => {
1664             let span = tcx.def_span(def_id);
1665             tcx.sess.span_err(span, "could not find defining uses");
1666             tcx.types.err
1667         }
1668     }
1669 }
1670
1671 fn fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> ty::PolyFnSig<'tcx> {
1672     use rustc::hir::*;
1673     use rustc::hir::Node::*;
1674
1675     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1676
1677     let icx = ItemCtxt::new(tcx, def_id);
1678
1679     match tcx.hir().get_by_hir_id(hir_id) {
1680         TraitItem(hir::TraitItem {
1681             node: TraitItemKind::Method(sig, _),
1682             ..
1683         })
1684         | ImplItem(hir::ImplItem {
1685             node: ImplItemKind::Method(sig, _),
1686             ..
1687         }) => AstConv::ty_of_fn(&icx, sig.header.unsafety, sig.header.abi, &sig.decl),
1688
1689         Item(hir::Item {
1690             node: ItemKind::Fn(decl, header, _, _),
1691             ..
1692         }) => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl),
1693
1694         ForeignItem(&hir::ForeignItem {
1695             node: ForeignItemKind::Fn(ref fn_decl, _, _),
1696             ..
1697         }) => {
1698             let abi = tcx.hir().get_foreign_abi_by_hir_id(hir_id);
1699             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1700         }
1701
1702         Ctor(data) | Variant(Spanned {
1703             node: hir::VariantKind { data, ..  },
1704             ..
1705         }) if data.ctor_hir_id().is_some() => {
1706             let ty = tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id));
1707             let inputs = data.fields()
1708                 .iter()
1709                 .map(|f| tcx.type_of(tcx.hir().local_def_id_from_hir_id(f.hir_id)));
1710             ty::Binder::bind(tcx.mk_fn_sig(
1711                 inputs,
1712                 ty,
1713                 false,
1714                 hir::Unsafety::Normal,
1715                 abi::Abi::Rust,
1716             ))
1717         }
1718
1719         Expr(&hir::Expr {
1720             node: hir::ExprKind::Closure(..),
1721             ..
1722         }) => {
1723             // Closure signatures are not like other function
1724             // signatures and cannot be accessed through `fn_sig`. For
1725             // example, a closure signature excludes the `self`
1726             // argument. In any case they are embedded within the
1727             // closure type as part of the `ClosureSubsts`.
1728             //
1729             // To get
1730             // the signature of a closure, you should use the
1731             // `closure_sig` method on the `ClosureSubsts`:
1732             //
1733             //    closure_substs.closure_sig(def_id, tcx)
1734             //
1735             // or, inside of an inference context, you can use
1736             //
1737             //    infcx.closure_sig(def_id, closure_substs)
1738             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1739         }
1740
1741         x => {
1742             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1743         }
1744     }
1745 }
1746
1747 fn impl_trait_ref<'a, 'tcx>(
1748     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1749     def_id: DefId,
1750 ) -> Option<ty::TraitRef<'tcx>> {
1751     let icx = ItemCtxt::new(tcx, def_id);
1752
1753     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1754     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1755         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1756             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1757                 let selfty = tcx.type_of(def_id);
1758                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1759             })
1760         }
1761         _ => bug!(),
1762     }
1763 }
1764
1765 fn impl_polarity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> hir::ImplPolarity {
1766     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1767     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1768         hir::ItemKind::Impl(_, polarity, ..) => polarity,
1769         ref item => bug!("impl_polarity: {:?} not an impl", item),
1770     }
1771 }
1772
1773 // Is it marked with ?Sized
1774 fn is_unsized<'gcx: 'tcx, 'tcx>(
1775     astconv: &dyn AstConv<'gcx, 'tcx>,
1776     ast_bounds: &[hir::GenericBound],
1777     span: Span,
1778 ) -> bool {
1779     let tcx = astconv.tcx();
1780
1781     // Try to find an unbound in bounds.
1782     let mut unbound = None;
1783     for ab in ast_bounds {
1784         if let &hir::GenericBound::Trait(ref ptr, hir::TraitBoundModifier::Maybe) = ab {
1785             if unbound.is_none() {
1786                 unbound = Some(ptr.trait_ref.clone());
1787             } else {
1788                 span_err!(
1789                     tcx.sess,
1790                     span,
1791                     E0203,
1792                     "type parameter has more than one relaxed default \
1793                      bound, only one is supported"
1794                 );
1795             }
1796         }
1797     }
1798
1799     let kind_id = tcx.lang_items().require(SizedTraitLangItem);
1800     match unbound {
1801         Some(ref tpb) => {
1802             // FIXME(#8559) currently requires the unbound to be built-in.
