]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Use both existential-type desugaring and where-clause (predicate) desugaring dependin...
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrisic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::mir::mono::Linkage;
24 use rustc::ty::query::Providers;
25 use rustc::ty::subst::{Subst, InternalSubsts};
26 use rustc::ty::util::Discr;
27 use rustc::ty::util::IntTypeExt;
28 use rustc::ty::subst::UnpackedKind;
29 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
30 use rustc::ty::{ReprOptions, ToPredicate};
31 use rustc::util::captures::Captures;
32 use rustc::util::nodemap::FxHashMap;
33 use rustc_target::spec::abi;
34
35 use syntax::ast;
36 use syntax::ast::{Ident, MetaItemKind};
37 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
38 use syntax::source_map::Spanned;
39 use syntax::feature_gate;
40 use syntax::symbol::{InternedString, kw, Symbol, sym};
41 use syntax_pos::{Span, DUMMY_SP};
42
43 use rustc::hir::def::{CtorKind, Res, DefKind};
44 use rustc::hir::Node;
45 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
46 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
47 use rustc::hir::GenericParamKind;
48 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
49
50 use errors::Applicability;
51
52 use std::iter;
53
54 struct OnlySelfBounds(bool);
55
56 ///////////////////////////////////////////////////////////////////////////
57 // Main entry point
58
59 fn collect_mod_item_types<'tcx>(tcx: TyCtxt<'_, 'tcx, 'tcx>, module_def_id: DefId) {
60     tcx.hir().visit_item_likes_in_module(
61         module_def_id,
62         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
63     );
64 }
65
66 pub fn provide(providers: &mut Providers<'_>) {
67     *providers = Providers {
68         type_of,
69         generics_of,
70         predicates_of,
71         predicates_defined_on,
72         explicit_predicates_of,
73         super_predicates_of,
74         type_param_predicates,
75         trait_def,
76         adt_def,
77         fn_sig,
78         impl_trait_ref,
79         impl_polarity,
80         is_foreign_item,
81         static_mutability,
82         codegen_fn_attrs,
83         collect_mod_item_types,
84         ..*providers
85     };
86 }
87
88 ///////////////////////////////////////////////////////////////////////////
89
90 /// Context specific to some particular item. This is what implements
91 /// `AstConv`. It has information about the predicates that are defined
92 /// on the trait. Unfortunately, this predicate information is
93 /// available in various different forms at various points in the
94 /// process. So we can't just store a pointer to e.g., the AST or the
95 /// parsed ty form, we have to be more flexible. To this end, the
96 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
97 /// `get_type_parameter_bounds` requests, drawing the information from
98 /// the AST (`hir::Generics`), recursively.
99 pub struct ItemCtxt<'a, 'tcx: 'a> {
100     tcx: TyCtxt<'a, 'tcx, 'tcx>,
101     item_def_id: DefId,
102 }
103
104 ///////////////////////////////////////////////////////////////////////////
105
106 struct CollectItemTypesVisitor<'a, 'tcx: 'a> {
107     tcx: TyCtxt<'a, 'tcx, 'tcx>,
108 }
109
110 impl<'a, 'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'a, 'tcx> {
111     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
112         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
113     }
114
115     fn visit_item(&mut self, item: &'tcx hir::Item) {
116         convert_item(self.tcx, item.hir_id);
117         intravisit::walk_item(self, item);
118     }
119
120     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
121         for param in &generics.params {
122             match param.kind {
123                 hir::GenericParamKind::Lifetime { .. } => {}
124                 hir::GenericParamKind::Type {
125                     default: Some(_), ..
126                 } => {
127                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
128                     self.tcx.type_of(def_id);
129                 }
130                 hir::GenericParamKind::Type { .. } => {}
131                 hir::GenericParamKind::Const { .. } => {
132                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
133                     self.tcx.type_of(def_id);
134                 }
135             }
136         }
137         intravisit::walk_generics(self, generics);
138     }
139
140     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
141         if let hir::ExprKind::Closure(..) = expr.node {
142             let def_id = self.tcx.hir().local_def_id_from_hir_id(expr.hir_id);
143             self.tcx.generics_of(def_id);
144             self.tcx.type_of(def_id);
145         }
146         intravisit::walk_expr(self, expr);
147     }
148
149     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
150         convert_trait_item(self.tcx, trait_item.hir_id);
151         intravisit::walk_trait_item(self, trait_item);
152     }
153
154     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
155         convert_impl_item(self.tcx, impl_item.hir_id);
156         intravisit::walk_impl_item(self, impl_item);
157     }
158 }
159
160 ///////////////////////////////////////////////////////////////////////////
161 // Utility types and common code for the above passes.
162
163 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
164     pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_def_id: DefId) -> ItemCtxt<'a, 'tcx> {
165         ItemCtxt { tcx, item_def_id }
166     }
167 }
168
169 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
170     pub fn to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
171         AstConv::ast_ty_to_ty(self, ast_ty)
172     }
173 }
174
175 impl<'a, 'tcx> AstConv<'tcx, 'tcx> for ItemCtxt<'a, 'tcx> {
176     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
177         self.tcx
178     }
179
180     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
181                                  -> &'tcx ty::GenericPredicates<'tcx> {
182         self.tcx
183             .at(span)
184             .type_param_predicates((self.item_def_id, def_id))
185     }
186
187     fn re_infer(
188         &self,
189         _span: Span,
190         _def: Option<&ty::GenericParamDef>,
191     ) -> Option<ty::Region<'tcx>> {
192         None
193     }
194
195     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
196         struct_span_err!(
197             self.tcx().sess,
198             span,
199             E0121,
200             "the type placeholder `_` is not allowed within types on item signatures"
201         ).span_label(span, "not allowed in type signatures")
202          .emit();
203
204         self.tcx().types.err
205     }
206
207     fn projected_ty_from_poly_trait_ref(
208         &self,
209         span: Span,
210         item_def_id: DefId,
211         poly_trait_ref: ty::PolyTraitRef<'tcx>,
212     ) -> Ty<'tcx> {
213         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
214             self.tcx().mk_projection(item_def_id, trait_ref.substs)
215         } else {
216             // no late-bound regions, we can just ignore the binder
217             span_err!(
218                 self.tcx().sess,
219                 span,
220                 E0212,
221                 "cannot extract an associated type from a higher-ranked trait bound \
222                  in this context"
223             );
224             self.tcx().types.err
225         }
226     }
227
228     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
229         // types in item signatures are not normalized, to avoid undue
230         // dependencies.
231         ty
232     }
233
234     fn set_tainted_by_errors(&self) {
235         // no obvious place to track this, so just let it go
236     }
237
238     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
239         // no place to record types from signatures?
240     }
241 }
242
243 fn type_param_predicates<'a, 'tcx>(
244     tcx: TyCtxt<'a, 'tcx, 'tcx>,
245     (item_def_id, def_id): (DefId, DefId),
246 ) -> &'tcx ty::GenericPredicates<'tcx> {
247     use rustc::hir::*;
248
249     // In the AST, bounds can derive from two places. Either
250     // written inline like `<T : Foo>` or in a where clause like
251     // `where T : Foo`.
252
253     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
254     let param_owner = tcx.hir().ty_param_owner(param_id);
255     let param_owner_def_id = tcx.hir().local_def_id_from_hir_id(param_owner);
256     let generics = tcx.generics_of(param_owner_def_id);
257     let index = generics.param_def_id_to_index[&def_id];
258     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
259
260     // Don't look for bounds where the type parameter isn't in scope.
261     let parent = if item_def_id == param_owner_def_id {
262         None
263     } else {
264         tcx.generics_of(item_def_id).parent
265     };
266
267     let result = parent.map_or(&tcx.common.empty_predicates, |parent| {
268         let icx = ItemCtxt::new(tcx, parent);
269         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
270     });
271     let mut extend = None;
272
273     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
274     let ast_generics = match tcx.hir().get_by_hir_id(item_hir_id) {
275         Node::TraitItem(item) => &item.generics,
276
277         Node::ImplItem(item) => &item.generics,
278
279         Node::Item(item) => {
280             match item.node {
281                 ItemKind::Fn(.., ref generics, _)
282                 | ItemKind::Impl(_, _, _, ref generics, ..)
283                 | ItemKind::Ty(_, ref generics)
284                 | ItemKind::Existential(ExistTy {
285                     ref generics,
286                     impl_trait_fn: None,
287                     ..
288                 })
289                 | ItemKind::Enum(_, ref generics)
290                 | ItemKind::Struct(_, ref generics)
291                 | ItemKind::Union(_, ref generics) => generics,
292                 ItemKind::Trait(_, _, ref generics, ..) => {
293                     // Implied `Self: Trait` and supertrait bounds.
294                     if param_id == item_hir_id {
295                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
296                         extend = Some((identity_trait_ref.to_predicate(), item.span));
297                     }
298                     generics
299                 }
300                 _ => return result,
301             }
302         }
303
304         Node::ForeignItem(item) => match item.node {
305             ForeignItemKind::Fn(_, _, ref generics) => generics,
306             _ => return result,
307         },
308
309         _ => return result,
310     };
311
312     let icx = ItemCtxt::new(tcx, item_def_id);
313     let mut result = (*result).clone();
314     result.predicates.extend(extend.into_iter());
315     result.predicates
316           .extend(icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty,
317                   OnlySelfBounds(true)));
318     tcx.arena.alloc(result)
319 }
320
321 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
322     /// Finds bounds from `hir::Generics`. This requires scanning through the
323     /// AST. We do this to avoid having to convert *all* the bounds, which
324     /// would create artificial cycles. Instead we can only convert the
325     /// bounds for a type parameter `X` if `X::Foo` is used.
326     fn type_parameter_bounds_in_generics(
327         &self,
328         ast_generics: &hir::Generics,
329         param_id: hir::HirId,
330         ty: Ty<'tcx>,
331         only_self_bounds: OnlySelfBounds,
332     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
333         let from_ty_params = ast_generics
334             .params
335             .iter()
336             .filter_map(|param| match param.kind {
337                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
338                 _ => None,
339             })
340             .flat_map(|bounds| bounds.iter())
341             .flat_map(|b| predicates_from_bound(self, ty, b));
342
343         let from_where_clauses = ast_generics
344             .where_clause
345             .predicates
346             .iter()
347             .filter_map(|wp| match *wp {
348                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
349                 _ => None,
350             })
351             .flat_map(|bp| {
352                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
353                     Some(ty)
354                 } else if !only_self_bounds.0 {
355                     Some(self.to_ty(&bp.bounded_ty))
356                 } else {
357                     None
358                 };
359                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
360             })
361             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
362
363         from_ty_params.chain(from_where_clauses).collect()
364     }
365 }
366
367 /// Tests whether this is the AST for a reference to the type
368 /// parameter with ID `param_id`. We use this so as to avoid running
369 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
370 /// conversion of the type to avoid inducing unnecessary cycles.
