]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Turn `#[allocator]` into a built-in attribute and rename it to `#[rustc_allocator]`
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrisic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::mir::mono::Linkage;
24 use rustc::ty::query::Providers;
25 use rustc::ty::subst::{Subst, InternalSubsts};
26 use rustc::ty::util::Discr;
27 use rustc::ty::util::IntTypeExt;
28 use rustc::ty::subst::UnpackedKind;
29 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
30 use rustc::ty::{ReprOptions, ToPredicate};
31 use rustc::util::captures::Captures;
32 use rustc::util::nodemap::FxHashMap;
33 use rustc_target::spec::abi;
34
35 use syntax::ast;
36 use syntax::ast::{Ident, MetaItemKind};
37 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
38 use syntax::source_map::Spanned;
39 use syntax::feature_gate;
40 use syntax::symbol::{InternedString, kw, Symbol, sym};
41 use syntax_pos::{Span, DUMMY_SP};
42
43 use rustc::hir::def::{CtorKind, Res, DefKind};
44 use rustc::hir::Node;
45 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
46 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
47 use rustc::hir::GenericParamKind;
48 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
49
50 use errors::Applicability;
51
52 use std::iter;
53
54 struct OnlySelfBounds(bool);
55
56 ///////////////////////////////////////////////////////////////////////////
57 // Main entry point
58
59 fn collect_mod_item_types<'tcx>(tcx: TyCtxt<'_, 'tcx, 'tcx>, module_def_id: DefId) {
60     tcx.hir().visit_item_likes_in_module(
61         module_def_id,
62         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
63     );
64 }
65
66 pub fn provide(providers: &mut Providers<'_>) {
67     *providers = Providers {
68         type_of,
69         generics_of,
70         predicates_of,
71         predicates_defined_on,
72         explicit_predicates_of,
73         super_predicates_of,
74         type_param_predicates,
75         trait_def,
76         adt_def,
77         fn_sig,
78         impl_trait_ref,
79         impl_polarity,
80         is_foreign_item,
81         static_mutability,
82         codegen_fn_attrs,
83         collect_mod_item_types,
84         ..*providers
85     };
86 }
87
88 ///////////////////////////////////////////////////////////////////////////
89
90 /// Context specific to some particular item. This is what implements
91 /// `AstConv`. It has information about the predicates that are defined
92 /// on the trait. Unfortunately, this predicate information is
93 /// available in various different forms at various points in the
94 /// process. So we can't just store a pointer to e.g., the AST or the
95 /// parsed ty form, we have to be more flexible. To this end, the
96 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
97 /// `get_type_parameter_bounds` requests, drawing the information from
98 /// the AST (`hir::Generics`), recursively.
99 pub struct ItemCtxt<'a, 'tcx: 'a> {
100     tcx: TyCtxt<'a, 'tcx, 'tcx>,
101     item_def_id: DefId,
102 }
103
104 ///////////////////////////////////////////////////////////////////////////
105
106 struct CollectItemTypesVisitor<'a, 'tcx: 'a> {
107     tcx: TyCtxt<'a, 'tcx, 'tcx>,
108 }
109
110 impl<'a, 'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'a, 'tcx> {
111     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
112         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
113     }
114
115     fn visit_item(&mut self, item: &'tcx hir::Item) {
116         convert_item(self.tcx, item.hir_id);
117         intravisit::walk_item(self, item);
118     }
119
120     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
121         for param in &generics.params {
122             match param.kind {
123                 hir::GenericParamKind::Lifetime { .. } => {}
124                 hir::GenericParamKind::Type {
125                     default: Some(_), ..
126                 } => {
127                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
128                     self.tcx.type_of(def_id);
129                 }
130                 hir::GenericParamKind::Type { .. } => {}
131                 hir::GenericParamKind::Const { .. } => {
132                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
133                     self.tcx.type_of(def_id);
134                 }
135             }
136         }
137         intravisit::walk_generics(self, generics);
138     }
139
140     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
141         if let hir::ExprKind::Closure(..) = expr.node {
142             let def_id = self.tcx.hir().local_def_id_from_hir_id(expr.hir_id);
143             self.tcx.generics_of(def_id);
144             self.tcx.type_of(def_id);
145         }
146         intravisit::walk_expr(self, expr);
147     }
148
149     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
150         convert_trait_item(self.tcx, trait_item.hir_id);
151         intravisit::walk_trait_item(self, trait_item);
152     }
153
154     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
155         convert_impl_item(self.tcx, impl_item.hir_id);
156         intravisit::walk_impl_item(self, impl_item);
157     }
158 }
159
160 ///////////////////////////////////////////////////////////////////////////
161 // Utility types and common code for the above passes.
162
163 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
164     pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_def_id: DefId) -> ItemCtxt<'a, 'tcx> {
165         ItemCtxt { tcx, item_def_id }
166     }
167 }
168
169 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
170     pub fn to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
171         AstConv::ast_ty_to_ty(self, ast_ty)
172     }
173 }
174
175 impl<'a, 'tcx> AstConv<'tcx, 'tcx> for ItemCtxt<'a, 'tcx> {
176     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
177         self.tcx
178     }
179
180     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
181                                  -> &'tcx ty::GenericPredicates<'tcx> {
182         self.tcx
183             .at(span)
184             .type_param_predicates((self.item_def_id, def_id))
185     }
186
187     fn re_infer(
188         &self,
189         _span: Span,
190         _def: Option<&ty::GenericParamDef>,
191     ) -> Option<ty::Region<'tcx>> {
192         None
193     }
194
195     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
196         struct_span_err!(
197             self.tcx().sess,
198             span,
199             E0121,
200             "the type placeholder `_` is not allowed within types on item signatures"
201         ).span_label(span, "not allowed in type signatures")
202          .emit();
203
204         self.tcx().types.err
205     }
206
207     fn projected_ty_from_poly_trait_ref(
208         &self,
209         span: Span,
210         item_def_id: DefId,
211         poly_trait_ref: ty::PolyTraitRef<'tcx>,
212     ) -> Ty<'tcx> {
213         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
214             self.tcx().mk_projection(item_def_id, trait_ref.substs)
215         } else {
216             // no late-bound regions, we can just ignore the binder
217             span_err!(
218                 self.tcx().sess,
219                 span,
220                 E0212,
221                 "cannot extract an associated type from a higher-ranked trait bound \
222                  in this context"
223             );
224             self.tcx().types.err
225         }
226     }
227
228     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
229         // types in item signatures are not normalized, to avoid undue
230         // dependencies.
231         ty
232     }
233
234     fn set_tainted_by_errors(&self) {
235         // no obvious place to track this, so just let it go
236     }
237
238     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
239         // no place to record types from signatures?
240     }
241 }
242
243 fn type_param_predicates<'a, 'tcx>(
244     tcx: TyCtxt<'a, 'tcx, 'tcx>,
245     (item_def_id, def_id): (DefId, DefId),
246 ) -> &'tcx ty::GenericPredicates<'tcx> {
247     use rustc::hir::*;
248
249     // In the AST, bounds can derive from two places. Either
250     // written inline like `<T : Foo>` or in a where clause like
251     // `where T : Foo`.
252
253     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
254     let param_owner = tcx.hir().ty_param_owner(param_id);
255     let param_owner_def_id = tcx.hir().local_def_id_from_hir_id(param_owner);
256     let generics = tcx.generics_of(param_owner_def_id);
257     let index = generics.param_def_id_to_index[&def_id];
258     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
259
260     // Don't look for bounds where the type parameter isn't in scope.
261     let parent = if item_def_id == param_owner_def_id {
262         None
263     } else {
264         tcx.generics_of(item_def_id).parent
265     };
266
267     let result = parent.map_or(&tcx.common.empty_predicates, |parent| {
268         let icx = ItemCtxt::new(tcx, parent);
269         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
270     });
271     let mut extend = None;
272
273     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
274     let ast_generics = match tcx.hir().get_by_hir_id(item_hir_id) {
275         Node::TraitItem(item) => &item.generics,
276
277         Node::ImplItem(item) => &item.generics,
278
279         Node::Item(item) => {
280             match item.node {
281                 ItemKind::Fn(.., ref generics, _)
282                 | ItemKind::Impl(_, _, _, ref generics, ..)
283                 | ItemKind::Ty(_, ref generics)
284                 | ItemKind::Existential(ExistTy {
285                     ref generics,
286                     impl_trait_fn: None,
287                     ..
288                 })
289                 | ItemKind::Enum(_, ref generics)
290                 | ItemKind::Struct(_, ref generics)
291                 | ItemKind::Union(_, ref generics) => generics,
292                 ItemKind::Trait(_, _, ref generics, ..) => {
293                     // Implied `Self: Trait` and supertrait bounds.
294                     if param_id == item_hir_id {
295                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
296                         extend = Some((identity_trait_ref.to_predicate(), item.span));
297                     }
298                     generics
299                 }
300                 _ => return result,
301             }
302         }
303
304         Node::ForeignItem(item) => match item.node {
305             ForeignItemKind::Fn(_, _, ref generics) => generics,
306             _ => return result,
307         },
308
309         _ => return result,
310     };
311
312     let icx = ItemCtxt::new(tcx, item_def_id);
313     let mut result = (*result).clone();
314     result.predicates.extend(extend.into_iter());
315     result.predicates
316           .extend(icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty,
317                   OnlySelfBounds(true)));
318     tcx.arena.alloc(result)
319 }
320
321 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
322     /// Finds bounds from `hir::Generics`. This requires scanning through the
323     /// AST. We do this to avoid having to convert *all* the bounds, which
324     /// would create artificial cycles. Instead we can only convert the
325     /// bounds for a type parameter `X` if `X::Foo` is used.
326     fn type_parameter_bounds_in_generics(
327         &self,
328         ast_generics: &hir::Generics,
329         param_id: hir::HirId,
330         ty: Ty<'tcx>,
331         only_self_bounds: OnlySelfBounds,
332     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
333         let from_ty_params = ast_generics
334             .params
335             .iter()
336             .filter_map(|param| match param.kind {
337                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
338                 _ => None,
339             })
340             .flat_map(|bounds| bounds.iter())
341             .flat_map(|b| predicates_from_bound(self, ty, b));
342
343         let from_where_clauses = ast_generics
344             .where_clause
345             .predicates
346             .iter()
347             .filter_map(|wp| match *wp {
348                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
349                 _ => None,
350             })
351             .flat_map(|bp| {
352                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
353                     Some(ty)
354                 } else if !only_self_bounds.0 {
355                     Some(self.to_ty(&bp.bounded_ty))
356                 } else {
357                     None
358                 };
359                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
360             })
361             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
362
363         from_ty_params.chain(from_where_clauses).collect()
364     }
365 }
366
367 /// Tests whether this is the AST for a reference to the type
368 /// parameter with ID `param_id`. We use this so as to avoid running
369 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
370 /// conversion of the type to avoid inducing unnecessary cycles.
