]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
c437f4e78d586e5f6f35033f3e7311074fbe8d29
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::check::intrinsic::intrinsic_operation_unsafety;
19 use crate::constrained_generic_params as cgp;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::mir::mono::Linkage;
24 use rustc::ty::query::Providers;
25 use rustc::ty::subst::GenericArgKind;
26 use rustc::ty::subst::{InternalSubsts, Subst};
27 use rustc::ty::util::Discr;
28 use rustc::ty::util::IntTypeExt;
29 use rustc::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
30 use rustc::ty::{ReprOptions, ToPredicate};
31 use rustc::util::captures::Captures;
32 use rustc::util::nodemap::FxHashMap;
33 use rustc_target::spec::abi;
34
35 use syntax::ast;
36 use syntax::ast::{Ident, MetaItemKind};
37 use syntax::attr::{list_contains_name, mark_used, InlineAttr, OptimizeAttr};
38 use syntax::feature_gate;
39 use syntax::symbol::{kw, sym, Symbol};
40 use syntax_pos::{Span, DUMMY_SP};
41
42 use rustc::hir::def::{CtorKind, DefKind, Res};
43 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
44 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
45 use rustc::hir::GenericParamKind;
46 use rustc::hir::Node;
47 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
48
49 use errors::{Applicability, StashKey};
50
51 use rustc_error_codes::*;
52
53 struct OnlySelfBounds(bool);
54
55 ///////////////////////////////////////////////////////////////////////////
56 // Main entry point
57
58 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
59     tcx.hir().visit_item_likes_in_module(
60         module_def_id,
61         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
62     );
63 }
64
65 pub fn provide(providers: &mut Providers<'_>) {
66     *providers = Providers {
67         type_of,
68         generics_of,
69         predicates_of,
70         predicates_defined_on,
71         explicit_predicates_of,
72         super_predicates_of,
73         type_param_predicates,
74         trait_def,
75         adt_def,
76         fn_sig,
77         impl_trait_ref,
78         impl_polarity,
79         is_foreign_item,
80         static_mutability,
81         codegen_fn_attrs,
82         collect_mod_item_types,
83         ..*providers
84     };
85 }
86
87 ///////////////////////////////////////////////////////////////////////////
88
89 /// Context specific to some particular item. This is what implements
90 /// `AstConv`. It has information about the predicates that are defined
91 /// on the trait. Unfortunately, this predicate information is
92 /// available in various different forms at various points in the
93 /// process. So we can't just store a pointer to e.g., the AST or the
94 /// parsed ty form, we have to be more flexible. To this end, the
95 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
96 /// `get_type_parameter_bounds` requests, drawing the information from
97 /// the AST (`hir::Generics`), recursively.
98 pub struct ItemCtxt<'tcx> {
99     tcx: TyCtxt<'tcx>,
100     item_def_id: DefId,
101 }
102
103 ///////////////////////////////////////////////////////////////////////////
104
105 struct CollectItemTypesVisitor<'tcx> {
106     tcx: TyCtxt<'tcx>,
107 }
108
109 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
110     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
111         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
112     }
113
114     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
115         convert_item(self.tcx, item.hir_id);
116         intravisit::walk_item(self, item);
117     }
118
119     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
120         for param in &generics.params {
121             match param.kind {
122                 hir::GenericParamKind::Lifetime { .. } => {}
123                 hir::GenericParamKind::Type { default: Some(_), .. } => {
124                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
125                     self.tcx.type_of(def_id);
126                 }
127                 hir::GenericParamKind::Type { .. } => {}
128                 hir::GenericParamKind::Const { .. } => {
129                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
130                     self.tcx.type_of(def_id);
131                 }
132             }
133         }
134         intravisit::walk_generics(self, generics);
135     }
136
137     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
138         if let hir::ExprKind::Closure(..) = expr.kind {
139             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
140             self.tcx.generics_of(def_id);
141             self.tcx.type_of(def_id);
142         }
143         intravisit::walk_expr(self, expr);
144     }
145
146     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
147         convert_trait_item(self.tcx, trait_item.hir_id);
148         intravisit::walk_trait_item(self, trait_item);
149     }
150
151     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
152         convert_impl_item(self.tcx, impl_item.hir_id);
153         intravisit::walk_impl_item(self, impl_item);
154     }
155 }
156
157 ///////////////////////////////////////////////////////////////////////////
158 // Utility types and common code for the above passes.
159
160 fn bad_placeholder_type(tcx: TyCtxt<'tcx>, span: Span) -> errors::DiagnosticBuilder<'tcx> {
161     let mut diag = struct_span_err!(
162         tcx.sess,
163         span,
164         E0121,
165         "the type placeholder `_` is not allowed within types on item signatures",
166     );
167     diag.span_label(span, "not allowed in type signatures");
168     diag
169 }
170
171 impl ItemCtxt<'tcx> {
172     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
173         ItemCtxt { tcx, item_def_id }
174     }
175
176     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty) -> Ty<'tcx> {
177         AstConv::ast_ty_to_ty(self, ast_ty)
178     }
179 }
180
181 impl AstConv<'tcx> for ItemCtxt<'tcx> {
182     fn tcx(&self) -> TyCtxt<'tcx> {
183         self.tcx
184     }
185
186     fn item_def_id(&self) -> Option<DefId> {
187         Some(self.item_def_id)
188     }
189
190     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
191         self.tcx.at(span).type_param_predicates((self.item_def_id, def_id))
192     }
193
194     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
195         None
196     }
197
198     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
199         bad_placeholder_type(self.tcx(), span).emit();
200
201         self.tcx().types.err
202     }
203
204     fn ct_infer(
205         &self,
206         _: Ty<'tcx>,
207         _: Option<&ty::GenericParamDef>,
208         span: Span,
209     ) -> &'tcx Const<'tcx> {
210         bad_placeholder_type(self.tcx(), span).emit();
211
212         self.tcx().consts.err
213     }
214
215     fn projected_ty_from_poly_trait_ref(
216         &self,
217         span: Span,
218         item_def_id: DefId,
219         item_segment: &hir::PathSegment,
220         poly_trait_ref: ty::PolyTraitRef<'tcx>,
221     ) -> Ty<'tcx> {
222         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
223             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
224                 self,
225                 self.tcx,
226                 span,
227                 item_def_id,
228                 item_segment,
229                 trait_ref.substs,
230             );
231             self.tcx().mk_projection(item_def_id, item_substs)
232         } else {
233             // There are no late-bound regions; we can just ignore the binder.
234             span_err!(
235                 self.tcx().sess,
236                 span,
237                 E0212,
238                 "cannot extract an associated type from a higher-ranked trait bound \
239                  in this context"
240             );
241             self.tcx().types.err
242         }
243     }
244
245     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
246         // Types in item signatures are not normalized to avoid undue dependencies.
247         ty
248     }
249
250     fn set_tainted_by_errors(&self) {
251         // There's no obvious place to track this, so just let it go.
252     }
253
254     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
255         // There's no place to record types from signatures?
256     }
257 }
258
259 /// Returns the predicates defined on `item_def_id` of the form
260 /// `X: Foo` where `X` is the type parameter `def_id`.
261 fn type_param_predicates(
262     tcx: TyCtxt<'_>,
263     (item_def_id, def_id): (DefId, DefId),
264 ) -> ty::GenericPredicates<'_> {
265     use rustc::hir::*;
266
267     // In the AST, bounds can derive from two places. Either
268     // written inline like `<T: Foo>` or in a where-clause like
269     // `where T: Foo`.
270
271     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
272     let param_owner = tcx.hir().ty_param_owner(param_id);
273     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
274     let generics = tcx.generics_of(param_owner_def_id);
275     let index = generics.param_def_id_to_index[&def_id];
276     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
277
278     // Don't look for bounds where the type parameter isn't in scope.
279     let parent =
280         if item_def_id == param_owner_def_id { None } else { tcx.generics_of(item_def_id).parent };
281
282     let mut result = parent
283         .map(|parent| {
284             let icx = ItemCtxt::new(tcx, parent);
285             icx.get_type_parameter_bounds(DUMMY_SP, def_id)
286         })
287         .unwrap_or_default();
288     let mut extend = None;
289
290     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
291     let ast_generics = match tcx.hir().get(item_hir_id) {
292         Node::TraitItem(item) => &item.generics,
293
294         Node::ImplItem(item) => &item.generics,
295
296         Node::Item(item) => {
297             match item.kind {
298                 ItemKind::Fn(.., ref generics, _)
299                 | ItemKind::Impl(_, _, _, ref generics, ..)
300                 | ItemKind::TyAlias(_, ref generics)
301                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
302                 | ItemKind::Enum(_, ref generics)
303                 | ItemKind::Struct(_, ref generics)
304                 | ItemKind::Union(_, ref generics) => generics,
305                 ItemKind::Trait(_, _, ref generics, ..) => {
306                     // Implied `Self: Trait` and supertrait bounds.
307                     if param_id == item_hir_id {
308                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
309                         extend = Some((identity_trait_ref.to_predicate(), item.span));
310                     }
311                     generics
312                 }
313                 _ => return result,
314             }
315         }
316
317         Node::ForeignItem(item) => match item.kind {
318             ForeignItemKind::Fn(_, _, ref generics) => generics,
319             _ => return result,
320         },
321
322         _ => return result,
323     };
324
325     let icx = ItemCtxt::new(tcx, item_def_id);
326     let extra_predicates = extend.into_iter().chain(
327         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
328             .into_iter()
329             .filter(|(predicate, _)| match predicate {
330                 ty::Predicate::Trait(ref data) => data.skip_binder().self_ty().is_param(index),
331                 _ => false,
332             }),
333     );
334     result.predicates =
335         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
336     result
337 }
338
339 impl ItemCtxt<'tcx> {
340     /// Finds bounds from `hir::Generics`. This requires scanning through the
341     /// AST. We do this to avoid having to convert *all* the bounds, which
342     /// would create artificial cycles. Instead, we can only convert the
343     /// bounds for a type parameter `X` if `X::Foo` is used.
344     fn type_parameter_bounds_in_generics(
345         &self,
346         ast_generics: &'tcx hir::Generics,
347         param_id: hir::HirId,
348         ty: Ty<'tcx>,
349         only_self_bounds: OnlySelfBounds,
350     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
351         let from_ty_params = ast_generics
352             .params
353             .iter()
354             .filter_map(|param| match param.kind {
355                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
356                 _ => None,
357             })
358             .flat_map(|bounds| bounds.iter())
359             .flat_map(|b| predicates_from_bound(self, ty, b));
360
361         let from_where_clauses = ast_generics
362             .where_clause
363             .predicates
364             .iter()
365             .filter_map(|wp| match *wp {
366                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
367                 _ => None,
368             })
369             .flat_map(|bp| {
370                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
371                     Some(ty)
372                 } else if !only_self_bounds.0 {
373                     Some(self.to_ty(&bp.bounded_ty))
374                 } else {
375                     None
376                 };
377                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
378             })
379             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
380
381         from_ty_params.chain(from_where_clauses).collect()
382     }
383 }
384
385 /// Tests whether this is the AST for a reference to the type
386 /// parameter with ID `param_id`. We use this so as to avoid running
387 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
388 /// conversion of the type to avoid inducing unnecessary cycles.