371 fn is_param<'a, 'tcx>(
372     tcx: TyCtxt<'a, 'tcx, 'tcx>,
373     ast_ty: &hir::Ty,
374     param_id: hir::HirId,
375 ) -> bool {
376     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node {
377         match path.res {
378             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
379                 def_id == tcx.hir().local_def_id_from_hir_id(param_id)
380             }
381             _ => false,
382         }
383     } else {
384         false
385     }
386 }
387
388 fn convert_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_id: hir::HirId) {
389     let it = tcx.hir().expect_item_by_hir_id(item_id);
390     debug!("convert: item {} with id {}", it.ident, it.hir_id);
391     let def_id = tcx.hir().local_def_id_from_hir_id(item_id);
392     match it.node {
393         // These don't define types.
394         hir::ItemKind::ExternCrate(_)
395         | hir::ItemKind::Use(..)
396         | hir::ItemKind::Mod(_)
397         | hir::ItemKind::GlobalAsm(_) => {}
398         hir::ItemKind::ForeignMod(ref foreign_mod) => {
399             for item in &foreign_mod.items {
400                 let def_id = tcx.hir().local_def_id_from_hir_id(item.hir_id);
401                 tcx.generics_of(def_id);
402                 tcx.type_of(def_id);
403                 tcx.predicates_of(def_id);
404                 if let hir::ForeignItemKind::Fn(..) = item.node {
405                     tcx.fn_sig(def_id);
406                 }
407             }
408         }
409         hir::ItemKind::Enum(ref enum_definition, _) => {
410             tcx.generics_of(def_id);
411             tcx.type_of(def_id);
412             tcx.predicates_of(def_id);
413             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
414         }
415         hir::ItemKind::Impl(..) => {
416             tcx.generics_of(def_id);
417             tcx.type_of(def_id);
418             tcx.impl_trait_ref(def_id);
419             tcx.predicates_of(def_id);
420         }
421         hir::ItemKind::Trait(..) => {
422             tcx.generics_of(def_id);
423             tcx.trait_def(def_id);
424             tcx.at(it.span).super_predicates_of(def_id);
425             tcx.predicates_of(def_id);
426         }
427         hir::ItemKind::TraitAlias(..) => {
428             tcx.generics_of(def_id);
429             tcx.at(it.span).super_predicates_of(def_id);
430             tcx.predicates_of(def_id);
431         }
432         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
433             tcx.generics_of(def_id);
434             tcx.type_of(def_id);
435             tcx.predicates_of(def_id);
436
437             for f in struct_def.fields() {
438                 let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
439                 tcx.generics_of(def_id);
440                 tcx.type_of(def_id);
441                 tcx.predicates_of(def_id);
442             }
443
444             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
445                 convert_variant_ctor(tcx, ctor_hir_id);
446             }
447         }
448
449         // Desugared from `impl Trait`, so visited by the function's return type.
450         hir::ItemKind::Existential(hir::ExistTy {
451             impl_trait_fn: Some(_),
452             ..
453         }) => {}
454
455         hir::ItemKind::Existential(..)
456         | hir::ItemKind::Ty(..)
457         | hir::ItemKind::Static(..)
458         | hir::ItemKind::Const(..)
459         | hir::ItemKind::Fn(..) => {
460             tcx.generics_of(def_id);
461             tcx.type_of(def_id);
462             tcx.predicates_of(def_id);
463             if let hir::ItemKind::Fn(..) = it.node {
464                 tcx.fn_sig(def_id);
465             }
466         }
467     }
468 }
469
470 fn convert_trait_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trait_item_id: hir::HirId) {
471     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
472     let def_id = tcx.hir().local_def_id_from_hir_id(trait_item.hir_id);
473     tcx.generics_of(def_id);
474
475     match trait_item.node {
476         hir::TraitItemKind::Const(..)
477         | hir::TraitItemKind::Type(_, Some(_))
478         | hir::TraitItemKind::Method(..) => {
479             tcx.type_of(def_id);
480             if let hir::TraitItemKind::Method(..) = trait_item.node {
481                 tcx.fn_sig(def_id);
482             }
483         }
484
485         hir::TraitItemKind::Type(_, None) => {}
486     };
487
488     tcx.predicates_of(def_id);
489 }
490
491 fn convert_impl_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, impl_item_id: hir::HirId) {
492     let def_id = tcx.hir().local_def_id_from_hir_id(impl_item_id);
493     tcx.generics_of(def_id);
494     tcx.type_of(def_id);
495     tcx.predicates_of(def_id);
496     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node {
497         tcx.fn_sig(def_id);
498     }
499 }
500
501 fn convert_variant_ctor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ctor_id: hir::HirId) {
502     let def_id = tcx.hir().local_def_id_from_hir_id(ctor_id);
503     tcx.generics_of(def_id);
504     tcx.type_of(def_id);
505     tcx.predicates_of(def_id);
506 }
507
508 fn convert_enum_variant_types<'a, 'tcx>(
509     tcx: TyCtxt<'a, 'tcx, 'tcx>,
510     def_id: DefId,
511     variants: &[hir::Variant],
512 ) {
513     let def = tcx.adt_def(def_id);
514     let repr_type = def.repr.discr_type();
515     let initial = repr_type.initial_discriminant(tcx);
516     let mut prev_discr = None::<Discr<'tcx>>;
517
518     // fill the discriminant values and field types
519     for variant in variants {
520         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
521         prev_discr = Some(
522             if let Some(ref e) = variant.node.disr_expr {
523                 let expr_did = tcx.hir().local_def_id_from_hir_id(e.hir_id);
524                 def.eval_explicit_discr(tcx, expr_did)
525             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
526                 Some(discr)
527             } else {
528                 struct_span_err!(
529                     tcx.sess,
530                     variant.span,
531                     E0370,
532                     "enum discriminant overflowed"
533                 ).span_label(
534                     variant.span,
535                     format!("overflowed on value after {}", prev_discr.unwrap()),
536                 ).note(&format!(
537                     "explicitly set `{} = {}` if that is desired outcome",
538                     variant.node.ident, wrapped_discr
539                 ))
540                 .emit();
541                 None
542             }.unwrap_or(wrapped_discr),
543         );
544
545         for f in variant.node.data.fields() {
546             let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
547             tcx.generics_of(def_id);
548             tcx.type_of(def_id);
549             tcx.predicates_of(def_id);
550         }
551
552         // Convert the ctor, if any. This also registers the variant as
553         // an item.
554         if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() {
555             convert_variant_ctor(tcx, ctor_hir_id);
556         }
557     }
558 }
559
560 fn convert_variant<'a, 'tcx>(
561     tcx: TyCtxt<'a, 'tcx, 'tcx>,
562     variant_did: Option<DefId>,
563     ctor_did: Option<DefId>,
564     ident: Ident,
565     discr: ty::VariantDiscr,
566     def: &hir::VariantData,
567     adt_kind: ty::AdtKind,
568     parent_did: DefId
569 ) -> ty::VariantDef {
570     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
571     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
572     let fields = def
573         .fields()
574         .iter()
575         .map(|f| {
576             let fid = tcx.hir().local_def_id_from_hir_id(f.hir_id);
577             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
578             if let Some(prev_span) = dup_span {
579                 struct_span_err!(
580                     tcx.sess,
581                     f.span,
582                     E0124,
583                     "field `{}` is already declared",
584                     f.ident
585                 ).span_label(f.span, "field already declared")
586                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
587                  .emit();
588             } else {
589                 seen_fields.insert(f.ident.modern(), f.span);
590             }
591
592             ty::FieldDef {
593                 did: fid,
594                 ident: f.ident,
595                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
596             }
597         })
598         .collect();
599     let recovered = match def {
600         hir::VariantData::Struct(_, r) => *r,
601         _ => false,
602     };
603     ty::VariantDef::new(
604         tcx,
605         ident,
606         variant_did,
607         ctor_did,
608         discr,
609         fields,
610         CtorKind::from_hir(def),
611         adt_kind,
612         parent_did,
613         recovered,
614     )
615 }
616
617 fn adt_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::AdtDef {
618     use rustc::hir::*;
619
620     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
621     let item = match tcx.hir().get_by_hir_id(hir_id) {
622         Node::Item(item) => item,
623         _ => bug!(),
624     };
625
626     let repr = ReprOptions::new(tcx, def_id);
627     let (kind, variants) = match item.node {
628         ItemKind::Enum(ref def, _) => {
629             let mut distance_from_explicit = 0;
630             let variants = def.variants
631                 .iter()
632                 .map(|v| {
633                     let variant_did = Some(tcx.hir().local_def_id_from_hir_id(v.node.id));
634                     let ctor_did = v.node.data.ctor_hir_id()
635                         .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
636
637                     let discr = if let Some(ref e) = v.node.disr_expr {
638                         distance_from_explicit = 0;
639                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id_from_hir_id(e.hir_id))
640                     } else {
641                         ty::VariantDiscr::Relative(distance_from_explicit)
642                     };
643                     distance_from_explicit += 1;
644
645                     convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr,
646                                     &v.node.data, AdtKind::Enum, def_id)
647                 })
648                 .collect();
649
650             (AdtKind::Enum, variants)
651         }
652         ItemKind::Struct(ref def, _) => {
653             let variant_did = None;
654             let ctor_did = def.ctor_hir_id()
655                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
656
657             let variants = std::iter::once(convert_variant(
658                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
659                 AdtKind::Struct, def_id,
660             )).collect();
661
662             (AdtKind::Struct, variants)
663         }
664         ItemKind::Union(ref def, _) => {
665             let variant_did = None;
666             let ctor_did = def.ctor_hir_id()
667                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
668
669             let variants = std::iter::once(convert_variant(
670                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
671                 AdtKind::Union, def_id,
672             )).collect();
673
674             (AdtKind::Union, variants)
675         },
676         _ => bug!(),
677     };
678     tcx.alloc_adt_def(def_id, kind, variants, repr)
679 }
680
681 /// Ensures that the super-predicates of the trait with a `DefId`
682 /// of `trait_def_id` are converted and stored. This also ensures that
683 /// the transitive super-predicates are converted.
