]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
c3b54f146142649591cad2bffb5e4ad4747f3004
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::check::intrinsic::intrinsic_operation_unsafety;
19 use crate::constrained_generic_params as cgp;
20 use crate::middle::resolve_lifetime as rl;
21 use rustc_ast::ast;
22 use rustc_ast::ast::MetaItemKind;
23 use rustc_attr::{list_contains_name, mark_used, InlineAttr, OptimizeAttr};
24 use rustc_data_structures::captures::Captures;
25 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
26 use rustc_errors::{struct_span_err, Applicability};
27 use rustc_hir as hir;
28 use rustc_hir::def::{CtorKind, DefKind, Res};
29 use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
30 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
31 use rustc_hir::weak_lang_items;
32 use rustc_hir::{GenericParamKind, HirId, Node};
33 use rustc_middle::hir::map::blocks::FnLikeNode;
34 use rustc_middle::hir::map::Map;
35 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
36 use rustc_middle::mir::mono::Linkage;
37 use rustc_middle::ty::query::Providers;
38 use rustc_middle::ty::subst::InternalSubsts;
39 use rustc_middle::ty::util::Discr;
40 use rustc_middle::ty::util::IntTypeExt;
41 use rustc_middle::ty::{self, AdtKind, Const, ToPolyTraitRef, Ty, TyCtxt};
42 use rustc_middle::ty::{ReprOptions, ToPredicate, WithConstness};
43 use rustc_session::config::SanitizerSet;
44 use rustc_session::lint;
45 use rustc_session::parse::feature_err;
46 use rustc_span::symbol::{kw, sym, Ident, Symbol};
47 use rustc_span::{Span, DUMMY_SP};
48 use rustc_target::spec::abi;
49 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
50
51 mod type_of;
52
53 struct OnlySelfBounds(bool);
54
55 ///////////////////////////////////////////////////////////////////////////
56 // Main entry point
57
58 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
59     tcx.hir().visit_item_likes_in_module(
60         module_def_id,
61         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
62     );
63 }
64
65 pub fn provide(providers: &mut Providers) {
66     *providers = Providers {
67         opt_const_param_of: type_of::opt_const_param_of,
68         type_of: type_of::type_of,
69         generics_of,
70         predicates_of,
71         predicates_defined_on,
72         explicit_predicates_of,
73         super_predicates_of,
74         type_param_predicates,
75         trait_def,
76         adt_def,
77         fn_sig,
78         impl_trait_ref,
79         impl_polarity,
80         is_foreign_item,
81         static_mutability,
82         generator_kind,
83         codegen_fn_attrs,
84         collect_mod_item_types,
85         ..*providers
86     };
87 }
88
89 ///////////////////////////////////////////////////////////////////////////
90
91 /// Context specific to some particular item. This is what implements
92 /// `AstConv`. It has information about the predicates that are defined
93 /// on the trait. Unfortunately, this predicate information is
94 /// available in various different forms at various points in the
95 /// process. So we can't just store a pointer to e.g., the AST or the
96 /// parsed ty form, we have to be more flexible. To this end, the
97 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
98 /// `get_type_parameter_bounds` requests, drawing the information from
99 /// the AST (`hir::Generics`), recursively.
100 pub struct ItemCtxt<'tcx> {
101     tcx: TyCtxt<'tcx>,
102     item_def_id: DefId,
103 }
104
105 ///////////////////////////////////////////////////////////////////////////
106
107 #[derive(Default)]
108 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
109
110 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
111     type Map = intravisit::ErasedMap<'v>;
112
113     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
114         NestedVisitorMap::None
115     }
116     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
117         if let hir::TyKind::Infer = t.kind {
118             self.0.push(t.span);
119         }
120         intravisit::walk_ty(self, t)
121     }
122 }
123
124 struct CollectItemTypesVisitor<'tcx> {
125     tcx: TyCtxt<'tcx>,
126 }
127
128 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
129 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
130 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
131 crate fn placeholder_type_error(
132     tcx: TyCtxt<'tcx>,
133     span: Option<Span>,
134     generics: &[hir::GenericParam<'_>],
135     placeholder_types: Vec<Span>,
136     suggest: bool,
137 ) {
138     if placeholder_types.is_empty() {
139         return;
140     }
141
142     let type_name = generics.next_type_param_name(None);
143     let mut sugg: Vec<_> =
144         placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
145
146     if generics.is_empty() {
147         if let Some(span) = span {
148             sugg.push((span, format!("<{}>", type_name)));
149         }
150     } else if let Some(arg) = generics.iter().find(|arg| match arg.name {
151         hir::ParamName::Plain(Ident { name: kw::Underscore, .. }) => true,
152         _ => false,
153     }) {
154         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
155         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
156         sugg.push((arg.span, (*type_name).to_string()));
157     } else {
158         let last = generics.iter().last().unwrap();
159         sugg.push((
160             // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
161             last.bounds_span().unwrap_or(last.span).shrink_to_hi(),
162             format!(", {}", type_name),
163         ));
164     }
165
166     let mut err = bad_placeholder_type(tcx, placeholder_types);
167     if suggest {
168         err.multipart_suggestion(
169             "use type parameters instead",
170             sugg,
171             Applicability::HasPlaceholders,
172         );
173     }
174     err.emit();
175 }
176
177 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
178     let (generics, suggest) = match &item.kind {
179         hir::ItemKind::Union(_, generics)
180         | hir::ItemKind::Enum(_, generics)
181         | hir::ItemKind::TraitAlias(generics, _)
182         | hir::ItemKind::Trait(_, _, generics, ..)
183         | hir::ItemKind::Impl { generics, .. }
184         | hir::ItemKind::Struct(_, generics) => (generics, true),
185         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
186         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
187         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
188         _ => return,
189     };
190
191     let mut visitor = PlaceholderHirTyCollector::default();
192     visitor.visit_item(item);
193
194     placeholder_type_error(tcx, Some(generics.span), &generics.params[..], visitor.0, suggest);
195 }
196
197 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
198     type Map = Map<'tcx>;
199
200     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
201         NestedVisitorMap::OnlyBodies(self.tcx.hir())
202     }
203
204     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
205         convert_item(self.tcx, item.hir_id);
206         reject_placeholder_type_signatures_in_item(self.tcx, item);
207         intravisit::walk_item(self, item);
208     }
209
210     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
211         for param in generics.params {
212             match param.kind {
213                 hir::GenericParamKind::Lifetime { .. } => {}
214                 hir::GenericParamKind::Type { default: Some(_), .. } => {
215                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
216                     self.tcx.ensure().type_of(def_id);
217                 }
218                 hir::GenericParamKind::Type { .. } => {}
219                 hir::GenericParamKind::Const { .. } => {
220                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
221                     self.tcx.ensure().type_of(def_id);
222                 }
223             }
224         }
225         intravisit::walk_generics(self, generics);
226     }
227
228     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
229         if let hir::ExprKind::Closure(..) = expr.kind {
230             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
231             self.tcx.ensure().generics_of(def_id);
232             self.tcx.ensure().type_of(def_id);
233         }
234         intravisit::walk_expr(self, expr);
235     }
236
237     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
238         convert_trait_item(self.tcx, trait_item.hir_id);
239         intravisit::walk_trait_item(self, trait_item);
240     }
241
242     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
243         convert_impl_item(self.tcx, impl_item.hir_id);
244         intravisit::walk_impl_item(self, impl_item);
245     }
246 }
247
248 ///////////////////////////////////////////////////////////////////////////
249 // Utility types and common code for the above passes.
250
251 fn bad_placeholder_type(
252     tcx: TyCtxt<'tcx>,
253     mut spans: Vec<Span>,
254 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
255     spans.sort();
256     let mut err = struct_span_err!(
257         tcx.sess,
258         spans.clone(),
259         E0121,
260         "the type placeholder `_` is not allowed within types on item signatures",
261     );
262     for span in spans {
263         err.span_label(span, "not allowed in type signatures");
264     }
265     err
266 }
267
268 impl ItemCtxt<'tcx> {
269     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
270         ItemCtxt { tcx, item_def_id }
271     }
272
273     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty<'tcx>) -> Ty<'tcx> {
274         AstConv::ast_ty_to_ty(self, ast_ty)
275     }
276
277     pub fn hir_id(&self) -> hir::HirId {
278         self.tcx.hir().as_local_hir_id(self.item_def_id.expect_local())
279     }
280
281     pub fn node(&self) -> hir::Node<'tcx> {
282         self.tcx.hir().get(self.hir_id())
283     }
284 }
285
286 impl AstConv<'tcx> for ItemCtxt<'tcx> {
287     fn tcx(&self) -> TyCtxt<'tcx> {
288         self.tcx
289     }
290
291     fn item_def_id(&self) -> Option<DefId> {
292         Some(self.item_def_id)
293     }
294
295     fn default_constness_for_trait_bounds(&self) -> hir::Constness {
296         if let Some(fn_like) = FnLikeNode::from_node(self.node()) {
297             fn_like.constness()
298         } else {
299             hir::Constness::NotConst
300         }
301     }
302
303     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
304         self.tcx.at(span).type_param_predicates((self.item_def_id, def_id.expect_local()))
305     }
306
307     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
308         None
309     }
310
311     fn allow_ty_infer(&self) -> bool {
312         false
313     }
314
315     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
316         self.tcx().ty_error_with_message(span, "bad_placeholder_type")
317     }
318
319     fn ct_infer(
320         &self,
321         ty: Ty<'tcx>,
322         _: Option<&ty::GenericParamDef>,
323         span: Span,
324     ) -> &'tcx Const<'tcx> {
325         bad_placeholder_type(self.tcx(), vec![span]).emit();
326         self.tcx().const_error(ty)
327     }
328
329     fn projected_ty_from_poly_trait_ref(
330         &self,
331         span: Span,
332         item_def_id: DefId,
333         item_segment: &hir::PathSegment<'_>,
334         poly_trait_ref: ty::PolyTraitRef<'tcx>,
335     ) -> Ty<'tcx> {
336         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
337             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
338                 self,
339                 self.tcx,
340                 span,
341                 item_def_id,
342                 item_segment,
343                 trait_ref.substs,
344             );
345             self.tcx().mk_projection(item_def_id, item_substs)
346         } else {
347             // There are no late-bound regions; we can just ignore the binder.
348             let mut err = struct_span_err!(
349                 self.tcx().sess,
350                 span,
351                 E0212,
352                 "cannot extract an associated type from a higher-ranked trait bound \
353                  in this context"
354             );
355
356             match self.node() {
357                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
358                     let item =
359                         self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
360                     match &item.kind {
361                         hir::ItemKind::Enum(_, generics)
362                         | hir::ItemKind::Struct(_, generics)
363                         | hir::ItemKind::Union(_, generics) => {
364                             let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
365                             let (lt_sp, sugg) = match &generics.params[..] {
366                                 [] => (generics.span, format!("<{}>", lt_name)),
367                                 [bound, ..] => {
368                                     (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
369                                 }
370                             };
371                             let suggestions = vec![
372                                 (lt_sp, sugg),
373                                 (
374                                     span,
375                                     format!(
376                                         "{}::{}",
377                                         // Replace the existing lifetimes with a new named lifetime.