389 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty, param_id: hir::HirId) -> bool {
390     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
391         match path.res {
392             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
393                 def_id == tcx.hir().local_def_id(param_id)
394             }
395             _ => false,
396         }
397     } else {
398         false
399     }
400 }
401
402 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
403     let it = tcx.hir().expect_item(item_id);
404     debug!("convert: item {} with id {}", it.ident, it.hir_id);
405     let def_id = tcx.hir().local_def_id(item_id);
406     match it.kind {
407         // These don't define types.
408         hir::ItemKind::ExternCrate(_)
409         | hir::ItemKind::Use(..)
410         | hir::ItemKind::Mod(_)
411         | hir::ItemKind::GlobalAsm(_) => {}
412         hir::ItemKind::ForeignMod(ref foreign_mod) => {
413             for item in foreign_mod.items {
414                 let def_id = tcx.hir().local_def_id(item.hir_id);
415                 tcx.generics_of(def_id);
416                 tcx.type_of(def_id);
417                 tcx.predicates_of(def_id);
418                 if let hir::ForeignItemKind::Fn(..) = item.kind {
419                     tcx.fn_sig(def_id);
420                 }
421             }
422         }
423         hir::ItemKind::Enum(ref enum_definition, _) => {
424             tcx.generics_of(def_id);
425             tcx.type_of(def_id);
426             tcx.predicates_of(def_id);
427             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
428         }
429         hir::ItemKind::Impl(..) => {
430             tcx.generics_of(def_id);
431             tcx.type_of(def_id);
432             tcx.impl_trait_ref(def_id);
433             tcx.predicates_of(def_id);
434         }
435         hir::ItemKind::Trait(..) => {
436             tcx.generics_of(def_id);
437             tcx.trait_def(def_id);
438             tcx.at(it.span).super_predicates_of(def_id);
439             tcx.predicates_of(def_id);
440         }
441         hir::ItemKind::TraitAlias(..) => {
442             tcx.generics_of(def_id);
443             tcx.at(it.span).super_predicates_of(def_id);
444             tcx.predicates_of(def_id);
445         }
446         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
447             tcx.generics_of(def_id);
448             tcx.type_of(def_id);
449             tcx.predicates_of(def_id);
450
451             for f in struct_def.fields() {
452                 let def_id = tcx.hir().local_def_id(f.hir_id);
453                 tcx.generics_of(def_id);
454                 tcx.type_of(def_id);
455                 tcx.predicates_of(def_id);
456             }
457
458             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
459                 convert_variant_ctor(tcx, ctor_hir_id);
460             }
461         }
462
463         // Desugared from `impl Trait`, so visited by the function's return type.
464         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
465
466         hir::ItemKind::OpaqueTy(..)
467         | hir::ItemKind::TyAlias(..)
468         | hir::ItemKind::Static(..)
469         | hir::ItemKind::Const(..)
470         | hir::ItemKind::Fn(..) => {
471             tcx.generics_of(def_id);
472             tcx.type_of(def_id);
473             tcx.predicates_of(def_id);
474             if let hir::ItemKind::Fn(..) = it.kind {
475                 tcx.fn_sig(def_id);
476             }
477         }
478     }
479 }
480
481 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
482     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
483     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
484     tcx.generics_of(def_id);
485
486     match trait_item.kind {
487         hir::TraitItemKind::Const(..)
488         | hir::TraitItemKind::Type(_, Some(_))
489         | hir::TraitItemKind::Method(..) => {
490             tcx.type_of(def_id);
491             if let hir::TraitItemKind::Method(..) = trait_item.kind {
492                 tcx.fn_sig(def_id);
493             }
494         }
495
496         hir::TraitItemKind::Type(_, None) => {}
497     };
498
499     tcx.predicates_of(def_id);
500 }
501
502 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
503     let def_id = tcx.hir().local_def_id(impl_item_id);
504     tcx.generics_of(def_id);
505     tcx.type_of(def_id);
506     tcx.predicates_of(def_id);
507     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).kind {
508         tcx.fn_sig(def_id);
509     }
510 }
511
512 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
513     let def_id = tcx.hir().local_def_id(ctor_id);
514     tcx.generics_of(def_id);
515     tcx.type_of(def_id);
516     tcx.predicates_of(def_id);
517 }
518
519 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
520     let def = tcx.adt_def(def_id);
521     let repr_type = def.repr.discr_type();
522     let initial = repr_type.initial_discriminant(tcx);
523     let mut prev_discr = None::<Discr<'_>>;
524
525     // fill the discriminant values and field types
526     for variant in variants {
527         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
528         prev_discr = Some(
529             if let Some(ref e) = variant.disr_expr {
530                 let expr_did = tcx.hir().local_def_id(e.hir_id);
531                 def.eval_explicit_discr(tcx, expr_did)
532             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
533                 Some(discr)
534             } else {
535                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
536                     .span_label(
537                         variant.span,
538                         format!("overflowed on value after {}", prev_discr.unwrap()),
539                     )
540                     .note(&format!(
541                         "explicitly set `{} = {}` if that is desired outcome",
542                         variant.ident, wrapped_discr
543                     ))
544                     .emit();
545                 None
546             }
547             .unwrap_or(wrapped_discr),
548         );
549
550         for f in variant.data.fields() {
551             let def_id = tcx.hir().local_def_id(f.hir_id);
552             tcx.generics_of(def_id);
553             tcx.type_of(def_id);
554             tcx.predicates_of(def_id);
555         }
556
557         // Convert the ctor, if any. This also registers the variant as
558         // an item.
559         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
560             convert_variant_ctor(tcx, ctor_hir_id);
561         }
562     }
563 }
564
565 fn convert_variant(
566     tcx: TyCtxt<'_>,
567     variant_did: Option<DefId>,
568     ctor_did: Option<DefId>,
569     ident: Ident,
570     discr: ty::VariantDiscr,
571     def: &hir::VariantData<'_>,
572     adt_kind: ty::AdtKind,
573     parent_did: DefId,
574 ) -> ty::VariantDef {
575     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
576     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
577     let fields = def
578         .fields()
579         .iter()
580         .map(|f| {
581             let fid = tcx.hir().local_def_id(f.hir_id);
582             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
583             if let Some(prev_span) = dup_span {
584                 struct_span_err!(
585                     tcx.sess,
586                     f.span,
587                     E0124,
588                     "field `{}` is already declared",
589                     f.ident
590                 )
591                 .span_label(f.span, "field already declared")
592                 .span_label(prev_span, format!("`{}` first declared here", f.ident))
593                 .emit();
594             } else {
595                 seen_fields.insert(f.ident.modern(), f.span);
596             }
597
598             ty::FieldDef {
599                 did: fid,
600                 ident: f.ident,
601                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
602             }
603         })
604         .collect();
605     let recovered = match def {
606         hir::VariantData::Struct(_, r) => *r,
607         _ => false,
608     };
609     ty::VariantDef::new(
610         tcx,
611         ident,
612         variant_did,
613         ctor_did,
614         discr,
615         fields,
616         CtorKind::from_hir(def),
617         adt_kind,
618         parent_did,
619         recovered,
620     )
621 }
622
623 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
624     use rustc::hir::*;
625
626     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
627     let item = match tcx.hir().get(hir_id) {
628         Node::Item(item) => item,
629         _ => bug!(),
630     };
631
632     let repr = ReprOptions::new(tcx, def_id);
633     let (kind, variants) = match item.kind {
634         ItemKind::Enum(ref def, _) => {
635             let mut distance_from_explicit = 0;
636             let variants = def
637                 .variants
638                 .iter()
639                 .map(|v| {
640                     let variant_did = Some(tcx.hir().local_def_id(v.id));
641                     let ctor_did =
642                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
643
644                     let discr = if let Some(ref e) = v.disr_expr {
645                         distance_from_explicit = 0;
646                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
647                     } else {
648                         ty::VariantDiscr::Relative(distance_from_explicit)
649                     };
650                     distance_from_explicit += 1;
651
652                     convert_variant(
653                         tcx,
654                         variant_did,
655                         ctor_did,
656                         v.ident,
657                         discr,
658                         &v.data,
659                         AdtKind::Enum,
660                         def_id,
661                     )
662                 })
663                 .collect();
664
665             (AdtKind::Enum, variants)
666         }
667         ItemKind::Struct(ref def, _) => {
668             let variant_did = None;
669             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
670
671             let variants = std::iter::once(convert_variant(
672                 tcx,
673                 variant_did,
674                 ctor_did,
675                 item.ident,
676                 ty::VariantDiscr::Relative(0),
677                 def,
678                 AdtKind::Struct,
679                 def_id,
680             ))
681             .collect();
682
683             (AdtKind::Struct, variants)
684         }
685         ItemKind::Union(ref def, _) => {
686             let variant_did = None;
687             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
688
689             let variants = std::iter::once(convert_variant(
690                 tcx,
691                 variant_did,
692                 ctor_did,
693                 item.ident,
694                 ty::VariantDiscr::Relative(0),
695                 def,
696                 AdtKind::Union,
697                 def_id,
698             ))
699             .collect();
700
701             (AdtKind::Union, variants)
702         }
703         _ => bug!(),
704     };
705     tcx.alloc_adt_def(def_id, kind, variants, repr)
706 }
707
708 /// Ensures that the super-predicates of the trait with a `DefId`
709 /// of `trait_def_id` are converted and stored. This also ensures that
710 /// the transitive super-predicates are converted.
711 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
712     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
713     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
714
715     let item = match tcx.hir().get(trait_hir_id) {
716         Node::Item(item) => item,
717         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
718     };
719
720     let (generics, bounds) = match item.kind {
721         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
722         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
723         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
724     };
725
726     let icx = ItemCtxt::new(tcx, trait_def_id);
727
728     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
729     let self_param_ty = tcx.types.self_param;
730     let superbounds1 =
731         AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
732
733     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
734
735     // Convert any explicit superbounds in the where-clause,
736     // e.g., `trait Foo where Self: Bar`.
737     // In the case of trait aliases, however, we include all bounds in the where-clause,
738     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
739     // as one of its "superpredicates".
740     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
741     let superbounds2 = icx.type_parameter_bounds_in_generics(
742         generics,
743         item.hir_id,
744         self_param_ty,
745         OnlySelfBounds(!is_trait_alias),
746     );
747
748     // Combine the two lists to form the complete set of superbounds:
749     let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
750
751     // Now require that immediate supertraits are converted,
752     // which will, in turn, reach indirect supertraits.