684 fn super_predicates_of<'a, 'tcx>(
685     tcx: TyCtxt<'a, 'tcx, 'tcx>,
686     trait_def_id: DefId,
687 ) -> &'tcx ty::GenericPredicates<'tcx> {
688     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
689     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
690
691     let item = match tcx.hir().get_by_hir_id(trait_hir_id) {
692         Node::Item(item) => item,
693         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
694     };
695
696     let (generics, bounds) = match item.node {
697         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
698         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
699         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
700     };
701
702     let icx = ItemCtxt::new(tcx, trait_def_id);
703
704     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
705     let self_param_ty = tcx.mk_self_type();
706     let superbounds1 = AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No,
707         item.span);
708
709     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
710
711     // Convert any explicit superbounds in the where-clause,
712     // e.g., `trait Foo where Self: Bar`.
713     // In the case of trait aliases, however, we include all bounds in the where-clause,
714     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
715     // as one of its "superpredicates".
716     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
717     let superbounds2 = icx.type_parameter_bounds_in_generics(
718         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
719
720     // Combine the two lists to form the complete set of superbounds:
721     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
722
723     // Now require that immediate supertraits are converted,
724     // which will, in turn, reach indirect supertraits.
725     for &(pred, span) in &superbounds {
726         debug!("superbound: {:?}", pred);
727         if let ty::Predicate::Trait(bound) = pred {
728             tcx.at(span).super_predicates_of(bound.def_id());
729         }
730     }
731
732     tcx.arena.alloc(ty::GenericPredicates {
733         parent: None,
734         predicates: superbounds,
735     })
736 }
737
738 fn trait_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::TraitDef {
739     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
740     let item = tcx.hir().expect_item_by_hir_id(hir_id);
741
742     let (is_auto, unsafety) = match item.node {
743         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
744         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
745         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
746     };
747
748     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
749     if paren_sugar && !tcx.features().unboxed_closures {
750         let mut err = tcx.sess.struct_span_err(
751             item.span,
752             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
753              which traits can use parenthetical notation",
754         );
755         help!(
756             &mut err,
757             "add `#![feature(unboxed_closures)]` to \
758              the crate attributes to use it"
759         );
760         err.emit();
761     }
762
763     let is_marker = tcx.has_attr(def_id, sym::marker);
764     let def_path_hash = tcx.def_path_hash(def_id);
765     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
766     tcx.arena.alloc(def)
767 }
768
769 fn has_late_bound_regions<'a, 'tcx>(
770     tcx: TyCtxt<'a, 'tcx, 'tcx>,
771     node: Node<'tcx>,
772 ) -> Option<Span> {
773     struct LateBoundRegionsDetector<'a, 'tcx: 'a> {
774         tcx: TyCtxt<'a, 'tcx, 'tcx>,
775         outer_index: ty::DebruijnIndex,
776         has_late_bound_regions: Option<Span>,
777     }
778
779     impl<'a, 'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'a, 'tcx> {
780         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
781             NestedVisitorMap::None
782         }
783
784         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
785             if self.has_late_bound_regions.is_some() {
786                 return;
787             }
788             match ty.node {
789                 hir::TyKind::BareFn(..) => {
790                     self.outer_index.shift_in(1);
791                     intravisit::walk_ty(self, ty);
792                     self.outer_index.shift_out(1);
793                 }
794                 _ => intravisit::walk_ty(self, ty),
795             }
796         }
797
798         fn visit_poly_trait_ref(
799             &mut self,
800             tr: &'tcx hir::PolyTraitRef,
801             m: hir::TraitBoundModifier,
802         ) {
803             if self.has_late_bound_regions.is_some() {
804                 return;
805             }
806             self.outer_index.shift_in(1);
807             intravisit::walk_poly_trait_ref(self, tr, m);
808             self.outer_index.shift_out(1);
809         }
810
811         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
812             if self.has_late_bound_regions.is_some() {
813                 return;
814             }
815
816             match self.tcx.named_region(lt.hir_id) {
817                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
818                 Some(rl::Region::LateBound(debruijn, _, _))
819                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
820                 Some(rl::Region::LateBound(..))
821                 | Some(rl::Region::LateBoundAnon(..))
822                 | Some(rl::Region::Free(..))
823                 | None => {
824                     self.has_late_bound_regions = Some(lt.span);
825                 }
826             }
827         }
828     }
829
830     fn has_late_bound_regions<'a, 'tcx>(
831         tcx: TyCtxt<'a, 'tcx, 'tcx>,
832         generics: &'tcx hir::Generics,
833         decl: &'tcx hir::FnDecl,
834     ) -> Option<Span> {
835         let mut visitor = LateBoundRegionsDetector {
836             tcx,
837             outer_index: ty::INNERMOST,
838             has_late_bound_regions: None,
839         };
840         for param in &generics.params {
841             if let GenericParamKind::Lifetime { .. } = param.kind {
842                 if tcx.is_late_bound(param.hir_id) {
843                     return Some(param.span);
844                 }
845             }
846         }
847         visitor.visit_fn_decl(decl);
848         visitor.has_late_bound_regions
849     }
850
851     match node {
852         Node::TraitItem(item) => match item.node {
853             hir::TraitItemKind::Method(ref sig, _) => {
854                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
855             }
856             _ => None,
857         },
858         Node::ImplItem(item) => match item.node {
859             hir::ImplItemKind::Method(ref sig, _) => {
860                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
861             }
862             _ => None,
863         },
864         Node::ForeignItem(item) => match item.node {
865             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
866                 has_late_bound_regions(tcx, generics, fn_decl)
867             }
868             _ => None,
869         },
870         Node::Item(item) => match item.node {
871             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
872                 has_late_bound_regions(tcx, generics, fn_decl)
873             }
874             _ => None,
875         },
876         _ => None,
877     }
878 }
879
880 fn generics_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::Generics {
881     use rustc::hir::*;
882
883     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
884
885     let node = tcx.hir().get_by_hir_id(hir_id);
886     let parent_def_id = match node {
887         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
888         Node::Ctor(..) | Node::Field(_) => {
889             let parent_id = tcx.hir().get_parent_item(hir_id);
890             Some(tcx.hir().local_def_id_from_hir_id(parent_id))
891         }
892         Node::Expr(&hir::Expr {
893             node: hir::ExprKind::Closure(..),
894             ..
895         }) => Some(tcx.closure_base_def_id(def_id)),
896         Node::Item(item) => match item.node {
897             ItemKind::Existential(hir::ExistTy { impl_trait_fn, .. }) => impl_trait_fn,
898             _ => None,
899         },
900         _ => None,
901     };
902
903     let mut opt_self = None;
904     let mut allow_defaults = false;
905
906     let no_generics = hir::Generics::empty();
907     let ast_generics = match node {
908         Node::TraitItem(item) => &item.generics,
909
910         Node::ImplItem(item) => &item.generics,
911
912         Node::Item(item) => {
913             match item.node {
914                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
915                     generics
916                 }
917
918                 ItemKind::Ty(_, ref generics)
919                 | ItemKind::Enum(_, ref generics)
920                 | ItemKind::Struct(_, ref generics)
921                 | ItemKind::Existential(hir::ExistTy { ref generics, .. })
922                 | ItemKind::Union(_, ref generics) => {
923                     allow_defaults = true;
924                     generics
925                 }
926
927                 ItemKind::Trait(_, _, ref generics, ..)
928                 | ItemKind::TraitAlias(ref generics, ..) => {
929                     // Add in the self type parameter.
930                     //
931                     // Something of a hack: use the node id for the trait, also as
932                     // the node id for the Self type parameter.
933                     let param_id = item.hir_id;
934
935                     opt_self = Some(ty::GenericParamDef {
936                         index: 0,
937                         name: kw::SelfUpper.as_interned_str(),
938                         def_id: tcx.hir().local_def_id_from_hir_id(param_id),
939                         pure_wrt_drop: false,
940                         kind: ty::GenericParamDefKind::Type {
941                             has_default: false,
942                             object_lifetime_default: rl::Set1::Empty,
943                             synthetic: None,
944                         },
945                     });
946
947                     allow_defaults = true;
948                     generics
949                 }
950
951                 _ => &no_generics,
952             }
953         }
954
955         Node::ForeignItem(item) => match item.node {
956             ForeignItemKind::Static(..) => &no_generics,
957             ForeignItemKind::Fn(_, _, ref generics) => generics,
958             ForeignItemKind::Type => &no_generics,
959         },
960
961         _ => &no_generics,
962     };
963
964     let has_self = opt_self.is_some();
965     let mut parent_has_self = false;
966     let mut own_start = has_self as u32;
967     let parent_count = parent_def_id.map_or(0, |def_id| {
968         let generics = tcx.generics_of(def_id);
969         assert_eq!(has_self, false);
970         parent_has_self = generics.has_self;
971         own_start = generics.count() as u32;
972         generics.parent_count + generics.params.len()
973     });
974
975     let mut params: Vec<_> = opt_self.into_iter().collect();
976
977     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
978     params.extend(
979         early_lifetimes
980             .enumerate()
981             .map(|(i, param)| ty::GenericParamDef {
982                 name: param.name.ident().as_interned_str(),
983                 index: own_start + i as u32,
984                 def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
985                 pure_wrt_drop: param.pure_wrt_drop,
986                 kind: ty::GenericParamDefKind::Lifetime,
987             }),
988     );
989
990     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
991
992     // Now create the real type parameters.
993     let type_start = own_start - has_self as u32 + params.len() as u32;
994     let mut i = 0;
995     params.extend(
996         ast_generics
997             .params
998             .iter()
999             .filter_map(|param| {
1000                 let kind = match param.kind {
1001                     GenericParamKind::Type {
1002                         ref default,
1003                         synthetic,
1004                         ..