1803             if let Ok(kind_id) = kind_id {
1804                 if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
1805                     tcx.sess.span_warn(
1806                         span,
1807                         "default bound relaxed for a type parameter, but \
1808                          this does nothing because the given bound is not \
1809                          a default. Only `?Sized` is supported",
1810                     );
1811                 }
1812             }
1813         }
1814         _ if kind_id.is_ok() => {
1815             return false;
1816         }
1817         // No lang item for Sized, so we can't add it as a bound.
1818         None => {}
1819     }
1820
1821     true
1822 }
1823
1824 /// Returns the early-bound lifetimes declared in this generics
1825 /// listing. For anything other than fns/methods, this is just all
1826 /// the lifetimes that are declared. For fns or methods, we have to
1827 /// screen out those that do not appear in any where-clauses etc using
1828 /// `resolve_lifetime::early_bound_lifetimes`.
1829 fn early_bound_lifetimes_from_generics<'a, 'tcx>(
1830     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1831     generics: &'a hir::Generics,
1832 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1833     generics
1834         .params
1835         .iter()
1836         .filter(move |param| match param.kind {
1837             GenericParamKind::Lifetime { .. } => {
1838                 !tcx.is_late_bound(param.hir_id)
1839             }
1840             _ => false,
1841         })
1842 }
1843
1844 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1845 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1846 /// inferred constraints concerning which regions outlive other regions.
1847 fn predicates_defined_on<'a, 'tcx>(
1848     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1849     def_id: DefId,
1850 ) -> &'tcx ty::GenericPredicates<'tcx> {
1851     debug!("predicates_defined_on({:?})", def_id);
1852     let mut result = tcx.explicit_predicates_of(def_id);
1853     debug!(
1854         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1855         def_id,
1856         result,
1857     );
1858     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1859     if !inferred_outlives.is_empty() {
1860         let span = tcx.def_span(def_id);
1861         debug!(
1862             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1863             def_id,
1864             inferred_outlives,
1865         );
1866         let mut predicates = (*result).clone();
1867         predicates.predicates.extend(inferred_outlives.iter().map(|&p| (p, span)));
1868         result = tcx.arena.alloc(predicates);
1869     }
1870     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1871     result
1872 }
1873
1874 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1875 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1876 /// `Self: Trait` predicates for traits.
1877 fn predicates_of<'a, 'tcx>(
1878     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1879     def_id: DefId,
1880 ) -> &'tcx ty::GenericPredicates<'tcx> {
1881     let mut result = tcx.predicates_defined_on(def_id);
1882
1883     if tcx.is_trait(def_id) {
1884         // For traits, add `Self: Trait` predicate. This is
1885         // not part of the predicates that a user writes, but it
1886         // is something that one must prove in order to invoke a
1887         // method or project an associated type.
1888         //
1889         // In the chalk setup, this predicate is not part of the
1890         // "predicates" for a trait item. But it is useful in
1891         // rustc because if you directly (e.g.) invoke a trait
1892         // method like `Trait::method(...)`, you must naturally
1893         // prove that the trait applies to the types that were
1894         // used, and adding the predicate into this list ensures
1895         // that this is done.
1896         let span = tcx.def_span(def_id);
1897         let mut predicates = (*result).clone();
1898         predicates.predicates.push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1899         result = tcx.arena.alloc(predicates);
1900     }
1901     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1902     result
1903 }
1904
1905 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1906 /// N.B., this does not include any implied/inferred constraints.
1907 fn explicit_predicates_of<'a, 'tcx>(
1908     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1909     def_id: DefId,
1910 ) -> &'tcx ty::GenericPredicates<'tcx> {
1911     use rustc::hir::*;
1912     use rustc_data_structures::fx::FxHashSet;
1913
1914     debug!("explicit_predicates_of(def_id={:?})", def_id);
1915
1916     /// A data structure with unique elements, which preserves order of insertion.
1917     /// Preserving the order of insertion is important here so as not to break
1918     /// compile-fail UI tests.