753     for &(pred, span) in superbounds {
754         debug!("superbound: {:?}", pred);
755         if let ty::Predicate::Trait(bound) = pred {
756             tcx.at(span).super_predicates_of(bound.def_id());
757         }
758     }
759
760     ty::GenericPredicates { parent: None, predicates: superbounds }
761 }
762
763 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
764     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
765     let item = tcx.hir().expect_item(hir_id);
766
767     let (is_auto, unsafety) = match item.kind {
768         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
769         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
770         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
771     };
772
773     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
774     if paren_sugar && !tcx.features().unboxed_closures {
775         let mut err = tcx.sess.struct_span_err(
776             item.span,
777             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
778              which traits can use parenthetical notation",
779         );
780         help!(
781             &mut err,
782             "add `#![feature(unboxed_closures)]` to \
783              the crate attributes to use it"
784         );
785         err.emit();
786     }
787
788     let is_marker = tcx.has_attr(def_id, sym::marker);
789     let def_path_hash = tcx.def_path_hash(def_id);
790     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
791     tcx.arena.alloc(def)
792 }
793
794 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
795     struct LateBoundRegionsDetector<'tcx> {
796         tcx: TyCtxt<'tcx>,
797         outer_index: ty::DebruijnIndex,
798         has_late_bound_regions: Option<Span>,
799     }
800
801     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
802         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
803             NestedVisitorMap::None
804         }
805
806         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
807             if self.has_late_bound_regions.is_some() {
808                 return;
809             }
810             match ty.kind {
811                 hir::TyKind::BareFn(..) => {
812                     self.outer_index.shift_in(1);
813                     intravisit::walk_ty(self, ty);
814                     self.outer_index.shift_out(1);
815                 }
816                 _ => intravisit::walk_ty(self, ty),
817             }
818         }
819
820         fn visit_poly_trait_ref(
821             &mut self,
822             tr: &'tcx hir::PolyTraitRef,
823             m: hir::TraitBoundModifier,
824         ) {
825             if self.has_late_bound_regions.is_some() {
826                 return;
827             }
828             self.outer_index.shift_in(1);
829             intravisit::walk_poly_trait_ref(self, tr, m);
830             self.outer_index.shift_out(1);
831         }
832
833         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
834             if self.has_late_bound_regions.is_some() {
835                 return;
836             }
837
838             match self.tcx.named_region(lt.hir_id) {
839                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
840                 Some(rl::Region::LateBound(debruijn, _, _))
841                 | Some(rl::Region::LateBoundAnon(debruijn, _))
842                     if debruijn < self.outer_index => {}
843                 Some(rl::Region::LateBound(..))
844                 | Some(rl::Region::LateBoundAnon(..))
845                 | Some(rl::Region::Free(..))
846                 | None => {
847                     self.has_late_bound_regions = Some(lt.span);
848                 }
849             }
850         }
851     }
852
853     fn has_late_bound_regions<'tcx>(
854         tcx: TyCtxt<'tcx>,
855         generics: &'tcx hir::Generics,
856         decl: &'tcx hir::FnDecl,
857     ) -> Option<Span> {
858         let mut visitor = LateBoundRegionsDetector {
859             tcx,
860             outer_index: ty::INNERMOST,
861             has_late_bound_regions: None,
862         };
863         for param in &generics.params {
864             if let GenericParamKind::Lifetime { .. } = param.kind {
865                 if tcx.is_late_bound(param.hir_id) {
866                     return Some(param.span);
867                 }
868             }
869         }
870         visitor.visit_fn_decl(decl);
871         visitor.has_late_bound_regions
872     }
873
874     match node {
875         Node::TraitItem(item) => match item.kind {
876             hir::TraitItemKind::Method(ref sig, _) => {
877                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
878             }
879             _ => None,
880         },
881         Node::ImplItem(item) => match item.kind {
882             hir::ImplItemKind::Method(ref sig, _) => {
883                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
884             }
885             _ => None,
886         },
887         Node::ForeignItem(item) => match item.kind {
888             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
889                 has_late_bound_regions(tcx, generics, fn_decl)
890             }
891             _ => None,
892         },
893         Node::Item(item) => match item.kind {
894             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
895                 has_late_bound_regions(tcx, generics, &sig.decl)
896             }
897             _ => None,
898         },
899         _ => None,
900     }
901 }
902
903 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
904     use rustc::hir::*;
905
906     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
907
908     let node = tcx.hir().get(hir_id);
909     let parent_def_id = match node {
910         Node::ImplItem(_)
911         | Node::TraitItem(_)
912         | Node::Variant(_)
913         | Node::Ctor(..)
914         | Node::Field(_) => {
915             let parent_id = tcx.hir().get_parent_item(hir_id);
916             Some(tcx.hir().local_def_id(parent_id))
917         }
918         // FIXME(#43408) enable this always when we get lazy normalization.
919         Node::AnonConst(_) => {
920             // HACK(eddyb) this provides the correct generics when
921             // `feature(const_generics)` is enabled, so that const expressions
922             // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
923             if tcx.features().const_generics {
924                 let parent_id = tcx.hir().get_parent_item(hir_id);
925                 Some(tcx.hir().local_def_id(parent_id))
926             } else {
927                 None
928             }
929         }
930         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
931             Some(tcx.closure_base_def_id(def_id))
932         }
933         Node::Item(item) => match item.kind {
934             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => impl_trait_fn,
935             _ => None,
936         },
937         _ => None,
938     };
939
940     let mut opt_self = None;
941     let mut allow_defaults = false;
942
943     let no_generics = hir::Generics::empty();
944     let ast_generics = match node {
945         Node::TraitItem(item) => &item.generics,
946
947         Node::ImplItem(item) => &item.generics,
948
949         Node::Item(item) => {
950             match item.kind {
951                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
952                     generics
953                 }
954
955                 ItemKind::TyAlias(_, ref generics)
956                 | ItemKind::Enum(_, ref generics)
957                 | ItemKind::Struct(_, ref generics)
958                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
959                 | ItemKind::Union(_, ref generics) => {
960                     allow_defaults = true;
961                     generics
962                 }
963
964                 ItemKind::Trait(_, _, ref generics, ..)
965                 | ItemKind::TraitAlias(ref generics, ..) => {
966                     // Add in the self type parameter.
967                     //
968                     // Something of a hack: use the node id for the trait, also as
969                     // the node id for the Self type parameter.
970                     let param_id = item.hir_id;
971
972                     opt_self = Some(ty::GenericParamDef {
973                         index: 0,
974                         name: kw::SelfUpper,
975                         def_id: tcx.hir().local_def_id(param_id),
976                         pure_wrt_drop: false,
977                         kind: ty::GenericParamDefKind::Type {
978                             has_default: false,
979                             object_lifetime_default: rl::Set1::Empty,
980                             synthetic: None,
981                         },
982                     });
983
984                     allow_defaults = true;
985                     generics
986                 }
987
988                 _ => &no_generics,
989             }
990         }
991
992         Node::ForeignItem(item) => match item.kind {
993             ForeignItemKind::Static(..) => &no_generics,
994             ForeignItemKind::Fn(_, _, ref generics) => generics,
995             ForeignItemKind::Type => &no_generics,
996         },
997
998         _ => &no_generics,
999     };
1000
1001     let has_self = opt_self.is_some();
1002     let mut parent_has_self = false;
1003     let mut own_start = has_self as u32;
1004     let parent_count = parent_def_id.map_or(0, |def_id| {
1005         let generics = tcx.generics_of(def_id);
1006         assert_eq!(has_self, false);
1007         parent_has_self = generics.has_self;
1008         own_start = generics.count() as u32;
1009         generics.parent_count + generics.params.len()
1010     });
1011
1012     let mut params: Vec<_> = opt_self.into_iter().collect();
1013
1014     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1015     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1016         name: param.name.ident().name,
1017         index: own_start + i as u32,
1018         def_id: tcx.hir().local_def_id(param.hir_id),
1019         pure_wrt_drop: param.pure_wrt_drop,
1020         kind: ty::GenericParamDefKind::Lifetime,
1021     }));
1022
1023     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1024
1025     // Now create the real type parameters.
1026     let type_start = own_start - has_self as u32 + params.len() as u32;
1027     let mut i = 0;
1028     params.extend(ast_generics.params.iter().filter_map(|param| {
1029         let kind = match param.kind {
1030             GenericParamKind::Type { ref default, synthetic, .. } => {
1031                 if !allow_defaults && default.is_some() {
1032                     if !tcx.features().default_type_parameter_fallback {
1033                         tcx.lint_hir(
1034                             lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1035                             param.hir_id,
1036                             param.span,
1037                             &format!(
1038                                 "defaults for type parameters are only allowed in \
1039                                         `struct`, `enum`, `type`, or `trait` definitions."
1040                             ),
1041                         );
1042                     }
1043                 }
1044
1045                 ty::GenericParamDefKind::Type {
1046                     has_default: default.is_some(),
1047                     object_lifetime_default: object_lifetime_defaults
1048                         .as_ref()
1049                         .map_or(rl::Set1::Empty, |o| o[i]),
1050                     synthetic,
1051                 }
1052             }
1053             GenericParamKind::Const { .. } => ty::GenericParamDefKind::Const,
1054             _ => return None,
1055         };
1056
1057         let param_def = ty::GenericParamDef {
1058             index: type_start + i as u32,
1059             name: param.name.ident().name,
1060             def_id: tcx.hir().local_def_id(param.hir_id),
1061             pure_wrt_drop: param.pure_wrt_drop,
1062             kind,
1063         };
1064         i += 1;
1065         Some(param_def)
1066     }));
1067
1068     // provide junk type parameter defs - the only place that
1069     // cares about anything but the length is instantiation,
1070     // and we don't do that for closures.
1071     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1072         let dummy_args = if gen.is_some() {
1073             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1074         } else {
1075             &["<closure_kind>", "<closure_signature>"][..]