371 fn is_param<'a, 'tcx>(
372     tcx: TyCtxt<'a, 'tcx, 'tcx>,
373     ast_ty: &hir::Ty,
374     param_id: hir::HirId,
375 ) -> bool {
376     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node {
377         match path.res {
378             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
379                 def_id == tcx.hir().local_def_id_from_hir_id(param_id)
380             }
381             _ => false,
382         }
383     } else {
384         false
385     }
386 }
387
388 fn convert_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_id: hir::HirId) {
389     let it = tcx.hir().expect_item_by_hir_id(item_id);
390     debug!("convert: item {} with id {}", it.ident, it.hir_id);
391     let def_id = tcx.hir().local_def_id_from_hir_id(item_id);
392     match it.node {
393         // These don't define types.
394         hir::ItemKind::ExternCrate(_)
395         | hir::ItemKind::Use(..)
396         | hir::ItemKind::Mod(_)
397         | hir::ItemKind::GlobalAsm(_) => {}
398         hir::ItemKind::ForeignMod(ref foreign_mod) => {
399             for item in &foreign_mod.items {
400                 let def_id = tcx.hir().local_def_id_from_hir_id(item.hir_id);
401                 tcx.generics_of(def_id);
402                 tcx.type_of(def_id);
403                 tcx.predicates_of(def_id);
404                 if let hir::ForeignItemKind::Fn(..) = item.node {
405                     tcx.fn_sig(def_id);
406                 }
407             }
408         }
409         hir::ItemKind::Enum(ref enum_definition, _) => {
410             tcx.generics_of(def_id);
411             tcx.type_of(def_id);
412             tcx.predicates_of(def_id);
413             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
414         }
415         hir::ItemKind::Impl(..) => {
416             tcx.generics_of(def_id);
417             tcx.type_of(def_id);
418             tcx.impl_trait_ref(def_id);
419             tcx.predicates_of(def_id);
420         }
421         hir::ItemKind::Trait(..) => {
422             tcx.generics_of(def_id);
423             tcx.trait_def(def_id);
424             tcx.at(it.span).super_predicates_of(def_id);
425             tcx.predicates_of(def_id);
426         }
427         hir::ItemKind::TraitAlias(..) => {
428             tcx.generics_of(def_id);
429             tcx.at(it.span).super_predicates_of(def_id);
430             tcx.predicates_of(def_id);
431         }
432         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
433             tcx.generics_of(def_id);
434             tcx.type_of(def_id);
435             tcx.predicates_of(def_id);
436
437             for f in struct_def.fields() {
438                 let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
439                 tcx.generics_of(def_id);
440                 tcx.type_of(def_id);
441                 tcx.predicates_of(def_id);
442             }
443
444             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
445                 convert_variant_ctor(tcx, ctor_hir_id);
446             }
447         }
448
449         // Desugared from `impl Trait`, so visited by the function's return type.
450         hir::ItemKind::Existential(hir::ExistTy {
451             impl_trait_fn: Some(_),
452             ..
453         }) => {}
454
455         hir::ItemKind::Existential(..)
456         | hir::ItemKind::Ty(..)
457         | hir::ItemKind::Static(..)
458         | hir::ItemKind::Const(..)
459         | hir::ItemKind::Fn(..) => {
460             tcx.generics_of(def_id);
461             tcx.type_of(def_id);
462             tcx.predicates_of(def_id);
463             if let hir::ItemKind::Fn(..) = it.node {
464                 tcx.fn_sig(def_id);
465             }
466         }
467     }
468 }
469
470 fn convert_trait_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trait_item_id: hir::HirId) {
471     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
472     let def_id = tcx.hir().local_def_id_from_hir_id(trait_item.hir_id);
473     tcx.generics_of(def_id);
474
475     match trait_item.node {
476         hir::TraitItemKind::Const(..)
477         | hir::TraitItemKind::Type(_, Some(_))
478         | hir::TraitItemKind::Method(..) => {
479             tcx.type_of(def_id);
480             if let hir::TraitItemKind::Method(..) = trait_item.node {
481                 tcx.fn_sig(def_id);
482             }
483         }
484
485         hir::TraitItemKind::Type(_, None) => {}
486     };
487
488     tcx.predicates_of(def_id);
489 }
490
491 fn convert_impl_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, impl_item_id: hir::HirId) {
492     let def_id = tcx.hir().local_def_id_from_hir_id(impl_item_id);
493     tcx.generics_of(def_id);
494     tcx.type_of(def_id);
495     tcx.predicates_of(def_id);
496     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node {
497         tcx.fn_sig(def_id);
498     }
499 }
500
501 fn convert_variant_ctor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ctor_id: hir::HirId) {
502     let def_id = tcx.hir().local_def_id_from_hir_id(ctor_id);
503     tcx.generics_of(def_id);
504     tcx.type_of(def_id);
505     tcx.predicates_of(def_id);
506 }
507
508 fn convert_enum_variant_types<'a, 'tcx>(
509     tcx: TyCtxt<'a, 'tcx, 'tcx>,
510     def_id: DefId,
511     variants: &[hir::Variant],
512 ) {
513     let def = tcx.adt_def(def_id);
514     let repr_type = def.repr.discr_type();
515     let initial = repr_type.initial_discriminant(tcx);
516     let mut prev_discr = None::<Discr<'tcx>>;
517
518     // fill the discriminant values and field types
519     for variant in variants {
520         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
521         prev_discr = Some(
522             if let Some(ref e) = variant.node.disr_expr {
523                 let expr_did = tcx.hir().local_def_id_from_hir_id(e.hir_id);
524                 def.eval_explicit_discr(tcx, expr_did)
525             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
526                 Some(discr)
527             } else {
528                 struct_span_err!(
529                     tcx.sess,
530                     variant.span,
531                     E0370,
532                     "enum discriminant overflowed"
533                 ).span_label(
534                     variant.span,
535                     format!("overflowed on value after {}", prev_discr.unwrap()),
536                 ).note(&format!(
537                     "explicitly set `{} = {}` if that is desired outcome",
538                     variant.node.ident, wrapped_discr
539                 ))
540                 .emit();
541                 None
542             }.unwrap_or(wrapped_discr),
543         );
544
545         for f in variant.node.data.fields() {
546             let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
547             tcx.generics_of(def_id);
548             tcx.type_of(def_id);
549             tcx.predicates_of(def_id);
550         }
551
552         // Convert the ctor, if any. This also registers the variant as
553         // an item.
554         if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() {
555             convert_variant_ctor(tcx, ctor_hir_id);
556         }
557     }
558 }
559
560 fn convert_variant<'a, 'tcx>(
561     tcx: TyCtxt<'a, 'tcx, 'tcx>,
562     variant_did: Option<DefId>,
563     ctor_did: Option<DefId>,
564     ident: Ident,
565     discr: ty::VariantDiscr,
566     def: &hir::VariantData,
567     adt_kind: ty::AdtKind,
568     parent_did: DefId
569 ) -> ty::VariantDef {
570     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
571     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
572     let fields = def
573         .fields()
574         .iter()
575         .map(|f| {
576             let fid = tcx.hir().local_def_id_from_hir_id(f.hir_id);
577             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
578             if let Some(prev_span) = dup_span {
579                 struct_span_err!(
580                     tcx.sess,
581                     f.span,
582                     E0124,
583                     "field `{}` is already declared",
584                     f.ident
585                 ).span_label(f.span, "field already declared")
586                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
587                  .emit();
588             } else {
589                 seen_fields.insert(f.ident.modern(), f.span);
590             }
591
592             ty::FieldDef {
593                 did: fid,
594                 ident: f.ident,
595                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
596             }
597         })
598         .collect();
599     let recovered = match def {
600         hir::VariantData::Struct(_, r) => *r,
601         _ => false,
602     };
603     ty::VariantDef::new(
604         tcx,
605         ident,
606         variant_did,
607         ctor_did,
608         discr,
609         fields,
610         CtorKind::from_hir(def),
611         adt_kind,
612         parent_did,
613         recovered,
614     )
615 }
616
617 fn adt_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::AdtDef {
618     use rustc::hir::*;
619
620     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
621     let item = match tcx.hir().get_by_hir_id(hir_id) {
622         Node::Item(item) => item,
623         _ => bug!(),
624     };
625
626     let repr = ReprOptions::new(tcx, def_id);
627     let (kind, variants) = match item.node {
628         ItemKind::Enum(ref def, _) => {
629             let mut distance_from_explicit = 0;
630             let variants = def.variants
631                 .iter()
632                 .map(|v| {
633                     let variant_did = Some(tcx.hir().local_def_id_from_hir_id(v.node.id));
634                     let ctor_did = v.node.data.ctor_hir_id()
635                         .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
636
637                     let discr = if let Some(ref e) = v.node.disr_expr {
638                         distance_from_explicit = 0;
639                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id_from_hir_id(e.hir_id))
640                     } else {
641                         ty::VariantDiscr::Relative(distance_from_explicit)
642                     };
643                     distance_from_explicit += 1;
644
645                     convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr,
646                                     &v.node.data, AdtKind::Enum, def_id)
647                 })
648                 .collect();
649
650             (AdtKind::Enum, variants)
651         }
652         ItemKind::Struct(ref def, _) => {
653             let variant_did = None;
654             let ctor_did = def.ctor_hir_id()
655                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
656
657             let variants = std::iter::once(convert_variant(
658                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
659                 AdtKind::Struct, def_id,
660             )).collect();
661
662             (AdtKind::Struct, variants)
663         }
664         ItemKind::Union(ref def, _) => {
665             let variant_did = None;
666             let ctor_did = def.ctor_hir_id()
667                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
668
669             let variants = std::iter::once(convert_variant(
670                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
671                 AdtKind::Union, def_id,
672             )).collect();
673
674             (AdtKind::Union, variants)
675         },
676         _ => bug!(),
677     };
678     tcx.alloc_adt_def(def_id, kind, variants, repr)
679 }
680
681 /// Ensures that the super-predicates of the trait with a `DefId`
682 /// of `trait_def_id` are converted and stored. This also ensures that
683 /// the transitive super-predicates are converted.