1919     struct UniquePredicates<'tcx> {
1920         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1921         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1922     }
1923
1924     impl<'tcx> UniquePredicates<'tcx> {
1925         fn new() -> Self {
1926             UniquePredicates {
1927                 predicates: vec![],
1928                 uniques: FxHashSet::default(),
1929             }
1930         }
1931
1932         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1933             if self.uniques.insert(value) {
1934                 self.predicates.push(value);
1935             }
1936         }
1937
1938         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1939             for value in iter {
1940                 self.push(value);
1941             }
1942         }
1943     }
1944
1945     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1946         Some(hir_id) => hir_id,
1947         None => return tcx.predicates_of(def_id),
1948     };
1949     let node = tcx.hir().get_by_hir_id(hir_id);
1950
1951     let mut is_trait = None;
1952     let mut is_default_impl_trait = None;
1953
1954     let icx = ItemCtxt::new(tcx, def_id);
1955     let no_generics = hir::Generics::empty();
1956     let empty_trait_items = HirVec::new();
1957
1958     let mut predicates = UniquePredicates::new();
1959
1960     let ast_generics = match node {
1961         Node::TraitItem(item) => &item.generics,
1962
1963         Node::ImplItem(item) => match item.node {
1964             ImplItemKind::Existential(ref bounds) => {
1965                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1966                 let opaque_ty = tcx.mk_opaque(def_id, substs);
1967
1968                 // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1969                 let bounds = compute_bounds(
1970                     &icx,
1971                     opaque_ty,
1972                     bounds,
1973                     SizedByDefault::Yes,
1974                     tcx.def_span(def_id),
1975                 );
1976
1977                 predicates.extend(bounds.predicates(tcx, opaque_ty));
1978                 &item.generics
1979             }
1980             _ => &item.generics,
1981         },
1982
1983         Node::Item(item) => {
1984             match item.node {
1985                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
1986                     if defaultness.is_default() {
1987                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1988                     }
1989                     generics
1990                 }
1991                 ItemKind::Fn(.., ref generics, _)
1992                 | ItemKind::Ty(_, ref generics)
1993                 | ItemKind::Enum(_, ref generics)
1994                 | ItemKind::Struct(_, ref generics)
1995                 | ItemKind::Union(_, ref generics) => generics,
1996
1997                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
1998                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1999                     generics
2000                 }
2001                 ItemKind::TraitAlias(ref generics, _) => {
2002                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
2003                     generics
2004                 }
2005                 ItemKind::Existential(ExistTy {
2006                     ref bounds,
2007                     impl_trait_fn,
2008                     ref generics,
2009                     origin: _,
2010                 }) => {
2011                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2012                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2013
2014                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2015                     let bounds = compute_bounds(
2016                         &icx,
2017                         opaque_ty,
2018                         bounds,
2019                         SizedByDefault::Yes,
2020                         tcx.def_span(def_id),
2021                     );
2022
2023                     if impl_trait_fn.is_some() {
2024                         // opaque types
2025                         return tcx.arena.alloc(ty::GenericPredicates {
2026                             parent: None,
2027                             predicates: bounds.predicates(tcx, opaque_ty),
2028                         });
2029                     } else {
2030                         // named existential types
2031                         predicates.extend(bounds.predicates(tcx, opaque_ty));
2032                         generics
2033                     }
2034                 }
2035
2036                 _ => &no_generics,
2037             }
2038         }
2039
2040         Node::ForeignItem(item) => match item.node {
2041             ForeignItemKind::Static(..) => &no_generics,
2042             ForeignItemKind::Fn(_, _, ref generics) => generics,
2043             ForeignItemKind::Type => &no_generics,
2044         },
2045
2046         _ => &no_generics,
2047     };
2048
2049     let generics = tcx.generics_of(def_id);
2050     let parent_count = generics.parent_count as u32;
2051     let has_own_self = generics.has_self && parent_count == 0;
2052
2053     // Below we'll consider the bounds on the type parameters (including `Self`)
2054     // and the explicit where-clauses, but to get the full set of predicates
2055     // on a trait we need to add in the supertrait bounds and bounds found on
2056     // associated types.