1076         };
1077
1078         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1079             index: type_start + i as u32,
1080             name: Symbol::intern(arg),
1081             def_id,
1082             pure_wrt_drop: false,
1083             kind: ty::GenericParamDefKind::Type {
1084                 has_default: false,
1085                 object_lifetime_default: rl::Set1::Empty,
1086                 synthetic: None,
1087             },
1088         }));
1089
1090         if let Some(upvars) = tcx.upvars(def_id) {
1091             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1092                 ty::GenericParamDef {
1093                     index: type_start + i,
1094                     name: Symbol::intern("<upvar>"),
1095                     def_id,
1096                     pure_wrt_drop: false,
1097                     kind: ty::GenericParamDefKind::Type {
1098                         has_default: false,
1099                         object_lifetime_default: rl::Set1::Empty,
1100                         synthetic: None,
1101                     },
1102                 }
1103             }));
1104         }
1105     }
1106
1107     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1108
1109     tcx.arena.alloc(ty::Generics {
1110         parent: parent_def_id,
1111         parent_count,
1112         params,
1113         param_def_id_to_index,
1114         has_self: has_self || parent_has_self,
1115         has_late_bound_regions: has_late_bound_regions(tcx, node),
1116     })
1117 }
1118
1119 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1120     span_err!(
1121         tcx.sess,
1122         span,
1123         E0202,
1124         "associated types are not yet supported in inherent impls (see #8995)"
1125     );
1126 }
1127
1128 fn infer_placeholder_type(
1129     tcx: TyCtxt<'_>,
1130     def_id: DefId,
1131     body_id: hir::BodyId,
1132     span: Span,
1133     item_ident: Ident,
1134 ) -> Ty<'_> {
1135     let ty = tcx.typeck_tables_of(def_id).node_type(body_id.hir_id);
1136
1137     // If this came from a free `const` or `static mut?` item,
1138     // then the user may have written e.g. `const A = 42;`.
1139     // In this case, the parser has stashed a diagnostic for
1140     // us to improve in typeck so we do that now.
1141     match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
1142         Some(mut err) => {
1143             // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
1144             // We are typeck and have the real type, so remove that and suggest the actual type.
1145             err.suggestions.clear();
1146             err.span_suggestion(
1147                 span,
1148                 "provide a type for the item",
1149                 format!("{}: {}", item_ident, ty),
1150                 Applicability::MachineApplicable,
1151             )
1152             .emit();
1153         }
1154         None => {
1155             let mut diag = bad_placeholder_type(tcx, span);
1156             if ty != tcx.types.err {
1157                 diag.span_suggestion(
1158                     span,
1159                     "replace `_` with the correct type",
1160                     ty.to_string(),
1161                     Applicability::MaybeIncorrect,
1162                 );
1163             }
1164             diag.emit();
1165         }
1166     }
1167
1168     ty
1169 }
1170
1171 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1172     use rustc::hir::*;
1173
1174     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1175
1176     let icx = ItemCtxt::new(tcx, def_id);
1177
1178     match tcx.hir().get(hir_id) {
1179         Node::TraitItem(item) => match item.kind {
1180             TraitItemKind::Method(..) => {
1181                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1182                 tcx.mk_fn_def(def_id, substs)
1183             }
1184             TraitItemKind::Const(ref ty, body_id) => body_id
1185                 .and_then(|body_id| {
1186                     if let hir::TyKind::Infer = ty.kind {
1187                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
1188                     } else {
1189                         None
1190                     }
1191                 })
1192                 .unwrap_or_else(|| icx.to_ty(ty)),
1193             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1194             TraitItemKind::Type(_, None) => {
1195                 span_bug!(item.span, "associated type missing default");
1196             }
1197         },
1198
1199         Node::ImplItem(item) => match item.kind {
1200             ImplItemKind::Method(..) => {
1201                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1202                 tcx.mk_fn_def(def_id, substs)
1203             }
1204             ImplItemKind::Const(ref ty, body_id) => {
1205                 if let hir::TyKind::Infer = ty.kind {
1206                     infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1207                 } else {
1208                     icx.to_ty(ty)
1209                 }
1210             }
1211             ImplItemKind::OpaqueTy(_) => {
1212                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1213                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1214                 }
1215
1216                 find_opaque_ty_constraints(tcx, def_id)
1217             }
1218             ImplItemKind::TyAlias(ref ty) => {
1219                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1220                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1221                 }
1222
1223                 icx.to_ty(ty)
1224             }
1225         },
1226
1227         Node::Item(item) => {
1228             match item.kind {
1229                 ItemKind::Static(ref ty, .., body_id) | ItemKind::Const(ref ty, body_id) => {
1230                     if let hir::TyKind::Infer = ty.kind {
1231                         infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1232                     } else {
1233                         icx.to_ty(ty)
1234                     }
1235                 }
1236                 ItemKind::TyAlias(ref ty, _) | ItemKind::Impl(.., ref ty, _) => icx.to_ty(ty),
1237                 ItemKind::Fn(..) => {
1238                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1239                     tcx.mk_fn_def(def_id, substs)
1240                 }
1241                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1242                     let def = tcx.adt_def(def_id);
1243                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1244                     tcx.mk_adt(def, substs)
1245                 }
1246                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: None, .. }) => {
1247                     find_opaque_ty_constraints(tcx, def_id)
1248                 }
1249                 // Opaque types desugared from `impl Trait`.
1250                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(owner), .. }) => {
1251                     tcx.typeck_tables_of(owner)
1252                         .concrete_opaque_types
1253                         .get(&def_id)
1254                         .map(|opaque| opaque.concrete_type)
1255                         .unwrap_or_else(|| {
1256                             // This can occur if some error in the
1257                             // owner fn prevented us from populating
1258                             // the `concrete_opaque_types` table.
1259                             tcx.sess.delay_span_bug(
1260                                 DUMMY_SP,
1261                                 &format!(
1262                                     "owner {:?} has no opaque type for {:?} in its tables",
1263                                     owner, def_id,
1264                                 ),
1265                             );
1266                             tcx.types.err
1267                         })
1268                 }
1269                 ItemKind::Trait(..)
1270                 | ItemKind::TraitAlias(..)
1271                 | ItemKind::Mod(..)
1272                 | ItemKind::ForeignMod(..)
1273                 | ItemKind::GlobalAsm(..)
1274                 | ItemKind::ExternCrate(..)
1275                 | ItemKind::Use(..) => {
1276                     span_bug!(
1277                         item.span,
1278                         "compute_type_of_item: unexpected item type: {:?}",
1279                         item.kind
1280                     );
1281                 }
1282             }
1283         }
1284
1285         Node::ForeignItem(foreign_item) => match foreign_item.kind {
1286             ForeignItemKind::Fn(..) => {
1287                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1288                 tcx.mk_fn_def(def_id, substs)
1289             }
1290             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1291             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1292         },
1293
1294         Node::Ctor(&ref def) | Node::Variant(hir::Variant { data: ref def, .. }) => match *def {
1295             VariantData::Unit(..) | VariantData::Struct(..) => {
1296                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1297             }
1298             VariantData::Tuple(..) => {
1299                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1300                 tcx.mk_fn_def(def_id, substs)
1301             }
1302         },
1303
1304         Node::Field(field) => icx.to_ty(&field.ty),
1305
1306         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) => {
1307             if gen.is_some() {
1308                 return tcx.typeck_tables_of(def_id).node_type(hir_id);
1309             }
1310
1311             let substs = InternalSubsts::identity_for_item(tcx, def_id);
1312             tcx.mk_closure(def_id, substs)
1313         }
1314
1315         Node::AnonConst(_) => {
1316             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1317             match parent_node {
1318                 Node::Ty(&hir::Ty { kind: hir::TyKind::Array(_, ref constant), .. })
1319                 | Node::Ty(&hir::Ty { kind: hir::TyKind::Typeof(ref constant), .. })
1320                 | Node::Expr(&hir::Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1321                     if constant.hir_id == hir_id =>
1322                 {
1323                     tcx.types.usize
1324                 }
1325
1326                 Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => {
1327                     tcx.adt_def(tcx.hir().get_parent_did(hir_id)).repr.discr_type().to_ty(tcx)
1328                 }
1329
1330                 Node::Ty(&hir::Ty { kind: hir::TyKind::Path(_), .. })
1331                 | Node::Expr(&hir::Expr { kind: ExprKind::Struct(..), .. })
1332                 | Node::Expr(&hir::Expr { kind: ExprKind::Path(_), .. })
1333                 | Node::TraitRef(..) => {
1334                     let path = match parent_node {
1335                         Node::Ty(&hir::Ty {
1336                             kind: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1337                             ..
1338                         })
1339                         | Node::Expr(&hir::Expr {
1340                             kind: ExprKind::Path(QPath::Resolved(_, ref path)),
1341                             ..
1342                         }) => Some(&**path),
1343                         Node::Expr(&hir::Expr { kind: ExprKind::Struct(ref path, ..), .. }) => {
1344                             if let QPath::Resolved(_, ref path) = **path {
1345                                 Some(&**path)
1346                             } else {
1347                                 None
1348                             }
1349                         }
1350                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1351                         _ => None,
1352                     };
1353
1354                     if let Some(path) = path {
1355                         let arg_index = path
1356                             .segments
1357                             .iter()
1358                             .filter_map(|seg| seg.args.as_ref())
1359                             .map(|generic_args| generic_args.args.as_ref())
1360                             .find_map(|args| {
1361                                 args.iter()
1362                                     .filter(|arg| arg.is_const())
1363                                     .enumerate()
1364                                     .filter(|(_, arg)| arg.id() == hir_id)
1365                                     .map(|(index, _)| index)
1366                                     .next()
1367                             })
1368                             .unwrap_or_else(|| {
1369                                 bug!("no arg matching AnonConst in path");
1370                             });
1371
1372                         // We've encountered an `AnonConst` in some path, so we need to
1373                         // figure out which generic parameter it corresponds to and return
1374                         // the relevant type.
1375                         let generics = match path.res {
1376                             Res::Def(DefKind::Ctor(..), def_id) => {
1377                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1378                             }
1379                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1380                             Res::Err => return tcx.types.err,
1381                             res => {
1382                                 tcx.sess.delay_span_bug(
1383                                     DUMMY_SP,
1384                                     &format!("unexpected const parent path def {:?}", res,),
1385                                 );
1386                                 return tcx.types.err;
1387                             }
1388                         };
1389
1390                         generics
1391                             .params
1392                             .iter()
1393                             .filter(|param| {
1394                                 if let ty::GenericParamDefKind::Const = param.kind {
1395                                     true
1396                                 } else {
1397                                     false
1398                                 }
1399                             })
1400                             .nth(arg_index)
1401                             .map(|param| tcx.type_of(param.def_id))
1402                             // This is no generic parameter associated with the arg. This is
1403                             // probably from an extra arg where one is not needed.