378                                         self.tcx
379                                             .replace_late_bound_regions(&poly_trait_ref, |_| {
380                                                 self.tcx.mk_region(ty::ReEarlyBound(
381                                                     ty::EarlyBoundRegion {
382                                                         def_id: item_def_id,
383                                                         index: 0,
384                                                         name: Symbol::intern(&lt_name),
385                                                     },
386                                                 ))
387                                             })
388                                             .0,
389                                         item_segment.ident
390                                     ),
391                                 ),
392                             ];
393                             err.multipart_suggestion(
394                                 "use a fully qualified path with explicit lifetimes",
395                                 suggestions,
396                                 Applicability::MaybeIncorrect,
397                             );
398                         }
399                         _ => {}
400                     }
401                 }
402                 hir::Node::Item(hir::Item {
403                     kind:
404                         hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
405                     ..
406                 }) => {}
407                 hir::Node::Item(_)
408                 | hir::Node::ForeignItem(_)
409                 | hir::Node::TraitItem(_)
410                 | hir::Node::ImplItem(_) => {
411                     err.span_suggestion(
412                         span,
413                         "use a fully qualified path with inferred lifetimes",
414                         format!(
415                             "{}::{}",
416                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
417                             self.tcx.anonymize_late_bound_regions(&poly_trait_ref).skip_binder(),
418                             item_segment.ident
419                         ),
420                         Applicability::MaybeIncorrect,
421                     );
422                 }
423                 _ => {}
424             }
425             err.emit();
426             self.tcx().ty_error()
427         }
428     }
429
430     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
431         // Types in item signatures are not normalized to avoid undue dependencies.
432         ty
433     }
434
435     fn set_tainted_by_errors(&self) {
436         // There's no obvious place to track this, so just let it go.
437     }
438
439     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
440         // There's no place to record types from signatures?
441     }
442 }
443
444 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
445 fn get_new_lifetime_name<'tcx>(
446     tcx: TyCtxt<'tcx>,
447     poly_trait_ref: ty::PolyTraitRef<'tcx>,
448     generics: &hir::Generics<'tcx>,
449 ) -> String {
450     let existing_lifetimes = tcx
451         .collect_referenced_late_bound_regions(&poly_trait_ref)
452         .into_iter()
453         .filter_map(|lt| {
454             if let ty::BoundRegion::BrNamed(_, name) = lt {
455                 Some(name.as_str().to_string())
456             } else {
457                 None
458             }
459         })
460         .chain(generics.params.iter().filter_map(|param| {
461             if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
462                 Some(param.name.ident().as_str().to_string())
463             } else {
464                 None
465             }
466         }))
467         .collect::<FxHashSet<String>>();
468
469     let a_to_z_repeat_n = |n| {
470         (b'a'..=b'z').map(move |c| {
471             let mut s = '\''.to_string();
472             s.extend(std::iter::repeat(char::from(c)).take(n));
473             s
474         })
475     };
476
477     // If all single char lifetime names are present, we wrap around and double the chars.
478     (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
479 }
480
481 /// Returns the predicates defined on `item_def_id` of the form
482 /// `X: Foo` where `X` is the type parameter `def_id`.
483 fn type_param_predicates(
484     tcx: TyCtxt<'_>,
485     (item_def_id, def_id): (DefId, LocalDefId),
486 ) -> ty::GenericPredicates<'_> {
487     use rustc_hir::*;
488
489     // In the AST, bounds can derive from two places. Either
490     // written inline like `<T: Foo>` or in a where-clause like
491     // `where T: Foo`.
492
493     let param_id = tcx.hir().as_local_hir_id(def_id);
494     let param_owner = tcx.hir().ty_param_owner(param_id);
495     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
496     let generics = tcx.generics_of(param_owner_def_id);
497     let index = generics.param_def_id_to_index[&def_id.to_def_id()];
498     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
499
500     // Don't look for bounds where the type parameter isn't in scope.
501     let parent = if item_def_id == param_owner_def_id.to_def_id() {
502         None
503     } else {
504         tcx.generics_of(item_def_id).parent
505     };
506
507     let mut result = parent
508         .map(|parent| {
509             let icx = ItemCtxt::new(tcx, parent);
510             icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id())
511         })
512         .unwrap_or_default();
513     let mut extend = None;
514
515     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id.expect_local());
516     let ast_generics = match tcx.hir().get(item_hir_id) {
517         Node::TraitItem(item) => &item.generics,
518
519         Node::ImplItem(item) => &item.generics,
520
521         Node::Item(item) => {
522             match item.kind {
523                 ItemKind::Fn(.., ref generics, _)
524                 | ItemKind::Impl { ref generics, .. }
525                 | ItemKind::TyAlias(_, ref generics)
526                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
527                 | ItemKind::Enum(_, ref generics)
528                 | ItemKind::Struct(_, ref generics)
529                 | ItemKind::Union(_, ref generics) => generics,
530                 ItemKind::Trait(_, _, ref generics, ..) => {
531                     // Implied `Self: Trait` and supertrait bounds.
532                     if param_id == item_hir_id {
533                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
534                         extend =
535                             Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
536                     }
537                     generics
538                 }
539                 _ => return result,
540             }
541         }
542
543         Node::ForeignItem(item) => match item.kind {
544             ForeignItemKind::Fn(_, _, ref generics) => generics,
545             _ => return result,
546         },
547
548         _ => return result,
549     };
550
551     let icx = ItemCtxt::new(tcx, item_def_id);
552     let extra_predicates = extend.into_iter().chain(
553         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
554             .into_iter()
555             .filter(|(predicate, _)| match predicate.kind() {
556                 ty::PredicateKind::Trait(ref data, _) => {
557                     data.skip_binder().self_ty().is_param(index)
558                 }
559                 _ => false,
560             }),
561     );
562     result.predicates =
563         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
564     result
565 }
566
567 impl ItemCtxt<'tcx> {
568     /// Finds bounds from `hir::Generics`. This requires scanning through the
569     /// AST. We do this to avoid having to convert *all* the bounds, which
570     /// would create artificial cycles. Instead, we can only convert the
571     /// bounds for a type parameter `X` if `X::Foo` is used.
572     fn type_parameter_bounds_in_generics(
573         &self,
574         ast_generics: &'tcx hir::Generics<'tcx>,
575         param_id: hir::HirId,
576         ty: Ty<'tcx>,
577         only_self_bounds: OnlySelfBounds,
578     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
579         let constness = self.default_constness_for_trait_bounds();
580         let from_ty_params = ast_generics
581             .params
582             .iter()
583             .filter_map(|param| match param.kind {
584                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
585                 _ => None,
586             })
587             .flat_map(|bounds| bounds.iter())
588             .flat_map(|b| predicates_from_bound(self, ty, b, constness));
589
590         let from_where_clauses = ast_generics
591             .where_clause
592             .predicates
593             .iter()
594             .filter_map(|wp| match *wp {
595                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
596                 _ => None,
597             })
598             .flat_map(|bp| {
599                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
600                     Some(ty)
601                 } else if !only_self_bounds.0 {
602                     Some(self.to_ty(&bp.bounded_ty))
603                 } else {
604                     None
605                 };
606                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
607             })
608             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
609
610         from_ty_params.chain(from_where_clauses).collect()
611     }
612 }
613
614 /// Tests whether this is the AST for a reference to the type
615 /// parameter with ID `param_id`. We use this so as to avoid running
616 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
617 /// conversion of the type to avoid inducing unnecessary cycles.
618 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
619     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
620         match path.res {
621             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
622                 def_id == tcx.hir().local_def_id(param_id).to_def_id()
623             }
624             _ => false,
625         }
626     } else {
627         false
628     }
629 }
630
631 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
632     let it = tcx.hir().expect_item(item_id);
633     debug!("convert: item {} with id {}", it.ident, it.hir_id);
634     let def_id = tcx.hir().local_def_id(item_id);
635     match it.kind {
636         // These don't define types.
637         hir::ItemKind::ExternCrate(_)
638         | hir::ItemKind::Use(..)
639         | hir::ItemKind::Mod(_)
640         | hir::ItemKind::GlobalAsm(_) => {}
641         hir::ItemKind::ForeignMod(ref foreign_mod) => {
642             for item in foreign_mod.items {
643                 let def_id = tcx.hir().local_def_id(item.hir_id);
644                 tcx.ensure().generics_of(def_id);
645                 tcx.ensure().type_of(def_id);
646                 tcx.ensure().predicates_of(def_id);
647                 if let hir::ForeignItemKind::Fn(..) = item.kind {
648                     tcx.ensure().fn_sig(def_id);
649                 }
650             }
651         }
652         hir::ItemKind::Enum(ref enum_definition, _) => {
653             tcx.ensure().generics_of(def_id);
654             tcx.ensure().type_of(def_id);
655             tcx.ensure().predicates_of(def_id);
656             convert_enum_variant_types(tcx, def_id.to_def_id(), &enum_definition.variants);
657         }
658         hir::ItemKind::Impl { .. } => {
659             tcx.ensure().generics_of(def_id);
660             tcx.ensure().type_of(def_id);
661             tcx.ensure().impl_trait_ref(def_id);
662             tcx.ensure().predicates_of(def_id);
663         }
664         hir::ItemKind::Trait(..) => {
665             tcx.ensure().generics_of(def_id);
666             tcx.ensure().trait_def(def_id);
667             tcx.at(it.span).super_predicates_of(def_id);
668             tcx.ensure().predicates_of(def_id);
669         }
670         hir::ItemKind::TraitAlias(..) => {
671             tcx.ensure().generics_of(def_id);
672             tcx.at(it.span).super_predicates_of(def_id);
673             tcx.ensure().predicates_of(def_id);
674         }
675         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
676             tcx.ensure().generics_of(def_id);
677             tcx.ensure().type_of(def_id);
678             tcx.ensure().predicates_of(def_id);
679
680             for f in struct_def.fields() {
681                 let def_id = tcx.hir().local_def_id(f.hir_id);
682                 tcx.ensure().generics_of(def_id);
683                 tcx.ensure().type_of(def_id);
684                 tcx.ensure().predicates_of(def_id);
685             }
686
687             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
688                 convert_variant_ctor(tcx, ctor_hir_id);
689             }
690         }
691
692         // Desugared from `impl Trait`, so visited by the function's return type.
693         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
694
695         hir::ItemKind::OpaqueTy(..)
696         | hir::ItemKind::TyAlias(..)
697         | hir::ItemKind::Static(..)
698         | hir::ItemKind::Const(..)