1005                     } => {
1006                         if param.name.ident().name == kw::SelfUpper {
1007                             span_bug!(
1008                                 param.span,
1009                                 "`Self` should not be the name of a regular parameter"
1010                             );
1011                         }
1012
1013                         if !allow_defaults && default.is_some() {
1014                             if !tcx.features().default_type_parameter_fallback {
1015                                 tcx.lint_hir(
1016                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1017                                     param.hir_id,
1018                                     param.span,
1019                                     &format!(
1020                                         "defaults for type parameters are only allowed in \
1021                                         `struct`, `enum`, `type`, or `trait` definitions."
1022                                     ),
1023                                 );
1024                             }
1025                         }
1026
1027                         ty::GenericParamDefKind::Type {
1028                             has_default: default.is_some(),
1029                             object_lifetime_default: object_lifetime_defaults
1030                                 .as_ref()
1031                                 .map_or(rl::Set1::Empty, |o| o[i]),
1032                             synthetic,
1033                         }
1034                     }
1035                     GenericParamKind::Const { .. } => {
1036                         if param.name.ident().name == kw::SelfUpper {
1037                             span_bug!(
1038                                 param.span,
1039                                 "`Self` should not be the name of a regular parameter",
1040                             );
1041                         }
1042
1043                         ty::GenericParamDefKind::Const
1044                     }
1045                     _ => return None,
1046                 };
1047
1048                 let param_def = ty::GenericParamDef {
1049                     index: type_start + i as u32,
1050                     name: param.name.ident().as_interned_str(),
1051                     def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
1052                     pure_wrt_drop: param.pure_wrt_drop,
1053                     kind,
1054                 };
1055                 i += 1;
1056                 Some(param_def)
1057             })
1058     );
1059
1060     // provide junk type parameter defs - the only place that
1061     // cares about anything but the length is instantiation,
1062     // and we don't do that for closures.
1063     if let Node::Expr(&hir::Expr {
1064         node: hir::ExprKind::Closure(.., gen),
1065         ..
1066     }) = node
1067     {
1068         let dummy_args = if gen.is_some() {
1069             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1070         } else {
1071             &["<closure_kind>", "<closure_signature>"][..]
1072         };
1073
1074         params.extend(
1075             dummy_args
1076                 .iter()
1077                 .enumerate()
1078                 .map(|(i, &arg)| ty::GenericParamDef {
1079                     index: type_start + i as u32,
1080                     name: InternedString::intern(arg),
1081                     def_id,
1082                     pure_wrt_drop: false,
1083                     kind: ty::GenericParamDefKind::Type {
1084                         has_default: false,
1085                         object_lifetime_default: rl::Set1::Empty,
1086                         synthetic: None,
1087                     },
1088                 }),
1089         );
1090
1091         if let Some(upvars) = tcx.upvars(def_id) {
1092             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1093                 ty::GenericParamDef {
1094                     index: type_start + i,
1095                     name: InternedString::intern("<upvar>"),
1096                     def_id,
1097                     pure_wrt_drop: false,
1098                     kind: ty::GenericParamDefKind::Type {
1099                         has_default: false,
1100                         object_lifetime_default: rl::Set1::Empty,
1101                         synthetic: None,
1102                     },
1103                 }
1104             }));
1105         }
1106     }
1107
1108     let param_def_id_to_index = params
1109         .iter()
1110         .map(|param| (param.def_id, param.index))
1111         .collect();
1112
1113     tcx.arena.alloc(ty::Generics {
1114         parent: parent_def_id,
1115         parent_count,
1116         params,
1117         param_def_id_to_index,
1118         has_self: has_self || parent_has_self,
1119         has_late_bound_regions: has_late_bound_regions(tcx, node),
1120     })
1121 }
1122
1123 fn report_assoc_ty_on_inherent_impl<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span) {
1124     span_err!(
1125         tcx.sess,
1126         span,
1127         E0202,
1128         "associated types are not yet supported in inherent impls (see #8995)"
1129     );
1130 }
1131
1132 fn type_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Ty<'tcx> {
1133     checked_type_of(tcx, def_id, true).unwrap()
1134 }
1135
1136 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1137 ///
1138 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1139 /// you'd better just call [`type_of`] directly.
1140 pub fn checked_type_of<'a, 'tcx>(
1141     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1142     def_id: DefId,
1143     fail: bool,
1144 ) -> Option<Ty<'tcx>> {
1145     use rustc::hir::*;
1146
1147     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1148         Some(hir_id) => hir_id,
1149         None => {
1150             if !fail {
1151                 return None;
1152             }
1153             bug!("invalid node");
1154         }
1155     };
1156
1157     let icx = ItemCtxt::new(tcx, def_id);
1158
1159     Some(match tcx.hir().get_by_hir_id(hir_id) {
1160         Node::TraitItem(item) => match item.node {
1161             TraitItemKind::Method(..) => {
1162                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1163                 tcx.mk_fn_def(def_id, substs)
1164             }
1165             TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1166             TraitItemKind::Type(_, None) => {
1167                 if !fail {
1168                     return None;
1169                 }
1170                 span_bug!(item.span, "associated type missing default");
1171             }
1172         },
1173
1174         Node::ImplItem(item) => match item.node {
1175             ImplItemKind::Method(..) => {
1176                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1177                 tcx.mk_fn_def(def_id, substs)
1178             }
1179             ImplItemKind::Const(ref ty, _) => icx.to_ty(ty),
1180             ImplItemKind::Existential(_) => {
1181                 if tcx
1182                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1183                     .is_none()
1184                 {
1185                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1186                 }
1187
1188                 find_existential_constraints(tcx, def_id)
1189             }
1190             ImplItemKind::Type(ref ty) => {
1191                 if tcx
1192                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1193                     .is_none()
1194                 {
1195                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1196                 }
1197
1198                 icx.to_ty(ty)
1199             }
1200         },
1201
1202         Node::Item(item) => {
1203             match item.node {
1204                 ItemKind::Static(ref t, ..)
1205                 | ItemKind::Const(ref t, _)
1206                 | ItemKind::Ty(ref t, _)
1207                 | ItemKind::Impl(.., ref t, _) => icx.to_ty(t),
1208                 ItemKind::Fn(..) => {
1209                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1210                     tcx.mk_fn_def(def_id, substs)
1211                 }
1212                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1213                     let def = tcx.adt_def(def_id);
1214                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1215                     tcx.mk_adt(def, substs)
1216                 }
1217                 ItemKind::Existential(hir::ExistTy {
1218                     impl_trait_fn: None,
1219                     ..
1220                 }) => find_existential_constraints(tcx, def_id),
1221                 // Existential types desugared from `impl Trait`.
1222                 ItemKind::Existential(hir::ExistTy {
1223                     impl_trait_fn: Some(owner),
1224                     ..
1225                 }) => {
1226                     tcx.typeck_tables_of(owner)
1227                         .concrete_existential_types
1228                         .get(&def_id)
1229                         .map(|opaque| opaque.concrete_type)
1230                         .unwrap_or_else(|| {
1231                             // This can occur if some error in the
1232                             // owner fn prevented us from populating
1233                             // the `concrete_existential_types` table.
1234                             tcx.sess.delay_span_bug(
1235                                 DUMMY_SP,
1236                                 &format!(
1237                                     "owner {:?} has no existential type for {:?} in its tables",
1238                                     owner, def_id,
1239                                 ),
1240                             );
1241                             tcx.types.err
1242                         })
1243                 }
1244                 ItemKind::Trait(..)
1245                 | ItemKind::TraitAlias(..)
1246                 | ItemKind::Mod(..)
1247                 | ItemKind::ForeignMod(..)
1248                 | ItemKind::GlobalAsm(..)
1249                 | ItemKind::ExternCrate(..)
1250                 | ItemKind::Use(..) => {
1251                     if !fail {
1252                         return None;
1253                     }
1254                     span_bug!(
1255                         item.span,
1256                         "compute_type_of_item: unexpected item type: {:?}",
1257                         item.node
1258                     );
1259                 }
1260             }
1261         }
1262
1263         Node::ForeignItem(foreign_item) => match foreign_item.node {
1264             ForeignItemKind::Fn(..) => {
1265                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1266                 tcx.mk_fn_def(def_id, substs)
1267             }
1268             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1269             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1270         },
1271
1272         Node::Ctor(&ref def) | Node::Variant(&Spanned {
1273             node: hir::VariantKind { data: ref def, .. },
1274             ..
1275         }) => match *def {
1276             VariantData::Unit(..) | VariantData::Struct(..) => {
1277                 tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id))
1278             }
1279             VariantData::Tuple(..) => {
1280                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1281                 tcx.mk_fn_def(def_id, substs)
1282             }
1283         },
1284
1285         Node::Field(field) => icx.to_ty(&field.ty),
1286
1287         Node::Expr(&hir::Expr {
1288             node: hir::ExprKind::Closure(.., gen),
1289             ..
1290         }) => {
1291             if gen.is_some() {
1292                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1293             }
1294
1295             let substs = ty::ClosureSubsts {
1296                 substs: InternalSubsts::identity_for_item(tcx, def_id),
1297             };
1298
1299             tcx.mk_closure(def_id, substs)
1300         }
1301
1302         Node::AnonConst(_) => {
1303             let parent_node = tcx.hir().get_by_hir_id(tcx.hir().get_parent_node_by_hir_id(hir_id));
1304             match parent_node {
1305                 Node::Ty(&hir::Ty {
1306                     node: hir::TyKind::Array(_, ref constant),
1307                     ..
1308                 })
1309                 | Node::Ty(&hir::Ty {
1310                     node: hir::TyKind::Typeof(ref constant),
1311                     ..
1312                 })
1313                 | Node::Expr(&hir::Expr {
1314                     node: ExprKind::Repeat(_, ref constant),
1315                     ..
1316                 }) if constant.hir_id == hir_id =>
1317                 {
1318                     tcx.types.usize
1319                 }
1320
1321                 Node::Variant(&Spanned {
1322                     node:
1323                         VariantKind {
1324                             disr_expr: Some(ref e),
1325                             ..
1326                         },
1327                     ..
1328                 }) if e.hir_id == hir_id =>
1329                 {
1330                     tcx.adt_def(tcx.hir().get_parent_did_by_hir_id(hir_id))
1331                         .repr
1332                         .discr_type()
1333                         .to_ty(tcx)
1334                 }
1335
1336                 Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) |
1337                 Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) |
1338                 Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) |
1339                 Node::TraitRef(..) => {
1340                     let path = match parent_node {
1341                         Node::Ty(&hir::Ty {
1342                             node: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1343                             ..