684 fn super_predicates_of<'a, 'tcx>(
685     tcx: TyCtxt<'a, 'tcx, 'tcx>,
686     trait_def_id: DefId,
687 ) -> &'tcx ty::GenericPredicates<'tcx> {
688     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
689     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
690
691     let item = match tcx.hir().get_by_hir_id(trait_hir_id) {
692         Node::Item(item) => item,
693         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
694     };
695
696     let (generics, bounds) = match item.node {
697         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
698         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
699         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
700     };
701
702     let icx = ItemCtxt::new(tcx, trait_def_id);
703
704     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
705     let self_param_ty = tcx.mk_self_type();
706     let superbounds1 = AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No,
707         item.span);
708
709     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
710
711     // Convert any explicit superbounds in the where-clause,
712     // e.g., `trait Foo where Self: Bar`.
713     // In the case of trait aliases, however, we include all bounds in the where-clause,
714     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
715     // as one of its "superpredicates".
716     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
717     let superbounds2 = icx.type_parameter_bounds_in_generics(
718         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
719
720     // Combine the two lists to form the complete set of superbounds:
721     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
722
723     // Now require that immediate supertraits are converted,
724     // which will, in turn, reach indirect supertraits.
725     for &(pred, span) in &superbounds {
726         debug!("superbound: {:?}", pred);
727         if let ty::Predicate::Trait(bound) = pred {
728             tcx.at(span).super_predicates_of(bound.def_id());
729         }
730     }
731
732     tcx.arena.alloc(ty::GenericPredicates {
733         parent: None,
734         predicates: superbounds,
735     })
736 }
737
738 fn trait_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::TraitDef {
739     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
740     let item = tcx.hir().expect_item_by_hir_id(hir_id);
741
742     let (is_auto, unsafety) = match item.node {
743         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
744         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
745         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
746     };
747
748     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
749     if paren_sugar && !tcx.features().unboxed_closures {
750         let mut err = tcx.sess.struct_span_err(
751             item.span,
752             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
753              which traits can use parenthetical notation",
754         );
755         help!(
756             &mut err,
757             "add `#![feature(unboxed_closures)]` to \
758              the crate attributes to use it"
759         );
760         err.emit();
761     }
762
763     let is_marker = tcx.has_attr(def_id, sym::marker);
764     let def_path_hash = tcx.def_path_hash(def_id);
765     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
766     tcx.arena.alloc(def)
767 }
768
769 fn has_late_bound_regions<'a, 'tcx>(
770     tcx: TyCtxt<'a, 'tcx, 'tcx>,
771     node: Node<'tcx>,
772 ) -> Option<Span> {
773     struct LateBoundRegionsDetector<'a, 'tcx: 'a> {
774         tcx: TyCtxt<'a, 'tcx, 'tcx>,
775         outer_index: ty::DebruijnIndex,
776         has_late_bound_regions: Option<Span>,
777     }
778
779     impl<'a, 'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'a, 'tcx> {
780         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
781             NestedVisitorMap::None
782         }
783
784         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
785             if self.has_late_bound_regions.is_some() {
786                 return;
787             }
788             match ty.node {
789                 hir::TyKind::BareFn(..) => {
790                     self.outer_index.shift_in(1);
791                     intravisit::walk_ty(self, ty);
792                     self.outer_index.shift_out(1);
793                 }
794                 _ => intravisit::walk_ty(self, ty),
795             }
796         }
797
798         fn visit_poly_trait_ref(
799             &mut self,
800             tr: &'tcx hir::PolyTraitRef,
801             m: hir::TraitBoundModifier,
802         ) {
803             if self.has_late_bound_regions.is_some() {
804                 return;
805             }
806             self.outer_index.shift_in(1);
807             intravisit::walk_poly_trait_ref(self, tr, m);
808             self.outer_index.shift_out(1);
809         }
810
811         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
812             if self.has_late_bound_regions.is_some() {
813                 return;
814             }
815
816             match self.tcx.named_region(lt.hir_id) {
817                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
818                 Some(rl::Region::LateBound(debruijn, _, _))
819                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
820                 Some(rl::Region::LateBound(..))
821                 | Some(rl::Region::LateBoundAnon(..))
822                 | Some(rl::Region::Free(..))
823                 | None => {
824                     self.has_late_bound_regions = Some(lt.span);
825                 }
826             }
827         }
828     }
829
830     fn has_late_bound_regions<'a, 'tcx>(
831         tcx: TyCtxt<'a, 'tcx, 'tcx>,
832         generics: &'tcx hir::Generics,
833         decl: &'tcx hir::FnDecl,
834     ) -> Option<Span> {
835         let mut visitor = LateBoundRegionsDetector {
836             tcx,
837             outer_index: ty::INNERMOST,
838             has_late_bound_regions: None,
839         };
840         for param in &generics.params {
841             if let GenericParamKind::Lifetime { .. } = param.kind {
842                 if tcx.is_late_bound(param.hir_id) {
843                     return Some(param.span);
844                 }
845             }
846         }
847         visitor.visit_fn_decl(decl);
848         visitor.has_late_bound_regions
849     }
850
851     match node {
852         Node::TraitItem(item) => match item.node {
853             hir::TraitItemKind::Method(ref sig, _) => {
854                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
855             }
856             _ => None,
857         },
858         Node::ImplItem(item) => match item.node {
859             hir::ImplItemKind::Method(ref sig, _) => {
860                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
861             }
862             _ => None,
863         },
864         Node::ForeignItem(item) => match item.node {
865             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
866                 has_late_bound_regions(tcx, generics, fn_decl)
867             }
868             _ => None,
869         },
870         Node::Item(item) => match item.node {
871             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
872                 has_late_bound_regions(tcx, generics, fn_decl)
873             }
874             _ => None,
875         },
876         _ => None,
877     }
878 }
879
880 fn generics_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::Generics {
881     use rustc::hir::*;
882
883     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
884
885     let node = tcx.hir().get_by_hir_id(hir_id);
886     let parent_def_id = match node {
887         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
888         Node::Ctor(..) | Node::Field(_) => {
889             let parent_id = tcx.hir().get_parent_item(hir_id);
890             Some(tcx.hir().local_def_id_from_hir_id(parent_id))
891         }
892         Node::Expr(&hir::Expr {
893             node: hir::ExprKind::Closure(..),
894             ..
895         }) => Some(tcx.closure_base_def_id(def_id)),
896         Node::Item(item) => match item.node {
897             ItemKind::Existential(hir::ExistTy { impl_trait_fn, .. }) => impl_trait_fn,
898             _ => None,
899         },
900         _ => None,
901     };
902
903     let mut opt_self = None;
904     let mut allow_defaults = false;
905
906     let no_generics = hir::Generics::empty();
907     let ast_generics = match node {
908         Node::TraitItem(item) => &item.generics,
909
910         Node::ImplItem(item) => &item.generics,
911
912         Node::Item(item) => {
913             match item.node {
914                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
915                     generics
916                 }
917
918                 ItemKind::Ty(_, ref generics)
919                 | ItemKind::Enum(_, ref generics)
920                 | ItemKind::Struct(_, ref generics)
921                 | ItemKind::Existential(hir::ExistTy { ref generics, .. })
922                 | ItemKind::Union(_, ref generics) => {
923                     allow_defaults = true;
924                     generics
925                 }
926
927                 ItemKind::Trait(_, _, ref generics, ..)
928                 | ItemKind::TraitAlias(ref generics, ..) => {
929                     // Add in the self type parameter.
930                     //
931                     // Something of a hack: use the node id for the trait, also as
932                     // the node id for the Self type parameter.
933                     let param_id = item.hir_id;
934
935                     opt_self = Some(ty::GenericParamDef {
936                         index: 0,
937                         name: kw::SelfUpper.as_interned_str(),
938                         def_id: tcx.hir().local_def_id_from_hir_id(param_id),
939                         pure_wrt_drop: false,
940                         kind: ty::GenericParamDefKind::Type {
941                             has_default: false,
942                             object_lifetime_default: rl::Set1::Empty,
943                             synthetic: None,
944                         },
945                     });
946
947                     allow_defaults = true;
948                     generics
949                 }
950
951                 _ => &no_generics,
952             }
953         }
954
955         Node::ForeignItem(item) => match item.node {
956             ForeignItemKind::Static(..) => &no_generics,
957             ForeignItemKind::Fn(_, _, ref generics) => generics,
958             ForeignItemKind::Type => &no_generics,
959         },
960
961         _ => &no_generics,
962     };
963
964     let has_self = opt_self.is_some();
965     let mut parent_has_self = false;
966     let mut own_start = has_self as u32;
967     let parent_count = parent_def_id.map_or(0, |def_id| {
968         let generics = tcx.generics_of(def_id);
969         assert_eq!(has_self, false);
970         parent_has_self = generics.has_self;
971         own_start = generics.count() as u32;
972         generics.parent_count + generics.params.len()
973     });
974
975     let mut params: Vec<_> = opt_self.into_iter().collect();
976
977     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
978     params.extend(
979         early_lifetimes
980             .enumerate()
981             .map(|(i, param)| ty::GenericParamDef {
982                 name: param.name.ident().as_interned_str(),
983                 index: own_start + i as u32,
984                 def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
985                 pure_wrt_drop: param.pure_wrt_drop,
986                 kind: ty::GenericParamDefKind::Lifetime,
987             }),
988     );
989
990     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
991
992     // Now create the real type parameters.
993     let type_start = own_start - has_self as u32 + params.len() as u32;
994     let mut i = 0;
995     params.extend(
996         ast_generics
997             .params
998             .iter()
999             .filter_map(|param| {
1000                 let kind = match param.kind {
1001                     GenericParamKind::Type {
1002                         ref default,
1003                         synthetic,
1004                         ..