699         | hir::ItemKind::Fn(..) => {
700             tcx.ensure().generics_of(def_id);
701             tcx.ensure().type_of(def_id);
702             tcx.ensure().predicates_of(def_id);
703             if let hir::ItemKind::Fn(..) = it.kind {
704                 tcx.ensure().fn_sig(def_id);
705             }
706         }
707     }
708 }
709
710 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
711     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
712     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
713     tcx.ensure().generics_of(def_id);
714
715     match trait_item.kind {
716         hir::TraitItemKind::Fn(..) => {
717             tcx.ensure().type_of(def_id);
718             tcx.ensure().fn_sig(def_id);
719         }
720
721         hir::TraitItemKind::Const(.., Some(_)) => {
722             tcx.ensure().type_of(def_id);
723         }
724
725         hir::TraitItemKind::Const(..) | hir::TraitItemKind::Type(_, Some(_)) => {
726             tcx.ensure().type_of(def_id);
727             // Account for `const C: _;` and `type T = _;`.
728             let mut visitor = PlaceholderHirTyCollector::default();
729             visitor.visit_trait_item(trait_item);
730             placeholder_type_error(tcx, None, &[], visitor.0, false);
731         }
732
733         hir::TraitItemKind::Type(_, None) => {}
734     };
735
736     tcx.ensure().predicates_of(def_id);
737 }
738
739 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
740     let def_id = tcx.hir().local_def_id(impl_item_id);
741     tcx.ensure().generics_of(def_id);
742     tcx.ensure().type_of(def_id);
743     tcx.ensure().predicates_of(def_id);
744     let impl_item = tcx.hir().expect_impl_item(impl_item_id);
745     match impl_item.kind {
746         hir::ImplItemKind::Fn(..) => {
747             tcx.ensure().fn_sig(def_id);
748         }
749         hir::ImplItemKind::TyAlias(_) => {
750             // Account for `type T = _;`
751             let mut visitor = PlaceholderHirTyCollector::default();
752             visitor.visit_impl_item(impl_item);
753             placeholder_type_error(tcx, None, &[], visitor.0, false);
754         }
755         hir::ImplItemKind::Const(..) => {}
756     }
757 }
758
759 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
760     let def_id = tcx.hir().local_def_id(ctor_id);
761     tcx.ensure().generics_of(def_id);
762     tcx.ensure().type_of(def_id);
763     tcx.ensure().predicates_of(def_id);
764 }
765
766 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
767     let def = tcx.adt_def(def_id);
768     let repr_type = def.repr.discr_type();
769     let initial = repr_type.initial_discriminant(tcx);
770     let mut prev_discr = None::<Discr<'_>>;
771
772     // fill the discriminant values and field types
773     for variant in variants {
774         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
775         prev_discr = Some(
776             if let Some(ref e) = variant.disr_expr {
777                 let expr_did = tcx.hir().local_def_id(e.hir_id);
778                 def.eval_explicit_discr(tcx, expr_did.to_def_id())
779             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
780                 Some(discr)
781             } else {
782                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
783                     .span_label(
784                         variant.span,
785                         format!("overflowed on value after {}", prev_discr.unwrap()),
786                     )
787                     .note(&format!(
788                         "explicitly set `{} = {}` if that is desired outcome",
789                         variant.ident, wrapped_discr
790                     ))
791                     .emit();
792                 None
793             }
794             .unwrap_or(wrapped_discr),
795         );
796
797         for f in variant.data.fields() {
798             let def_id = tcx.hir().local_def_id(f.hir_id);
799             tcx.ensure().generics_of(def_id);
800             tcx.ensure().type_of(def_id);
801             tcx.ensure().predicates_of(def_id);
802         }
803
804         // Convert the ctor, if any. This also registers the variant as
805         // an item.
806         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
807             convert_variant_ctor(tcx, ctor_hir_id);
808         }
809     }
810 }
811
812 fn convert_variant(
813     tcx: TyCtxt<'_>,
814     variant_did: Option<LocalDefId>,
815     ctor_did: Option<LocalDefId>,
816     ident: Ident,
817     discr: ty::VariantDiscr,
818     def: &hir::VariantData<'_>,
819     adt_kind: ty::AdtKind,
820     parent_did: LocalDefId,
821 ) -> ty::VariantDef {
822     let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
823     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did));
824     let fields = def
825         .fields()
826         .iter()
827         .map(|f| {
828             let fid = tcx.hir().local_def_id(f.hir_id);
829             let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
830             if let Some(prev_span) = dup_span {
831                 struct_span_err!(
832                     tcx.sess,
833                     f.span,
834                     E0124,
835                     "field `{}` is already declared",
836                     f.ident
837                 )
838                 .span_label(f.span, "field already declared")
839                 .span_label(prev_span, format!("`{}` first declared here", f.ident))
840                 .emit();
841             } else {
842                 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
843             }
844
845             ty::FieldDef {
846                 did: fid.to_def_id(),
847                 ident: f.ident,
848                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
849             }
850         })
851         .collect();
852     let recovered = match def {
853         hir::VariantData::Struct(_, r) => *r,
854         _ => false,
855     };
856     ty::VariantDef::new(
857         tcx,
858         ident,
859         variant_did.map(LocalDefId::to_def_id),
860         ctor_did.map(LocalDefId::to_def_id),
861         discr,
862         fields,
863         CtorKind::from_hir(def),
864         adt_kind,
865         parent_did.to_def_id(),
866         recovered,
867     )
868 }
869
870 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
871     use rustc_hir::*;
872
873     let def_id = def_id.expect_local();
874     let hir_id = tcx.hir().as_local_hir_id(def_id);
875     let item = match tcx.hir().get(hir_id) {
876         Node::Item(item) => item,
877         _ => bug!(),
878     };
879
880     let repr = ReprOptions::new(tcx, def_id.to_def_id());
881     let (kind, variants) = match item.kind {
882         ItemKind::Enum(ref def, _) => {
883             let mut distance_from_explicit = 0;
884             let variants = def
885                 .variants
886                 .iter()
887                 .map(|v| {
888                     let variant_did = Some(tcx.hir().local_def_id(v.id));
889                     let ctor_did =
890                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
891
892                     let discr = if let Some(ref e) = v.disr_expr {
893                         distance_from_explicit = 0;
894                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
895                     } else {
896                         ty::VariantDiscr::Relative(distance_from_explicit)
897                     };
898                     distance_from_explicit += 1;
899
900                     convert_variant(
901                         tcx,
902                         variant_did,
903                         ctor_did,
904                         v.ident,
905                         discr,
906                         &v.data,
907                         AdtKind::Enum,
908                         def_id,
909                     )
910                 })
911                 .collect();
912
913             (AdtKind::Enum, variants)
914         }
915         ItemKind::Struct(ref def, _) => {
916             let variant_did = None::<LocalDefId>;
917             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
918
919             let variants = std::iter::once(convert_variant(
920                 tcx,
921                 variant_did,
922                 ctor_did,
923                 item.ident,
924                 ty::VariantDiscr::Relative(0),
925                 def,
926                 AdtKind::Struct,
927                 def_id,
928             ))
929             .collect();
930
931             (AdtKind::Struct, variants)
932         }
933         ItemKind::Union(ref def, _) => {
934             let variant_did = None;
935             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
936
937             let variants = std::iter::once(convert_variant(
938                 tcx,
939                 variant_did,
940                 ctor_did,
941                 item.ident,
942                 ty::VariantDiscr::Relative(0),
943                 def,
944                 AdtKind::Union,
945                 def_id,
946             ))
947             .collect();
948
949             (AdtKind::Union, variants)
950         }
951         _ => bug!(),
952     };
953     tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
954 }
955
956 /// Ensures that the super-predicates of the trait with a `DefId`
957 /// of `trait_def_id` are converted and stored. This also ensures that
958 /// the transitive super-predicates are converted.
959 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
960     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
961     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id.expect_local());
962
963     let item = match tcx.hir().get(trait_hir_id) {
964         Node::Item(item) => item,
965         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
966     };
967
968     let (generics, bounds) = match item.kind {
969         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
970         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
971         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
972     };
973
974     let icx = ItemCtxt::new(tcx, trait_def_id);
975
976     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
977     let self_param_ty = tcx.types.self_param;
978     let superbounds1 =
979         AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
980
981     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
982
983     // Convert any explicit superbounds in the where-clause,
984     // e.g., `trait Foo where Self: Bar`.
985     // In the case of trait aliases, however, we include all bounds in the where-clause,
986     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
987     // as one of its "superpredicates".
988     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
989     let superbounds2 = icx.type_parameter_bounds_in_generics(
990         generics,
991         item.hir_id,
992         self_param_ty,
993         OnlySelfBounds(!is_trait_alias),
994     );
995
996     // Combine the two lists to form the complete set of superbounds:
997     let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
998
999     // Now require that immediate supertraits are converted,
1000     // which will, in turn, reach indirect supertraits.
1001     for &(pred, span) in superbounds {
1002         debug!("superbound: {:?}", pred);
1003         if let ty::PredicateKind::Trait(bound, _) = pred.kind() {
1004             tcx.at(span).super_predicates_of(bound.def_id());
1005         }
1006     }
1007
1008     ty::GenericPredicates { parent: None, predicates: superbounds }
1009 }
1010
1011 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1012     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1013     let item = tcx.hir().expect_item(hir_id);
1014
1015     let (is_auto, unsafety) = match item.kind {
1016         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
1017         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
1018         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1019     };
1020
1021     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1022     if paren_sugar && !tcx.features().unboxed_closures {
1023         tcx.sess
1024             .struct_span_err(
1025                 item.span,
1026                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1027                  which traits can use parenthetical notation",
1028             )
1029             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1030             .emit();
1031     }
1032
1033     let is_marker = tcx.has_attr(def_id, sym::marker);
1034     let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1035         ty::trait_def::TraitSpecializationKind::Marker
1036     } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1037         ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1038     } else {
1039         ty::trait_def::TraitSpecializationKind::None
1040     };
1041     let def_path_hash = tcx.def_path_hash(def_id);
1042     ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, spec_kind, def_path_hash)
1043 }
1044
1045 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1046     struct LateBoundRegionsDetector<'tcx> {
1047         tcx: TyCtxt<'tcx>,
1048         outer_index: ty::DebruijnIndex,
1049         has_late_bound_regions: Option<Span>,
1050     }
1051
1052     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1053         type Map = intravisit::ErasedMap<'tcx>;
1054
1055         fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1056             NestedVisitorMap::None
1057         }
1058
1059         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1060             if self.has_late_bound_regions.is_some() {
1061                 return;
1062             }
1063             match ty.kind {
1064                 hir::TyKind::BareFn(..) => {
1065                     self.outer_index.shift_in(1);
1066                     intravisit::walk_ty(self, ty);
1067                     self.outer_index.shift_out(1);
1068                 }
1069                 _ => intravisit::walk_ty(self, ty),
1070             }
1071         }
1072
1073         fn visit_poly_trait_ref(
1074             &mut self,
1075             tr: &'tcx hir::PolyTraitRef<'tcx>,
1076             m: hir::TraitBoundModifier,
1077         ) {
1078             if self.has_late_bound_regions.is_some() {
1079                 return;
1080             }
1081             self.outer_index.shift_in(1);
1082             intravisit::walk_poly_trait_ref(self, tr, m);
1083             self.outer_index.shift_out(1);
1084         }
1085
1086         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1087             if self.has_late_bound_regions.is_some() {
1088                 return;
1089             }
1090
1091             match self.tcx.named_region(lt.hir_id) {
1092                 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1093                 Some(
1094                     rl::Region::LateBound(debruijn, _, _) | rl::Region::LateBoundAnon(debruijn, _),
1095                 ) if debruijn < self.outer_index => {}
1096                 Some(
1097                     rl::Region::LateBound(..)