2057     if let Some((_trait_ref, _)) = is_trait {
2058         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2059     }
2060
2061     // In default impls, we can assume that the self type implements
2062     // the trait. So in:
2063     //
2064     //     default impl Foo for Bar { .. }
2065     //
2066     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2067     // (see below). Recall that a default impl is not itself an impl, but rather a
2068     // set of defaults that can be incorporated into another impl.
2069     if let Some(trait_ref) = is_default_impl_trait {
2070         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2071     }
2072
2073     // Collect the region predicates that were declared inline as
2074     // well. In the case of parameters declared on a fn or method, we
2075     // have to be careful to only iterate over early-bound regions.
2076     let mut index = parent_count + has_own_self as u32;
2077     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2078         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2079             def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
2080             index,
2081             name: param.name.ident().as_interned_str(),
2082         }));
2083         index += 1;
2084
2085         match param.kind {
2086             GenericParamKind::Lifetime { .. } => {
2087                 param.bounds.iter().for_each(|bound| match bound {
2088                     hir::GenericBound::Outlives(lt) => {
2089                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2090                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2091                         predicates.push((outlives.to_predicate(), lt.span));
2092                     }
2093                     _ => bug!(),
2094                 });
2095             }
2096             _ => bug!(),
2097         }
2098     }
2099
2100     // Collect the predicates that were written inline by the user on each
2101     // type parameter (e.g., `<T: Foo>`).
2102     for param in &ast_generics.params {
2103         if let GenericParamKind::Type { .. } = param.kind {
2104             let name = param.name.ident().as_interned_str();
2105             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2106             index += 1;
2107
2108             let sized = SizedByDefault::Yes;
2109             let bounds = compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2110             predicates.extend(bounds.predicates(tcx, param_ty));
2111         }
2112     }
2113
2114     // Add in the bounds that appear in the where-clause.
2115     let where_clause = &ast_generics.where_clause;
2116     for predicate in &where_clause.predicates {
2117         match predicate {
2118             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2119                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2120
2121                 // Keep the type around in a dummy predicate, in case of no bounds.
2122                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2123                 // is still checked for WF.
2124                 if bound_pred.bounds.is_empty() {
2125                     if let ty::Param(_) = ty.sty {
2126                         // This is a `where T:`, which can be in the HIR from the
2127                         // transformation that moves `?Sized` to `T`'s declaration.
2128                         // We can skip the predicate because type parameters are
2129                         // trivially WF, but also we *should*, to avoid exposing
2130                         // users who never wrote `where Type:,` themselves, to
2131                         // compiler/tooling bugs from not handling WF predicates.
2132                     } else {
2133                         let span = bound_pred.bounded_ty.span;
2134                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2135                         predicates.push(
2136                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2137                         );
2138                     }
2139                 }
2140
2141                 for bound in bound_pred.bounds.iter() {
2142                     match bound {
2143                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2144                             let mut projections = Vec::new();
2145
2146                             let (trait_ref, _) = AstConv::instantiate_poly_trait_ref(
2147                                 &icx,
2148                                 poly_trait_ref,
2149                                 ty,
2150                                 &mut projections,
2151                             );
2152
2153                             predicates.extend(
2154                                 iter::once((trait_ref.to_predicate(), poly_trait_ref.span)).chain(
2155                                     projections.iter().map(|&(p, span)| (p.to_predicate(), span)
2156                             )));
2157                         }
2158
2159                         &hir::GenericBound::Outlives(ref lifetime) => {
2160                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2161                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2162                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2163                         }
2164                     }
2165                 }
2166             }
2167
2168             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2169                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2170                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2171                     let (r2, span) = match bound {
2172                         hir::GenericBound::Outlives(lt) => {
2173                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2174                         }
2175                         _ => bug!(),
2176                     };
2177                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2178
2179                     (ty::Predicate::RegionOutlives(pred), span)
2180                 }))
2181             }
2182
2183             &hir::WherePredicate::EqPredicate(..) => {
2184                 // FIXME(#20041)
2185             }
2186         }
2187     }
2188
2189     // Add predicates from associated type bounds.