1344                         })
1345                         | Node::Expr(&hir::Expr {
1346                             node: ExprKind::Path(QPath::Resolved(_, ref path)),
1347                             ..
1348                         }) => {
1349                             Some(&**path)
1350                         }
1351                         Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => {
1352                             if let QPath::Resolved(_, ref path) = **path {
1353                                 Some(&**path)
1354                             } else {
1355                                 None
1356                             }
1357                         }
1358                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(path),
1359                         _ => None,
1360                     };
1361
1362                     if let Some(path) = path {
1363                         let arg_index = path.segments.iter()
1364                             .filter_map(|seg| seg.args.as_ref())
1365                             .map(|generic_args| generic_args.args.as_ref())
1366                             .find_map(|args| {
1367                                 args.iter()
1368                                     .filter(|arg| arg.is_const())
1369                                     .enumerate()
1370                                     .filter(|(_, arg)| arg.id() == hir_id)
1371                                     .map(|(index, _)| index)
1372                                     .next()
1373                             })
1374                             .or_else(|| {
1375                                 if !fail {
1376                                     None
1377                                 } else {
1378                                     bug!("no arg matching AnonConst in path")
1379                                 }
1380                             })?;
1381
1382                         // We've encountered an `AnonConst` in some path, so we need to
1383                         // figure out which generic parameter it corresponds to and return
1384                         // the relevant type.
1385                         let generics = match path.res {
1386                             Res::Def(DefKind::Ctor(..), def_id) => {
1387                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1388                             }
1389                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1390                             Res::Err => return Some(tcx.types.err),
1391                             _ if !fail => return None,
1392                             res => {
1393                                 tcx.sess.delay_span_bug(
1394                                     DUMMY_SP,
1395                                     &format!(
1396                                         "unexpected const parent path def {:?}",
1397                                         res,
1398                                     ),
1399                                 );
1400                                 return Some(tcx.types.err);
1401                             }
1402                         };
1403
1404                         generics.params.iter()
1405                             .filter(|param| {
1406                                 if let ty::GenericParamDefKind::Const = param.kind {
1407                                     true
1408                                 } else {
1409                                     false
1410                                 }
1411                             })
1412                             .nth(arg_index)
1413                             .map(|param| tcx.type_of(param.def_id))
1414                             // This is no generic parameter associated with the arg. This is
1415                             // probably from an extra arg where one is not needed.
1416                             .unwrap_or(tcx.types.err)
1417                     } else {
1418                         if !fail {
1419                             return None;
1420                         }
1421                         tcx.sess.delay_span_bug(
1422                             DUMMY_SP,
1423                             &format!(
1424                                 "unexpected const parent path {:?}",
1425                                 parent_node,
1426                             ),
1427                         );
1428                         return Some(tcx.types.err);
1429                     }
1430                 }
1431
1432                 x => {
1433                     if !fail {
1434                         return None;
1435                     }
1436                     tcx.sess.delay_span_bug(
1437                         DUMMY_SP,
1438                         &format!(
1439                             "unexpected const parent in type_of_def_id(): {:?}", x
1440                         ),
1441                     );
1442                     tcx.types.err
1443                 }
1444             }
1445         }
1446
1447         Node::GenericParam(param) => match &param.kind {
1448             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1449             hir::GenericParamKind::Const { ref ty, .. } => {
1450                 icx.to_ty(ty)
1451             }
1452             x => {
1453                 if !fail {
1454                     return None;
1455                 }
1456                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1457             },
1458         },
1459
1460         x => {
1461             if !fail {
1462                 return None;
1463             }
1464             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1465         }
1466     })
1467 }
1468
1469 fn find_existential_constraints<'a, 'tcx>(
1470     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1471     def_id: DefId,
1472 ) -> Ty<'tcx> {
1473     use rustc::hir::{ImplItem, Item, TraitItem};
1474
1475     debug!("find_existential_constraints({:?})", def_id);
1476
1477     struct ConstraintLocator<'a, 'tcx: 'a> {
1478         tcx: TyCtxt<'a, 'tcx, 'tcx>,
1479         def_id: DefId,
1480         // (first found type span, actual type, mapping from the existential type's generic
1481         // parameters to the concrete type's generic parameters)
1482         //
1483         // The mapping is an index for each use site of a generic parameter in the concrete type
1484         //
1485         // The indices index into the generic parameters on the existential type.
1486         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1487     }
1488
1489     impl<'a, 'tcx> ConstraintLocator<'a, 'tcx> {
1490         fn check(&mut self, def_id: DefId) {
1491             // Don't try to check items that cannot possibly constrain the type.
1492             if !self.tcx.has_typeck_tables(def_id) {
1493                 debug!(
1494                     "find_existential_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1495                     self.def_id,
1496                     def_id,
1497                 );
1498                 return;
1499             }
1500             let ty = self
1501                 .tcx
1502                 .typeck_tables_of(def_id)
1503                 .concrete_existential_types
1504                 .get(&self.def_id);
1505             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1506                 debug!(
1507                     "find_existential_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1508                     self.def_id,
1509                     def_id,
1510                     ty,
1511                 );
1512
1513                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1514                 let span = self.tcx.def_span(def_id);
1515                 // used to quickly look up the position of a generic parameter
1516                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1517                 // Skipping binder is ok, since we only use this to find generic parameters and
1518                 // their positions.
1519                 for (idx, subst) in substs.iter().enumerate() {
1520                     if let UnpackedKind::Type(ty) = subst.unpack() {
1521                         if let ty::Param(p) = ty.sty {
1522                             if index_map.insert(p, idx).is_some() {
1523                                 // There was already an entry for `p`, meaning a generic parameter
1524                                 // was used twice.
1525                                 self.tcx.sess.span_err(
1526                                     span,
1527                                     &format!(
1528                                         "defining existential type use restricts existential \
1529                                          type by using the generic parameter `{}` twice",
1530                                         p.name
1531                                     ),
1532                                 );
1533                                 return;
1534                             }
1535                         } else {
1536                             self.tcx.sess.delay_span_bug(
1537                                 span,
1538                                 &format!(
1539                                     "non-defining exist ty use in defining scope: {:?}, {:?}",
1540                                     concrete_type, substs,
1541                                 ),
1542                             );
1543                         }
1544                     }
1545                 }
1546                 // Compute the index within the existential type for each generic parameter used in
1547                 // the concrete type.
1548                 let indices = concrete_type
1549                     .subst(self.tcx, substs)
1550                     .walk()
1551                     .filter_map(|t| match &t.sty {
1552                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1553                         _ => None,
1554                     }).collect();
1555                 let is_param = |ty: Ty<'_>| match ty.sty {
1556                     ty::Param(_) => true,
1557                     _ => false,
1558                 };
1559                 if !substs.types().all(is_param) {
1560                     self.tcx.sess.span_err(
1561                         span,
1562                         "defining existential type use does not fully define existential type",
1563                     );
1564                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1565                     let mut ty = concrete_type.walk().fuse();
1566                     let mut p_ty = prev_ty.walk().fuse();
1567                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) {
1568                         // Type parameters are equal to any other type parameter for the purpose of
1569                         // concrete type equality, as it is possible to obtain the same type just
1570                         // by passing matching parameters to a function.
1571                         (ty::Param(_), ty::Param(_)) => true,
1572                         _ => t == p,
1573                     });
1574                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1575                         debug!("find_existential_constraints: span={:?}", span);
1576                         // Found different concrete types for the existential type.
1577                         let mut err = self.tcx.sess.struct_span_err(
1578                             span,
1579                             "concrete type differs from previous defining existential type use",
1580                         );
1581                         err.span_label(
1582                             span,
1583                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1584                         );
1585                         err.span_note(prev_span, "previous use here");
1586                         err.emit();
1587                     } else if indices != *prev_indices {
1588                         // Found "same" concrete types, but the generic parameter order differs.
1589                         let mut err = self.tcx.sess.struct_span_err(
1590                             span,
1591                             "concrete type's generic parameters differ from previous defining use",
1592                         );
1593                         use std::fmt::Write;
1594                         let mut s = String::new();
1595                         write!(s, "expected [").unwrap();
1596                         let list = |s: &mut String, indices: &Vec<usize>| {
1597                             let mut indices = indices.iter().cloned();
1598                             if let Some(first) = indices.next() {
1599                                 write!(s, "`{}`", substs[first]).unwrap();
1600                                 for i in indices {
1601                                     write!(s, ", `{}`", substs[i]).unwrap();
1602                                 }
1603                             }
1604                         };
1605                         list(&mut s, prev_indices);
1606                         write!(s, "], got [").unwrap();
1607                         list(&mut s, &indices);
1608                         write!(s, "]").unwrap();
1609                         err.span_label(span, s);
1610                         err.span_note(prev_span, "previous use here");
1611                         err.emit();
1612                     }
1613                 } else {
1614                     self.found = Some((span, concrete_type, indices));
1615                 }
1616             } else {
1617                 debug!(
1618                     "find_existential_constraints: no constraint for `{:?}` at `{:?}`",
1619                     self.def_id,
1620                     def_id,
1621                 );
1622             }
1623         }
1624     }
1625
1626     impl<'a, 'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'a, 'tcx> {
1627         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1628             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1629         }
1630         fn visit_item(&mut self, it: &'tcx Item) {
1631             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1632             // The existential type itself or its children are not within its reveal scope.
1633             if def_id != self.def_id {
1634                 self.check(def_id);
1635                 intravisit::walk_item(self, it);
1636             }
1637         }
1638         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1639             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1640             // The existential type itself or its children are not within its reveal scope.