1098                     | rl::Region::LateBoundAnon(..)
1099                     | rl::Region::Free(..),
1100                 )
1101                 | None => {
1102                     self.has_late_bound_regions = Some(lt.span);
1103                 }
1104             }
1105         }
1106     }
1107
1108     fn has_late_bound_regions<'tcx>(
1109         tcx: TyCtxt<'tcx>,
1110         generics: &'tcx hir::Generics<'tcx>,
1111         decl: &'tcx hir::FnDecl<'tcx>,
1112     ) -> Option<Span> {
1113         let mut visitor = LateBoundRegionsDetector {
1114             tcx,
1115             outer_index: ty::INNERMOST,
1116             has_late_bound_regions: None,
1117         };
1118         for param in generics.params {
1119             if let GenericParamKind::Lifetime { .. } = param.kind {
1120                 if tcx.is_late_bound(param.hir_id) {
1121                     return Some(param.span);
1122                 }
1123             }
1124         }
1125         visitor.visit_fn_decl(decl);
1126         visitor.has_late_bound_regions
1127     }
1128
1129     match node {
1130         Node::TraitItem(item) => match item.kind {
1131             hir::TraitItemKind::Fn(ref sig, _) => {
1132                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1133             }
1134             _ => None,
1135         },
1136         Node::ImplItem(item) => match item.kind {
1137             hir::ImplItemKind::Fn(ref sig, _) => {
1138                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1139             }
1140             _ => None,
1141         },
1142         Node::ForeignItem(item) => match item.kind {
1143             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1144                 has_late_bound_regions(tcx, generics, fn_decl)
1145             }
1146             _ => None,
1147         },
1148         Node::Item(item) => match item.kind {
1149             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1150                 has_late_bound_regions(tcx, generics, &sig.decl)
1151             }
1152             _ => None,
1153         },
1154         _ => None,
1155     }
1156 }
1157
1158 struct AnonConstInParamListDetector {
1159     in_param_list: bool,
1160     found_anon_const_in_list: bool,
1161     ct: HirId,
1162 }
1163
1164 impl<'v> Visitor<'v> for AnonConstInParamListDetector {
1165     type Map = intravisit::ErasedMap<'v>;
1166
1167     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1168         NestedVisitorMap::None
1169     }
1170
1171     fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
1172         let prev = self.in_param_list;
1173         self.in_param_list = true;
1174         intravisit::walk_generic_param(self, p);
1175         self.in_param_list = prev;
1176     }
1177
1178     fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
1179         if self.in_param_list && self.ct == c.hir_id {
1180             self.found_anon_const_in_list = true;
1181         } else {
1182             intravisit::walk_anon_const(self, c)
1183         }
1184     }
1185 }
1186
1187 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1188     use rustc_hir::*;
1189
1190     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1191
1192     let node = tcx.hir().get(hir_id);
1193     let parent_def_id = match node {
1194         Node::ImplItem(_)
1195         | Node::TraitItem(_)
1196         | Node::Variant(_)
1197         | Node::Ctor(..)
1198         | Node::Field(_) => {
1199             let parent_id = tcx.hir().get_parent_item(hir_id);
1200             Some(tcx.hir().local_def_id(parent_id).to_def_id())
1201         }
1202         // FIXME(#43408) always enable this once `lazy_normalization` is
1203         // stable enough and does not need a feature gate anymore.
1204         Node::AnonConst(_) => {
1205             let parent_id = tcx.hir().get_parent_item(hir_id);
1206             let parent_def_id = tcx.hir().local_def_id(parent_id);
1207
1208             let mut in_param_list = false;
1209             for (_parent, node) in tcx.hir().parent_iter(hir_id) {
1210                 if let Some(generics) = node.generics() {
1211                     let mut visitor = AnonConstInParamListDetector {
1212                         in_param_list: false,
1213                         found_anon_const_in_list: false,
1214                         ct: hir_id,
1215                     };
1216
1217                     visitor.visit_generics(generics);
1218                     in_param_list = visitor.found_anon_const_in_list;
1219                     break;
1220                 }
1221             }
1222
1223             if in_param_list {
1224                 // We do not allow generic parameters in anon consts if we are inside
1225                 // of a param list.
1226                 //
1227                 // This affects both default type bindings, e.g. `struct<T, U = [u8; std::mem::size_of::<T>()]>(T, U)`,
1228                 // and the types of const parameters, e.g. `struct V<const N: usize, const M: [u8; N]>();`.
1229                 None
1230             } else if tcx.lazy_normalization() {
1231                 // HACK(eddyb) this provides the correct generics when
1232                 // `feature(const_generics)` is enabled, so that const expressions
1233                 // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1234                 Some(parent_def_id.to_def_id())
1235             } else {
1236                 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1237                 match parent_node {
1238                     // HACK(eddyb) this provides the correct generics for repeat
1239                     // expressions' count (i.e. `N` in `[x; N]`), and explicit
1240                     // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1241                     // as they shouldn't be able to cause query cycle errors.
1242                     Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1243                     | Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1244                         if constant.hir_id == hir_id =>
1245                     {
1246                         Some(parent_def_id.to_def_id())
1247                     }
1248
1249                     _ => None,
1250                 }
1251             }
1252         }
1253         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1254             Some(tcx.closure_base_def_id(def_id))
1255         }
1256         Node::Item(item) => match item.kind {
1257             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
1258                 impl_trait_fn.or_else(|| {
1259                     let parent_id = tcx.hir().get_parent_item(hir_id);
1260                     assert!(parent_id != hir_id && parent_id != CRATE_HIR_ID);
1261                     debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1262                     // Opaque types are always nested within another item, and
1263                     // inherit the generics of the item.
1264                     Some(tcx.hir().local_def_id(parent_id).to_def_id())
1265                 })
1266             }
1267             _ => None,
1268         },
1269         _ => None,
1270     };
1271
1272     let mut opt_self = None;
1273     let mut allow_defaults = false;
1274
1275     let no_generics = hir::Generics::empty();
1276     let ast_generics = match node {
1277         Node::TraitItem(item) => &item.generics,
1278
1279         Node::ImplItem(item) => &item.generics,
1280
1281         Node::Item(item) => {
1282             match item.kind {
1283                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl { ref generics, .. } => generics,
1284
1285                 ItemKind::TyAlias(_, ref generics)
1286                 | ItemKind::Enum(_, ref generics)
1287                 | ItemKind::Struct(_, ref generics)
1288                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1289                 | ItemKind::Union(_, ref generics) => {
1290                     allow_defaults = true;
1291                     generics
1292                 }
1293
1294                 ItemKind::Trait(_, _, ref generics, ..)
1295                 | ItemKind::TraitAlias(ref generics, ..) => {
1296                     // Add in the self type parameter.
1297                     //
1298                     // Something of a hack: use the node id for the trait, also as
1299                     // the node id for the Self type parameter.
1300                     let param_id = item.hir_id;
1301
1302                     opt_self = Some(ty::GenericParamDef {
1303                         index: 0,
1304                         name: kw::SelfUpper,
1305                         def_id: tcx.hir().local_def_id(param_id).to_def_id(),
1306                         pure_wrt_drop: false,
1307                         kind: ty::GenericParamDefKind::Type {
1308                             has_default: false,
1309                             object_lifetime_default: rl::Set1::Empty,
1310                             synthetic: None,
1311                         },
1312                     });
1313
1314                     allow_defaults = true;
1315                     generics
1316                 }
1317
1318                 _ => &no_generics,
1319             }
1320         }
1321
1322         Node::ForeignItem(item) => match item.kind {
1323             ForeignItemKind::Static(..) => &no_generics,
1324             ForeignItemKind::Fn(_, _, ref generics) => generics,
1325             ForeignItemKind::Type => &no_generics,
1326         },
1327
1328         _ => &no_generics,
1329     };
1330
1331     let has_self = opt_self.is_some();
1332     let mut parent_has_self = false;
1333     let mut own_start = has_self as u32;
1334     let parent_count = parent_def_id.map_or(0, |def_id| {
1335         let generics = tcx.generics_of(def_id);
1336         assert_eq!(has_self, false);
1337         parent_has_self = generics.has_self;
1338         own_start = generics.count() as u32;
1339         generics.parent_count + generics.params.len()
1340     });
1341
1342     let mut params: Vec<_> = opt_self.into_iter().collect();
1343
1344     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1345     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1346         name: param.name.ident().name,
1347         index: own_start + i as u32,
1348         def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1349         pure_wrt_drop: param.pure_wrt_drop,
1350         kind: ty::GenericParamDefKind::Lifetime,
1351     }));
1352
1353     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1354
1355     // Now create the real type and const parameters.
1356     let type_start = own_start - has_self as u32 + params.len() as u32;
1357     let mut i = 0;
1358
1359     // FIXME(const_generics): a few places in the compiler expect generic params
1360     // to be in the order lifetimes, then type params, then const params.
1361     //
1362     // To prevent internal errors in case const parameters are supplied before
1363     // type parameters we first add all type params, then all const params.
1364     params.extend(ast_generics.params.iter().filter_map(|param| {
1365         if let GenericParamKind::Type { ref default, synthetic, .. } = param.kind {
1366             if !allow_defaults && default.is_some() {
1367                 if !tcx.features().default_type_parameter_fallback {
1368                     tcx.struct_span_lint_hir(
1369                         lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1370                         param.hir_id,
1371                         param.span,
1372                         |lint| {
1373                             lint.build(
1374                                 "defaults for type parameters are only allowed in \
1375                                         `struct`, `enum`, `type`, or `trait` definitions.",
1376                             )
1377                             .emit();
1378                         },
1379                     );
1380                 }
1381             }
1382
1383             let kind = ty::GenericParamDefKind::Type {
1384                 has_default: default.is_some(),
1385                 object_lifetime_default: object_lifetime_defaults
1386                     .as_ref()
1387                     .map_or(rl::Set1::Empty, |o| o[i]),
1388                 synthetic,
1389             };
1390
1391             let param_def = ty::GenericParamDef {
1392                 index: type_start + i as u32,
1393                 name: param.name.ident().name,
1394                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1395                 pure_wrt_drop: param.pure_wrt_drop,
1396                 kind,
1397             };
1398             i += 1;
1399             Some(param_def)
1400         } else {
1401             None
1402         }
1403     }));
1404
1405     params.extend(ast_generics.params.iter().filter_map(|param| {
1406         if let GenericParamKind::Const { .. } = param.kind {
1407             let param_def = ty::GenericParamDef {
1408                 index: type_start + i as u32,
1409                 name: param.name.ident().name,
1410                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1411                 pure_wrt_drop: param.pure_wrt_drop,
1412                 kind: ty::GenericParamDefKind::Const,
1413             };
1414             i += 1;
1415             Some(param_def)
1416         } else {
1417             None
1418         }
1419     }));
1420
1421     // provide junk type parameter defs - the only place that
1422     // cares about anything but the length is instantiation,
1423     // and we don't do that for closures.