2190     if let Some((self_trait_ref, trait_items)) = is_trait {
2191         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2192             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2193             let bounds = match trait_item.node {
2194                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2195                 _ => return vec![].into_iter()
2196             };
2197
2198             let assoc_ty =
2199                 tcx.mk_projection(tcx.hir().local_def_id_from_hir_id(trait_item.hir_id),
2200                     self_trait_ref.substs);
2201
2202             let bounds = compute_bounds(
2203                 &ItemCtxt::new(tcx, def_id),
2204                 assoc_ty,
2205                 bounds,
2206                 SizedByDefault::Yes,
2207                 trait_item.span,
2208             );
2209
2210             bounds.predicates(tcx, assoc_ty).into_iter()
2211         }))
2212     }
2213
2214     let mut predicates = predicates.predicates;
2215
2216     // Subtle: before we store the predicates into the tcx, we
2217     // sort them so that predicates like `T: Foo<Item=U>` come
2218     // before uses of `U`.  This avoids false ambiguity errors
2219     // in trait checking. See `setup_constraining_predicates`
2220     // for details.
2221     if let Node::Item(&Item {
2222         node: ItemKind::Impl(..),
2223         ..
2224     }) = node
2225     {
2226         let self_ty = tcx.type_of(def_id);
2227         let trait_ref = tcx.impl_trait_ref(def_id);
2228         cgp::setup_constraining_predicates(
2229             tcx,
2230             &mut predicates,
2231             trait_ref,
2232             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2233         );
2234     }
2235
2236     let result = tcx.arena.alloc(ty::GenericPredicates {
2237         parent: generics.parent,
2238         predicates,
2239     });
2240     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2241     result
2242 }
2243
2244 pub enum SizedByDefault {
2245     Yes,
2246     No,
2247 }
2248
2249 /// Translate the AST's notion of ty param bounds (which are an enum consisting of a newtyped `Ty`
2250 /// or a region) to ty's notion of ty param bounds, which can either be user-defined traits, or the
2251 /// built-in trait `Send`.
2252 pub fn compute_bounds<'gcx: 'tcx, 'tcx>(
2253     astconv: &dyn AstConv<'gcx, 'tcx>,
2254     param_ty: Ty<'tcx>,
2255     ast_bounds: &[hir::GenericBound],
2256     sized_by_default: SizedByDefault,
2257     span: Span,
2258 ) -> Bounds<'tcx> {
2259     let mut region_bounds = Vec::new();
2260     let mut trait_bounds = Vec::new();
2261
2262     for ast_bound in ast_bounds {
2263         match *ast_bound {
2264             hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => trait_bounds.push(b),
2265             hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
2266             hir::GenericBound::Outlives(ref l) => region_bounds.push(l),
2267         }
2268     }
2269
2270     let mut projection_bounds = Vec::new();
2271
2272     let mut trait_bounds: Vec<_> = trait_bounds.iter().map(|&bound| {
2273         let (poly_trait_ref, _) = astconv.instantiate_poly_trait_ref(
2274             bound,
2275             param_ty,
2276             &mut projection_bounds,
2277         );
2278         (poly_trait_ref, bound.span)
2279     }).collect();
2280
2281     let region_bounds = region_bounds
2282         .into_iter()
2283         .map(|r| (astconv.ast_region_to_region(r, None), r.span))
2284         .collect();
2285
2286     trait_bounds.sort_by_key(|(t, _)| t.def_id());
2287
2288     let implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
2289         if !is_unsized(astconv, ast_bounds, span) {
2290             Some(span)
2291         } else {
2292             None
2293         }
2294     } else {
2295         None
2296     };
2297
2298     Bounds {
2299         region_bounds,
2300         implicitly_sized,
2301         trait_bounds,
2302         projection_bounds,
2303     }
2304 }
2305
2306 /// Converts a specific `GenericBound` from the AST into a set of
2307 /// predicates that apply to the self type. A vector is returned
2308 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2309 /// predicates) to one (`T: Foo`) to many (`T: Bar<X=i32>` adds `T: Bar`
2310 /// and `<T as Bar>::X == i32`).