1404                             .unwrap_or(tcx.types.err)
1405                     } else {
1406                         tcx.sess.delay_span_bug(
1407                             DUMMY_SP,
1408                             &format!("unexpected const parent path {:?}", parent_node,),
1409                         );
1410                         return tcx.types.err;
1411                     }
1412                 }
1413
1414                 x => {
1415                     tcx.sess.delay_span_bug(
1416                         DUMMY_SP,
1417                         &format!("unexpected const parent in type_of_def_id(): {:?}", x),
1418                     );
1419                     tcx.types.err
1420                 }
1421             }
1422         }
1423
1424         Node::GenericParam(param) => {
1425             match &param.kind {
1426                 hir::GenericParamKind::Type { default: Some(ref ty), .. } => icx.to_ty(ty),
1427                 hir::GenericParamKind::Const { ty: ref hir_ty, .. } => {
1428                     let ty = icx.to_ty(hir_ty);
1429                     if !tcx.features().const_compare_raw_pointers {
1430                         let err = match ty.peel_refs().kind {
1431                             ty::FnPtr(_) => Some("function pointers"),
1432                             ty::RawPtr(_) => Some("raw pointers"),
1433                             _ => None,
1434                         };
1435                         if let Some(unsupported_type) = err {
1436                             feature_gate::feature_err(
1437                                 &tcx.sess.parse_sess,
1438                                 sym::const_compare_raw_pointers,
1439                                 hir_ty.span,
1440                                 &format!(
1441                                     "using {} as const generic parameters is unstable",
1442                                     unsupported_type
1443                                 ),
1444                             )
1445                             .emit();
1446                         };
1447                     }
1448                     if ty::search_for_structural_match_violation(param.hir_id, param.span, tcx, ty)
1449                         .is_some()
1450                     {
1451                         struct_span_err!(
1452                         tcx.sess,
1453                         hir_ty.span,
1454                         E0741,
1455                         "the types of const generic parameters must derive `PartialEq` and `Eq`",
1456                     ).span_label(
1457                         hir_ty.span,
1458                         format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
1459                     ).emit();
1460                     }
1461                     ty
1462                 }
1463                 x => bug!("unexpected non-type Node::GenericParam: {:?}", x),
1464             }
1465         }
1466
1467         x => {
1468             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1469         }
1470     }
1471 }
1472
1473 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1474     use rustc::hir::{ImplItem, Item, TraitItem};
1475
1476     debug!("find_opaque_ty_constraints({:?})", def_id);
1477
1478     struct ConstraintLocator<'tcx> {
1479         tcx: TyCtxt<'tcx>,
1480         def_id: DefId,
1481         // (first found type span, actual type, mapping from the opaque type's generic
1482         // parameters to the concrete type's generic parameters)
1483         //
1484         // The mapping is an index for each use site of a generic parameter in the concrete type
1485         //
1486         // The indices index into the generic parameters on the opaque type.
1487         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1488     }
1489
1490     impl ConstraintLocator<'tcx> {
1491         fn check(&mut self, def_id: DefId) {
1492             // Don't try to check items that cannot possibly constrain the type.
1493             if !self.tcx.has_typeck_tables(def_id) {
1494                 debug!(
1495                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1496                     self.def_id, def_id,
1497                 );
1498                 return;
1499             }
1500             let ty = self.tcx.typeck_tables_of(def_id).concrete_opaque_types.get(&self.def_id);
1501             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1502                 debug!(
1503                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1504                     self.def_id, def_id, ty,
1505                 );
1506
1507                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1508                 let span = self.tcx.def_span(def_id);
1509                 // used to quickly look up the position of a generic parameter
1510                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1511                 // Skipping binder is ok, since we only use this to find generic parameters and
1512                 // their positions.
1513                 for (idx, subst) in substs.iter().enumerate() {
1514                     if let GenericArgKind::Type(ty) = subst.unpack() {
1515                         if let ty::Param(p) = ty.kind {
1516                             if index_map.insert(p, idx).is_some() {
1517                                 // There was already an entry for `p`, meaning a generic parameter
1518                                 // was used twice.
1519                                 self.tcx.sess.span_err(
1520                                     span,
1521                                     &format!(
1522                                         "defining opaque type use restricts opaque \
1523                                          type by using the generic parameter `{}` twice",
1524                                         p,
1525                                     ),
1526                                 );
1527                                 return;
1528                             }
1529                         } else {
1530                             self.tcx.sess.delay_span_bug(
1531                                 span,
1532                                 &format!(
1533                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1534                                     concrete_type, substs,
1535                                 ),
1536                             );
1537                         }
1538                     }
1539                 }
1540                 // Compute the index within the opaque type for each generic parameter used in
1541                 // the concrete type.
1542                 let indices = concrete_type
1543                     .subst(self.tcx, substs)
1544                     .walk()
1545                     .filter_map(|t| match &t.kind {
1546                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1547                         _ => None,
1548                     })
1549                     .collect();
1550                 let is_param = |ty: Ty<'_>| match ty.kind {
1551                     ty::Param(_) => true,
1552                     _ => false,
1553                 };
1554                 let bad_substs: Vec<_> =
1555                     substs.types().enumerate().filter(|(_, ty)| !is_param(ty)).collect();
1556                 if !bad_substs.is_empty() {
1557                     let identity_substs = InternalSubsts::identity_for_item(self.tcx, self.def_id);
1558                     for (i, bad_subst) in bad_substs {
1559                         self.tcx.sess.span_err(
1560                             span,
1561                             &format!(
1562                                 "defining opaque type use does not fully define opaque type: \
1563                             generic parameter `{}` is specified as concrete type `{}`",
1564                                 identity_substs.type_at(i),
1565                                 bad_subst
1566                             ),
1567                         );
1568                     }
1569                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1570                     let mut ty = concrete_type.walk().fuse();
1571                     let mut p_ty = prev_ty.walk().fuse();
1572                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
1573                         // Type parameters are equal to any other type parameter for the purpose of
1574                         // concrete type equality, as it is possible to obtain the same type just
1575                         // by passing matching parameters to a function.
1576                         (ty::Param(_), ty::Param(_)) => true,
1577                         _ => t == p,
1578                     });
1579                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1580                         debug!("find_opaque_ty_constraints: span={:?}", span);
1581                         // Found different concrete types for the opaque type.
1582                         let mut err = self.tcx.sess.struct_span_err(
1583                             span,
1584                             "concrete type differs from previous defining opaque type use",
1585                         );
1586                         err.span_label(
1587                             span,
1588                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1589                         );
1590                         err.span_note(prev_span, "previous use here");
1591                         err.emit();
1592                     } else if indices != *prev_indices {
1593                         // Found "same" concrete types, but the generic parameter order differs.
1594                         let mut err = self.tcx.sess.struct_span_err(
1595                             span,
1596                             "concrete type's generic parameters differ from previous defining use",
1597                         );
1598                         use std::fmt::Write;
1599                         let mut s = String::new();
1600                         write!(s, "expected [").unwrap();
1601                         let list = |s: &mut String, indices: &Vec<usize>| {
1602                             let mut indices = indices.iter().cloned();
1603                             if let Some(first) = indices.next() {
1604                                 write!(s, "`{}`", substs[first]).unwrap();
1605                                 for i in indices {
1606                                     write!(s, ", `{}`", substs[i]).unwrap();
1607                                 }
1608                             }
1609                         };
1610                         list(&mut s, prev_indices);
1611                         write!(s, "], got [").unwrap();
1612                         list(&mut s, &indices);
1613                         write!(s, "]").unwrap();
1614                         err.span_label(span, s);
1615                         err.span_note(prev_span, "previous use here");
1616                         err.emit();
1617                     }
1618                 } else {
1619                     self.found = Some((span, concrete_type, indices));
1620                 }
1621             } else {
1622                 debug!(
1623                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1624                     self.def_id, def_id,
1625                 );
1626             }
1627         }
1628     }
1629
1630     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1631         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1632             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1633         }
1634         fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
1635             debug!("find_existential_constraints: visiting {:?}", it);
1636             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1637             // The opaque type itself or its children are not within its reveal scope.
1638             if def_id != self.def_id {
1639                 self.check(def_id);
1640                 intravisit::walk_item(self, it);
1641             }
1642         }
1643         fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
1644             debug!("find_existential_constraints: visiting {:?}", it);
1645             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1646             // The opaque type itself or its children are not within its reveal scope.
1647             if def_id != self.def_id {
1648                 self.check(def_id);
1649                 intravisit::walk_impl_item(self, it);
1650             }
1651         }
1652         fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
1653             debug!("find_existential_constraints: visiting {:?}", it);
1654             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1655             self.check(def_id);
1656             intravisit::walk_trait_item(self, it);
1657         }
1658     }
1659
1660     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1661     let scope = tcx.hir().get_defining_scope(hir_id);
1662     let mut locator = ConstraintLocator { def_id, tcx, found: None };
1663
1664     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1665
1666     if scope == hir::CRATE_HIR_ID {
1667         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1668     } else {
1669         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1670         match tcx.hir().get(scope) {
1671             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1672             // This allows our visitor to process the defining item itself, causing
1673             // it to pick up any 'sibling' defining uses.
1674             //
1675             // For example, this code:
1676             // ```
1677             // fn foo() {
1678             //     type Blah = impl Debug;
1679             //     let my_closure = || -> Blah { true };
1680             // }
1681             // ```
1682             //
1683             // requires us to explicitly process `foo()` in order
1684             // to notice the defining usage of `Blah`.
1685             Node::Item(ref it) => locator.visit_item(it),
1686             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1687             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1688             other => bug!("{:?} is not a valid scope for an opaque type item", other),
1689         }
1690     }
1691
1692     match locator.found {
1693         Some((_, ty, _)) => ty,
1694         None => {
1695             let span = tcx.def_span(def_id);
1696             tcx.sess.span_err(span, "could not find defining uses");
1697             tcx.types.err
1698         }
1699     }
1700 }
1701
1702 pub fn get_infer_ret_ty(output: &'_ hir::FunctionRetTy) -> Option<&hir::Ty> {
1703     if let hir::FunctionRetTy::Return(ref ty) = output {
1704         if let hir::TyKind::Infer = ty.kind {
1705             return Some(&**ty);
1706         }
1707     }
1708     None
1709 }
1710
1711 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1712     use rustc::hir::Node::*;
1713     use rustc::hir::*;
1714
1715     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1716
1717     let icx = ItemCtxt::new(tcx, def_id);
1718
1719     match tcx.hir().get(hir_id) {
1720         TraitItem(hir::TraitItem {
1721             kind: TraitItemKind::Method(sig, TraitMethod::Provided(_)),
1722             ..
1723         })
1724         | ImplItem(hir::ImplItem { kind: ImplItemKind::Method(sig, _), .. })
1725         | Item(hir::Item { kind: ItemKind::Fn(sig, _, _), .. }) => {
1726             match get_infer_ret_ty(&sig.decl.output) {
1727                 Some(ty) => {
1728                     let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1729                     let mut diag = bad_placeholder_type(tcx, ty.span);
1730                     let ret_ty = fn_sig.output();
1731                     if ret_ty != tcx.types.err {
1732                         diag.span_suggestion(
1733                             ty.span,
1734                             "replace `_` with the correct return type",
1735                             ret_ty.to_string(),
1736                             Applicability::MaybeIncorrect,
1737                         );
1738                     }
1739                     diag.emit();
1740                     ty::Binder::bind(fn_sig)
1741                 }
1742                 None => AstConv::ty_of_fn(&icx, sig.header.unsafety, sig.header.abi, &sig.decl),
1743             }
1744         }
1745
1746         TraitItem(hir::TraitItem {
1747             kind: TraitItemKind::Method(FnSig { header, decl }, _),
1748             ..