1641             if def_id != self.def_id {
1642                 self.check(def_id);
1643                 intravisit::walk_impl_item(self, it);
1644             }
1645         }
1646         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1647             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1648             self.check(def_id);
1649             intravisit::walk_trait_item(self, it);
1650         }
1651     }
1652
1653     let node_id = tcx.hir().as_local_node_id(def_id).unwrap();
1654     let scope_node_id = tcx.hir()
1655         .get_defining_scope(node_id)
1656         .expect("could not get defining scope");
1657     let scope_id = tcx.hir().node_to_hir_id(scope_node_id);
1658     let mut locator = ConstraintLocator {
1659         def_id,
1660         tcx,
1661         found: None,
1662     };
1663
1664     debug!("find_existential_constraints: scope_id={:?}", scope_id);
1665
1666     if scope_id == hir::CRATE_HIR_ID {
1667         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1668     } else {
1669         debug!("find_existential_constraints: scope={:?}", tcx.hir().get_by_hir_id(scope_id));
1670         match tcx.hir().get_by_hir_id(scope_id) {
1671             Node::Item(ref it) => intravisit::walk_item(&mut locator, it),
1672             Node::ImplItem(ref it) => intravisit::walk_impl_item(&mut locator, it),
1673             Node::TraitItem(ref it) => intravisit::walk_trait_item(&mut locator, it),
1674             other => bug!(
1675                 "{:?} is not a valid scope for an existential type item",
1676                 other
1677             ),
1678         }
1679     }
1680
1681     match locator.found {
1682         Some((_, ty, _)) => ty,
1683         None => {
1684             let span = tcx.def_span(def_id);
1685             tcx.sess.span_err(span, "could not find defining uses");
1686             tcx.types.err
1687         }
1688     }
1689 }
1690
1691 fn fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> ty::PolyFnSig<'tcx> {
1692     use rustc::hir::*;
1693     use rustc::hir::Node::*;
1694
1695     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1696
1697     let icx = ItemCtxt::new(tcx, def_id);
1698
1699     match tcx.hir().get_by_hir_id(hir_id) {
1700         TraitItem(hir::TraitItem {
1701             node: TraitItemKind::Method(sig, _),
1702             ..
1703         })
1704         | ImplItem(hir::ImplItem {
1705             node: ImplItemKind::Method(sig, _),
1706             ..
1707         }) => AstConv::ty_of_fn(&icx, sig.header.unsafety, sig.header.abi, &sig.decl),
1708
1709         Item(hir::Item {
1710             node: ItemKind::Fn(decl, header, _, _),
1711             ..
1712         }) => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl),
1713
1714         ForeignItem(&hir::ForeignItem {
1715             node: ForeignItemKind::Fn(ref fn_decl, _, _),
1716             ..
1717         }) => {
1718             let abi = tcx.hir().get_foreign_abi_by_hir_id(hir_id);
1719             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1720         }
1721
1722         Ctor(data) | Variant(Spanned {
1723             node: hir::VariantKind { data, ..  },
1724             ..
1725         }) if data.ctor_hir_id().is_some() => {
1726             let ty = tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id));
1727             let inputs = data.fields()
1728                 .iter()
1729                 .map(|f| tcx.type_of(tcx.hir().local_def_id_from_hir_id(f.hir_id)));
1730             ty::Binder::bind(tcx.mk_fn_sig(
1731                 inputs,
1732                 ty,
1733                 false,
1734                 hir::Unsafety::Normal,
1735                 abi::Abi::Rust,
1736             ))
1737         }
1738
1739         Expr(&hir::Expr {
1740             node: hir::ExprKind::Closure(..),
1741             ..
1742         }) => {
1743             // Closure signatures are not like other function
1744             // signatures and cannot be accessed through `fn_sig`. For
1745             // example, a closure signature excludes the `self`
1746             // argument. In any case they are embedded within the
1747             // closure type as part of the `ClosureSubsts`.
1748             //
1749             // To get
1750             // the signature of a closure, you should use the
1751             // `closure_sig` method on the `ClosureSubsts`:
1752             //
1753             //    closure_substs.closure_sig(def_id, tcx)
1754             //
1755             // or, inside of an inference context, you can use
1756             //
1757             //    infcx.closure_sig(def_id, closure_substs)
1758             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1759         }
1760
1761         x => {
1762             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1763         }
1764     }
1765 }
1766
1767 fn impl_trait_ref<'a, 'tcx>(
1768     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1769     def_id: DefId,
1770 ) -> Option<ty::TraitRef<'tcx>> {
1771     let icx = ItemCtxt::new(tcx, def_id);
1772
1773     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1774     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1775         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1776             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1777                 let selfty = tcx.type_of(def_id);
1778                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1779             })
1780         }
1781         _ => bug!(),
1782     }
1783 }
1784
1785 fn impl_polarity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> hir::ImplPolarity {
1786     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1787     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1788         hir::ItemKind::Impl(_, polarity, ..) => polarity,
1789         ref item => bug!("impl_polarity: {:?} not an impl", item),
1790     }
1791 }
1792
1793 /// Returns the early-bound lifetimes declared in this generics
1794 /// listing. For anything other than fns/methods, this is just all
1795 /// the lifetimes that are declared. For fns or methods, we have to
1796 /// screen out those that do not appear in any where-clauses etc using
1797 /// `resolve_lifetime::early_bound_lifetimes`.
1798 fn early_bound_lifetimes_from_generics<'a, 'tcx>(
1799     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1800     generics: &'a hir::Generics,
1801 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1802     generics
1803         .params
1804         .iter()
1805         .filter(move |param| match param.kind {
1806             GenericParamKind::Lifetime { .. } => {
1807                 !tcx.is_late_bound(param.hir_id)
1808             }
1809             _ => false,
1810         })
1811 }
1812
1813 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1814 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1815 /// inferred constraints concerning which regions outlive other regions.
1816 fn predicates_defined_on<'a, 'tcx>(
1817     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1818     def_id: DefId,
1819 ) -> &'tcx ty::GenericPredicates<'tcx> {
1820     debug!("predicates_defined_on({:?})", def_id);
1821     let mut result = tcx.explicit_predicates_of(def_id);
1822     debug!(
1823         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1824         def_id,
1825         result,
1826     );
1827     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1828     if !inferred_outlives.is_empty() {
1829         let span = tcx.def_span(def_id);
1830         debug!(
1831             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1832             def_id,
1833             inferred_outlives,
1834         );
1835         let mut predicates = (*result).clone();
1836         predicates.predicates.extend(inferred_outlives.iter().map(|&p| (p, span)));
1837         result = tcx.arena.alloc(predicates);
1838     }
1839     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1840     result
1841 }
1842
1843 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1844 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1845 /// `Self: Trait` predicates for traits.
1846 fn predicates_of<'a, 'tcx>(
1847     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1848     def_id: DefId,
1849 ) -> &'tcx ty::GenericPredicates<'tcx> {
1850     let mut result = tcx.predicates_defined_on(def_id);
1851
1852     if tcx.is_trait(def_id) {
1853         // For traits, add `Self: Trait` predicate. This is
1854         // not part of the predicates that a user writes, but it
1855         // is something that one must prove in order to invoke a
1856         // method or project an associated type.
1857         //
1858         // In the chalk setup, this predicate is not part of the
1859         // "predicates" for a trait item. But it is useful in
1860         // rustc because if you directly (e.g.) invoke a trait
1861         // method like `Trait::method(...)`, you must naturally
1862         // prove that the trait applies to the types that were
1863         // used, and adding the predicate into this list ensures
1864         // that this is done.
1865         let span = tcx.def_span(def_id);
1866         let mut predicates = (*result).clone();
1867         predicates.predicates.push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1868         result = tcx.arena.alloc(predicates);
1869     }
1870     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1871     result
1872 }
1873
1874 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1875 /// N.B., this does not include any implied/inferred constraints.
1876 fn explicit_predicates_of<'a, 'tcx>(
1877     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1878     def_id: DefId,
1879 ) -> &'tcx ty::GenericPredicates<'tcx> {
1880     use rustc::hir::*;
1881     use rustc_data_structures::fx::FxHashSet;
1882
1883     debug!("explicit_predicates_of(def_id={:?})", def_id);
1884
1885     /// A data structure with unique elements, which preserves order of insertion.
1886     /// Preserving the order of insertion is important here so as not to break
1887     /// compile-fail UI tests.
1888     struct UniquePredicates<'tcx> {
1889         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1890         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1891     }
1892
1893     impl<'tcx> UniquePredicates<'tcx> {
1894         fn new() -> Self {
1895             UniquePredicates {
1896                 predicates: vec![],
1897                 uniques: FxHashSet::default(),
1898             }
1899         }
1900
1901         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1902             if self.uniques.insert(value) {
1903                 self.predicates.push(value);
1904             }
1905         }
1906
1907         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1908             for value in iter {
1909                 self.push(value);
1910             }
1911         }
1912     }
1913
1914     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1915         Some(hir_id) => hir_id,
1916         None => return tcx.predicates_of(def_id),
1917     };
1918     let node = tcx.hir().get_by_hir_id(hir_id);
1919
1920     let mut is_trait = None;
1921     let mut is_default_impl_trait = None;
1922
1923     let icx = ItemCtxt::new(tcx, def_id);
1924     let no_generics = hir::Generics::empty();
1925     let empty_trait_items = HirVec::new();
1926
1927     let mut predicates = UniquePredicates::new();
1928
1929     let ast_generics = match node {
1930         Node::TraitItem(item) => &item.generics,
1931
1932         Node::ImplItem(item) => match item.node {
1933             ImplItemKind::Existential(ref bounds) => {
1934                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1935                 let opaque_ty = tcx.mk_opaque(def_id, substs);
1936
1937                 // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1938                 let bounds = AstConv::compute_bounds(
1939                     &icx,
1940                     opaque_ty,
1941                     bounds,
1942                     SizedByDefault::Yes,
1943                     tcx.def_span(def_id),
1944                 );
1945
1946                 predicates.extend(bounds.predicates(tcx, opaque_ty));
1947                 &item.generics
1948             }
1949             _ => &item.generics,
1950         },
1951
1952         Node::Item(item) => {
1953             match item.node {
1954                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
1955                     if defaultness.is_default() {
1956                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1957                     }
1958                     generics
1959                 }
1960                 ItemKind::Fn(.., ref generics, _)
1961                 | ItemKind::Ty(_, ref generics)
1962                 | ItemKind::Enum(_, ref generics)
1963                 | ItemKind::Struct(_, ref generics)
1964                 | ItemKind::Union(_, ref generics) => generics,
1965
1966                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
1967                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1968                     generics
1969                 }
1970                 ItemKind::TraitAlias(ref generics, _) => {
1971                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
1972                     generics
1973                 }
1974                 ItemKind::Existential(ExistTy {
1975                     ref bounds,
1976                     impl_trait_fn,
1977                     ref generics,
1978                     origin: _,
1979                 }) => {
1980                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1981                     let opaque_ty = tcx.mk_opaque(def_id, substs);
1982
1983                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1984                     let bounds = AstConv::compute_bounds(
1985                         &icx,
1986                         opaque_ty,
1987                         bounds,
1988                         SizedByDefault::Yes,
1989                         tcx.def_span(def_id),
1990                     );
1991
1992                     let bounds_predicates = bounds.predicates(tcx, opaque_ty);
1993                     if impl_trait_fn.is_some() {
1994                         // opaque types
1995                         return tcx.arena.alloc(ty::GenericPredicates {
1996                             parent: None,
1997                             predicates: bounds_predicates,
1998                         });
1999                     } else {
2000                         // named existential types
2001                         predicates.extend(bounds_predicates);
2002                         generics
2003                     }
2004                 }
2005
2006                 _ => &no_generics,
2007             }
2008         }
2009
2010         Node::ForeignItem(item) => match item.node {
2011             ForeignItemKind::Static(..) => &no_generics,
2012             ForeignItemKind::Fn(_, _, ref generics) => generics,
2013             ForeignItemKind::Type => &no_generics,
2014         },
2015
2016         _ => &no_generics,
2017     };
2018
2019     let generics = tcx.generics_of(def_id);
2020     let parent_count = generics.parent_count as u32;
2021     let has_own_self = generics.has_self && parent_count == 0;
2022
2023     // Below we'll consider the bounds on the type parameters (including `Self`)
2024     // and the explicit where-clauses, but to get the full set of predicates
2025     // on a trait we need to add in the supertrait bounds and bounds found on
2026     // associated types.