1424     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1425         let dummy_args = if gen.is_some() {
1426             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1427         } else {
1428             &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1429         };
1430
1431         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1432             index: type_start + i as u32,
1433             name: Symbol::intern(arg),
1434             def_id,
1435             pure_wrt_drop: false,
1436             kind: ty::GenericParamDefKind::Type {
1437                 has_default: false,
1438                 object_lifetime_default: rl::Set1::Empty,
1439                 synthetic: None,
1440             },
1441         }));
1442     }
1443
1444     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1445
1446     ty::Generics {
1447         parent: parent_def_id,
1448         parent_count,
1449         params,
1450         param_def_id_to_index,
1451         has_self: has_self || parent_has_self,
1452         has_late_bound_regions: has_late_bound_regions(tcx, node),
1453     }
1454 }
1455
1456 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1457     generic_args
1458         .iter()
1459         .filter_map(|arg| match arg {
1460             hir::GenericArg::Type(ty) => Some(ty),
1461             _ => None,
1462         })
1463         .any(is_suggestable_infer_ty)
1464 }
1465
1466 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1467 /// use inference to provide suggestions for the appropriate type if possible.
1468 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1469     use hir::TyKind::*;
1470     match &ty.kind {
1471         Infer => true,
1472         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1473         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1474         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1475         OpaqueDef(_, generic_args) => are_suggestable_generic_args(generic_args),
1476         Path(hir::QPath::TypeRelative(ty, segment)) => {
1477             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.generic_args().args)
1478         }
1479         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1480             ty_opt.map_or(false, is_suggestable_infer_ty)
1481                 || segments
1482                     .iter()
1483                     .any(|segment| are_suggestable_generic_args(segment.generic_args().args))
1484         }
1485         _ => false,
1486     }
1487 }
1488
1489 pub fn get_infer_ret_ty(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1490     if let hir::FnRetTy::Return(ref ty) = output {
1491         if is_suggestable_infer_ty(ty) {
1492             return Some(&**ty);
1493         }
1494     }
1495     None
1496 }
1497
1498 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1499     use rustc_hir::Node::*;
1500     use rustc_hir::*;
1501
1502     let def_id = def_id.expect_local();
1503     let hir_id = tcx.hir().as_local_hir_id(def_id);
1504
1505     let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1506
1507     match tcx.hir().get(hir_id) {
1508         TraitItem(hir::TraitItem {
1509             kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1510             ident,
1511             generics,
1512             ..
1513         })
1514         | ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), ident, generics, .. })
1515         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1516             match get_infer_ret_ty(&sig.decl.output) {
1517                 Some(ty) => {
1518                     let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
1519                     let mut visitor = PlaceholderHirTyCollector::default();
1520                     visitor.visit_ty(ty);
1521                     let mut diag = bad_placeholder_type(tcx, visitor.0);
1522                     let ret_ty = fn_sig.output();
1523                     if ret_ty != tcx.ty_error() {
1524                         diag.span_suggestion(
1525                             ty.span,
1526                             "replace with the correct return type",
1527                             ret_ty.to_string(),
1528                             Applicability::MaybeIncorrect,
1529                         );
1530                     }
1531                     diag.emit();
1532                     ty::Binder::bind(fn_sig)
1533                 }
1534                 None => AstConv::ty_of_fn(
1535                     &icx,
1536                     sig.header.unsafety,
1537                     sig.header.abi,
1538                     &sig.decl,
1539                     &generics,
1540                     Some(ident.span),
1541                 ),
1542             }
1543         }
1544
1545         TraitItem(hir::TraitItem {
1546             kind: TraitItemKind::Fn(FnSig { header, decl }, _),
1547             ident,
1548             generics,
1549             ..
1550         }) => {
1551             AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl, &generics, Some(ident.span))
1552         }
1553
1554         ForeignItem(&hir::ForeignItem {
1555             kind: ForeignItemKind::Fn(ref fn_decl, _, _),
1556             ident,
1557             ..
1558         }) => {
1559             let abi = tcx.hir().get_foreign_abi(hir_id);
1560             compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi, ident)
1561         }
1562
1563         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1564             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id).to_def_id());
1565             let inputs =
1566                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1567             ty::Binder::bind(tcx.mk_fn_sig(
1568                 inputs,
1569                 ty,
1570                 false,
1571                 hir::Unsafety::Normal,
1572                 abi::Abi::Rust,
1573             ))
1574         }
1575
1576         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1577             // Closure signatures are not like other function
1578             // signatures and cannot be accessed through `fn_sig`. For
1579             // example, a closure signature excludes the `self`
1580             // argument. In any case they are embedded within the
1581             // closure type as part of the `ClosureSubsts`.
1582             //
1583             // To get the signature of a closure, you should use the
1584             // `sig` method on the `ClosureSubsts`:
1585             //
1586             //    substs.as_closure().sig(def_id, tcx)
1587             bug!(
1588                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1589             );
1590         }
1591
1592         x => {
1593             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1594         }
1595     }
1596 }
1597
1598 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1599     let icx = ItemCtxt::new(tcx, def_id);
1600
1601     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1602     match tcx.hir().expect_item(hir_id).kind {
1603         hir::ItemKind::Impl { ref of_trait, .. } => of_trait.as_ref().map(|ast_trait_ref| {
1604             let selfty = tcx.type_of(def_id);
1605             AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1606         }),
1607         _ => bug!(),
1608     }
1609 }
1610
1611 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1612     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1613     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1614     let item = tcx.hir().expect_item(hir_id);
1615     match &item.kind {
1616         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Negative(span), of_trait, .. } => {
1617             if is_rustc_reservation {
1618                 let span = span.to(of_trait.as_ref().map(|t| t.path.span).unwrap_or(*span));
1619                 tcx.sess.span_err(span, "reservation impls can't be negative");
1620             }
1621             ty::ImplPolarity::Negative
1622         }
1623         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Positive, of_trait: None, .. } => {
1624             if is_rustc_reservation {
1625                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1626             }
1627             ty::ImplPolarity::Positive
1628         }
1629         hir::ItemKind::Impl {
1630             polarity: hir::ImplPolarity::Positive, of_trait: Some(_), ..
1631         } => {
1632             if is_rustc_reservation {
1633                 ty::ImplPolarity::Reservation
1634             } else {
1635                 ty::ImplPolarity::Positive
1636             }
1637         }
1638         ref item => bug!("impl_polarity: {:?} not an impl", item),
1639     }
1640 }
1641
1642 /// Returns the early-bound lifetimes declared in this generics
1643 /// listing. For anything other than fns/methods, this is just all
1644 /// the lifetimes that are declared. For fns or methods, we have to
1645 /// screen out those that do not appear in any where-clauses etc using
1646 /// `resolve_lifetime::early_bound_lifetimes`.
1647 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1648     tcx: TyCtxt<'tcx>,
1649     generics: &'a hir::Generics<'a>,
1650 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
1651     generics.params.iter().filter(move |param| match param.kind {
1652         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
1653         _ => false,
1654     })
1655 }
1656
1657 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1658 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1659 /// inferred constraints concerning which regions outlive other regions.
1660 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1661     debug!("predicates_defined_on({:?})", def_id);
1662     let mut result = tcx.explicit_predicates_of(def_id);
1663     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
1664     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1665     if !inferred_outlives.is_empty() {
1666         debug!(
1667             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1668             def_id, inferred_outlives,
1669         );
1670         if result.predicates.is_empty() {
1671             result.predicates = inferred_outlives;
1672         } else {
1673             result.predicates = tcx
1674                 .arena
1675                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
1676         }
1677     }
1678     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1679     result
1680 }
1681
1682 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1683 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1684 /// `Self: Trait` predicates for traits.
1685 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1686     let mut result = tcx.predicates_defined_on(def_id);
1687
1688     if tcx.is_trait(def_id) {
1689         // For traits, add `Self: Trait` predicate. This is
1690         // not part of the predicates that a user writes, but it
1691         // is something that one must prove in order to invoke a
1692         // method or project an associated type.
1693         //
1694         // In the chalk setup, this predicate is not part of the
1695         // "predicates" for a trait item. But it is useful in
1696         // rustc because if you directly (e.g.) invoke a trait
1697         // method like `Trait::method(...)`, you must naturally
1698         // prove that the trait applies to the types that were
1699         // used, and adding the predicate into this list ensures
1700         // that this is done.
1701         let span = tcx.sess.source_map().guess_head_span(tcx.def_span(def_id));
1702         result.predicates =
1703             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
1704                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(tcx),
1705                 span,
1706             ))));
1707     }
1708     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1709     result
1710 }
1711
1712 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1713 /// N.B., this does not include any implied/inferred constraints.
1714 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1715     use rustc_hir::*;
1716
1717     debug!("explicit_predicates_of(def_id={:?})", def_id);
1718
1719     /// A data structure with unique elements, which preserves order of insertion.
1720     /// Preserving the order of insertion is important here so as not to break
1721     /// compile-fail UI tests.