1005                     } => {
1006                         if param.name.ident().name == kw::SelfUpper {
1007                             span_bug!(
1008                                 param.span,
1009                                 "`Self` should not be the name of a regular parameter"
1010                             );
1011                         }
1012
1013                         if !allow_defaults && default.is_some() {
1014                             if !tcx.features().default_type_parameter_fallback {
1015                                 tcx.lint_hir(
1016                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1017                                     param.hir_id,
1018                                     param.span,
1019                                     &format!(
1020                                         "defaults for type parameters are only allowed in \
1021                                         `struct`, `enum`, `type`, or `trait` definitions."
1022                                     ),
1023                                 );
1024                             }
1025                         }
1026
1027                         ty::GenericParamDefKind::Type {
1028                             has_default: default.is_some(),
1029                             object_lifetime_default: object_lifetime_defaults
1030                                 .as_ref()
1031                                 .map_or(rl::Set1::Empty, |o| o[i]),
1032                             synthetic,
1033                         }
1034                     }
1035                     GenericParamKind::Const { .. } => {
1036                         if param.name.ident().name == kw::SelfUpper {
1037                             span_bug!(
1038                                 param.span,
1039                                 "`Self` should not be the name of a regular parameter",
1040                             );
1041                         }
1042
1043                         ty::GenericParamDefKind::Const
1044                     }
1045                     _ => return None,
1046                 };
1047
1048                 let param_def = ty::GenericParamDef {
1049                     index: type_start + i as u32,
1050                     name: param.name.ident().as_interned_str(),
1051                     def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
1052                     pure_wrt_drop: param.pure_wrt_drop,
1053                     kind,
1054                 };
1055                 i += 1;
1056                 Some(param_def)
1057             })
1058     );
1059
1060     // provide junk type parameter defs - the only place that
1061     // cares about anything but the length is instantiation,
1062     // and we don't do that for closures.
1063     if let Node::Expr(&hir::Expr {
1064         node: hir::ExprKind::Closure(.., gen),
1065         ..
1066     }) = node
1067     {
1068         let dummy_args = if gen.is_some() {
1069             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1070         } else {
1071             &["<closure_kind>", "<closure_signature>"][..]
1072         };
1073
1074         params.extend(
1075             dummy_args
1076                 .iter()
1077                 .enumerate()
1078                 .map(|(i, &arg)| ty::GenericParamDef {
1079                     index: type_start + i as u32,
1080                     name: InternedString::intern(arg),
1081                     def_id,
1082                     pure_wrt_drop: false,
1083                     kind: ty::GenericParamDefKind::Type {
1084                         has_default: false,
1085                         object_lifetime_default: rl::Set1::Empty,
1086                         synthetic: None,
1087                     },
1088                 }),
1089         );
1090
1091         if let Some(upvars) = tcx.upvars(def_id) {
1092             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1093                 ty::GenericParamDef {
1094                     index: type_start + i,
1095                     name: InternedString::intern("<upvar>"),
1096                     def_id,
1097                     pure_wrt_drop: false,
1098                     kind: ty::GenericParamDefKind::Type {
1099                         has_default: false,
1100                         object_lifetime_default: rl::Set1::Empty,
1101                         synthetic: None,
1102                     },
1103                 }
1104             }));
1105         }
1106     }
1107
1108     let param_def_id_to_index = params
1109         .iter()
1110         .map(|param| (param.def_id, param.index))
1111         .collect();
1112
1113     tcx.arena.alloc(ty::Generics {
1114         parent: parent_def_id,
1115         parent_count,
1116         params,
1117         param_def_id_to_index,
1118         has_self: has_self || parent_has_self,
1119         has_late_bound_regions: has_late_bound_regions(tcx, node),
1120     })
1121 }
1122
1123 fn report_assoc_ty_on_inherent_impl<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span) {
1124     span_err!(
1125         tcx.sess,
1126         span,
1127         E0202,
1128         "associated types are not yet supported in inherent impls (see #8995)"
1129     );
1130 }
1131
1132 fn type_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Ty<'tcx> {
1133     checked_type_of(tcx, def_id, true).unwrap()
1134 }
1135
1136 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1137 ///
1138 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1139 /// you'd better just call [`type_of`] directly.
1140 pub fn checked_type_of<'a, 'tcx>(
1141     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1142     def_id: DefId,
1143     fail: bool,
1144 ) -> Option<Ty<'tcx>> {
1145     use rustc::hir::*;
1146
1147     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1148         Some(hir_id) => hir_id,
1149         None => {
1150             if !fail {
1151                 return None;
1152             }
1153             bug!("invalid node");
1154         }
1155     };
1156
1157     let icx = ItemCtxt::new(tcx, def_id);
1158
1159     Some(match tcx.hir().get_by_hir_id(hir_id) {
1160         Node::TraitItem(item) => match item.node {
1161             TraitItemKind::Method(..) => {
1162                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1163                 tcx.mk_fn_def(def_id, substs)
1164             }
1165             TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1166             TraitItemKind::Type(_, None) => {
1167                 if !fail {
1168                     return None;
1169                 }
1170                 span_bug!(item.span, "associated type missing default");
1171             }
1172         },
1173
1174         Node::ImplItem(item) => match item.node {
1175             ImplItemKind::Method(..) => {
1176                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1177                 tcx.mk_fn_def(def_id, substs)
1178             }
1179             ImplItemKind::Const(ref ty, _) => icx.to_ty(ty),
1180             ImplItemKind::Existential(_) => {
1181                 if tcx
1182                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1183                     .is_none()
1184                 {
1185                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1186                 }
1187
1188                 find_existential_constraints(tcx, def_id)
1189             }
1190             ImplItemKind::Type(ref ty) => {
1191                 if tcx
1192                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1193                     .is_none()
1194                 {
1195                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1196                 }
1197
1198                 icx.to_ty(ty)
1199             }
1200         },
1201
1202         Node::Item(item) => {
1203             match item.node {
1204                 ItemKind::Static(ref t, ..)
1205                 | ItemKind::Const(ref t, _)
1206                 | ItemKind::Ty(ref t, _)
1207                 | ItemKind::Impl(.., ref t, _) => icx.to_ty(t),
1208                 ItemKind::Fn(..) => {
1209                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1210                     tcx.mk_fn_def(def_id, substs)
1211                 }
1212                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1213                     let def = tcx.adt_def(def_id);
1214                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1215                     tcx.mk_adt(def, substs)
1216                 }
1217                 ItemKind::Existential(hir::ExistTy {
1218                     impl_trait_fn: None,
1219                     ..
1220                 }) => find_existential_constraints(tcx, def_id),
1221                 // Existential types desugared from `impl Trait`.
1222                 ItemKind::Existential(hir::ExistTy {
1223                     impl_trait_fn: Some(owner),
1224                     ..
1225                 }) => {
1226                     tcx.typeck_tables_of(owner)
1227                         .concrete_existential_types
1228                         .get(&def_id)
1229                         .map(|opaque| opaque.concrete_type)
1230                         .unwrap_or_else(|| {
1231                             // This can occur if some error in the
1232                             // owner fn prevented us from populating
1233                             // the `concrete_existential_types` table.
1234                             tcx.sess.delay_span_bug(
1235                                 DUMMY_SP,
1236                                 &format!(
1237                                     "owner {:?} has no existential type for {:?} in its tables",
1238                                     owner, def_id,
1239                                 ),
1240                             );
1241                             tcx.types.err
1242                         })
1243                 }
1244                 ItemKind::Trait(..)
1245                 | ItemKind::TraitAlias(..)
1246                 | ItemKind::Mod(..)
1247                 | ItemKind::ForeignMod(..)
1248                 | ItemKind::GlobalAsm(..)
1249                 | ItemKind::ExternCrate(..)
1250                 | ItemKind::Use(..) => {
1251                     if !fail {
1252                         return None;
1253                     }
1254                     span_bug!(
1255                         item.span,
1256                         "compute_type_of_item: unexpected item type: {:?}",
1257                         item.node
1258                     );
1259                 }
1260             }
1261         }
1262
1263         Node::ForeignItem(foreign_item) => match foreign_item.node {
1264             ForeignItemKind::Fn(..) => {
1265                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1266                 tcx.mk_fn_def(def_id, substs)
1267             }
1268             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1269             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1270         },
1271
1272         Node::Ctor(&ref def) | Node::Variant(&Spanned {
1273             node: hir::VariantKind { data: ref def, .. },
1274             ..
1275         }) => match *def {
1276             VariantData::Unit(..) | VariantData::Struct(..) => {
1277                 tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id))
1278             }
1279             VariantData::Tuple(..) => {
1280                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1281                 tcx.mk_fn_def(def_id, substs)
1282             }
1283         },
1284
1285         Node::Field(field) => icx.to_ty(&field.ty),
1286
1287         Node::Expr(&hir::Expr {
1288             node: hir::ExprKind::Closure(.., gen),
1289             ..
1290         }) => {
1291             if gen.is_some() {
1292                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1293             }
1294
1295             let substs = ty::ClosureSubsts {
1296                 substs: InternalSubsts::identity_for_item(tcx, def_id),
1297             };
1298
1299             tcx.mk_closure(def_id, substs)
1300         }
1301
1302         Node::AnonConst(_) => {
1303             let parent_node = tcx.hir().get_by_hir_id(tcx.hir().get_parent_node_by_hir_id(hir_id));
1304             match parent_node {
1305                 Node::Ty(&hir::Ty {
1306                     node: hir::TyKind::Array(_, ref constant),
1307                     ..
1308                 })
1309                 | Node::Ty(&hir::Ty {
1310                     node: hir::TyKind::Typeof(ref constant),
1311                     ..
1312                 })
1313                 | Node::Expr(&hir::Expr {
1314                     node: ExprKind::Repeat(_, ref constant),
1315                     ..
1316                 }) if constant.hir_id == hir_id =>
1317                 {
1318                     tcx.types.usize
1319                 }
1320
1321                 Node::Variant(&Spanned {
1322                     node:
1323                         VariantKind {
1324                             disr_expr: Some(ref e),
1325                             ..
1326                         },
1327                     ..
1328                 }) if e.hir_id == hir_id =>
1329                 {
1330                     tcx.adt_def(tcx.hir().get_parent_did_by_hir_id(hir_id))
1331                         .repr
1332                         .discr_type()
1333                         .to_ty(tcx)
1334                 }
1335
1336                 Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) |
1337                 Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) |
1338                 Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) |
1339                 Node::TraitRef(..) => {
1340                     let path = match parent_node {
1341                         Node::Ty(&hir::Ty {
1342                             node: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1343                             ..