1749         }) => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl),
1750
1751         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(ref fn_decl, _, _), .. }) => {
1752             let abi = tcx.hir().get_foreign_abi(hir_id);
1753             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1754         }
1755
1756         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1757             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1758             let inputs =
1759                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1760             ty::Binder::bind(tcx.mk_fn_sig(
1761                 inputs,
1762                 ty,
1763                 false,
1764                 hir::Unsafety::Normal,
1765                 abi::Abi::Rust,
1766             ))
1767         }
1768
1769         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1770             // Closure signatures are not like other function
1771             // signatures and cannot be accessed through `fn_sig`. For
1772             // example, a closure signature excludes the `self`
1773             // argument. In any case they are embedded within the
1774             // closure type as part of the `ClosureSubsts`.
1775             //
1776             // To get
1777             // the signature of a closure, you should use the
1778             // `closure_sig` method on the `ClosureSubsts`:
1779             //
1780             //    closure_substs.sig(def_id, tcx)
1781             //
1782             // or, inside of an inference context, you can use
1783             //
1784             //    infcx.closure_sig(def_id, closure_substs)
1785             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1786         }
1787
1788         x => {
1789             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1790         }
1791     }
1792 }
1793
1794 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1795     let icx = ItemCtxt::new(tcx, def_id);
1796
1797     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1798     match tcx.hir().expect_item(hir_id).kind {
1799         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1800             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1801                 let selfty = tcx.type_of(def_id);
1802                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1803             })
1804         }
1805         _ => bug!(),
1806     }
1807 }
1808
1809 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1810     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1811     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1812     let item = tcx.hir().expect_item(hir_id);
1813     match &item.kind {
1814         hir::ItemKind::Impl(_, hir::ImplPolarity::Negative, ..) => {
1815             if is_rustc_reservation {
1816                 tcx.sess.span_err(item.span, "reservation impls can't be negative");
1817             }
1818             ty::ImplPolarity::Negative
1819         }
1820         hir::ItemKind::Impl(_, hir::ImplPolarity::Positive, _, _, None, _, _) => {
1821             if is_rustc_reservation {
1822                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1823             }
1824             ty::ImplPolarity::Positive
1825         }
1826         hir::ItemKind::Impl(_, hir::ImplPolarity::Positive, _, _, Some(_tr), _, _) => {
1827             if is_rustc_reservation {
1828                 ty::ImplPolarity::Reservation
1829             } else {
1830                 ty::ImplPolarity::Positive
1831             }
1832         }
1833         ref item => bug!("impl_polarity: {:?} not an impl", item),
1834     }
1835 }
1836
1837 /// Returns the early-bound lifetimes declared in this generics
1838 /// listing. For anything other than fns/methods, this is just all
1839 /// the lifetimes that are declared. For fns or methods, we have to
1840 /// screen out those that do not appear in any where-clauses etc using
1841 /// `resolve_lifetime::early_bound_lifetimes`.
1842 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1843     tcx: TyCtxt<'tcx>,
1844     generics: &'a hir::Generics,
1845 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1846     generics.params.iter().filter(move |param| match param.kind {
1847         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
1848         _ => false,
1849     })
1850 }
1851
1852 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1853 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1854 /// inferred constraints concerning which regions outlive other regions.
1855 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1856     debug!("predicates_defined_on({:?})", def_id);
1857     let mut result = tcx.explicit_predicates_of(def_id);
1858     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
1859     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1860     if !inferred_outlives.is_empty() {
1861         debug!(
1862             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1863             def_id, inferred_outlives,
1864         );
1865         if result.predicates.is_empty() {
1866             result.predicates = inferred_outlives;
1867         } else {
1868             result.predicates = tcx
1869                 .arena
1870                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
1871         }
1872     }
1873     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1874     result
1875 }
1876
1877 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1878 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1879 /// `Self: Trait` predicates for traits.
1880 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1881     let mut result = tcx.predicates_defined_on(def_id);
1882
1883     if tcx.is_trait(def_id) {
1884         // For traits, add `Self: Trait` predicate. This is
1885         // not part of the predicates that a user writes, but it
1886         // is something that one must prove in order to invoke a
1887         // method or project an associated type.
1888         //
1889         // In the chalk setup, this predicate is not part of the
1890         // "predicates" for a trait item. But it is useful in
1891         // rustc because if you directly (e.g.) invoke a trait
1892         // method like `Trait::method(...)`, you must naturally
1893         // prove that the trait applies to the types that were
1894         // used, and adding the predicate into this list ensures
1895         // that this is done.
1896         let span = tcx.def_span(def_id);
1897         result.predicates =
1898             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
1899                 ty::TraitRef::identity(tcx, def_id).to_predicate(),
1900                 span,
1901             ))));
1902     }
1903     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1904     result
1905 }
1906
1907 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1908 /// N.B., this does not include any implied/inferred constraints.
1909 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1910     use rustc::hir::*;
1911     use rustc_data_structures::fx::FxHashSet;
1912
1913     debug!("explicit_predicates_of(def_id={:?})", def_id);
1914
1915     /// A data structure with unique elements, which preserves order of insertion.
1916     /// Preserving the order of insertion is important here so as not to break
1917     /// compile-fail UI tests.
1918     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
1919     struct UniquePredicates<'tcx> {
1920         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1921         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1922     }
1923
1924     impl<'tcx> UniquePredicates<'tcx> {
1925         fn new() -> Self {
1926             UniquePredicates { predicates: vec![], uniques: FxHashSet::default() }
1927         }
1928
1929         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1930             if self.uniques.insert(value) {
1931                 self.predicates.push(value);
1932             }
1933         }
1934
1935         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1936             for value in iter {
1937                 self.push(value);
1938             }
1939         }
1940     }
1941
1942     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1943     let node = tcx.hir().get(hir_id);
1944
1945     let mut is_trait = None;
1946     let mut is_default_impl_trait = None;
1947
1948     let icx = ItemCtxt::new(tcx, def_id);
1949
1950     const NO_GENERICS: &hir::Generics = &hir::Generics::empty();
1951
1952     let mut predicates = UniquePredicates::new();
1953
1954     let ast_generics = match node {
1955         Node::TraitItem(item) => &item.generics,
1956
1957         Node::ImplItem(item) => match item.kind {
1958             ImplItemKind::OpaqueTy(ref bounds) => {
1959                 ty::print::with_no_queries(|| {
1960                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1961                     let opaque_ty = tcx.mk_opaque(def_id, substs);
1962                     debug!(
1963                         "explicit_predicates_of({:?}): created opaque type {:?}",
1964                         def_id, opaque_ty
1965                     );
1966
1967                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1968                     let bounds = AstConv::compute_bounds(
1969                         &icx,
1970                         opaque_ty,
1971                         bounds,
1972                         SizedByDefault::Yes,
1973                         tcx.def_span(def_id),
1974                     );
1975
1976                     predicates.extend(bounds.predicates(tcx, opaque_ty));
1977                     &item.generics
1978                 })
1979             }
1980             _ => &item.generics,
1981         },
1982
1983         Node::Item(item) => {
1984             match item.kind {
1985                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
1986                     if defaultness.is_default() {
1987                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1988                     }
1989                     generics
1990                 }
1991                 ItemKind::Fn(.., ref generics, _)
1992                 | ItemKind::TyAlias(_, ref generics)
1993                 | ItemKind::Enum(_, ref generics)
1994                 | ItemKind::Struct(_, ref generics)
1995                 | ItemKind::Union(_, ref generics) => generics,
1996
1997                 ItemKind::Trait(_, _, ref generics, .., items) => {
1998                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1999                     generics
2000                 }
2001                 ItemKind::TraitAlias(ref generics, _) => {
2002                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &[]));
2003                     generics
2004                 }
2005                 ItemKind::OpaqueTy(OpaqueTy {
2006                     ref bounds,
2007                     impl_trait_fn,
2008                     ref generics,
2009                     origin: _,
2010                 }) => {
2011                     let bounds_predicates = ty::print::with_no_queries(|| {
2012                         let substs = InternalSubsts::identity_for_item(tcx, def_id);
2013                         let opaque_ty = tcx.mk_opaque(def_id, substs);
2014
2015                         // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2016                         let bounds = AstConv::compute_bounds(
2017                             &icx,
2018                             opaque_ty,
2019                             bounds,
2020                             SizedByDefault::Yes,
2021                             tcx.def_span(def_id),
2022                         );
2023
2024                         bounds.predicates(tcx, opaque_ty)
2025                     });
2026                     if impl_trait_fn.is_some() {
2027                         // opaque types
2028                         return ty::GenericPredicates {
2029                             parent: None,
2030                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
2031                         };
2032                     } else {
2033                         // named opaque types
2034                         predicates.extend(bounds_predicates);
2035                         generics
2036                     }
2037                 }
2038
2039                 _ => NO_GENERICS,
2040             }
2041         }
2042
2043         Node::ForeignItem(item) => match item.kind {
2044             ForeignItemKind::Static(..) => NO_GENERICS,
2045             ForeignItemKind::Fn(_, _, ref generics) => generics,
2046             ForeignItemKind::Type => NO_GENERICS,
2047         },
2048
2049         _ => NO_GENERICS,
2050     };
2051
2052     let generics = tcx.generics_of(def_id);
2053     let parent_count = generics.parent_count as u32;
2054     let has_own_self = generics.has_self && parent_count == 0;
2055
2056     // Below we'll consider the bounds on the type parameters (including `Self`)
2057     // and the explicit where-clauses, but to get the full set of predicates
2058     // on a trait we need to add in the supertrait bounds and bounds found on
2059     // associated types.
2060     if let Some((_trait_ref, _)) = is_trait {
2061         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2062     }
2063
2064     // In default impls, we can assume that the self type implements
2065     // the trait. So in:
2066     //
2067     //     default impl Foo for Bar { .. }
2068     //
2069     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2070     // (see below). Recall that a default impl is not itself an impl, but rather a
2071     // set of defaults that can be incorporated into another impl.
2072     if let Some(trait_ref) = is_default_impl_trait {
2073         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2074     }
2075
2076     // Collect the region predicates that were declared inline as
2077     // well. In the case of parameters declared on a fn or method, we
2078     // have to be careful to only iterate over early-bound regions.
2079     let mut index = parent_count + has_own_self as u32;
2080     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2081         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2082             def_id: tcx.hir().local_def_id(param.hir_id),
2083             index,
2084             name: param.name.ident().name,
2085         }));
2086         index += 1;
2087
2088         match param.kind {
2089             GenericParamKind::Lifetime { .. } => {
2090                 param.bounds.iter().for_each(|bound| match bound {
2091                     hir::GenericBound::Outlives(lt) => {
2092                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2093                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2094                         predicates.push((outlives.to_predicate(), lt.span));
2095                     }
2096                     _ => bug!(),
2097                 });
2098             }
2099             _ => bug!(),
2100         }
2101     }
2102
2103     // Collect the predicates that were written inline by the user on each
2104     // type parameter (e.g., `<T: Foo>`).