1722     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
1723     struct UniquePredicates<'tcx> {
1724         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1725         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1726     }
1727
1728     impl<'tcx> UniquePredicates<'tcx> {
1729         fn new() -> Self {
1730             UniquePredicates { predicates: vec![], uniques: FxHashSet::default() }
1731         }
1732
1733         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1734             if self.uniques.insert(value) {
1735                 self.predicates.push(value);
1736             }
1737         }
1738
1739         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1740             for value in iter {
1741                 self.push(value);
1742             }
1743         }
1744     }
1745
1746     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1747     let node = tcx.hir().get(hir_id);
1748
1749     let mut is_trait = None;
1750     let mut is_default_impl_trait = None;
1751     let mut is_trait_associated_type = None;
1752
1753     let icx = ItemCtxt::new(tcx, def_id);
1754     let constness = icx.default_constness_for_trait_bounds();
1755
1756     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
1757
1758     let mut predicates = UniquePredicates::new();
1759
1760     let ast_generics = match node {
1761         Node::TraitItem(item) => {
1762             if let hir::TraitItemKind::Type(bounds, _) = item.kind {
1763                 is_trait_associated_type = Some((bounds, item.span));
1764             }
1765             &item.generics
1766         }
1767
1768         Node::ImplItem(item) => &item.generics,
1769
1770         Node::Item(item) => {
1771             match item.kind {
1772                 ItemKind::Impl { defaultness, ref generics, .. } => {
1773                     if defaultness.is_default() {
1774                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1775                     }
1776                     generics
1777                 }
1778                 ItemKind::Fn(.., ref generics, _)
1779                 | ItemKind::TyAlias(_, ref generics)
1780                 | ItemKind::Enum(_, ref generics)
1781                 | ItemKind::Struct(_, ref generics)
1782                 | ItemKind::Union(_, ref generics) => generics,
1783
1784                 ItemKind::Trait(_, _, ref generics, .., items) => {
1785                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1786                     generics
1787                 }
1788                 ItemKind::TraitAlias(ref generics, _) => {
1789                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &[]));
1790                     generics
1791                 }
1792                 ItemKind::OpaqueTy(OpaqueTy {
1793                     ref bounds,
1794                     impl_trait_fn,
1795                     ref generics,
1796                     origin: _,
1797                 }) => {
1798                     let bounds_predicates = ty::print::with_no_queries(|| {
1799                         let substs = InternalSubsts::identity_for_item(tcx, def_id);
1800                         let opaque_ty = tcx.mk_opaque(def_id, substs);
1801
1802                         // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1803                         let bounds = AstConv::compute_bounds(
1804                             &icx,
1805                             opaque_ty,
1806                             bounds,
1807                             SizedByDefault::Yes,
1808                             tcx.def_span(def_id),
1809                         );
1810
1811                         bounds.predicates(tcx, opaque_ty)
1812                     });
1813                     if impl_trait_fn.is_some() {
1814                         // opaque types
1815                         return ty::GenericPredicates {
1816                             parent: None,
1817                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
1818                         };
1819                     } else {
1820                         // named opaque types
1821                         predicates.extend(bounds_predicates);
1822                         generics
1823                     }
1824                 }
1825
1826                 _ => NO_GENERICS,
1827             }
1828         }
1829
1830         Node::ForeignItem(item) => match item.kind {
1831             ForeignItemKind::Static(..) => NO_GENERICS,
1832             ForeignItemKind::Fn(_, _, ref generics) => generics,
1833             ForeignItemKind::Type => NO_GENERICS,
1834         },
1835
1836         _ => NO_GENERICS,
1837     };
1838
1839     let generics = tcx.generics_of(def_id);
1840     let parent_count = generics.parent_count as u32;
1841     let has_own_self = generics.has_self && parent_count == 0;
1842
1843     // Below we'll consider the bounds on the type parameters (including `Self`)
1844     // and the explicit where-clauses, but to get the full set of predicates
1845     // on a trait we need to add in the supertrait bounds and bounds found on
1846     // associated types.
1847     if let Some((_trait_ref, _)) = is_trait {
1848         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
1849     }
1850
1851     // In default impls, we can assume that the self type implements
1852     // the trait. So in:
1853     //
1854     //     default impl Foo for Bar { .. }
1855     //
1856     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
1857     // (see below). Recall that a default impl is not itself an impl, but rather a
1858     // set of defaults that can be incorporated into another impl.
1859     if let Some(trait_ref) = is_default_impl_trait {
1860         predicates.push((
1861             trait_ref.to_poly_trait_ref().without_const().to_predicate(tcx),
1862             tcx.def_span(def_id),
1863         ));
1864     }
1865
1866     // Collect the region predicates that were declared inline as
1867     // well. In the case of parameters declared on a fn or method, we
1868     // have to be careful to only iterate over early-bound regions.
1869     let mut index = parent_count + has_own_self as u32;
1870     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
1871         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
1872             def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1873             index,
1874             name: param.name.ident().name,
1875         }));
1876         index += 1;
1877
1878         match param.kind {
1879             GenericParamKind::Lifetime { .. } => {
1880                 param.bounds.iter().for_each(|bound| match bound {
1881                     hir::GenericBound::Outlives(lt) => {
1882                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
1883                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
1884                         predicates.push((outlives.to_predicate(tcx), lt.span));
1885                     }
1886                     _ => bug!(),
1887                 });
1888             }
1889             _ => bug!(),
1890         }
1891     }
1892
1893     // Collect the predicates that were written inline by the user on each
1894     // type parameter (e.g., `<T: Foo>`).
1895     for param in ast_generics.params {
1896         if let GenericParamKind::Type { .. } = param.kind {
1897             let name = param.name.ident().name;
1898             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
1899             index += 1;
1900
1901             let sized = SizedByDefault::Yes;
1902             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
1903             predicates.extend(bounds.predicates(tcx, param_ty));
1904         }
1905     }
1906
1907     // Add in the bounds that appear in the where-clause.
1908     let where_clause = &ast_generics.where_clause;
1909     for predicate in where_clause.predicates {
1910         match predicate {
1911             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
1912                 let ty = icx.to_ty(&bound_pred.bounded_ty);
1913
1914                 // Keep the type around in a dummy predicate, in case of no bounds.
1915                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
1916                 // is still checked for WF.
1917                 if bound_pred.bounds.is_empty() {
1918                     if let ty::Param(_) = ty.kind {
1919                         // This is a `where T:`, which can be in the HIR from the
1920                         // transformation that moves `?Sized` to `T`'s declaration.
1921                         // We can skip the predicate because type parameters are
1922                         // trivially WF, but also we *should*, to avoid exposing
1923                         // users who never wrote `where Type:,` themselves, to
1924                         // compiler/tooling bugs from not handling WF predicates.
1925                     } else {
1926                         let span = bound_pred.bounded_ty.span;
1927                         let re_root_empty = tcx.lifetimes.re_root_empty;
1928                         let predicate = ty::OutlivesPredicate(ty, re_root_empty);
1929                         predicates.push((
1930                             ty::PredicateKind::TypeOutlives(ty::Binder::bind(predicate))
1931                                 .to_predicate(tcx),
1932                             span,
1933                         ));
1934                     }
1935                 }
1936
1937                 for bound in bound_pred.bounds.iter() {
1938                     match bound {
1939                         &hir::GenericBound::Trait(ref poly_trait_ref, modifier) => {
1940                             let constness = match modifier {
1941                                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
1942                                 hir::TraitBoundModifier::None => constness,
1943                                 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
1944                             };
1945
1946                             let mut bounds = Bounds::default();
1947                             let _ = AstConv::instantiate_poly_trait_ref(
1948                                 &icx,
1949                                 poly_trait_ref,
1950                                 constness,
1951                                 ty,
1952                                 &mut bounds,
1953                             );
1954                             predicates.extend(bounds.predicates(tcx, ty));
1955                         }
1956
1957                         &hir::GenericBound::Outlives(ref lifetime) => {
1958                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
1959                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
1960                             predicates.push((
1961                                 ty::PredicateKind::TypeOutlives(pred).to_predicate(tcx),
1962                                 lifetime.span,
1963                             ))
1964                         }
1965                     }
1966                 }
1967             }
1968
1969             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
1970                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
1971                 predicates.extend(region_pred.bounds.iter().map(|bound| {
1972                     let (r2, span) = match bound {
1973                         hir::GenericBound::Outlives(lt) => {
1974                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
1975                         }
1976                         _ => bug!(),
1977                     };
1978                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
1979
1980                     (ty::PredicateKind::RegionOutlives(pred).to_predicate(icx.tcx), span)
1981                 }))
1982             }
1983
1984             &hir::WherePredicate::EqPredicate(..) => {
1985                 // FIXME(#20041)
1986             }
1987         }
1988     }
1989
1990     // Add predicates from associated type bounds (`type X: Bound`)
1991     if tcx.features().generic_associated_types {
1992         // New behavior: bounds declared on associate type are predicates of that
1993         // associated type. Not the default because it needs more testing.
1994         if let Some((bounds, span)) = is_trait_associated_type {
1995             let projection_ty =
1996                 tcx.mk_projection(def_id, InternalSubsts::identity_for_item(tcx, def_id));
1997
1998             predicates.extend(associated_item_bounds(tcx, def_id, bounds, projection_ty, span))
1999         }
2000     } else if let Some((self_trait_ref, trait_items)) = is_trait {
2001         // Current behavior: bounds declared on associate type are predicates
2002         // of its parent trait.
2003         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2004             trait_associated_item_predicates(tcx, def_id, self_trait_ref, trait_item_ref)
2005         }))
2006     }
2007
2008     let mut predicates = predicates.predicates;
2009
2010     // Subtle: before we store the predicates into the tcx, we
2011     // sort them so that predicates like `T: Foo<Item=U>` come
2012     // before uses of `U`.  This avoids false ambiguity errors
2013     // in trait checking. See `setup_constraining_predicates`
2014     // for details.
2015     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2016         let self_ty = tcx.type_of(def_id);
2017         let trait_ref = tcx.impl_trait_ref(def_id);
2018         cgp::setup_constraining_predicates(
2019             tcx,
2020             &mut predicates,
2021             trait_ref,
2022             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2023         );
2024     }
2025
2026     let result = ty::GenericPredicates {
2027         parent: generics.parent,
2028         predicates: tcx.arena.alloc_from_iter(predicates),
2029     };
2030     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2031     result
2032 }
2033
2034 fn trait_associated_item_predicates(
2035     tcx: TyCtxt<'tcx>,
2036     def_id: DefId,
2037     self_trait_ref: ty::TraitRef<'tcx>,
2038     trait_item_ref: &hir::TraitItemRef,
2039 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2040     let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2041     let item_def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
2042     let bounds = match trait_item.kind {
2043         hir::TraitItemKind::Type(ref bounds, _) => bounds,
2044         _ => return Vec::new(),
2045     };
2046
2047     if !tcx.generics_of(item_def_id).params.is_empty() {
2048         // For GATs the substs provided to the mk_projection call below are
2049         // wrong. We should emit a feature gate error if we get here so skip
2050         // this type.
2051         tcx.sess.delay_span_bug(trait_item.span, "gats used without feature gate");
2052         return Vec::new();
2053     }
2054
2055     let assoc_ty = tcx.mk_projection(
2056         tcx.hir().local_def_id(trait_item.hir_id).to_def_id(),
2057         self_trait_ref.substs,
2058     );
2059
2060     associated_item_bounds(tcx, def_id, bounds, assoc_ty, trait_item.span)
2061 }
2062
2063 fn associated_item_bounds(
2064     tcx: TyCtxt<'tcx>,
2065     def_id: DefId,
2066     bounds: &'tcx [hir::GenericBound<'tcx>],
2067     projection_ty: Ty<'tcx>,
2068     span: Span,
2069 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2070     let bounds = AstConv::compute_bounds(
2071         &ItemCtxt::new(tcx, def_id),
2072         projection_ty,
2073         bounds,
2074         SizedByDefault::Yes,
2075         span,
2076     );
2077
2078     let predicates = bounds.predicates(tcx, projection_ty);
2079
2080     predicates
2081 }
2082
2083 /// Converts a specific `GenericBound` from the AST into a set of
2084 /// predicates that apply to the self type. A vector is returned
2085 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2086 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2087 /// and `<T as Bar>::X == i32`).