2027     if let Some((_trait_ref, _)) = is_trait {
2028         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2029     }
2030
2031     // In default impls, we can assume that the self type implements
2032     // the trait. So in:
2033     //
2034     //     default impl Foo for Bar { .. }
2035     //
2036     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2037     // (see below). Recall that a default impl is not itself an impl, but rather a
2038     // set of defaults that can be incorporated into another impl.
2039     if let Some(trait_ref) = is_default_impl_trait {
2040         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2041     }
2042
2043     // Collect the region predicates that were declared inline as
2044     // well. In the case of parameters declared on a fn or method, we
2045     // have to be careful to only iterate over early-bound regions.
2046     let mut index = parent_count + has_own_self as u32;
2047     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2048         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2049             def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
2050             index,
2051             name: param.name.ident().as_interned_str(),
2052         }));
2053         index += 1;
2054
2055         match param.kind {
2056             GenericParamKind::Lifetime { .. } => {
2057                 param.bounds.iter().for_each(|bound| match bound {
2058                     hir::GenericBound::Outlives(lt) => {
2059                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2060                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2061                         predicates.push((outlives.to_predicate(), lt.span));
2062                     }
2063                     _ => bug!(),
2064                 });
2065             }
2066             _ => bug!(),
2067         }
2068     }
2069
2070     // Collect the predicates that were written inline by the user on each
2071     // type parameter (e.g., `<T: Foo>`).
2072     for param in &ast_generics.params {
2073         if let GenericParamKind::Type { .. } = param.kind {
2074             let name = param.name.ident().as_interned_str();
2075             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2076             index += 1;
2077
2078             let sized = SizedByDefault::Yes;
2079             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2080             predicates.extend(bounds.predicates(tcx, param_ty));
2081         }
2082     }
2083
2084     // Add in the bounds that appear in the where-clause.
2085     let where_clause = &ast_generics.where_clause;
2086     for predicate in &where_clause.predicates {
2087         match predicate {
2088             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2089                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2090
2091                 // Keep the type around in a dummy predicate, in case of no bounds.
2092                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2093                 // is still checked for WF.
2094                 if bound_pred.bounds.is_empty() {
2095                     if let ty::Param(_) = ty.sty {
2096                         // This is a `where T:`, which can be in the HIR from the
2097                         // transformation that moves `?Sized` to `T`'s declaration.
2098                         // We can skip the predicate because type parameters are
2099                         // trivially WF, but also we *should*, to avoid exposing
2100                         // users who never wrote `where Type:,` themselves, to
2101                         // compiler/tooling bugs from not handling WF predicates.
2102                     } else {
2103                         let span = bound_pred.bounded_ty.span;
2104                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2105                         predicates.push(
2106                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2107                         );
2108                     }
2109                 }
2110
2111                 for bound in bound_pred.bounds.iter() {
2112                     match bound {
2113                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2114                             let mut bounds = Bounds::default();
2115
2116                             let (trait_ref, _) = AstConv::instantiate_poly_trait_ref(
2117                                 &icx,
2118                                 poly_trait_ref,
2119                                 ty,
2120                                 &mut bounds,
2121                             );
2122
2123                             predicates.push((trait_ref.to_predicate(), poly_trait_ref.span));
2124                             predicates.extend(bounds.predicates(tcx, ty));
2125                         }
2126
2127                         &hir::GenericBound::Outlives(ref lifetime) => {
2128                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2129                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2130                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2131                         }
2132                     }
2133                 }
2134             }
2135
2136             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2137                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2138                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2139                     let (r2, span) = match bound {
2140                         hir::GenericBound::Outlives(lt) => {
2141                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2142                         }
2143                         _ => bug!(),
2144                     };
2145                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2146
2147                     (ty::Predicate::RegionOutlives(pred), span)
2148                 }))
2149             }
2150
2151             &hir::WherePredicate::EqPredicate(..) => {
2152                 // FIXME(#20041)
2153             }
2154         }
2155     }
2156
2157     // Add predicates from associated type bounds.
2158     if let Some((self_trait_ref, trait_items)) = is_trait {
2159         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2160             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2161             let bounds = match trait_item.node {
2162                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2163                 _ => return Vec::new().into_iter()
2164             };
2165
2166             let assoc_ty =
2167                 tcx.mk_projection(tcx.hir().local_def_id_from_hir_id(trait_item.hir_id),
2168                     self_trait_ref.substs);
2169
2170             let bounds = AstConv::compute_bounds(
2171                 &ItemCtxt::new(tcx, def_id),
2172                 assoc_ty,
2173                 bounds,
2174                 SizedByDefault::Yes,
2175                 trait_item.span,
2176             );
2177
2178             bounds.predicates(tcx, assoc_ty).into_iter()
2179         }))
2180     }
2181
2182     let mut predicates = predicates.predicates;
2183
2184     // Subtle: before we store the predicates into the tcx, we
2185     // sort them so that predicates like `T: Foo<Item=U>` come
2186     // before uses of `U`.  This avoids false ambiguity errors
2187     // in trait checking. See `setup_constraining_predicates`
2188     // for details.
2189     if let Node::Item(&Item {
2190         node: ItemKind::Impl(..),
2191         ..
2192     }) = node
2193     {
2194         let self_ty = tcx.type_of(def_id);
2195         let trait_ref = tcx.impl_trait_ref(def_id);
2196         cgp::setup_constraining_predicates(
2197             tcx,
2198             &mut predicates,
2199             trait_ref,
2200             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2201         );
2202     }
2203
2204     let result = tcx.arena.alloc(ty::GenericPredicates {
2205         parent: generics.parent,
2206         predicates,
2207     });
2208     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2209     result
2210 }
2211
2212 /// Converts a specific `GenericBound` from the AST into a set of
2213 /// predicates that apply to the self type. A vector is returned
2214 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2215 /// predicates) to one (`T: Foo`) to many (`T: Bar<X=i32>` adds `T: Bar`
2216 /// and `<T as Bar>::X == i32`).
2217 fn predicates_from_bound<'tcx>(
2218     astconv: &dyn AstConv<'tcx, 'tcx>,
2219     param_ty: Ty<'tcx>,
2220     bound: &hir::GenericBound,
2221 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2222     match *bound {
2223         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2224             let mut bounds = Bounds::default();
2225             let (pred, _) = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut bounds);
2226             iter::once((pred.to_predicate(), tr.span))
2227                 .chain(bounds.predicates(astconv.tcx(), param_ty))
2228                 .collect()
2229         }
2230         hir::GenericBound::Outlives(ref lifetime) => {
2231             let region = astconv.ast_region_to_region(lifetime, None);
2232             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2233             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2234         }
2235         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2236     }
2237 }
2238
2239 fn compute_sig_of_foreign_fn_decl<'a, 'tcx>(
2240     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2241     def_id: DefId,
2242     decl: &hir::FnDecl,
2243     abi: abi::Abi,
2244 ) -> ty::PolyFnSig<'tcx> {
2245     let unsafety = if abi == abi::Abi::RustIntrinsic {
2246         intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2247     } else {
2248         hir::Unsafety::Unsafe
2249     };
2250     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2251
2252     // Feature gate SIMD types in FFI, since I am not sure that the
2253     // ABIs are handled at all correctly. -huonw
2254     if abi != abi::Abi::RustIntrinsic
2255         && abi != abi::Abi::PlatformIntrinsic
2256         && !tcx.features().simd_ffi
2257     {
2258         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2259             if ty.is_simd() {
2260                 tcx.sess
2261                    .struct_span_err(
2262                        ast_ty.span,
2263                        &format!(
2264                            "use of SIMD type `{}` in FFI is highly experimental and \
2265                             may result in invalid code",
2266                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2267                        ),
2268                    )
2269                    .help("add #![feature(simd_ffi)] to the crate attributes to enable")
2270                    .emit();
2271             }
2272         };
2273         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2274             check(&input, ty)
2275         }
2276         if let hir::Return(ref ty) = decl.output {
2277             check(&ty, *fty.output().skip_binder())
2278         }
2279     }
2280
2281     fty
2282 }
2283
2284 fn is_foreign_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
2285     match tcx.hir().get_if_local(def_id) {
2286         Some(Node::ForeignItem(..)) => true,
2287         Some(_) => false,
2288         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2289     }
2290 }
2291
2292 fn static_mutability<'a, 'tcx>(
2293     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2294     def_id: DefId,
2295 ) -> Option<hir::Mutability> {
2296     match tcx.hir().get_if_local(def_id) {
2297         Some(Node::Item(&hir::Item {
2298             node: hir::ItemKind::Static(_, mutbl, _), ..
2299         })) |
2300         Some(Node::ForeignItem( &hir::ForeignItem {
2301             node: hir::ForeignItemKind::Static(_, mutbl), ..