2311 fn predicates_from_bound<'tcx>(
2312     astconv: &dyn AstConv<'tcx, 'tcx>,
2313     param_ty: Ty<'tcx>,
2314     bound: &hir::GenericBound,
2315 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2316     match *bound {
2317         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2318             let mut projections = Vec::new();
2319             let (pred, _) = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut projections);
2320             iter::once((pred.to_predicate(), tr.span)).chain(
2321                 projections
2322                     .into_iter()
2323                     .map(|(p, span)| (p.to_predicate(), span))
2324             ).collect()
2325         }
2326         hir::GenericBound::Outlives(ref lifetime) => {
2327             let region = astconv.ast_region_to_region(lifetime, None);
2328             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2329             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2330         }
2331         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2332     }
2333 }
2334
2335 fn compute_sig_of_foreign_fn_decl<'a, 'tcx>(
2336     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2337     def_id: DefId,
2338     decl: &hir::FnDecl,
2339     abi: abi::Abi,
2340 ) -> ty::PolyFnSig<'tcx> {
2341     let unsafety = if abi == abi::Abi::RustIntrinsic {
2342         intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2343     } else {
2344         hir::Unsafety::Unsafe
2345     };
2346     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2347
2348     // feature gate SIMD types in FFI, since I (huonw) am not sure the
2349     // ABIs are handled at all correctly.
2350     if abi != abi::Abi::RustIntrinsic
2351         && abi != abi::Abi::PlatformIntrinsic
2352         && !tcx.features().simd_ffi
2353     {
2354         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2355             if ty.is_simd() {
2356                 tcx.sess
2357                    .struct_span_err(
2358                        ast_ty.span,
2359                        &format!(
2360                            "use of SIMD type `{}` in FFI is highly experimental and \
2361                             may result in invalid code",
2362                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2363                        ),
2364                    )
2365                    .help("add #![feature(simd_ffi)] to the crate attributes to enable")
2366                    .emit();
2367             }
2368         };
2369         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2370             check(&input, ty)
2371         }
2372         if let hir::Return(ref ty) = decl.output {
2373             check(&ty, *fty.output().skip_binder())
2374         }
2375     }
2376
2377     fty
2378 }
2379
2380 fn is_foreign_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
2381     match tcx.hir().get_if_local(def_id) {
2382         Some(Node::ForeignItem(..)) => true,
2383         Some(_) => false,
2384         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2385     }
2386 }
2387
2388 fn static_mutability<'a, 'tcx>(
2389     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2390     def_id: DefId,
2391 ) -> Option<hir::Mutability> {
2392     match tcx.hir().get_if_local(def_id) {
2393         Some(Node::Item(&hir::Item {
2394             node: hir::ItemKind::Static(_, mutbl, _), ..
2395         })) |
2396         Some(Node::ForeignItem( &hir::ForeignItem {
2397             node: hir::ForeignItemKind::Static(_, mutbl), ..
2398         })) => Some(mutbl),
2399         Some(_) => None,
2400         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2401     }
2402 }
2403
2404 fn from_target_feature(
2405     tcx: TyCtxt<'_, '_, '_>,
2406     id: DefId,
2407     attr: &ast::Attribute,
2408     whitelist: &FxHashMap<String, Option<Symbol>>,
2409     target_features: &mut Vec<Symbol>,
2410 ) {
2411     let list = match attr.meta_item_list() {
2412         Some(list) => list,
2413         None => return,
2414     };
2415     let bad_item = |span| {
2416         let msg = "malformed `target_feature` attribute input";
2417         let code = "enable = \"..\"".to_owned();
2418         tcx.sess.struct_span_err(span, &msg)
2419             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2420             .emit();
2421     };
2422     let rust_features = tcx.features();
2423     for item in list {
2424         // Only `enable = ...` is accepted in the meta item list
2425         if !item.check_name(sym::enable) {
2426             bad_item(item.span());
2427             continue;
2428         }
2429
2430         // Must be of the form `enable = "..."` (a string).