1344                         })
1345                         | Node::Expr(&hir::Expr {
1346                             node: ExprKind::Path(QPath::Resolved(_, ref path)),
1347                             ..
1348                         }) => {
1349                             Some(&**path)
1350                         }
1351                         Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => {
1352                             if let QPath::Resolved(_, ref path) = **path {
1353                                 Some(&**path)
1354                             } else {
1355                                 None
1356                             }
1357                         }
1358                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(path),
1359                         _ => None,
1360                     };
1361
1362                     if let Some(path) = path {
1363                         let arg_index = path.segments.iter()
1364                             .filter_map(|seg| seg.args.as_ref())
1365                             .map(|generic_args| generic_args.args.as_ref())
1366                             .find_map(|args| {
1367                                 args.iter()
1368                                     .filter(|arg| arg.is_const())
1369                                     .enumerate()
1370                                     .filter(|(_, arg)| arg.id() == hir_id)
1371                                     .map(|(index, _)| index)
1372                                     .next()
1373                             })
1374                             .or_else(|| {
1375                                 if !fail {
1376                                     None
1377                                 } else {
1378                                     bug!("no arg matching AnonConst in path")
1379                                 }
1380                             })?;
1381
1382                         // We've encountered an `AnonConst` in some path, so we need to
1383                         // figure out which generic parameter it corresponds to and return
1384                         // the relevant type.
1385                         let generics = match path.res {
1386                             Res::Def(DefKind::Ctor(..), def_id) => {
1387                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1388                             }
1389                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1390                             Res::Err => return Some(tcx.types.err),
1391                             _ if !fail => return None,
1392                             res => {
1393                                 tcx.sess.delay_span_bug(
1394                                     DUMMY_SP,
1395                                     &format!(
1396                                         "unexpected const parent path def {:?}",
1397                                         res,
1398                                     ),
1399                                 );
1400                                 return Some(tcx.types.err);
1401                             }
1402                         };
1403
1404                         generics.params.iter()
1405                             .filter(|param| {
1406                                 if let ty::GenericParamDefKind::Const = param.kind {
1407                                     true
1408                                 } else {
1409                                     false
1410                                 }
1411                             })
1412                             .nth(arg_index)
1413                             .map(|param| tcx.type_of(param.def_id))
1414                             // This is no generic parameter associated with the arg. This is
1415                             // probably from an extra arg where one is not needed.
1416                             .unwrap_or(tcx.types.err)
1417                     } else {
1418                         if !fail {
1419                             return None;
1420                         }
1421                         tcx.sess.delay_span_bug(
1422                             DUMMY_SP,
1423                             &format!(
1424                                 "unexpected const parent path {:?}",
1425                                 parent_node,
1426                             ),
1427                         );
1428                         return Some(tcx.types.err);
1429                     }
1430                 }
1431
1432                 x => {
1433                     if !fail {
1434                         return None;
1435                     }
1436                     tcx.sess.delay_span_bug(
1437                         DUMMY_SP,
1438                         &format!(
1439                             "unexpected const parent in type_of_def_id(): {:?}", x
1440                         ),
1441                     );
1442                     tcx.types.err
1443                 }
1444             }
1445         }
1446
1447         Node::GenericParam(param) => match &param.kind {
1448             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1449             hir::GenericParamKind::Const { ref ty, .. } => {
1450                 icx.to_ty(ty)
1451             }
1452             x => {
1453                 if !fail {
1454                     return None;
1455                 }
1456                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1457             },
1458         },
1459
1460         x => {
1461             if !fail {
1462                 return None;
1463             }
1464             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1465         }
1466     })
1467 }
1468
1469 fn find_existential_constraints<'a, 'tcx>(
1470     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1471     def_id: DefId,
1472 ) -> Ty<'tcx> {
1473     use rustc::hir::{ImplItem, Item, TraitItem};
1474
1475     debug!("find_existential_constraints({:?})", def_id);
1476
1477     struct ConstraintLocator<'a, 'tcx: 'a> {
1478         tcx: TyCtxt<'a, 'tcx, 'tcx>,
1479         def_id: DefId,
1480         // (first found type span, actual type, mapping from the existential type's generic
1481         // parameters to the concrete type's generic parameters)
1482         //
1483         // The mapping is an index for each use site of a generic parameter in the concrete type
1484         //
1485         // The indices index into the generic parameters on the existential type.
1486         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1487     }
1488
1489     impl<'a, 'tcx> ConstraintLocator<'a, 'tcx> {
1490         fn check(&mut self, def_id: DefId) {
1491             // Don't try to check items that cannot possibly constrain the type.
1492             if !self.tcx.has_typeck_tables(def_id) {
1493                 debug!(
1494                     "find_existential_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1495                     self.def_id,
1496                     def_id,
1497                 );
1498                 return;
1499             }
1500             let ty = self
1501                 .tcx
1502                 .typeck_tables_of(def_id)
1503                 .concrete_existential_types
1504                 .get(&self.def_id);
1505             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1506                 debug!(
1507                     "find_existential_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1508                     self.def_id,
1509                     def_id,
1510                     ty,
1511                 );
1512
1513                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1514                 let span = self.tcx.def_span(def_id);
1515                 // used to quickly look up the position of a generic parameter
1516                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1517                 // Skipping binder is ok, since we only use this to find generic parameters and
1518                 // their positions.
1519                 for (idx, subst) in substs.iter().enumerate() {
1520                     if let UnpackedKind::Type(ty) = subst.unpack() {
1521                         if let ty::Param(p) = ty.sty {
1522                             if index_map.insert(p, idx).is_some() {
1523                                 // There was already an entry for `p`, meaning a generic parameter
1524                                 // was used twice.
1525                                 self.tcx.sess.span_err(
1526                                     span,
1527                                     &format!(
1528                                         "defining existential type use restricts existential \
1529                                          type by using the generic parameter `{}` twice",
1530                                         p.name
1531                                     ),
1532                                 );
1533                                 return;
1534                             }
1535                         } else {
1536                             self.tcx.sess.delay_span_bug(
1537                                 span,
1538                                 &format!(
1539                                     "non-defining exist ty use in defining scope: {:?}, {:?}",
1540                                     concrete_type, substs,
1541                                 ),
1542                             );
1543                         }
1544                     }
1545                 }
1546                 // Compute the index within the existential type for each generic parameter used in
1547                 // the concrete type.
1548                 let indices = concrete_type
1549                     .subst(self.tcx, substs)
1550                     .walk()
1551                     .filter_map(|t| match &t.sty {
1552                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1553                         _ => None,
1554                     }).collect();
1555                 let is_param = |ty: Ty<'_>| match ty.sty {
1556                     ty::Param(_) => true,
1557                     _ => false,
1558                 };
1559                 if !substs.types().all(is_param) {
1560                     self.tcx.sess.span_err(
1561                         span,
1562                         "defining existential type use does not fully define existential type",
1563                     );
1564                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1565                     let mut ty = concrete_type.walk().fuse();
1566                     let mut p_ty = prev_ty.walk().fuse();
1567                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) {
1568                         // Type parameters are equal to any other type parameter for the purpose of
1569                         // concrete type equality, as it is possible to obtain the same type just
1570                         // by passing matching parameters to a function.
1571                         (ty::Param(_), ty::Param(_)) => true,
1572                         _ => t == p,
1573                     });
1574                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1575                         debug!("find_existential_constraints: span={:?}", span);
1576                         // Found different concrete types for the existential type.
1577                         let mut err = self.tcx.sess.struct_span_err(
1578                             span,
1579                             "concrete type differs from previous defining existential type use",
1580                         );
1581                         err.span_label(
1582                             span,
1583                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1584                         );
1585                         err.span_note(prev_span, "previous use here");
1586                         err.emit();
1587                     } else if indices != *prev_indices {
1588                         // Found "same" concrete types, but the generic parameter order differs.
1589                         let mut err = self.tcx.sess.struct_span_err(
1590                             span,
1591                             "concrete type's generic parameters differ from previous defining use",
1592                         );
1593                         use std::fmt::Write;
1594                         let mut s = String::new();
1595                         write!(s, "expected [").unwrap();
1596                         let list = |s: &mut String, indices: &Vec<usize>| {
1597                             let mut indices = indices.iter().cloned();
1598                             if let Some(first) = indices.next() {
1599                                 write!(s, "`{}`", substs[first]).unwrap();
1600                                 for i in indices {
1601                                     write!(s, ", `{}`", substs[i]).unwrap();
1602                                 }
1603                             }
1604                         };
1605                         list(&mut s, prev_indices);
1606                         write!(s, "], got [").unwrap();
1607                         list(&mut s, &indices);
1608                         write!(s, "]").unwrap();
1609                         err.span_label(span, s);
1610                         err.span_note(prev_span, "previous use here");
1611                         err.emit();
1612                     }
1613                 } else {
1614                     self.found = Some((span, concrete_type, indices));
1615                 }
1616             } else {
1617                 debug!(
1618                     "find_existential_constraints: no constraint for `{:?}` at `{:?}`",
1619                     self.def_id,
1620                     def_id,
1621                 );
1622             }
1623         }
1624     }
1625
1626     impl<'a, 'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'a, 'tcx> {
1627         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1628             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1629         }
1630         fn visit_item(&mut self, it: &'tcx Item) {
1631             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1632             // The existential type itself or its children are not within its reveal scope.
1633             if def_id != self.def_id {
1634                 self.check(def_id);
1635                 intravisit::walk_item(self, it);
1636             }
1637         }
1638         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1639             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1640             // The existential type itself or its children are not within its reveal scope.