2302         })) => Some(mutbl),
2303         Some(_) => None,
2304         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2305     }
2306 }
2307
2308 fn from_target_feature(
2309     tcx: TyCtxt<'_, '_, '_>,
2310     id: DefId,
2311     attr: &ast::Attribute,
2312     whitelist: &FxHashMap<String, Option<Symbol>>,
2313     target_features: &mut Vec<Symbol>,
2314 ) {
2315     let list = match attr.meta_item_list() {
2316         Some(list) => list,
2317         None => return,
2318     };
2319     let bad_item = |span| {
2320         let msg = "malformed `target_feature` attribute input";
2321         let code = "enable = \"..\"".to_owned();
2322         tcx.sess.struct_span_err(span, &msg)
2323             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2324             .emit();
2325     };
2326     let rust_features = tcx.features();
2327     for item in list {
2328         // Only `enable = ...` is accepted in the meta-item list.
2329         if !item.check_name(sym::enable) {
2330             bad_item(item.span());
2331             continue;
2332         }
2333
2334         // Must be of the form `enable = "..."` (a string).
2335         let value = match item.value_str() {
2336             Some(value) => value,
2337             None => {
2338                 bad_item(item.span());
2339                 continue;
2340             }
2341         };
2342
2343         // We allow comma separation to enable multiple features.
2344         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2345             // Only allow whitelisted features per platform.
2346             let feature_gate = match whitelist.get(feature) {
2347                 Some(g) => g,
2348                 None => {
2349                     let msg = format!(
2350                         "the feature named `{}` is not valid for this target",
2351                         feature
2352                     );
2353                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2354                     err.span_label(
2355                         item.span(),
2356                         format!("`{}` is not valid for this target", feature),
2357                     );
2358                     if feature.starts_with("+") {
2359                         let valid = whitelist.contains_key(&feature[1..]);
2360                         if valid {
2361                             err.help("consider removing the leading `+` in the feature name");
2362                         }
2363                     }
2364                     err.emit();
2365                     return None;
2366                 }
2367             };
2368
2369             // Only allow features whose feature gates have been enabled.
2370             let allowed = match feature_gate.as_ref().map(|s| *s) {
2371                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2372                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2373                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2374                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2375                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2376                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2377                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2378                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2379                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2380                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2381                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2382                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2383                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2384                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2385                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2386                 Some(name) => bug!("unknown target feature gate {}", name),
2387                 None => true,
2388             };
2389             if !allowed && id.is_local() {
2390                 feature_gate::emit_feature_err(
2391                     &tcx.sess.parse_sess,
2392                     feature_gate.unwrap(),
2393                     item.span(),
2394                     feature_gate::GateIssue::Language,
2395                     &format!("the target feature `{}` is currently unstable", feature),
2396                 );
2397             }
2398             Some(Symbol::intern(feature))
2399         }));
2400     }
2401 }
2402
2403 fn linkage_by_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, name: &str) -> Linkage {
2404     use rustc::mir::mono::Linkage::*;
2405
2406     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2407     // applicable to variable declarations and may not really make sense for
2408     // Rust code in the first place but whitelist them anyway and trust that
2409     // the user knows what s/he's doing. Who knows, unanticipated use cases
2410     // may pop up in the future.
2411     //
2412     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2413     // and don't have to be, LLVM treats them as no-ops.
2414     match name {
2415         "appending" => Appending,
2416         "available_externally" => AvailableExternally,
2417         "common" => Common,
2418         "extern_weak" => ExternalWeak,
2419         "external" => External,
2420         "internal" => Internal,
2421         "linkonce" => LinkOnceAny,
2422         "linkonce_odr" => LinkOnceODR,
2423         "private" => Private,
2424         "weak" => WeakAny,
2425         "weak_odr" => WeakODR,
2426         _ => {
2427             let span = tcx.hir().span_if_local(def_id);
2428             if let Some(span) = span {
2429                 tcx.sess.span_fatal(span, "invalid linkage specified")
2430             } else {
2431                 tcx.sess
2432                    .fatal(&format!("invalid linkage specified: {}", name))
2433             }
2434         }
2435     }
2436 }
2437
2438 fn codegen_fn_attrs<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefId) -> CodegenFnAttrs {
2439     let attrs = tcx.get_attrs(id);
2440
2441     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2442
2443     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2444
2445     let mut inline_span = None;
2446     for attr in attrs.iter() {
2447         if attr.check_name(sym::cold) {
2448             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2449         } else if attr.check_name(sym::allocator) {
2450             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2451         } else if attr.check_name(sym::unwind) {
2452             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2453         } else if attr.check_name(sym::ffi_returns_twice) {
2454             if tcx.is_foreign_item(id) {
2455                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2456             } else {
2457                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2458                 struct_span_err!(
2459                     tcx.sess,
2460                     attr.span,
2461                     E0724,
2462                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2463                 ).emit();
2464             }
2465         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2466             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2467         } else if attr.check_name(sym::naked) {
2468             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2469         } else if attr.check_name(sym::no_mangle) {
2470             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2471         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2472             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2473         } else if attr.check_name(sym::no_debug) {
2474             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2475         } else if attr.check_name(sym::used) {
2476             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2477         } else if attr.check_name(sym::thread_local) {
2478             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2479         } else if attr.check_name(sym::export_name) {
2480             if let Some(s) = attr.value_str() {
2481                 if s.as_str().contains("\0") {
2482                     // `#[export_name = ...]` will be converted to a null-terminated string,
2483                     // so it may not contain any null characters.
2484                     struct_span_err!(
2485                         tcx.sess,
2486                         attr.span,
2487                         E0648,
2488                         "`export_name` may not contain null characters"
2489                     ).emit();
2490                 }
2491                 codegen_fn_attrs.export_name = Some(s);
2492             }
2493         } else if attr.check_name(sym::target_feature) {
2494             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2495                 let msg = "#[target_feature(..)] can only be applied to `unsafe` functions";
2496                 tcx.sess.struct_span_err(attr.span, msg)
2497                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2498                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2499                     .emit();
2500             }
2501             from_target_feature(
2502                 tcx,
2503                 id,
2504                 attr,
2505                 &whitelist,
2506                 &mut codegen_fn_attrs.target_features,
2507             );
2508         } else if attr.check_name(sym::linkage) {
2509             if let Some(val) = attr.value_str() {
2510                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2511             }
2512         } else if attr.check_name(sym::link_section) {
2513             if let Some(val) = attr.value_str() {
2514                 if val.as_str().bytes().any(|b| b == 0) {
2515                     let msg = format!(
2516                         "illegal null byte in link_section \
2517                          value: `{}`",
2518                         &val
2519                     );
2520                     tcx.sess.span_err(attr.span, &msg);
2521                 } else {
2522                     codegen_fn_attrs.link_section = Some(val);
2523                 }
2524             }
2525         } else if attr.check_name(sym::link_name) {
2526             codegen_fn_attrs.link_name = attr.value_str();
2527         }
2528     }
2529
2530     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2531         if attr.path != sym::inline {
2532             return ia;
2533         }
2534         match attr.meta().map(|i| i.node) {
2535             Some(MetaItemKind::Word) => {
2536                 mark_used(attr);
2537                 InlineAttr::Hint
2538             }
2539             Some(MetaItemKind::List(ref items)) => {
2540                 mark_used(attr);
2541                 inline_span = Some(attr.span);
2542                 if items.len() != 1 {
2543                     span_err!(
2544                         tcx.sess.diagnostic(),
2545                         attr.span,
2546                         E0534,
2547                         "expected one argument"
2548                     );
2549                     InlineAttr::None
2550                 } else if list_contains_name(&items[..], sym::always) {
2551                     InlineAttr::Always
2552                 } else if list_contains_name(&items[..], sym::never) {
2553                     InlineAttr::Never
2554                 } else {
2555                     span_err!(
2556                         tcx.sess.diagnostic(),
2557                         items[0].span(),
2558                         E0535,
2559                         "invalid argument"
2560                     );
2561
2562                     InlineAttr::None
2563                 }
2564             }
2565             Some(MetaItemKind::NameValue(_)) => ia,
2566             None => ia,
2567         }
2568     });
2569
2570     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2571         if attr.path != sym::optimize {
2572             return ia;
2573         }
2574         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2575         match attr.meta().map(|i| i.node) {
2576             Some(MetaItemKind::Word) => {
2577                 err(attr.span, "expected one argument");
2578                 ia
2579             }
2580             Some(MetaItemKind::List(ref items)) => {
2581                 mark_used(attr);
2582                 inline_span = Some(attr.span);
2583                 if items.len() != 1 {
2584                     err(attr.span, "expected one argument");
2585                     OptimizeAttr::None
2586                 } else if list_contains_name(&items[..], sym::size) {
2587                     OptimizeAttr::Size
2588                 } else if list_contains_name(&items[..], sym::speed) {
2589                     OptimizeAttr::Speed
2590                 } else {
2591                     err(items[0].span(), "invalid argument");
2592                     OptimizeAttr::None
2593                 }
2594             }
2595             Some(MetaItemKind::NameValue(_)) => ia,
2596             None => ia,
2597         }
2598     });
2599
2600     // If a function uses #[target_feature] it can't be inlined into general
2601     // purpose functions as they wouldn't have the right target features
2602     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2603     // respected.
2604     if codegen_fn_attrs.target_features.len() > 0 {
2605         if codegen_fn_attrs.inline == InlineAttr::Always {
2606             if let Some(span) = inline_span {
2607                 tcx.sess.span_err(
2608                     span,
2609                     "cannot use #[inline(always)] with \
2610                      #[target_feature]",
2611                 );
2612             }
2613         }
2614     }
2615
2616     // Weak lang items have the same semantics as "std internal" symbols in the
2617     // sense that they're preserved through all our LTO passes and only
2618     // strippable by the linker.
2619     //
2620     // Additionally weak lang items have predetermined symbol names.
2621     if tcx.is_weak_lang_item(id) {
2622         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2623     }
2624     if let Some(name) = weak_lang_items::link_name(&attrs) {
2625         codegen_fn_attrs.export_name = Some(name);
2626         codegen_fn_attrs.link_name = Some(name);
2627     }
2628
2629     // Internal symbols to the standard library all have no_mangle semantics in
2630     // that they have defined symbol names present in the function name. This
2631     // also applies to weak symbols where they all have known symbol names.
2632     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2633         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2634     }
2635
2636     codegen_fn_attrs
2637 }