2431         let value = match item.value_str() {
2432             Some(value) => value,
2433             None => {
2434                 bad_item(item.span());
2435                 continue;
2436             }
2437         };
2438
2439         // We allow comma separation to enable multiple features
2440         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2441             // Only allow whitelisted features per platform
2442             let feature_gate = match whitelist.get(feature) {
2443                 Some(g) => g,
2444                 None => {
2445                     let msg = format!(
2446                         "the feature named `{}` is not valid for this target",
2447                         feature
2448                     );
2449                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2450                     err.span_label(
2451                         item.span(),
2452                         format!("`{}` is not valid for this target", feature),
2453                     );
2454                     if feature.starts_with("+") {
2455                         let valid = whitelist.contains_key(&feature[1..]);
2456                         if valid {
2457                             err.help("consider removing the leading `+` in the feature name");
2458                         }
2459                     }
2460                     err.emit();
2461                     return None;
2462                 }
2463             };
2464
2465             // Only allow features whose feature gates have been enabled
2466             let allowed = match feature_gate.as_ref().map(|s| *s) {
2467                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2468                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2469                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2470                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2471                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2472                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2473                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2474                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2475                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2476                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2477                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2478                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2479                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2480                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2481                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2482                 Some(name) => bug!("unknown target feature gate {}", name),
2483                 None => true,
2484             };
2485             if !allowed && id.is_local() {
2486                 feature_gate::emit_feature_err(
2487                     &tcx.sess.parse_sess,
2488                     feature_gate.unwrap(),
2489                     item.span(),
2490                     feature_gate::GateIssue::Language,
2491                     &format!("the target feature `{}` is currently unstable", feature),
2492                 );
2493             }
2494             Some(Symbol::intern(feature))
2495         }));
2496     }
2497 }
2498
2499 fn linkage_by_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, name: &str) -> Linkage {
2500     use rustc::mir::mono::Linkage::*;
2501
2502     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2503     // applicable to variable declarations and may not really make sense for
2504     // Rust code in the first place but whitelist them anyway and trust that
2505     // the user knows what s/he's doing. Who knows, unanticipated use cases
2506     // may pop up in the future.
2507     //
2508     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2509     // and don't have to be, LLVM treats them as no-ops.
2510     match name {
2511         "appending" => Appending,
2512         "available_externally" => AvailableExternally,
2513         "common" => Common,
2514         "extern_weak" => ExternalWeak,
2515         "external" => External,
2516         "internal" => Internal,
2517         "linkonce" => LinkOnceAny,
2518         "linkonce_odr" => LinkOnceODR,
2519         "private" => Private,
2520         "weak" => WeakAny,
2521         "weak_odr" => WeakODR,
2522         _ => {
2523             let span = tcx.hir().span_if_local(def_id);
2524             if let Some(span) = span {
2525                 tcx.sess.span_fatal(span, "invalid linkage specified")
2526             } else {
2527                 tcx.sess
2528                    .fatal(&format!("invalid linkage specified: {}", name))
2529             }
2530         }
2531     }
2532 }
2533
2534 fn codegen_fn_attrs<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefId) -> CodegenFnAttrs {
2535     let attrs = tcx.get_attrs(id);
2536
2537     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2538
2539     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2540
2541     let mut inline_span = None;
2542     for attr in attrs.iter() {
2543         if attr.check_name(sym::cold) {
2544             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2545         } else if attr.check_name(sym::allocator) {
2546             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2547         } else if attr.check_name(sym::unwind) {
2548             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2549         } else if attr.check_name(sym::ffi_returns_twice) {
2550             if tcx.is_foreign_item(id) {
2551                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2552             } else {
2553                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2554                 struct_span_err!(
2555                     tcx.sess,
2556                     attr.span,
2557                     E0724,
2558                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2559                 ).emit();
2560             }
2561         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2562             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2563         } else if attr.check_name(sym::naked) {
2564             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2565         } else if attr.check_name(sym::no_mangle) {
2566             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2567         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2568             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2569         } else if attr.check_name(sym::no_debug) {
2570             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2571         } else if attr.check_name(sym::used) {
2572             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2573         } else if attr.check_name(sym::thread_local) {
2574             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2575         } else if attr.check_name(sym::export_name) {
2576             if let Some(s) = attr.value_str() {
2577                 if s.as_str().contains("\0") {
2578                     // `#[export_name = ...]` will be converted to a null-terminated string,
2579                     // so it may not contain any null characters.