1641             if def_id != self.def_id {
1642                 self.check(def_id);
1643                 intravisit::walk_impl_item(self, it);
1644             }
1645         }
1646         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1647             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1648             self.check(def_id);
1649             intravisit::walk_trait_item(self, it);
1650         }
1651     }
1652
1653     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1654     let scope = tcx.hir()
1655         .get_defining_scope(hir_id)
1656         .expect("could not get defining scope");
1657     let mut locator = ConstraintLocator {
1658         def_id,
1659         tcx,
1660         found: None,
1661     };
1662
1663     debug!("find_existential_constraints: scope={:?}", scope);
1664
1665     if scope == hir::CRATE_HIR_ID {
1666         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1667     } else {
1668         debug!("find_existential_constraints: scope={:?}", tcx.hir().get_by_hir_id(scope));
1669         match tcx.hir().get_by_hir_id(scope) {
1670             Node::Item(ref it) => intravisit::walk_item(&mut locator, it),
1671             Node::ImplItem(ref it) => intravisit::walk_impl_item(&mut locator, it),
1672             Node::TraitItem(ref it) => intravisit::walk_trait_item(&mut locator, it),
1673             other => bug!(
1674                 "{:?} is not a valid scope for an existential type item",
1675                 other
1676             ),
1677         }
1678     }
1679
1680     match locator.found {
1681         Some((_, ty, _)) => ty,
1682         None => {
1683             let span = tcx.def_span(def_id);
1684             tcx.sess.span_err(span, "could not find defining uses");
1685             tcx.types.err
1686         }
1687     }
1688 }
1689
1690 fn fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> ty::PolyFnSig<'tcx> {
1691     use rustc::hir::*;
1692     use rustc::hir::Node::*;
1693
1694     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1695
1696     let icx = ItemCtxt::new(tcx, def_id);
1697
1698     match tcx.hir().get_by_hir_id(hir_id) {
1699         TraitItem(hir::TraitItem {
1700             node: TraitItemKind::Method(sig, _),
1701             ..
1702         })
1703         | ImplItem(hir::ImplItem {
1704             node: ImplItemKind::Method(sig, _),
1705             ..
1706         }) => AstConv::ty_of_fn(&icx, sig.header.unsafety, sig.header.abi, &sig.decl),
1707
1708         Item(hir::Item {
1709             node: ItemKind::Fn(decl, header, _, _),
1710             ..
1711         }) => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl),
1712
1713         ForeignItem(&hir::ForeignItem {
1714             node: ForeignItemKind::Fn(ref fn_decl, _, _),
1715             ..
1716         }) => {
1717             let abi = tcx.hir().get_foreign_abi_by_hir_id(hir_id);
1718             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1719         }
1720
1721         Ctor(data) | Variant(Spanned {
1722             node: hir::VariantKind { data, ..  },
1723             ..
1724         }) if data.ctor_hir_id().is_some() => {
1725             let ty = tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id));
1726             let inputs = data.fields()
1727                 .iter()
1728                 .map(|f| tcx.type_of(tcx.hir().local_def_id_from_hir_id(f.hir_id)));
1729             ty::Binder::bind(tcx.mk_fn_sig(
1730                 inputs,
1731                 ty,
1732                 false,
1733                 hir::Unsafety::Normal,
1734                 abi::Abi::Rust,
1735             ))
1736         }
1737
1738         Expr(&hir::Expr {
1739             node: hir::ExprKind::Closure(..),
1740             ..
1741         }) => {
1742             // Closure signatures are not like other function
1743             // signatures and cannot be accessed through `fn_sig`. For
1744             // example, a closure signature excludes the `self`
1745             // argument. In any case they are embedded within the
1746             // closure type as part of the `ClosureSubsts`.
1747             //
1748             // To get
1749             // the signature of a closure, you should use the
1750             // `closure_sig` method on the `ClosureSubsts`:
1751             //
1752             //    closure_substs.closure_sig(def_id, tcx)
1753             //
1754             // or, inside of an inference context, you can use
1755             //
1756             //    infcx.closure_sig(def_id, closure_substs)
1757             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1758         }
1759
1760         x => {
1761             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1762         }
1763     }
1764 }
1765
1766 fn impl_trait_ref<'a, 'tcx>(
1767     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1768     def_id: DefId,
1769 ) -> Option<ty::TraitRef<'tcx>> {
1770     let icx = ItemCtxt::new(tcx, def_id);
1771
1772     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1773     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1774         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1775             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1776                 let selfty = tcx.type_of(def_id);
1777                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1778             })
1779         }
1780         _ => bug!(),
1781     }
1782 }
1783
1784 fn impl_polarity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> hir::ImplPolarity {
1785     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1786     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1787         hir::ItemKind::Impl(_, polarity, ..) => polarity,
1788         ref item => bug!("impl_polarity: {:?} not an impl", item),
1789     }
1790 }
1791
1792 /// Returns the early-bound lifetimes declared in this generics
1793 /// listing. For anything other than fns/methods, this is just all
1794 /// the lifetimes that are declared. For fns or methods, we have to
1795 /// screen out those that do not appear in any where-clauses etc using
1796 /// `resolve_lifetime::early_bound_lifetimes`.
1797 fn early_bound_lifetimes_from_generics<'a, 'tcx>(
1798     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1799     generics: &'a hir::Generics,
1800 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1801     generics
1802         .params
1803         .iter()
1804         .filter(move |param| match param.kind {
1805             GenericParamKind::Lifetime { .. } => {
1806                 !tcx.is_late_bound(param.hir_id)
1807             }
1808             _ => false,
1809         })
1810 }
1811
1812 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1813 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1814 /// inferred constraints concerning which regions outlive other regions.
1815 fn predicates_defined_on<'a, 'tcx>(
1816     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1817     def_id: DefId,
1818 ) -> &'tcx ty::GenericPredicates<'tcx> {
1819     debug!("predicates_defined_on({:?})", def_id);
1820     let mut result = tcx.explicit_predicates_of(def_id);
1821     debug!(
1822         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1823         def_id,
1824         result,
1825     );
1826     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1827     if !inferred_outlives.is_empty() {
1828         let span = tcx.def_span(def_id);
1829         debug!(
1830             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1831             def_id,
1832             inferred_outlives,
1833         );
1834         let mut predicates = (*result).clone();
1835         predicates.predicates.extend(inferred_outlives.iter().map(|&p| (p, span)));
1836         result = tcx.arena.alloc(predicates);
1837     }
1838     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1839     result
1840 }
1841
1842 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1843 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1844 /// `Self: Trait` predicates for traits.
1845 fn predicates_of<'a, 'tcx>(
1846     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1847     def_id: DefId,
1848 ) -> &'tcx ty::GenericPredicates<'tcx> {
1849     let mut result = tcx.predicates_defined_on(def_id);
1850
1851     if tcx.is_trait(def_id) {
1852         // For traits, add `Self: Trait` predicate. This is
1853         // not part of the predicates that a user writes, but it
1854         // is something that one must prove in order to invoke a
1855         // method or project an associated type.
1856         //
1857         // In the chalk setup, this predicate is not part of the
1858         // "predicates" for a trait item. But it is useful in
1859         // rustc because if you directly (e.g.) invoke a trait
1860         // method like `Trait::method(...)`, you must naturally
1861         // prove that the trait applies to the types that were
1862         // used, and adding the predicate into this list ensures
1863         // that this is done.
1864         let span = tcx.def_span(def_id);
1865         let mut predicates = (*result).clone();
1866         predicates.predicates.push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1867         result = tcx.arena.alloc(predicates);
1868     }
1869     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1870     result
1871 }
1872
1873 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1874 /// N.B., this does not include any implied/inferred constraints.
1875 fn explicit_predicates_of<'a, 'tcx>(
1876     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1877     def_id: DefId,
1878 ) -> &'tcx ty::GenericPredicates<'tcx> {
1879     use rustc::hir::*;
1880     use rustc_data_structures::fx::FxHashSet;
1881
1882     debug!("explicit_predicates_of(def_id={:?})", def_id);
1883
1884     /// A data structure with unique elements, which preserves order of insertion.
1885     /// Preserving the order of insertion is important here so as not to break
1886     /// compile-fail UI tests.
1887     struct UniquePredicates<'tcx> {
1888         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1889         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1890     }
1891
1892     impl<'tcx> UniquePredicates<'tcx> {
1893         fn new() -> Self {
1894             UniquePredicates {
1895                 predicates: vec![],
1896                 uniques: FxHashSet::default(),
1897             }
1898         }
1899
1900         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1901             if self.uniques.insert(value) {
1902                 self.predicates.push(value);
1903             }
1904         }
1905
1906         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1907             for value in iter {
1908                 self.push(value);
1909             }
1910         }
1911     }
1912
1913     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1914         Some(hir_id) => hir_id,
1915         None => return tcx.predicates_of(def_id),
1916     };
1917     let node = tcx.hir().get_by_hir_id(hir_id);
1918
1919     let mut is_trait = None;
1920     let mut is_default_impl_trait = None;
1921
1922     let icx = ItemCtxt::new(tcx, def_id);
1923     let no_generics = hir::Generics::empty();
1924     let empty_trait_items = HirVec::new();
1925
1926     let mut predicates = UniquePredicates::new();
1927
1928     let ast_generics = match node {
1929         Node::TraitItem(item) => &item.generics,
1930
1931         Node::ImplItem(item) => match item.node {
1932             ImplItemKind::Existential(ref bounds) => {
1933                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1934                 let opaque_ty = tcx.mk_opaque(def_id, substs);
1935
1936                 // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1937                 let bounds = AstConv::compute_bounds(
1938                     &icx,
1939                     opaque_ty,
1940                     bounds,
1941                     SizedByDefault::Yes,
1942                     tcx.def_span(def_id),
1943                 );
1944
1945                 predicates.extend(bounds.predicates(tcx, opaque_ty));
1946                 &item.generics
1947             }
1948             _ => &item.generics,
1949         },
1950
1951         Node::Item(item) => {
1952             match item.node {
1953                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
1954                     if defaultness.is_default() {
1955                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1956                     }
1957                     generics
1958                 }
1959                 ItemKind::Fn(.., ref generics, _)
1960                 | ItemKind::Ty(_, ref generics)
1961                 | ItemKind::Enum(_, ref generics)
1962                 | ItemKind::Struct(_, ref generics)
1963                 | ItemKind::Union(_, ref generics) => generics,
1964
1965                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
1966                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1967                     generics
1968                 }
1969                 ItemKind::TraitAlias(ref generics, _) => {
1970                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
1971                     generics
1972                 }
1973                 ItemKind::Existential(ExistTy {
1974                     ref bounds,
1975                     impl_trait_fn,
1976                     ref generics,
1977                     origin: _,
1978                 }) => {
1979                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1980                     let opaque_ty = tcx.mk_opaque(def_id, substs);
1981
1982                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1983                     let bounds = AstConv::compute_bounds(
1984                         &icx,
1985                         opaque_ty,
1986                         bounds,
1987                         SizedByDefault::Yes,
1988                         tcx.def_span(def_id),
1989                     );
1990
1991                     let bounds_predicates = bounds.predicates(tcx, opaque_ty);
1992                     if impl_trait_fn.is_some() {
1993                         // opaque types
1994                         return tcx.arena.alloc(ty::GenericPredicates {
1995                             parent: None,
1996                             predicates: bounds_predicates,
1997                         });
1998                     } else {
1999                         // named existential types
2000                         predicates.extend(bounds_predicates);
2001                         generics
2002                     }
2003                 }
2004
2005                 _ => &no_generics,
2006             }
2007         }
2008
2009         Node::ForeignItem(item) => match item.node {
2010             ForeignItemKind::Static(..) => &no_generics,
2011             ForeignItemKind::Fn(_, _, ref generics) => generics,
2012             ForeignItemKind::Type => &no_generics,
2013         },
2014
2015         _ => &no_generics,
2016     };
2017
2018     let generics = tcx.generics_of(def_id);
2019     let parent_count = generics.parent_count as u32;
2020     let has_own_self = generics.has_self && parent_count == 0;
2021
2022     // Below we'll consider the bounds on the type parameters (including `Self`)
2023     // and the explicit where-clauses, but to get the full set of predicates
2024     // on a trait we need to add in the supertrait bounds and bounds found on
2025     // associated types.