2088 fn predicates_from_bound<'tcx>(
2089     astconv: &dyn AstConv<'tcx>,
2090     param_ty: Ty<'tcx>,
2091     bound: &'tcx hir::GenericBound<'tcx>,
2092     constness: hir::Constness,
2093 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2094     match *bound {
2095         hir::GenericBound::Trait(ref tr, modifier) => {
2096             let constness = match modifier {
2097                 hir::TraitBoundModifier::Maybe => return vec![],
2098                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2099                 hir::TraitBoundModifier::None => constness,
2100             };
2101
2102             let mut bounds = Bounds::default();
2103             let _ = astconv.instantiate_poly_trait_ref(tr, constness, param_ty, &mut bounds);
2104             bounds.predicates(astconv.tcx(), param_ty)
2105         }
2106         hir::GenericBound::Outlives(ref lifetime) => {
2107             let region = astconv.ast_region_to_region(lifetime, None);
2108             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2109             vec![(ty::PredicateKind::TypeOutlives(pred).to_predicate(astconv.tcx()), lifetime.span)]
2110         }
2111     }
2112 }
2113
2114 fn compute_sig_of_foreign_fn_decl<'tcx>(
2115     tcx: TyCtxt<'tcx>,
2116     def_id: DefId,
2117     decl: &'tcx hir::FnDecl<'tcx>,
2118     abi: abi::Abi,
2119     ident: Ident,
2120 ) -> ty::PolyFnSig<'tcx> {
2121     let unsafety = if abi == abi::Abi::RustIntrinsic {
2122         intrinsic_operation_unsafety(tcx.item_name(def_id))
2123     } else {
2124         hir::Unsafety::Unsafe
2125     };
2126     let fty = AstConv::ty_of_fn(
2127         &ItemCtxt::new(tcx, def_id),
2128         unsafety,
2129         abi,
2130         decl,
2131         &hir::Generics::empty(),
2132         Some(ident.span),
2133     );
2134
2135     // Feature gate SIMD types in FFI, since I am not sure that the
2136     // ABIs are handled at all correctly. -huonw
2137     if abi != abi::Abi::RustIntrinsic
2138         && abi != abi::Abi::PlatformIntrinsic
2139         && !tcx.features().simd_ffi
2140     {
2141         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2142             if ty.is_simd() {
2143                 let snip = tcx
2144                     .sess
2145                     .source_map()
2146                     .span_to_snippet(ast_ty.span)
2147                     .map_or(String::new(), |s| format!(" `{}`", s));
2148                 tcx.sess
2149                     .struct_span_err(
2150                         ast_ty.span,
2151                         &format!(
2152                             "use of SIMD type{} in FFI is highly experimental and \
2153                              may result in invalid code",
2154                             snip
2155                         ),
2156                     )
2157                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2158                     .emit();
2159             }
2160         };
2161         for (input, ty) in decl.inputs.iter().zip(fty.inputs().skip_binder()) {
2162             check(&input, ty)
2163         }
2164         if let hir::FnRetTy::Return(ref ty) = decl.output {
2165             check(&ty, fty.output().skip_binder())
2166         }
2167     }
2168
2169     fty
2170 }
2171
2172 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2173     match tcx.hir().get_if_local(def_id) {
2174         Some(Node::ForeignItem(..)) => true,
2175         Some(_) => false,
2176         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2177     }
2178 }
2179
2180 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2181     match tcx.hir().get_if_local(def_id) {
2182         Some(
2183             Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. })
2184             | Node::ForeignItem(&hir::ForeignItem {
2185                 kind: hir::ForeignItemKind::Static(_, mutbl),
2186                 ..
2187             }),
2188         ) => Some(mutbl),
2189         Some(_) => None,
2190         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2191     }
2192 }
2193
2194 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2195     match tcx.hir().get_if_local(def_id) {
2196         Some(Node::Expr(&rustc_hir::Expr {
2197             kind: rustc_hir::ExprKind::Closure(_, _, body_id, _, _),
2198             ..
2199         })) => tcx.hir().body(body_id).generator_kind(),
2200         Some(_) => None,
2201         _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2202     }
2203 }
2204
2205 fn from_target_feature(
2206     tcx: TyCtxt<'_>,
2207     id: DefId,
2208     attr: &ast::Attribute,
2209     supported_target_features: &FxHashMap<String, Option<Symbol>>,
2210     target_features: &mut Vec<Symbol>,
2211 ) {
2212     let list = match attr.meta_item_list() {
2213         Some(list) => list,
2214         None => return,
2215     };
2216     let bad_item = |span| {
2217         let msg = "malformed `target_feature` attribute input";
2218         let code = "enable = \"..\"".to_owned();
2219         tcx.sess
2220             .struct_span_err(span, &msg)
2221             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2222             .emit();
2223     };
2224     let rust_features = tcx.features();
2225     for item in list {
2226         // Only `enable = ...` is accepted in the meta-item list.
2227         if !item.check_name(sym::enable) {
2228             bad_item(item.span());
2229             continue;
2230         }
2231
2232         // Must be of the form `enable = "..."` (a string).
2233         let value = match item.value_str() {
2234             Some(value) => value,
2235             None => {
2236                 bad_item(item.span());
2237                 continue;
2238             }
2239         };
2240
2241         // We allow comma separation to enable multiple features.
2242         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2243             let feature_gate = match supported_target_features.get(feature) {
2244                 Some(g) => g,
2245                 None => {
2246                     let msg =
2247                         format!("the feature named `{}` is not valid for this target", feature);
2248                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2249                     err.span_label(
2250                         item.span(),
2251                         format!("`{}` is not valid for this target", feature),
2252                     );
2253                     if feature.starts_with('+') {
2254                         let valid = supported_target_features.contains_key(&feature[1..]);
2255                         if valid {
2256                             err.help("consider removing the leading `+` in the feature name");
2257                         }
2258                     }
2259                     err.emit();
2260                     return None;
2261                 }
2262             };
2263
2264             // Only allow features whose feature gates have been enabled.
2265             let allowed = match feature_gate.as_ref().copied() {
2266                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2267                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2268                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2269                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2270                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2271                 Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
2272                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2273                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2274                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2275                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2276                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2277                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2278                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2279                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2280                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2281                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2282                 Some(name) => bug!("unknown target feature gate {}", name),
2283                 None => true,
2284             };
2285             if !allowed && id.is_local() {
2286                 feature_err(
2287                     &tcx.sess.parse_sess,
2288                     feature_gate.unwrap(),
2289                     item.span(),
2290                     &format!("the target feature `{}` is currently unstable", feature),
2291                 )
2292                 .emit();
2293             }
2294             Some(Symbol::intern(feature))
2295         }));
2296     }
2297 }
2298
2299 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2300     use rustc_middle::mir::mono::Linkage::*;
2301
2302     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2303     // applicable to variable declarations and may not really make sense for
2304     // Rust code in the first place but allow them anyway and trust that the
2305     // user knows what s/he's doing. Who knows, unanticipated use cases may pop
2306     // up in the future.
2307     //
2308     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2309     // and don't have to be, LLVM treats them as no-ops.
2310     match name {
2311         "appending" => Appending,
2312         "available_externally" => AvailableExternally,
2313         "common" => Common,
2314         "extern_weak" => ExternalWeak,
2315         "external" => External,
2316         "internal" => Internal,
2317         "linkonce" => LinkOnceAny,
2318         "linkonce_odr" => LinkOnceODR,
2319         "private" => Private,
2320         "weak" => WeakAny,
2321         "weak_odr" => WeakODR,
2322         _ => {
2323             let span = tcx.hir().span_if_local(def_id);
2324             if let Some(span) = span {
2325                 tcx.sess.span_fatal(span, "invalid linkage specified")
2326             } else {
2327                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2328             }
2329         }
2330     }
2331 }
2332
2333 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2334     let attrs = tcx.get_attrs(id);
2335
2336     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2337     if should_inherit_track_caller(tcx, id) {
2338         codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2339     }
2340
2341     let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
2342
2343     let mut inline_span = None;
2344     let mut link_ordinal_span = None;
2345     let mut no_sanitize_span = None;
2346     for attr in attrs.iter() {
2347         if attr.check_name(sym::cold) {
2348             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2349         } else if attr.check_name(sym::rustc_allocator) {
2350             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2351         } else if attr.check_name(sym::unwind) {
2352             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2353         } else if attr.check_name(sym::ffi_returns_twice) {
2354             if tcx.is_foreign_item(id) {
2355                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2356             } else {
2357                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2358                 struct_span_err!(
2359                     tcx.sess,
2360                     attr.span,
2361                     E0724,
2362                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2363                 )
2364                 .emit();
2365             }
2366         } else if attr.check_name(sym::ffi_pure) {
2367             if tcx.is_foreign_item(id) {
2368                 if attrs.iter().any(|a| a.check_name(sym::ffi_const)) {
2369                     // `#[ffi_const]` functions cannot be `#[ffi_pure]`
2370                     struct_span_err!(
2371                         tcx.sess,
2372                         attr.span,
2373                         E0757,
2374                         "`#[ffi_const]` function cannot be `#[ffi_pure]`"
2375                     )
2376                     .emit();
2377                 } else {
2378                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
2379                 }
2380             } else {
2381                 // `#[ffi_pure]` is only allowed on foreign functions
2382                 struct_span_err!(
2383                     tcx.sess,
2384                     attr.span,
2385                     E0755,
2386                     "`#[ffi_pure]` may only be used on foreign functions"
2387                 )
2388                 .emit();
2389             }
2390         } else if attr.check_name(sym::ffi_const) {
2391             if tcx.is_foreign_item(id) {
2392                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
2393             } else {
2394                 // `#[ffi_const]` is only allowed on foreign functions
2395                 struct_span_err!(
2396                     tcx.sess,
2397                     attr.span,
2398                     E0756,
2399                     "`#[ffi_const]` may only be used on foreign functions"
2400                 )
2401                 .emit();
2402             }
2403         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2404             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2405         } else if attr.check_name(sym::naked) {
2406             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2407         } else if attr.check_name(sym::no_mangle) {
2408             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2409         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2410             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2411         } else if attr.check_name(sym::used) {
2412             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2413         } else if attr.check_name(sym::thread_local) {
2414             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2415         } else if attr.check_name(sym::track_caller) {
2416             if tcx.is_closure(id) || tcx.fn_sig(id).abi() != abi::Abi::Rust {
2417                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2418                     .emit();
2419             }
2420             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2421         } else if attr.check_name(sym::export_name) {
2422             if let Some(s) = attr.value_str() {
2423                 if s.as_str().contains('\0') {
2424                     // `#[export_name = ...]` will be converted to a null-terminated string,
2425                     // so it may not contain any null characters.