2105     for param in &ast_generics.params {
2106         if let GenericParamKind::Type { .. } = param.kind {
2107             let name = param.name.ident().name;
2108             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2109             index += 1;
2110
2111             let sized = SizedByDefault::Yes;
2112             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2113             predicates.extend(bounds.predicates(tcx, param_ty));
2114         }
2115     }
2116
2117     // Add in the bounds that appear in the where-clause.
2118     let where_clause = &ast_generics.where_clause;
2119     for predicate in &where_clause.predicates {
2120         match predicate {
2121             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2122                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2123
2124                 // Keep the type around in a dummy predicate, in case of no bounds.
2125                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2126                 // is still checked for WF.
2127                 if bound_pred.bounds.is_empty() {
2128                     if let ty::Param(_) = ty.kind {
2129                         // This is a `where T:`, which can be in the HIR from the
2130                         // transformation that moves `?Sized` to `T`'s declaration.
2131                         // We can skip the predicate because type parameters are
2132                         // trivially WF, but also we *should*, to avoid exposing
2133                         // users who never wrote `where Type:,` themselves, to
2134                         // compiler/tooling bugs from not handling WF predicates.
2135                     } else {
2136                         let span = bound_pred.bounded_ty.span;
2137                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2138                         predicates.push((
2139                             ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)),
2140                             span,
2141                         ));
2142                     }
2143                 }
2144
2145                 for bound in bound_pred.bounds.iter() {
2146                     match bound {
2147                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2148                             let mut bounds = Bounds::default();
2149                             let _ = AstConv::instantiate_poly_trait_ref(
2150                                 &icx,
2151                                 poly_trait_ref,
2152                                 ty,
2153                                 &mut bounds,
2154                             );
2155                             predicates.extend(bounds.predicates(tcx, ty));
2156                         }
2157
2158                         &hir::GenericBound::Outlives(ref lifetime) => {
2159                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2160                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2161                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2162                         }
2163                     }
2164                 }
2165             }
2166
2167             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2168                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2169                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2170                     let (r2, span) = match bound {
2171                         hir::GenericBound::Outlives(lt) => {
2172                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2173                         }
2174                         _ => bug!(),
2175                     };
2176                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2177
2178                     (ty::Predicate::RegionOutlives(pred), span)
2179                 }))
2180             }
2181
2182             &hir::WherePredicate::EqPredicate(..) => {
2183                 // FIXME(#20041)
2184             }
2185         }
2186     }
2187
2188     // Add predicates from associated type bounds.
2189     if let Some((self_trait_ref, trait_items)) = is_trait {
2190         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2191             associated_item_predicates(tcx, def_id, self_trait_ref, trait_item_ref)
2192         }))
2193     }
2194
2195     let mut predicates = predicates.predicates;
2196
2197     // Subtle: before we store the predicates into the tcx, we
2198     // sort them so that predicates like `T: Foo<Item=U>` come
2199     // before uses of `U`.  This avoids false ambiguity errors
2200     // in trait checking. See `setup_constraining_predicates`
2201     // for details.
2202     if let Node::Item(&Item { kind: ItemKind::Impl(..), .. }) = node {
2203         let self_ty = tcx.type_of(def_id);
2204         let trait_ref = tcx.impl_trait_ref(def_id);
2205         cgp::setup_constraining_predicates(
2206             tcx,
2207             &mut predicates,
2208             trait_ref,
2209             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2210         );
2211     }
2212
2213     let result = ty::GenericPredicates {
2214         parent: generics.parent,
2215         predicates: tcx.arena.alloc_from_iter(predicates),
2216     };
2217     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2218     result
2219 }
2220
2221 fn associated_item_predicates(
2222     tcx: TyCtxt<'tcx>,
2223     def_id: DefId,
2224     self_trait_ref: ty::TraitRef<'tcx>,
2225     trait_item_ref: &hir::TraitItemRef,
2226 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2227     let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2228     let item_def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
2229     let bounds = match trait_item.kind {
2230         hir::TraitItemKind::Type(ref bounds, _) => bounds,
2231         _ => return Vec::new(),
2232     };
2233
2234     let is_gat = !tcx.generics_of(item_def_id).params.is_empty();
2235
2236     let mut had_error = false;
2237
2238     let mut unimplemented_error = |arg_kind: &str| {
2239         if !had_error {
2240             tcx.sess
2241                 .struct_span_err(
2242                     trait_item.span,
2243                     &format!("{}-generic associated types are not yet implemented", arg_kind),
2244                 )
2245                 .note("for more information, see https://github.com/rust-lang/rust/issues/44265")
2246                 .emit();
2247             had_error = true;
2248         }
2249     };
2250
2251     let mk_bound_param = |param: &ty::GenericParamDef, _: &_| {
2252         match param.kind {
2253             ty::GenericParamDefKind::Lifetime => tcx
2254                 .mk_region(ty::RegionKind::ReLateBound(
2255                     ty::INNERMOST,
2256                     ty::BoundRegion::BrNamed(param.def_id, param.name),
2257                 ))
2258                 .into(),
2259             // FIXME(generic_associated_types): Use bound types and constants
2260             // once they are handled by the trait system.
2261             ty::GenericParamDefKind::Type { .. } => {
2262                 unimplemented_error("type");
2263                 tcx.types.err.into()
2264             }
2265             ty::GenericParamDefKind::Const => {
2266                 unimplemented_error("const");
2267                 tcx.consts.err.into()
2268             }
2269         }
2270     };
2271
2272     let bound_substs = if is_gat {
2273         // Given:
2274         //
2275         // trait X<'a, B, const C: usize> {
2276         //     type T<'d, E, const F: usize>: Default;
2277         // }
2278         //
2279         // We need to create predicates on the trait:
2280         //
2281         // for<'d, E, const F: usize>
2282         // <Self as X<'a, B, const C: usize>>::T<'d, E, const F: usize>: Sized + Default
2283         //
2284         // We substitute escaping bound parameters for the generic
2285         // arguments to the associated type which are then bound by
2286         // the `Binder` around the the predicate.
2287         //
2288         // FIXME(generic_associated_types): Currently only lifetimes are handled.
2289         self_trait_ref.substs.extend_to(tcx, item_def_id, mk_bound_param)
2290     } else {
2291         self_trait_ref.substs
2292     };
2293
2294     let assoc_ty = tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id), bound_substs);
2295
2296     let bounds = AstConv::compute_bounds(
2297         &ItemCtxt::new(tcx, def_id),
2298         assoc_ty,
2299         bounds,
2300         SizedByDefault::Yes,
2301         trait_item.span,
2302     );
2303
2304     let predicates = bounds.predicates(tcx, assoc_ty);
2305
2306     if is_gat {
2307         // We use shifts to get the regions that we're substituting to
2308         // be bound by the binders in the `Predicate`s rather that
2309         // escaping.
2310         let shifted_in = ty::fold::shift_vars(tcx, &predicates, 1);
2311         let substituted = shifted_in.subst(tcx, bound_substs);
2312         ty::fold::shift_out_vars(tcx, &substituted, 1)
2313     } else {
2314         predicates
2315     }
2316 }
2317
2318 /// Converts a specific `GenericBound` from the AST into a set of
2319 /// predicates that apply to the self type. A vector is returned
2320 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2321 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2322 /// and `<T as Bar>::X == i32`).
2323 fn predicates_from_bound<'tcx>(
2324     astconv: &dyn AstConv<'tcx>,
2325     param_ty: Ty<'tcx>,
2326     bound: &'tcx hir::GenericBound,
2327 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2328     match *bound {
2329         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2330             let mut bounds = Bounds::default();
2331             let _ = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut bounds);
2332             bounds.predicates(astconv.tcx(), param_ty)
2333         }
2334         hir::GenericBound::Outlives(ref lifetime) => {
2335             let region = astconv.ast_region_to_region(lifetime, None);
2336             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2337             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2338         }
2339         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2340     }
2341 }
2342
2343 fn compute_sig_of_foreign_fn_decl<'tcx>(
2344     tcx: TyCtxt<'tcx>,
2345     def_id: DefId,
2346     decl: &'tcx hir::FnDecl,
2347     abi: abi::Abi,
2348 ) -> ty::PolyFnSig<'tcx> {
2349     let unsafety = if abi == abi::Abi::RustIntrinsic {
2350         intrinsic_operation_unsafety(&tcx.item_name(def_id).as_str())
2351     } else {
2352         hir::Unsafety::Unsafe
2353     };
2354     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2355
2356     // Feature gate SIMD types in FFI, since I am not sure that the
2357     // ABIs are handled at all correctly. -huonw
2358     if abi != abi::Abi::RustIntrinsic
2359         && abi != abi::Abi::PlatformIntrinsic
2360         && !tcx.features().simd_ffi
2361     {
2362         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2363             if ty.is_simd() {
2364                 tcx.sess
2365                     .struct_span_err(
2366                         ast_ty.span,
2367                         &format!(
2368                             "use of SIMD type `{}` in FFI is highly experimental and \
2369                             may result in invalid code",
2370                             tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2371                         ),
2372                     )
2373                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2374                     .emit();
2375             }
2376         };
2377         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2378             check(&input, ty)
2379         }
2380         if let hir::Return(ref ty) = decl.output {
2381             check(&ty, *fty.output().skip_binder())
2382         }
2383     }
2384
2385     fty
2386 }
2387
2388 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2389     match tcx.hir().get_if_local(def_id) {
2390         Some(Node::ForeignItem(..)) => true,
2391         Some(_) => false,
2392         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2393     }
2394 }
2395
2396 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2397     match tcx.hir().get_if_local(def_id) {
2398         Some(Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. }))
2399         | Some(Node::ForeignItem(&hir::ForeignItem {
2400             kind: hir::ForeignItemKind::Static(_, mutbl),
2401             ..
2402         })) => Some(mutbl),
2403         Some(_) => None,
2404         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2405     }
2406 }
2407
2408 fn from_target_feature(
2409     tcx: TyCtxt<'_>,
2410     id: DefId,
2411     attr: &ast::Attribute,
2412     whitelist: &FxHashMap<String, Option<Symbol>>,
2413     target_features: &mut Vec<Symbol>,
2414 ) {
2415     let list = match attr.meta_item_list() {
2416         Some(list) => list,
2417         None => return,
2418     };
2419     let bad_item = |span| {
2420         let msg = "malformed `target_feature` attribute input";
2421         let code = "enable = \"..\"".to_owned();
2422         tcx.sess
2423             .struct_span_err(span, &msg)
2424             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2425             .emit();
2426     };
2427     let rust_features = tcx.features();
2428     for item in list {
2429         // Only `enable = ...` is accepted in the meta-item list.