2026     if let Some((_trait_ref, _)) = is_trait {
2027         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2028     }
2029
2030     // In default impls, we can assume that the self type implements
2031     // the trait. So in:
2032     //
2033     //     default impl Foo for Bar { .. }
2034     //
2035     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2036     // (see below). Recall that a default impl is not itself an impl, but rather a
2037     // set of defaults that can be incorporated into another impl.
2038     if let Some(trait_ref) = is_default_impl_trait {
2039         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2040     }
2041
2042     // Collect the region predicates that were declared inline as
2043     // well. In the case of parameters declared on a fn or method, we
2044     // have to be careful to only iterate over early-bound regions.
2045     let mut index = parent_count + has_own_self as u32;
2046     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2047         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2048             def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
2049             index,
2050             name: param.name.ident().as_interned_str(),
2051         }));
2052         index += 1;
2053
2054         match param.kind {
2055             GenericParamKind::Lifetime { .. } => {
2056                 param.bounds.iter().for_each(|bound| match bound {
2057                     hir::GenericBound::Outlives(lt) => {
2058                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2059                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2060                         predicates.push((outlives.to_predicate(), lt.span));
2061                     }
2062                     _ => bug!(),
2063                 });
2064             }
2065             _ => bug!(),
2066         }
2067     }
2068
2069     // Collect the predicates that were written inline by the user on each
2070     // type parameter (e.g., `<T: Foo>`).
2071     for param in &ast_generics.params {
2072         if let GenericParamKind::Type { .. } = param.kind {
2073             let name = param.name.ident().as_interned_str();
2074             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2075             index += 1;
2076
2077             let sized = SizedByDefault::Yes;
2078             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2079             predicates.extend(bounds.predicates(tcx, param_ty));
2080         }
2081     }
2082
2083     // Add in the bounds that appear in the where-clause.
2084     let where_clause = &ast_generics.where_clause;
2085     for predicate in &where_clause.predicates {
2086         match predicate {
2087             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2088                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2089
2090                 // Keep the type around in a dummy predicate, in case of no bounds.
2091                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2092                 // is still checked for WF.
2093                 if bound_pred.bounds.is_empty() {
2094                     if let ty::Param(_) = ty.sty {
2095                         // This is a `where T:`, which can be in the HIR from the
2096                         // transformation that moves `?Sized` to `T`'s declaration.
2097                         // We can skip the predicate because type parameters are
2098                         // trivially WF, but also we *should*, to avoid exposing
2099                         // users who never wrote `where Type:,` themselves, to
2100                         // compiler/tooling bugs from not handling WF predicates.
2101                     } else {
2102                         let span = bound_pred.bounded_ty.span;
2103                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2104                         predicates.push(
2105                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2106                         );
2107                     }
2108                 }
2109
2110                 for bound in bound_pred.bounds.iter() {
2111                     match bound {
2112                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2113                             let mut bounds = Bounds::default();
2114
2115                             let (trait_ref, _) = AstConv::instantiate_poly_trait_ref(
2116                                 &icx,
2117                                 poly_trait_ref,
2118                                 ty,
2119                                 &mut bounds,
2120                             );
2121
2122                             predicates.push((trait_ref.to_predicate(), poly_trait_ref.span));
2123                             predicates.extend(bounds.predicates(tcx, ty));
2124                         }
2125
2126                         &hir::GenericBound::Outlives(ref lifetime) => {
2127                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2128                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2129                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2130                         }
2131                     }
2132                 }
2133             }
2134
2135             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2136                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2137                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2138                     let (r2, span) = match bound {
2139                         hir::GenericBound::Outlives(lt) => {
2140                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2141                         }
2142                         _ => bug!(),
2143                     };
2144                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2145
2146                     (ty::Predicate::RegionOutlives(pred), span)
2147                 }))
2148             }
2149
2150             &hir::WherePredicate::EqPredicate(..) => {
2151                 // FIXME(#20041)
2152             }
2153         }
2154     }
2155
2156     // Add predicates from associated type bounds.
2157     if let Some((self_trait_ref, trait_items)) = is_trait {
2158         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2159             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2160             let bounds = match trait_item.node {
2161                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2162                 _ => return Vec::new().into_iter()
2163             };
2164
2165             let assoc_ty =
2166                 tcx.mk_projection(tcx.hir().local_def_id_from_hir_id(trait_item.hir_id),
2167                     self_trait_ref.substs);
2168
2169             let bounds = AstConv::compute_bounds(
2170                 &ItemCtxt::new(tcx, def_id),
2171                 assoc_ty,
2172                 bounds,
2173                 SizedByDefault::Yes,
2174                 trait_item.span,
2175             );
2176
2177             bounds.predicates(tcx, assoc_ty).into_iter()
2178         }))
2179     }
2180
2181     let mut predicates = predicates.predicates;
2182
2183     // Subtle: before we store the predicates into the tcx, we
2184     // sort them so that predicates like `T: Foo<Item=U>` come
2185     // before uses of `U`.  This avoids false ambiguity errors
2186     // in trait checking. See `setup_constraining_predicates`
2187     // for details.
2188     if let Node::Item(&Item {
2189         node: ItemKind::Impl(..),
2190         ..
2191     }) = node
2192     {
2193         let self_ty = tcx.type_of(def_id);
2194         let trait_ref = tcx.impl_trait_ref(def_id);
2195         cgp::setup_constraining_predicates(
2196             tcx,
2197             &mut predicates,
2198             trait_ref,
2199             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2200         );
2201     }
2202
2203     let result = tcx.arena.alloc(ty::GenericPredicates {
2204         parent: generics.parent,
2205         predicates,
2206     });
2207     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2208     result
2209 }
2210
2211 /// Converts a specific `GenericBound` from the AST into a set of
2212 /// predicates that apply to the self type. A vector is returned
2213 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2214 /// predicates) to one (`T: Foo`) to many (`T: Bar<X=i32>` adds `T: Bar`
2215 /// and `<T as Bar>::X == i32`).
2216 fn predicates_from_bound<'tcx>(
2217     astconv: &dyn AstConv<'tcx, 'tcx>,
2218     param_ty: Ty<'tcx>,
2219     bound: &hir::GenericBound,
2220 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2221     match *bound {
2222         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2223             let mut bounds = Bounds::default();
2224             let (pred, _) = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut bounds);
2225             iter::once((pred.to_predicate(), tr.span))
2226                 .chain(bounds.predicates(astconv.tcx(), param_ty))
2227                 .collect()
2228         }
2229         hir::GenericBound::Outlives(ref lifetime) => {
2230             let region = astconv.ast_region_to_region(lifetime, None);
2231             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2232             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2233         }
2234         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2235     }
2236 }
2237
2238 fn compute_sig_of_foreign_fn_decl<'a, 'tcx>(
2239     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2240     def_id: DefId,
2241     decl: &hir::FnDecl,
2242     abi: abi::Abi,
2243 ) -> ty::PolyFnSig<'tcx> {
2244     let unsafety = if abi == abi::Abi::RustIntrinsic {
2245         intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2246     } else {
2247         hir::Unsafety::Unsafe
2248     };
2249     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2250
2251     // Feature gate SIMD types in FFI, since I am not sure that the
2252     // ABIs are handled at all correctly. -huonw
2253     if abi != abi::Abi::RustIntrinsic
2254         && abi != abi::Abi::PlatformIntrinsic
2255         && !tcx.features().simd_ffi
2256     {
2257         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2258             if ty.is_simd() {
2259                 tcx.sess
2260                    .struct_span_err(
2261                        ast_ty.span,
2262                        &format!(
2263                            "use of SIMD type `{}` in FFI is highly experimental and \
2264                             may result in invalid code",
2265                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2266                        ),
2267                    )
2268                    .help("add #![feature(simd_ffi)] to the crate attributes to enable")
2269                    .emit();
2270             }
2271         };
2272         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2273             check(&input, ty)
2274         }
2275         if let hir::Return(ref ty) = decl.output {
2276             check(&ty, *fty.output().skip_binder())
2277         }
2278     }
2279
2280     fty
2281 }
2282
2283 fn is_foreign_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
2284     match tcx.hir().get_if_local(def_id) {
2285         Some(Node::ForeignItem(..)) => true,
2286         Some(_) => false,
2287         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2288     }
2289 }
2290
2291 fn static_mutability<'a, 'tcx>(
2292     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2293     def_id: DefId,
2294 ) -> Option<hir::Mutability> {
2295     match tcx.hir().get_if_local(def_id) {
2296         Some(Node::Item(&hir::Item {
2297             node: hir::ItemKind::Static(_, mutbl, _), ..
2298         })) |
2299         Some(Node::ForeignItem( &hir::ForeignItem {
2300             node: hir::ForeignItemKind::Static(_, mutbl), ..