2426                     struct_span_err!(
2427                         tcx.sess,
2428                         attr.span,
2429                         E0648,
2430                         "`export_name` may not contain null characters"
2431                     )
2432                     .emit();
2433                 }
2434                 codegen_fn_attrs.export_name = Some(s);
2435             }
2436         } else if attr.check_name(sym::target_feature) {
2437             if !tcx.features().target_feature_11 {
2438                 check_target_feature_safe_fn(tcx, id, attr.span);
2439             } else if let Some(local_id) = id.as_local() {
2440                 if tcx.fn_sig(id).unsafety() == hir::Unsafety::Normal {
2441                     check_target_feature_trait_unsafe(tcx, local_id, attr.span);
2442                 }
2443             }
2444             from_target_feature(
2445                 tcx,
2446                 id,
2447                 attr,
2448                 &supported_target_features,
2449                 &mut codegen_fn_attrs.target_features,
2450             );
2451         } else if attr.check_name(sym::linkage) {
2452             if let Some(val) = attr.value_str() {
2453                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2454             }
2455         } else if attr.check_name(sym::link_section) {
2456             if let Some(val) = attr.value_str() {
2457                 if val.as_str().bytes().any(|b| b == 0) {
2458                     let msg = format!(
2459                         "illegal null byte in link_section \
2460                          value: `{}`",
2461                         &val
2462                     );
2463                     tcx.sess.span_err(attr.span, &msg);
2464                 } else {
2465                     codegen_fn_attrs.link_section = Some(val);
2466                 }
2467             }
2468         } else if attr.check_name(sym::link_name) {
2469             codegen_fn_attrs.link_name = attr.value_str();
2470         } else if attr.check_name(sym::link_ordinal) {
2471             link_ordinal_span = Some(attr.span);
2472             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2473                 codegen_fn_attrs.link_ordinal = ordinal;
2474             }
2475         } else if attr.check_name(sym::no_sanitize) {
2476             no_sanitize_span = Some(attr.span);
2477             if let Some(list) = attr.meta_item_list() {
2478                 for item in list.iter() {
2479                     if item.check_name(sym::address) {
2480                         codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
2481                     } else if item.check_name(sym::memory) {
2482                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
2483                     } else if item.check_name(sym::thread) {
2484                         codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
2485                     } else {
2486                         tcx.sess
2487                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2488                             .note("expected one of: `address`, `memory` or `thread`")
2489                             .emit();
2490                     }
2491                 }
2492             }
2493         }
2494     }
2495
2496     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2497         if !attr.has_name(sym::inline) {
2498             return ia;
2499         }
2500         match attr.meta().map(|i| i.kind) {
2501             Some(MetaItemKind::Word) => {
2502                 mark_used(attr);
2503                 InlineAttr::Hint
2504             }
2505             Some(MetaItemKind::List(ref items)) => {
2506                 mark_used(attr);
2507                 inline_span = Some(attr.span);
2508                 if items.len() != 1 {
2509                     struct_span_err!(
2510                         tcx.sess.diagnostic(),
2511                         attr.span,
2512                         E0534,
2513                         "expected one argument"
2514                     )
2515                     .emit();
2516                     InlineAttr::None
2517                 } else if list_contains_name(&items[..], sym::always) {
2518                     InlineAttr::Always
2519                 } else if list_contains_name(&items[..], sym::never) {
2520                     InlineAttr::Never
2521                 } else {
2522                     struct_span_err!(
2523                         tcx.sess.diagnostic(),
2524                         items[0].span(),
2525                         E0535,
2526                         "invalid argument"
2527                     )
2528                     .emit();
2529
2530                     InlineAttr::None
2531                 }
2532             }
2533             Some(MetaItemKind::NameValue(_)) => ia,
2534             None => ia,
2535         }
2536     });
2537
2538     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2539         if !attr.has_name(sym::optimize) {
2540             return ia;
2541         }
2542         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
2543         match attr.meta().map(|i| i.kind) {
2544             Some(MetaItemKind::Word) => {
2545                 err(attr.span, "expected one argument");
2546                 ia
2547             }
2548             Some(MetaItemKind::List(ref items)) => {
2549                 mark_used(attr);
2550                 inline_span = Some(attr.span);
2551                 if items.len() != 1 {
2552                     err(attr.span, "expected one argument");
2553                     OptimizeAttr::None
2554                 } else if list_contains_name(&items[..], sym::size) {
2555                     OptimizeAttr::Size
2556                 } else if list_contains_name(&items[..], sym::speed) {
2557                     OptimizeAttr::Speed
2558                 } else {
2559                     err(items[0].span(), "invalid argument");
2560                     OptimizeAttr::None
2561                 }
2562             }
2563             Some(MetaItemKind::NameValue(_)) => ia,
2564             None => ia,
2565         }
2566     });
2567
2568     // If a function uses #[target_feature] it can't be inlined into general
2569     // purpose functions as they wouldn't have the right target features
2570     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2571     // respected.
2572     if !codegen_fn_attrs.target_features.is_empty() {
2573         if codegen_fn_attrs.inline == InlineAttr::Always {
2574             if let Some(span) = inline_span {
2575                 tcx.sess.span_err(
2576                     span,
2577                     "cannot use `#[inline(always)]` with \
2578                      `#[target_feature]`",
2579                 );
2580             }
2581         }
2582     }
2583
2584     if !codegen_fn_attrs.no_sanitize.is_empty() {
2585         if codegen_fn_attrs.inline == InlineAttr::Always {
2586             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
2587                 let hir_id = tcx.hir().as_local_hir_id(id.expect_local());
2588                 tcx.struct_span_lint_hir(
2589                     lint::builtin::INLINE_NO_SANITIZE,
2590                     hir_id,
2591                     no_sanitize_span,
2592                     |lint| {
2593                         lint.build("`no_sanitize` will have no effect after inlining")
2594                             .span_note(inline_span, "inlining requested here")
2595                             .emit();
2596                     },
2597                 )
2598             }
2599         }
2600     }
2601
2602     // Weak lang items have the same semantics as "std internal" symbols in the
2603     // sense that they're preserved through all our LTO passes and only
2604     // strippable by the linker.
2605     //
2606     // Additionally weak lang items have predetermined symbol names.
2607     if tcx.is_weak_lang_item(id) {
2608         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2609     }
2610     if let Some(name) = weak_lang_items::link_name(&attrs) {
2611         codegen_fn_attrs.export_name = Some(name);
2612         codegen_fn_attrs.link_name = Some(name);
2613     }
2614     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2615
2616     // Internal symbols to the standard library all have no_mangle semantics in
2617     // that they have defined symbol names present in the function name. This
2618     // also applies to weak symbols where they all have known symbol names.
2619     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2620         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2621     }
2622
2623     codegen_fn_attrs
2624 }
2625
2626 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
2627 /// applied to the method prototype.
2628 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2629     if let Some(impl_item) = tcx.opt_associated_item(def_id) {
2630         if let ty::AssocItemContainer::ImplContainer(impl_def_id) = impl_item.container {
2631             if let Some(trait_def_id) = tcx.trait_id_of_impl(impl_def_id) {
2632                 if let Some(trait_item) = tcx
2633                     .associated_items(trait_def_id)
2634                     .filter_by_name_unhygienic(impl_item.ident.name)
2635                     .find(move |trait_item| {
2636                         trait_item.kind == ty::AssocKind::Fn
2637                             && tcx.hygienic_eq(impl_item.ident, trait_item.ident, trait_def_id)
2638                     })
2639                 {
2640                     return tcx
2641                         .codegen_fn_attrs(trait_item.def_id)
2642                         .flags
2643                         .intersects(CodegenFnAttrFlags::TRACK_CALLER);
2644                 }
2645             }
2646         }
2647     }
2648
2649     false
2650 }
2651
2652 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2653     use rustc_ast::ast::{Lit, LitIntType, LitKind};
2654     let meta_item_list = attr.meta_item_list();
2655     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2656     let sole_meta_list = match meta_item_list {
2657         Some([item]) => item.literal(),
2658         _ => None,
2659     };
2660     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2661         if *ordinal <= usize::MAX as u128 {
2662             Some(*ordinal as usize)
2663         } else {
2664             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
2665             tcx.sess
2666                 .struct_span_err(attr.span, &msg)
2667                 .note("the value may not exceed `usize::MAX`")
2668                 .emit();
2669             None
2670         }
2671     } else {
2672         tcx.sess
2673             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
2674             .note("an unsuffixed integer value, e.g., `1`, is expected")
2675             .emit();
2676         None
2677     }
2678 }
2679
2680 fn check_link_name_xor_ordinal(
2681     tcx: TyCtxt<'_>,
2682     codegen_fn_attrs: &CodegenFnAttrs,
2683     inline_span: Option<Span>,
2684 ) {
2685     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
2686         return;
2687     }
2688     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
2689     if let Some(span) = inline_span {
2690         tcx.sess.span_err(span, msg);
2691     } else {
2692         tcx.sess.err(msg);
2693     }
2694 }
2695
2696 /// Checks the function annotated with `#[target_feature]` is unsafe,
2697 /// reporting an error if it isn't.
2698 fn check_target_feature_safe_fn(tcx: TyCtxt<'_>, id: DefId, attr_span: Span) {
2699     if tcx.is_closure(id) || tcx.fn_sig(id).unsafety() == hir::Unsafety::Normal {
2700         let mut err = feature_err(
2701             &tcx.sess.parse_sess,
2702             sym::target_feature_11,
2703             attr_span,
2704             "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2705         );
2706         err.span_label(tcx.def_span(id), "not an `unsafe` function");
2707         err.emit();
2708     }
2709 }
2710
2711 /// Checks the function annotated with `#[target_feature]` is not a safe
2712 /// trait method implementation, reporting an error if it is.
2713 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
2714     let hir_id = tcx.hir().as_local_hir_id(id);
2715     let node = tcx.hir().get(hir_id);
2716     if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
2717         let parent_id = tcx.hir().get_parent_item(hir_id);
2718         let parent_item = tcx.hir().expect_item(parent_id);
2719         if let hir::ItemKind::Impl { of_trait: Some(_), .. } = parent_item.kind {
2720             tcx.sess
2721                 .struct_span_err(
2722                     attr_span,
2723                     "`#[target_feature(..)]` cannot be applied to safe trait method",
2724                 )
2725                 .span_label(attr_span, "cannot be applied to safe trait method")
2726                 .span_label(tcx.def_span(id), "not an `unsafe` function")
2727                 .emit();
2728         }
2729     }
2730 }