2430         if !item.check_name(sym::enable) {
2431             bad_item(item.span());
2432             continue;
2433         }
2434
2435         // Must be of the form `enable = "..."` (a string).
2436         let value = match item.value_str() {
2437             Some(value) => value,
2438             None => {
2439                 bad_item(item.span());
2440                 continue;
2441             }
2442         };
2443
2444         // We allow comma separation to enable multiple features.
2445         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2446             // Only allow whitelisted features per platform.
2447             let feature_gate = match whitelist.get(feature) {
2448                 Some(g) => g,
2449                 None => {
2450                     let msg =
2451                         format!("the feature named `{}` is not valid for this target", feature);
2452                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2453                     err.span_label(
2454                         item.span(),
2455                         format!("`{}` is not valid for this target", feature),
2456                     );
2457                     if feature.starts_with("+") {
2458                         let valid = whitelist.contains_key(&feature[1..]);
2459                         if valid {
2460                             err.help("consider removing the leading `+` in the feature name");
2461                         }
2462                     }
2463                     err.emit();
2464                     return None;
2465                 }
2466             };
2467
2468             // Only allow features whose feature gates have been enabled.
2469             let allowed = match feature_gate.as_ref().map(|s| *s) {
2470                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2471                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2472                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2473                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2474                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2475                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2476                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2477                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2478                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2479                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2480                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2481                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2482                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2483                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2484                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2485                 Some(name) => bug!("unknown target feature gate {}", name),
2486                 None => true,
2487             };
2488             if !allowed && id.is_local() {
2489                 feature_gate::feature_err(
2490                     &tcx.sess.parse_sess,
2491                     feature_gate.unwrap(),
2492                     item.span(),
2493                     &format!("the target feature `{}` is currently unstable", feature),
2494                 )
2495                 .emit();
2496             }
2497             Some(Symbol::intern(feature))
2498         }));
2499     }
2500 }
2501
2502 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2503     use rustc::mir::mono::Linkage::*;
2504
2505     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2506     // applicable to variable declarations and may not really make sense for
2507     // Rust code in the first place but whitelist them anyway and trust that
2508     // the user knows what s/he's doing. Who knows, unanticipated use cases
2509     // may pop up in the future.
2510     //
2511     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2512     // and don't have to be, LLVM treats them as no-ops.
2513     match name {
2514         "appending" => Appending,
2515         "available_externally" => AvailableExternally,
2516         "common" => Common,
2517         "extern_weak" => ExternalWeak,
2518         "external" => External,
2519         "internal" => Internal,
2520         "linkonce" => LinkOnceAny,
2521         "linkonce_odr" => LinkOnceODR,
2522         "private" => Private,
2523         "weak" => WeakAny,
2524         "weak_odr" => WeakODR,
2525         _ => {
2526             let span = tcx.hir().span_if_local(def_id);
2527             if let Some(span) = span {
2528                 tcx.sess.span_fatal(span, "invalid linkage specified")
2529             } else {
2530                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2531             }
2532         }
2533     }
2534 }
2535
2536 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2537     let attrs = tcx.get_attrs(id);
2538
2539     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2540
2541     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2542
2543     let mut inline_span = None;
2544     let mut link_ordinal_span = None;
2545     for attr in attrs.iter() {
2546         if attr.check_name(sym::cold) {
2547             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2548         } else if attr.check_name(sym::rustc_allocator) {
2549             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2550         } else if attr.check_name(sym::unwind) {
2551             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2552         } else if attr.check_name(sym::ffi_returns_twice) {
2553             if tcx.is_foreign_item(id) {
2554                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2555             } else {
2556                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2557                 struct_span_err!(
2558                     tcx.sess,
2559                     attr.span,
2560                     E0724,
2561                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2562                 )
2563                 .emit();
2564             }
2565         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2566             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2567         } else if attr.check_name(sym::naked) {
2568             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2569         } else if attr.check_name(sym::no_mangle) {
2570             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2571         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2572             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2573         } else if attr.check_name(sym::no_debug) {
2574             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2575         } else if attr.check_name(sym::used) {
2576             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2577         } else if attr.check_name(sym::thread_local) {
2578             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2579         } else if attr.check_name(sym::track_caller) {
2580             if tcx.fn_sig(id).abi() != abi::Abi::Rust {
2581                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2582                     .emit();
2583             }
2584             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2585         } else if attr.check_name(sym::export_name) {
2586             if let Some(s) = attr.value_str() {
2587                 if s.as_str().contains("\0") {
2588                     // `#[export_name = ...]` will be converted to a null-terminated string,
2589                     // so it may not contain any null characters.
2590                     struct_span_err!(
2591                         tcx.sess,
2592                         attr.span,
2593                         E0648,
2594                         "`export_name` may not contain null characters"
2595                     )
2596                     .emit();
2597                 }
2598                 codegen_fn_attrs.export_name = Some(s);
2599             }
2600         } else if attr.check_name(sym::target_feature) {
2601             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2602                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2603                 tcx.sess
2604                     .struct_span_err(attr.span, msg)
2605                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2606                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2607                     .emit();
2608             }
2609             from_target_feature(tcx, id, attr, &whitelist, &mut codegen_fn_attrs.target_features);
2610         } else if attr.check_name(sym::linkage) {
2611             if let Some(val) = attr.value_str() {
2612                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2613             }
2614         } else if attr.check_name(sym::link_section) {
2615             if let Some(val) = attr.value_str() {
2616                 if val.as_str().bytes().any(|b| b == 0) {
2617                     let msg = format!(
2618                         "illegal null byte in link_section \
2619                          value: `{}`",
2620                         &val
2621                     );
2622                     tcx.sess.span_err(attr.span, &msg);
2623                 } else {
2624                     codegen_fn_attrs.link_section = Some(val);
2625                 }
2626             }
2627         } else if attr.check_name(sym::link_name) {
2628             codegen_fn_attrs.link_name = attr.value_str();
2629         } else if attr.check_name(sym::link_ordinal) {
2630             link_ordinal_span = Some(attr.span);
2631             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2632                 codegen_fn_attrs.link_ordinal = ordinal;
2633             }
2634         }
2635     }
2636
2637     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2638         if !attr.has_name(sym::inline) {
2639             return ia;
2640         }
2641         match attr.meta().map(|i| i.kind) {
2642             Some(MetaItemKind::Word) => {
2643                 mark_used(attr);
2644                 InlineAttr::Hint
2645             }
2646             Some(MetaItemKind::List(ref items)) => {
2647                 mark_used(attr);
2648                 inline_span = Some(attr.span);
2649                 if items.len() != 1 {
2650                     span_err!(tcx.sess.diagnostic(), attr.span, E0534, "expected one argument");
2651                     InlineAttr::None
2652                 } else if list_contains_name(&items[..], sym::always) {
2653                     InlineAttr::Always
2654                 } else if list_contains_name(&items[..], sym::never) {
2655                     InlineAttr::Never
2656                 } else {
2657                     span_err!(tcx.sess.diagnostic(), items[0].span(), E0535, "invalid argument");
2658
2659                     InlineAttr::None
2660                 }
2661             }
2662             Some(MetaItemKind::NameValue(_)) => ia,
2663             None => ia,
2664         }
2665     });
2666
2667     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2668         if !attr.has_name(sym::optimize) {
2669             return ia;
2670         }
2671         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2672         match attr.meta().map(|i| i.kind) {
2673             Some(MetaItemKind::Word) => {
2674                 err(attr.span, "expected one argument");
2675                 ia
2676             }
2677             Some(MetaItemKind::List(ref items)) => {
2678                 mark_used(attr);
2679                 inline_span = Some(attr.span);
2680                 if items.len() != 1 {
2681                     err(attr.span, "expected one argument");
2682                     OptimizeAttr::None
2683                 } else if list_contains_name(&items[..], sym::size) {
2684                     OptimizeAttr::Size
2685                 } else if list_contains_name(&items[..], sym::speed) {
2686                     OptimizeAttr::Speed
2687                 } else {
2688                     err(items[0].span(), "invalid argument");
2689                     OptimizeAttr::None
2690                 }
2691             }
2692             Some(MetaItemKind::NameValue(_)) => ia,
2693             None => ia,
2694         }
2695     });
2696
2697     // If a function uses #[target_feature] it can't be inlined into general
2698     // purpose functions as they wouldn't have the right target features
2699     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2700     // respected.
2701
2702     if codegen_fn_attrs.target_features.len() > 0 {
2703         if codegen_fn_attrs.inline == InlineAttr::Always {
2704             if let Some(span) = inline_span {
2705                 tcx.sess.span_err(
2706                     span,
2707                     "cannot use `#[inline(always)]` with \
2708                      `#[target_feature]`",
2709                 );
2710             }
2711         }
2712     }
2713
2714     // Weak lang items have the same semantics as "std internal" symbols in the
2715     // sense that they're preserved through all our LTO passes and only
2716     // strippable by the linker.
2717     //
2718     // Additionally weak lang items have predetermined symbol names.
2719     if tcx.is_weak_lang_item(id) {
2720         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2721     }
2722     if let Some(name) = weak_lang_items::link_name(&attrs) {
2723         codegen_fn_attrs.export_name = Some(name);
2724         codegen_fn_attrs.link_name = Some(name);
2725     }
2726     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2727
2728     // Internal symbols to the standard library all have no_mangle semantics in
2729     // that they have defined symbol names present in the function name. This
2730     // also applies to weak symbols where they all have known symbol names.
2731     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2732         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2733     }
2734
2735     codegen_fn_attrs
2736 }
2737
2738 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2739     use syntax::ast::{Lit, LitIntType, LitKind};
2740     let meta_item_list = attr.meta_item_list();
2741     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2742     let sole_meta_list = match meta_item_list {
2743         Some([item]) => item.literal(),
2744         _ => None,
2745     };
2746     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2747         if *ordinal <= std::usize::MAX as u128 {
2748             Some(*ordinal as usize)
2749         } else {
2750             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
2751             tcx.sess
2752                 .struct_span_err(attr.span, &msg)
2753                 .note("the value may not exceed `std::usize::MAX`")
2754                 .emit();
2755             None
2756         }
2757     } else {
2758         tcx.sess
2759             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
2760             .note("an unsuffixed integer value, e.g., `1`, is expected")
2761             .emit();
2762         None
2763     }
2764 }
2765
2766 fn check_link_name_xor_ordinal(
2767     tcx: TyCtxt<'_>,
2768     codegen_fn_attrs: &CodegenFnAttrs,
2769     inline_span: Option<Span>,
2770 ) {
2771     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
2772         return;
2773     }
2774     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
2775     if let Some(span) = inline_span {
2776         tcx.sess.span_err(span, msg);
2777     } else {
2778         tcx.sess.err(msg);
2779     }
2780 }