2301         })) => Some(mutbl),
2302         Some(_) => None,
2303         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2304     }
2305 }
2306
2307 fn from_target_feature(
2308     tcx: TyCtxt<'_, '_, '_>,
2309     id: DefId,
2310     attr: &ast::Attribute,
2311     whitelist: &FxHashMap<String, Option<Symbol>>,
2312     target_features: &mut Vec<Symbol>,
2313 ) {
2314     let list = match attr.meta_item_list() {
2315         Some(list) => list,
2316         None => return,
2317     };
2318     let bad_item = |span| {
2319         let msg = "malformed `target_feature` attribute input";
2320         let code = "enable = \"..\"".to_owned();
2321         tcx.sess.struct_span_err(span, &msg)
2322             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2323             .emit();
2324     };
2325     let rust_features = tcx.features();
2326     for item in list {
2327         // Only `enable = ...` is accepted in the meta-item list.
2328         if !item.check_name(sym::enable) {
2329             bad_item(item.span());
2330             continue;
2331         }
2332
2333         // Must be of the form `enable = "..."` (a string).
2334         let value = match item.value_str() {
2335             Some(value) => value,
2336             None => {
2337                 bad_item(item.span());
2338                 continue;
2339             }
2340         };
2341
2342         // We allow comma separation to enable multiple features.
2343         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2344             // Only allow whitelisted features per platform.
2345             let feature_gate = match whitelist.get(feature) {
2346                 Some(g) => g,
2347                 None => {
2348                     let msg = format!(
2349                         "the feature named `{}` is not valid for this target",
2350                         feature
2351                     );
2352                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2353                     err.span_label(
2354                         item.span(),
2355                         format!("`{}` is not valid for this target", feature),
2356                     );
2357                     if feature.starts_with("+") {
2358                         let valid = whitelist.contains_key(&feature[1..]);
2359                         if valid {
2360                             err.help("consider removing the leading `+` in the feature name");
2361                         }
2362                     }
2363                     err.emit();
2364                     return None;
2365                 }
2366             };
2367
2368             // Only allow features whose feature gates have been enabled.
2369             let allowed = match feature_gate.as_ref().map(|s| *s) {
2370                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2371                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2372                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2373                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2374                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2375                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2376                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2377                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2378                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2379                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2380                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2381                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2382                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2383                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2384                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2385                 Some(name) => bug!("unknown target feature gate {}", name),
2386                 None => true,
2387             };
2388             if !allowed && id.is_local() {
2389                 feature_gate::emit_feature_err(
2390                     &tcx.sess.parse_sess,
2391                     feature_gate.unwrap(),
2392                     item.span(),
2393                     feature_gate::GateIssue::Language,
2394                     &format!("the target feature `{}` is currently unstable", feature),
2395                 );
2396             }
2397             Some(Symbol::intern(feature))
2398         }));
2399     }
2400 }
2401
2402 fn linkage_by_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, name: &str) -> Linkage {
2403     use rustc::mir::mono::Linkage::*;
2404
2405     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2406     // applicable to variable declarations and may not really make sense for
2407     // Rust code in the first place but whitelist them anyway and trust that
2408     // the user knows what s/he's doing. Who knows, unanticipated use cases
2409     // may pop up in the future.
2410     //
2411     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2412     // and don't have to be, LLVM treats them as no-ops.
2413     match name {
2414         "appending" => Appending,
2415         "available_externally" => AvailableExternally,
2416         "common" => Common,
2417         "extern_weak" => ExternalWeak,
2418         "external" => External,
2419         "internal" => Internal,
2420         "linkonce" => LinkOnceAny,
2421         "linkonce_odr" => LinkOnceODR,
2422         "private" => Private,
2423         "weak" => WeakAny,
2424         "weak_odr" => WeakODR,
2425         _ => {
2426             let span = tcx.hir().span_if_local(def_id);
2427             if let Some(span) = span {
2428                 tcx.sess.span_fatal(span, "invalid linkage specified")
2429             } else {
2430                 tcx.sess
2431                    .fatal(&format!("invalid linkage specified: {}", name))
2432             }
2433         }
2434     }
2435 }
2436
2437 fn codegen_fn_attrs<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefId) -> CodegenFnAttrs {
2438     let attrs = tcx.get_attrs(id);
2439
2440     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2441
2442     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2443
2444     let mut inline_span = None;
2445     for attr in attrs.iter() {
2446         if attr.check_name(sym::cold) {
2447             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2448         } else if attr.check_name(sym::rustc_allocator) {
2449             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2450         } else if attr.check_name(sym::unwind) {
2451             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2452         } else if attr.check_name(sym::ffi_returns_twice) {
2453             if tcx.is_foreign_item(id) {
2454                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2455             } else {
2456                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2457                 struct_span_err!(
2458                     tcx.sess,
2459                     attr.span,
2460                     E0724,
2461                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2462                 ).emit();
2463             }
2464         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2465             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2466         } else if attr.check_name(sym::naked) {
2467             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2468         } else if attr.check_name(sym::no_mangle) {
2469             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2470         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2471             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2472         } else if attr.check_name(sym::no_debug) {
2473             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2474         } else if attr.check_name(sym::used) {
2475             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2476         } else if attr.check_name(sym::thread_local) {
2477             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2478         } else if attr.check_name(sym::export_name) {
2479             if let Some(s) = attr.value_str() {
2480                 if s.as_str().contains("\0") {
2481                     // `#[export_name = ...]` will be converted to a null-terminated string,
2482                     // so it may not contain any null characters.
2483                     struct_span_err!(
2484                         tcx.sess,
2485                         attr.span,
2486                         E0648,
2487                         "`export_name` may not contain null characters"
2488                     ).emit();
2489                 }
2490                 codegen_fn_attrs.export_name = Some(s);
2491             }
2492         } else if attr.check_name(sym::target_feature) {
2493             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2494                 let msg = "#[target_feature(..)] can only be applied to `unsafe` functions";
2495                 tcx.sess.struct_span_err(attr.span, msg)
2496                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2497                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2498                     .emit();
2499             }
2500             from_target_feature(
2501                 tcx,
2502                 id,
2503                 attr,
2504                 &whitelist,
2505                 &mut codegen_fn_attrs.target_features,
2506             );
2507         } else if attr.check_name(sym::linkage) {
2508             if let Some(val) = attr.value_str() {
2509                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2510             }
2511         } else if attr.check_name(sym::link_section) {
2512             if let Some(val) = attr.value_str() {
2513                 if val.as_str().bytes().any(|b| b == 0) {
2514                     let msg = format!(
2515                         "illegal null byte in link_section \
2516                          value: `{}`",
2517                         &val
2518                     );
2519                     tcx.sess.span_err(attr.span, &msg);
2520                 } else {
2521                     codegen_fn_attrs.link_section = Some(val);
2522                 }
2523             }
2524         } else if attr.check_name(sym::link_name) {
2525             codegen_fn_attrs.link_name = attr.value_str();
2526         }
2527     }
2528
2529     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2530         if attr.path != sym::inline {
2531             return ia;
2532         }
2533         match attr.meta().map(|i| i.node) {
2534             Some(MetaItemKind::Word) => {
2535                 mark_used(attr);
2536                 InlineAttr::Hint
2537             }
2538             Some(MetaItemKind::List(ref items)) => {
2539                 mark_used(attr);
2540                 inline_span = Some(attr.span);
2541                 if items.len() != 1 {
2542                     span_err!(
2543                         tcx.sess.diagnostic(),
2544                         attr.span,
2545                         E0534,
2546                         "expected one argument"
2547                     );
2548                     InlineAttr::None
2549                 } else if list_contains_name(&items[..], sym::always) {
2550                     InlineAttr::Always
2551                 } else if list_contains_name(&items[..], sym::never) {
2552                     InlineAttr::Never
2553                 } else {
2554                     span_err!(
2555                         tcx.sess.diagnostic(),
2556                         items[0].span(),
2557                         E0535,
2558                         "invalid argument"
2559                     );
2560
2561                     InlineAttr::None
2562                 }
2563             }
2564             Some(MetaItemKind::NameValue(_)) => ia,
2565             None => ia,
2566         }
2567     });
2568
2569     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2570         if attr.path != sym::optimize {
2571             return ia;
2572         }
2573         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2574         match attr.meta().map(|i| i.node) {
2575             Some(MetaItemKind::Word) => {
2576                 err(attr.span, "expected one argument");
2577                 ia
2578             }
2579             Some(MetaItemKind::List(ref items)) => {
2580                 mark_used(attr);
2581                 inline_span = Some(attr.span);
2582                 if items.len() != 1 {
2583                     err(attr.span, "expected one argument");
2584                     OptimizeAttr::None
2585                 } else if list_contains_name(&items[..], sym::size) {
2586                     OptimizeAttr::Size
2587                 } else if list_contains_name(&items[..], sym::speed) {
2588                     OptimizeAttr::Speed
2589                 } else {
2590                     err(items[0].span(), "invalid argument");
2591                     OptimizeAttr::None
2592                 }
2593             }
2594             Some(MetaItemKind::NameValue(_)) => ia,
2595             None => ia,
2596         }
2597     });
2598
2599     // If a function uses #[target_feature] it can't be inlined into general
2600     // purpose functions as they wouldn't have the right target features
2601     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2602     // respected.
2603     if codegen_fn_attrs.target_features.len() > 0 {
2604         if codegen_fn_attrs.inline == InlineAttr::Always {
2605             if let Some(span) = inline_span {
2606                 tcx.sess.span_err(
2607                     span,
2608                     "cannot use #[inline(always)] with \
2609                      #[target_feature]",
2610                 );
2611             }
2612         }
2613     }
2614
2615     // Weak lang items have the same semantics as "std internal" symbols in the
2616     // sense that they're preserved through all our LTO passes and only
2617     // strippable by the linker.
2618     //
2619     // Additionally weak lang items have predetermined symbol names.
2620     if tcx.is_weak_lang_item(id) {
2621         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2622     }
2623     if let Some(name) = weak_lang_items::link_name(&attrs) {
2624         codegen_fn_attrs.export_name = Some(name);
2625         codegen_fn_attrs.link_name = Some(name);
2626     }
2627
2628     // Internal symbols to the standard library all have no_mangle semantics in
2629     // that they have defined symbol names present in the function name. This
2630     // also applies to weak symbols where they all have known symbol names.
2631     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2632         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2633     }
2634
2635     codegen_fn_attrs
2636 }