2580                     struct_span_err!(
2581                         tcx.sess,
2582                         attr.span,
2583                         E0648,
2584                         "`export_name` may not contain null characters"
2585                     ).emit();
2586                 }
2587                 codegen_fn_attrs.export_name = Some(s);
2588             }
2589         } else if attr.check_name(sym::target_feature) {
2590             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2591                 let msg = "#[target_feature(..)] can only be applied to `unsafe` functions";
2592                 tcx.sess.struct_span_err(attr.span, msg)
2593                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2594                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2595                     .emit();
2596             }
2597             from_target_feature(
2598                 tcx,
2599                 id,
2600                 attr,
2601                 &whitelist,
2602                 &mut codegen_fn_attrs.target_features,
2603             );
2604         } else if attr.check_name(sym::linkage) {
2605             if let Some(val) = attr.value_str() {
2606                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2607             }
2608         } else if attr.check_name(sym::link_section) {
2609             if let Some(val) = attr.value_str() {
2610                 if val.as_str().bytes().any(|b| b == 0) {
2611                     let msg = format!(
2612                         "illegal null byte in link_section \
2613                          value: `{}`",
2614                         &val
2615                     );
2616                     tcx.sess.span_err(attr.span, &msg);
2617                 } else {
2618                     codegen_fn_attrs.link_section = Some(val);
2619                 }
2620             }
2621         } else if attr.check_name(sym::link_name) {
2622             codegen_fn_attrs.link_name = attr.value_str();
2623         }
2624     }
2625
2626     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2627         if attr.path != sym::inline {
2628             return ia;
2629         }
2630         match attr.meta().map(|i| i.node) {
2631             Some(MetaItemKind::Word) => {
2632                 mark_used(attr);
2633                 InlineAttr::Hint
2634             }
2635             Some(MetaItemKind::List(ref items)) => {
2636                 mark_used(attr);
2637                 inline_span = Some(attr.span);
2638                 if items.len() != 1 {
2639                     span_err!(
2640                         tcx.sess.diagnostic(),
2641                         attr.span,
2642                         E0534,
2643                         "expected one argument"
2644                     );
2645                     InlineAttr::None
2646                 } else if list_contains_name(&items[..], sym::always) {
2647                     InlineAttr::Always
2648                 } else if list_contains_name(&items[..], sym::never) {
2649                     InlineAttr::Never
2650                 } else {
2651                     span_err!(
2652                         tcx.sess.diagnostic(),
2653                         items[0].span(),
2654                         E0535,
2655                         "invalid argument"
2656                     );
2657
2658                     InlineAttr::None
2659                 }
2660             }
2661             Some(MetaItemKind::NameValue(_)) => ia,
2662             None => ia,
2663         }
2664     });
2665
2666     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2667         if attr.path != sym::optimize {
2668             return ia;
2669         }
2670         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2671         match attr.meta().map(|i| i.node) {
2672             Some(MetaItemKind::Word) => {
2673                 err(attr.span, "expected one argument");
2674                 ia
2675             }
2676             Some(MetaItemKind::List(ref items)) => {
2677                 mark_used(attr);
2678                 inline_span = Some(attr.span);
2679                 if items.len() != 1 {
2680                     err(attr.span, "expected one argument");
2681                     OptimizeAttr::None
2682                 } else if list_contains_name(&items[..], sym::size) {
2683                     OptimizeAttr::Size
2684                 } else if list_contains_name(&items[..], sym::speed) {
2685                     OptimizeAttr::Speed
2686                 } else {
2687                     err(items[0].span(), "invalid argument");
2688                     OptimizeAttr::None
2689                 }
2690             }
2691             Some(MetaItemKind::NameValue(_)) => ia,
2692             None => ia,
2693         }
2694     });
2695
2696     // If a function uses #[target_feature] it can't be inlined into general
2697     // purpose functions as they wouldn't have the right target features
2698     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2699     // respected.
2700     if codegen_fn_attrs.target_features.len() > 0 {
2701         if codegen_fn_attrs.inline == InlineAttr::Always {
2702             if let Some(span) = inline_span {
2703                 tcx.sess.span_err(
2704                     span,
2705                     "cannot use #[inline(always)] with \
2706                      #[target_feature]",
2707                 );
2708             }
2709         }
2710     }
2711
2712     // Weak lang items have the same semantics as "std internal" symbols in the
2713     // sense that they're preserved through all our LTO passes and only
2714     // strippable by the linker.
2715     //
2716     // Additionally weak lang items have predetermined symbol names.
2717     if tcx.is_weak_lang_item(id) {
2718         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2719     }
2720     if let Some(name) = weak_lang_items::link_name(&attrs) {
2721         codegen_fn_attrs.export_name = Some(name);
2722         codegen_fn_attrs.link_name = Some(name);
2723     }
2724
2725     // Internal symbols to the standard library all have no_mangle semantics in
2726     // that they have defined symbol names present in the function name. This
2727     // also applies to weak symbols where they all have known symbol names.
2728     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2729         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2730     }
2731
2732     codegen_fn_attrs
2733 }